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Abstract: This research investigates transport regimes in metal-insulator Anderson transition
through Hamiltonian learning. Quantum reservoir computing is employed to estimate the stochastic-
ity parameter in the Hamiltonian of the quasiperiodic kicked rotor, a model that displays Anderson
transition in momentum space. The stochasticity parameter is key for classifying phase regimes,
i.e., localized/insulator phase, delocalized/metalic phase, and critical phase, as well as qualitatively
forecasting trajectory evolution. Thus, supervised machine learning that effectively maps input tra-
jectories to their corresponding stochasticity parameter has been developed, highlighting the efficacy
of quantum machine learning in analyzing quantum phenomena.

I. INTRODUCTION

Since the discovery of Anderson localization in 1958
[1], it has been known that disorder can localize quan-
tum particles. In three-dimensional non-interacting dis-
ordered electron systems, this implies a phase transition,
known as the Anderson transition, from a diffusive or
metallic phase to an insulating or localized phase. This
diffusive transport is suppressed due to destructive quan-
tum interference introduced by the disorder of the sys-
tem, leading to localization [2].

The original paper [1] and subsequent numerical simu-
lations and experiments have confirmed Anderson local-
ization in 1D in light waves, microwaves, electron gases,
and matter-waves [3]. However, in three dimensions, the
experimental observation of the Anderson transition re-
mains challenging [4]. The quasiperiodical kicked rotor
(QPKR) with three incommensurate frequencies, intro-
duced in Refs. [5, 6], has proven to display the Anderson
transition in momentum space, making it an effective tool
for studying the metal-insulator phase regimes. This ap-
proach is also experimentally feasible, as demonstrated in
experiments with cold atomic gas exposed to laser pulses
[7].

In recent years, quantum machine learning (QML) has
emerged as a promising field, attracting attention from
both the scientific community and industry due to its po-
tential to enhance computational speed, learning capac-
ity, and efficiency [8]. One notable application of QML is
time-series processing and forecasting. In the domain of
physics, temporal evolutions are observed virtually every-
where, ranging from microscopic to macroscopic scales,
and in both quantum and relativistic systems. Conse-
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quently, QML holds promise for catalyzing significant
breakthroughs in physics.

Temporal tasks require continuous monitoring of data,
and it is essential to preserve the sequential integrity of
the data for effective processing. Quantum reservoir com-
puting (QRC)[9] is a kind of recurrent neural network
that is effective for this type of tasks [10, 11]. The motiva-
tion for using QRC stems from QML algorithms’ ability
to handle high computational complexity due to the uti-
lization of Hilbert spaces, which facilitate the representa-
tion of quantum states in exponentially large dimensional
spaces. This enables operations and information storage
on a scale that classical systems cannot efficiently manage
[12]. In addition, QRC is advantageous for model train-
ing due to its rapid, efficient linear fit process, avoiding
high resource costs, and it allows for multitasking by ap-
plying different linear fits to the reservoir outputs [9, 13].

In this research, the metal-insulator Anderson transi-
tion has been studied by developing a supervised ma-
chine learning (SML) tool using spin-based QRC, capa-
ble of providing valuable information about the trans-
port regimes in momentum space of a wave packet in the
QPKR. The focal point of this study has been the esti-
mation of the stochasticity parameter in the Hamiltonian
of the QPKR (Hamiltonian Learning), by using a QRC
consisting of a complex network of N randomly coupled
qubits. Then the desired observables of the spins are ob-
tained in the output layer, and through linear regression
the weights of the outputs can be optimized to obtain
the targeted function, i.e., the value of the stochastic-
ity parameter. Thus, a SML model has been developed
where inputting a trajectory in momentum space yields
its stochasticity parameter. This parameter is of great
significance as, given an experimental trajectory, it al-
lows for classification into metal, critical, or insulator
phases, thus gaining knowledge of the trajectory evolu-
tion in time.

mailto:lcortepa7@alumnes.ub.edu


QRC for Hamiltonian Learning in Metal-Insulator Anderson Transitions Lućıa Cortés Páez

The paper is structured as follows: Section II reviews
the dynamics of the QPKR, and the time dependence
of transport regimes in momentum space. Section III
describes the QRC and its functionality. Section IV
presents the models for stochasticity parameter forecast-
ing and the main results. Finally, the conclusions are in
Section V.

II. DYNAMICS OF THE QUASIPERIODICAL
KICKED ROTOR

In the following lines, the dynamics of the QPKR
and transport regimes in the Anderson transition
are explored, numerically recreating the experimental
conditions used in the observation of metal-insulator
transition with atomic matter waves from Ref. [7].

