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Quantum many-body problems face a scalability challenge, since the wave function scales exponen-
tially with the number of bodies in the system. Fortunately, several machine learning approaches
have been recently proposed to overcome this challenge. Specially promising are the Restricted
Boltzmann Machines (RBMs), to turn the problem into a manageable computational form. More-
over, information geometry has been studied in RBMs, and the Fisher Matrix has shown to reveal
relevant information about the system. Here, we create from scratch a RBM representation of the
ground state for the transverse Ising model (short and long-range), and analyze the corresponding
Fisher Matrix across different quantum phases, and its potential to signal the phase transition.

I. INTRODUCTION

Recently, machine learning techniques have been ap-
plied to the field of quantum many-body physics with
many promising results. One method that has gathered
a lot of attention is Complex Restricted Boltzmann Ma-
chine (RBM) state Ansatz using stochastic reconfigura-
tion optimization. These variational ansätze are able not
only to reproduce the ground-state energy of many-body
quantum systems, but they outperform state-of-the-art
tensor networks methods previously used [1].

Furthermore, work has been done in trying to extract
valuable data of the inner-patterns of RBMs [5]. In fact,
RBMs learn using stochastic reconfiguration, and such a
method implies an energy gradient descent weighted by
a Quantum Fisher Matrix (QFM), which is the quantum
equivalent of the Fisher Information Matrix. The Fisher
information matrix is known to be the unique Rieman-
nian metric associated to a probability space, invariant
under sufficient statistics (known as Chentsov’s theorem
[2]). Therefore, valuable information is contained in the
metric associated with RBMs.

The purpose of this work is to implement a RBM to
reproduce the ground state of a one-dimensional Ising
model accross its emerging quantum phase transition,
and analyse the spectrum and distribution of the asso-
ciated QFM. We explore both the short-range and long-
range versions of the model.

II. CONCEPTS AND METHODS

A. Restricted Boltzmann Machines

A Restricted Boltzmann Machine (RBMs) is a genera-
tive model that represents a probability distribution. It
contains two types of units that are connected: visible
and hidden neurons, which can be thought of as two dif-
ferent layers. The first layer contains information about
a given real system (e.g., a spin-state), while the sec-

ond layer comprises the hidden units, which model the
dependencies between different visible units, and act as
non-linear feature detectors. In fact, RBMs can be in-
terpreted as deterministic feed-forward neural networks
with a non-linear activation function (sigmoid) (see [3]
for a detailed discussion).
Boltzman Machines (BM) are a special type of Markov

Random Field (MRF) with a bipartite structure. A
Markov Random Field is a graphical model that repre-
sents the join probability distribution of a set of random
variables {x⃗ = (x1, · · · , xN )} with a given graph struc-
ture. Nodes represent the random variables and edges
their conditional dependencies. It is well known [3] that
the joint probability of a certain configuration given by
the MRF can be expressed with a general factorization
form (Hammersley-Clifford Theorem):

p(x⃗) =
1

Z
e−E(x⃗), (1)

where Z is the associated partition function and E(x⃗) is
the energy functional given the configuration x⃗. Interest-
ingly, this form follows closely the equilibrium distribu-
tion typically used in statistical physics.
In this work, we focus on Complex Restricted Boltz-

mann Machines which are RBMs with complex values.
They have proven to efficiently describe the quantum
state of a many-body system [1]. In this case, the visible
and hidden units are conditionally independent of them-
selves, that is, no edge exists between any two visible
units or hidden units (see Fig. 1 for a sketch of the RBM).
The n visible and m hidden units, which are denoted re-

spectively by v⃗ = {v1, · · · , vn} and h⃗ = {h1, · · · , hm},
are binary variables, i.e., (v⃗, h⃗) ∈ {0, 1}n+m.
Following Eq.(1), the amplitude probability associated

with certain configuration for the neurons in the visible
layer (e.g., corresponding to the wave function amplitude
of a real spin configuration) is given by:

Ψθ(v⃗) =
1√
Z

∑
h⃗

e−Eθ(v⃗,⃗h), (2)
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with Eθ(v⃗, h⃗) = −h⃗T ·
↔
W ·v⃗−a⃗T ·v⃗− b⃗T ·h⃗ the energy func-

tion, with variational parameters θ =
{↔
W, a⃗, b⃗

}
. Here

the matrix
↔
W = {wij , (i = 1, · · · , n), (j = 1, · · · ,m)}

connects the units from the visible and the hidden layer,

and a⃗ = {a1, · · · , an} and b⃗ = {b1, · · · , bm} represent lo-

cal biases acting as a scaling factor. The prefactor 1/
√
Z

guarantees the normalization of the wave function over
all possible configurations of v⃗.
We emphasize that in the case of Complex RBM, the

amplitude wave function is a complex number, implying

that a⃗, b⃗ and
↔
W are, in general, complex numbers. These

parameters are fitting parameters and need to be learnt
using different numerical methods, such as the Stochastic
Reconfiguration method and Monte-Carlo sampling that
will be discussed later. They allow us to learn the in-
teresting underlying distribution, which will be the wave
function of the quantum many-body problem.

Figure 1: Structure of a RBM: a visible and a hidden
layer of binary neurons denoted by v⃗ = {v1, · · · , vn} and

h⃗ = {h1, · · · , hm}, are connected via the weight matrix
↔
W =

{wij ; i = 1, · · · , n; j = 1, · · · ,m}. No visible layer node is
connected to another visible layer node, and no hidden layer
node is connected to another hidden layer node. The local bi-

ases are indicated by a⃗ = {a1, · · · , an} and b⃗ = {b1, · · · , bm}.
(Figure extracted from [3].)

B. Stochastic Reconfiguration Method and
Monte-Carlo Sampling

Using the variational amplitude probability Eq.(2), the
goal is to optimize the parameters θ that minimize the
energy of the system. The Stochastic Reconfiguration
(SR) method efficiently fits the trial wave function while
moving it towards the ground state, by defining the path
using the projection of I − δH. Here H is the Hamilto-
nian of the system, and δ is an adjustable parameter that
ensures the expression is non-negative.

In the following we sketch the main idea behind the
method, but a more detailed analysis can be found in [5].
In general, we can write:

(I− δH)|Ψθ⟩ = a0|Ψθ⟩+
∑
i

ai
∂

∂θi
|Ψθ⟩+ |Ψ⊥

θ ⟩ , (3)

where ak are coefficients to be determined, and |Ψ⊥
θ ⟩

is some state in the orthogonal subspace. Multiplying
Eq.(6) by ⟨Ψθ| and ∂ ⟨Ψθ| /∂θi, we obtain solving for a0:∑

j

Fijaj = −δRi, (4)

where we define Fij = ⟨O†
iOj⟩ − ⟨O†

i ⟩ ⟨Oj⟩ and Ri =

⟨O†
iH⟩ − ⟨O†

i ⟩ ⟨H⟩. Here the operator Oi is acting on
state |x⟩ as Oi |x⟩ = (∂ log ⟨x|ϕθ⟩ /∂θi) |x⟩.
We can now identify ak as the coefficients of the update

parameters and a0 as the learning rate η. Then we have:

θk+1
i = θki − η

∑
j

F−1
ij Rj , (5)

where k represents the step in our learning procedure.
Moreover, we introduce a regularization to ensure invert-
ibility of the form :

θk+1
i = θki − η

∑
j

(F+ ϵ(k)I)−1
ij Rj , (6)

where I is the identity matrix, η = 0.01, and we have
introduced ϵ(k) as the regularization parameter function.
Following [1], we use the regularization function ϵ(k) =
max(ϵ0b

k, ϵmin), with ϵ0 = 100, b = 0.9 and ϵmin = 10−4.

C. Monte-Carlo Sampling

In general, it is not practical to evaluate the expec-
tation values in Eq.(6) in an exact way, due to the ex-
ponentially increasing Hilbert space dimension with sys-
tem size. Following [1], we use a Monte-Carlo Metropo-
lis Hastings algorithm to estimate these expectation val-
ues. Starting with a random configuration, at each step
of the sampling a spin flip is performed, and the new
state is accepted with probability P

(
S(k) → S(k+1)

)
=

min
(
1,
∣∣Ψθ

(
S(k+1)

)
/Ψθ

(
S(k)

)∣∣2), where S(k) is the

spin configuration. To estimate the expectation values
in Eq.(6), we will sample the operators over a large set
of spin configurations generated this way.

D. Quantum Fisher Matrix and its Spectral
Analysis

It is well known that the SR method can be interpreted
with a purely geometrical approach. In fact, for positive
wavefunctions SR may be interpreted as a Natural Gra-
dient, which uses the information geometry provided by
the energy function to maximize convergence, and pro-
poses to “flatten” the space locally before making the
parameter update.

The natural Riemannian metric