The QPKR can be described by the time-dependent,
scaled, dimensionless Hamiltonian [7],

H(t) =
p2

2
+Kcos(x)×

∑
n

δ(t− n)×K(t) (1)

with

K(t) = 1 + ϵcos(ω2t+ θ2)× cos(ω3t+ θ3), (2)

whereK is the stochasticity parameter, ωi are the incom-
mensurate frequencies, ϵ the modulation strength and
θi the initial phases. The dynamics of the Hamilto-
nian in Eq.(1) are studied by solving the time-dependent
Schrödinguer equation:

ik
d

dt
ψ(t) = H(t)ψ(t), (3)

where k is the scaled Plank constant. To this aim, one
considers the one-period evolution operator, also known
as the period-1 Floquet operator [7]:

Û = ÛkickÛfree = e−
1
kKcosx̂K(t)e−

1
2k p̂2

. (4)

This operator factorizes into the product of the kick op-
erator phase and the free evolution phase. This is due to
the δ(t−n) term in Eq.(1) as the evolution of the kinetic
energy term is negligible during the kick[14]. The free
evolution term is diagonal in momentum space, whereas
the kick operator term is diagonal in position space. To
switch to position space, the Fourier transform is applied.
The wave-function ψp(t) at time t can be obtained by ap-

plying successively Û(t′; t− 1) for t′ from 1 to t:

ψ(t) =

t∏
t′=1

Û(t′; t′ − 1)ψ(x, t = 0). (5)

As we discuss in the following lines, it is particularly
interesting to compute ⟨p2(t)⟩:

⟨p2(tk)⟩ =
n∑

i=0

|ψ(pi)|2 p2i , (6)

where n is the number of elements of our basis when we
truncate the momentum space.

The ⟨p2(t)⟩ trajectories define how wavepackets diffuse
in momentum space:

⟨p2(t)⟩ ∼


Dt delocalized/metal phase,

ξ2 localized/insulator phase,

t2/3 critical phase,

(7)

with ξ the localization length and D = K2

2k- the diffu-

sion constant. In order to observe localization, disor-
der must be introduced to the system, i.e, (k, ω2, ω3, π)
must be incommensurate. This parameters have been set
to (2.89, 2π

√
3, 2π

√
13, π) according to [15]. The metal-

insulator transition is observed in the (K, ϵ) plane. The
larger K and ϵ, the smaller the disorder, leading to a dif-
fusive regime. Ref. [4] has shown that K = 4, ϵ = 0.1 is
in the localized region, K = 9, ϵ = 0.8 is in the diffusive
region and the critical line is crossed at K = Kc = 6.6,
ϵ = ϵ0 ≈ 4.5. Thus, by knowing the value of K and ϵ
for a given trajectory ⟨p2(t)⟩ it is possible to identify its
phase regime as well as the trajectory evolution in time.

III. SPIN-BASED QUANTUM RESERVOIR
COMPUTING

QRC is a machine learning approach that comprises
three distinct layers[9]: the injection of the input into the
dynamical system (quantum reservoir), the evolution of
the reservoir under its natural dynamics, and the extrac-
tion of information from the reservoir through an output
layer. This research uses a quantum reservoir consisting
of a complex network of N randomly coupled qubits in
a finite-dimensional Hilbert space of dimension 2N , ex-
plored in [16]. It presents a dynamical phase transition
from many-body localized (MBL) to an ergodic phase,
that characterizes its performance[10]. Nonlinearity in
the input-output map, which has proven to enchance
computational performance, is introduced through the
input encoding in one qubit [16].

A. Input encoding in one qubit

Various methodologies can be employed to introduce
the input in the reservoir system. The method adopted
in this study is the widely used technique [10, 16, 17] of
input encoding in a single-qubit pure state:

|ψk⟩ =
√
1− sk |0⟩+

√
sk |1⟩ , (8)

where sk is the normalized input, such that sk ∈ [0, 1].
Notice that the index k refers to the time step k in the
time-series that is being processed. The input-state den-
sity matrix is:

|ψk⟩ ⟨ψk| =
(

1− sk
√
sk(1− sk)√

sk(1− sk) sk

)
(9)

Treball de Fi de Grau 2 Barcelona, June 2024



QRC for Hamiltonian Learning in Metal-Insulator Anderson Transitions Lućıa Cortés Páez

such that the state of the system after the input injection
is:

ρk = |ψk⟩ ⟨ψk| ⊗ ρ̃k−1, (10)

with ρ̃k−1 = Tr1(ρk−1). Tr1 is the partial trace with re-
spect to the first qubit (chosen arbitrarily), which opera-
tionally corresponds to discarding all information about
the quantum state of the first qubit and feeding the input
sk to the reservoir.

B. Dynamic evolution of the reservoir

After introducing the input into the reservoir network,
the system undergoes a unitary evolution governed by
the Hamiltonian, Ĥ between steps of ∆t.

ρk = e−iĤ∆t (|ψk⟩ ⟨ψk| ⊗ ρ̃k−1) e
iĤ∆t. (11)

The choice of the Hamiltonian for the QRC is a significant
one, as it directly impacts on the performance of the
reservoir [10, 16]. The transverse-field Ising Hamiltonian
considered here, which is analyzed in [10, 16, 17], has
demonstrated high performance for nonlinear tasks:

Ĥ =
h

2

N∑
i=1

σ̂i
z +

N∑
i<j

Jij σ̂i
xσ̂j

x, (12)

where Jij are the spin-spin couplings randomly generated

from a uniform distribution in the interval [−Js

2 ,
Js

2 ], and
h is the transversal magnetic field written in units of Js.
This external field, h, determines the dominance of the
z-direction over the other directions.

C. Reservoir output: expectation values of
observables

As explored in [16], the functional form of an expecta-

tion value of any observable Ô for the input encoding in
a single-qubit pure state is:

⟨Ô⟩k = Tr(Ôρ
(0)
k ) + skTr(Ôρ

(1)
k ) + rkTr(Ôρ

(nl)
k ). (13)

The observables have a term independent of sk, a term
proportional to sk, and a nonlinear term, with rk =√
sk(1− sk). For each model, a selection of observables

are the QRC output.

D. Linear regression for the optimization of the
output weights

The prediction of the targeted function, i.e. K, is
achieved with a linear regression model by optimizing
the weights of the output observable from the reservoir

network with the Least Squares method [13]. The pre-

dictions, K̃, take the general form:

K̃ = w0 +

N∑
i=1

(w1,i ⟨σx
i ⟩+ w2,i ⟨σy

i ⟩+ w3,i ⟨σz
i ⟩) . (14)

The performance of the model can be quantified by the
coefficient of determination:

R2 = 1−
∑L

i=1(Ki − K̃i)
2∑L

i=1(K̄ −KL)2
, (15)

where L is the number of trajectories in a given dataset.
If R2 = 1, K̃ and K are perfectly correlated, meaning
K̃ = K. Conversely, if R2 = 0, there is no correlation
between K and K̃, and the predictions are fatal.

IV. STOCHASTICITY PARAMETER
FORECASTING

The methodology for predicting the stochasticity pa-
rameter for the ⟨p2(t)⟩ trajectories in different phase
regimes and the performance of the considered models
are detailed in the following subsections.

A. Obtention of trajectories in momentum space
and QRC output observables

Initially, the ⟨p2(t)⟩ trajectories were computed by nu-
merically solving the time-dependent Schrödinger equa-
tion (3), as described in Section II. Each trajectory corre-
sponds to specific values of K and ϵ. To analyze the dif-
ferent regimes —localized, delocalized, and critical— 500
⟨p2(t)⟩ trajectories were generated with K values and ϵ
values quadratically distributed within the intervals [4, 9]
and [0.1, 0.8], respectively. Each trajectory has 200 time
steps tk, i.e., 200 kicks. The representation of ⟨p2(t)⟩ for
different phase regions is shown in Figure 1.
We handle the different orders of magnitude taken by

⟨p2⟩ in the different transport regimes by computing its
logarithm. In addition, scaling the values to [0, 1] ensures
that all features contribute equally, preventing dominant
values and improving numerical stability.
The dataset contains 500 ⟨p2(t)⟩ trajectories scaled to

[0, 1], where each trajectory spans 200 sk values. sk refers
to the value of ⟨p2(tk)⟩ for a time step tk in a trajectory.
Additionally, each trajectory in the dataset is labeled
with the corresponding K and ϵ values, that are used
in the SML with QRC.

By iteratively feeding sk to the QRC, each tra-
jectory from the initial dataset is represented by
3N time series of 200 time steps, corresponding to

⟨σ(1)
x ⟩ , ⟨σ(1)

y ⟩ , ⟨σ(1)
z ⟩ , . . . , ⟨σ(N=8)

x ⟩ , ⟨σ(N=8)
y ⟩ , ⟨σ(N=8)

z ⟩.
This provides a richer dataset with more information
about the ⟨p2(t)⟩ trajectories, which can be highly

useful for predicting K. By concatenating each ⟨σ(i)
j ⟩, a
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FIG. 1: Representation of ⟨p2(t)⟩ for different phase regions.
The delocalized phase exhibits a diffusive behavior of the
wavepacket, indicated by the green trajectories that increase
linearly over time. The localized phase, represented by the red
trajectories, shows saturation to a finite value due to quantum
interference. The blue trajectories, which are neither strictly
linear nor saturated, correspond to the critical phase associ-
ated with the metal-insulator Anderson transition.

dataset of dimensions M × 3NT is obtained. Here, M
denotes the number of trajectories to be analyzed, set
to M = 500; T represents the number of time steps of
each trajectory, set to T = 200; and N is the number of
qubits in the reservoir network, set to N = 8. Therefore,
the overall dataset size is 500 × 4800. This dataset is
split into a Training Set (70%) and a Testing Set (30%).
However, fitting this dataset into Eq (14) results in a
vast number of free parameters, i.e., an overfitting of
the model. This leads to extremely good performance
during training (R2 = 1), but poor generalization during
testing (R ≪ 1). To address this issue, the dataset size
was reduced by summing each direction for all qubits,
resulting in a dataset of (M × 3T ) = (500× 600). Here,

the sigmas are defined as: ⟨σj⟩ =
∑N

i=1 ⟨σ
(i)
j ⟩ with

j = x, y, z. This data was further reduced using various
procedures, leading to different predictive models.

B. Performance of predictive models

Model 1 incorporates contributions from the x, y, and
z directions, i.e., ⟨σ⟩ =

∑
j=x,y,z ⟨σj⟩. Model 2, Model 3,

and Model 4 include only the ⟨σx⟩, ⟨σy⟩, and ⟨σz⟩, respec-
tively. The hyperparameter h has been set to h = 10 and
h = 1 as these values yield good reservoir performance
[10].

For h = 1 (Figure 2), the QRC model shows excep-
tional prediction accuracy, particularly when integrating
all observables (⟨σ⟩), achieving R2 = 0.997. This very
high correlation is supported by the absolute error
histogram, with most errors close to zero.

At h = 10 (Figure 3), there is a notable decline in
accuracy for ⟨σx⟩ and ⟨σy⟩ (R2 = 0.65 and 0.54), while
⟨σz⟩ remains high (R2 = 0.97). The combined model at
h = 10 achieves R2 = 0.990, indicating that including all
observables increases the capability of the model and mit-

FIG. 2: Comparison of models for predicting the stochasticity
parameter K using different observables ⟨σx⟩, ⟨σy⟩, ⟨σz⟩. The
histograms display the absolute error distribution, while the
scatter plots show the predicted K̃ versus the actual K with
corresponding R2 values, indicating the models’ performance.
The magnetic field hyperparameter is h = 1.

igates performance issues seen in individual directions.
These trends align with theoretical expectations about

the QRC’s sensitivity to h explored in [10]. Lower h val-
ues in the ergodic phase regime enhance contributions
from ⟨σx⟩ and ⟨σy⟩, creating a more balanced and ac-
curate model. In contrast, higher h values increase the
influence of ⟨σz⟩, reducing performance in ⟨σx⟩ and ⟨σy⟩.
Overall, optimal performance is achieved at h = 1, em-
phasizing the importance of balancing contributions from
all directions.

V. CONCLUSIONS

This research successfully applied QRC for Hamilto-
nian Learning in the metal-insulator Anderson transition
using the QPKR model. We developed a QRC that
accurately estimates the stochasticity parameter K,
enabling precise classification of phase regimes. Ana-
lyzing ⟨p2(t)⟩ trajectories for various K and ϵ values
confirmed distinct behaviors in different phase regimes:
linear increase in the delocalized phase, saturation in
the localized phase, and t

2
3 behavior in the critical phase.
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FIG. 3: Comparison of models for predicting the stochasticity
parameter K using different observables ⟨σx⟩, ⟨σy⟩, ⟨σz⟩. The
histograms display the absolute error distribution, while the
scatter plots show the predicted K̃ versus the actual K with
corresponding R2 values, indicating the models’ performance.
The magnetic field hyperparameter is h = 10.

QRC models exhibited high efficiency and accuracy,
leveraging the high-dimensional Hilbert space for en-
hanced performance. The input encoding in a single
pure state and dynamic reservoir evolution governed by
the transverse-field Ising Hamiltonian proved effective,
and the model showed good generalization capability,
with satisfactory R2 values during testing, reaching a
maximum performance of R = 0.997. QRC sensitivity
to the hyperparameter h was significant, with optimal
performance in the ergodic phase at h = 1.

This research highlights the practical and efficient
utility of QRC in quantum phase classification and
Hamiltonian Learning. Future research can explore
alternative QRC architectures with different input
encodings, and extending the approach to larger and
chaotic quantum systems where numerical methods are
required, which shows the potential of QRC and QML
in advancing our understanding of phase transitions and
quantum phenomena, potentially leading to significant
breakthroughs in the field.
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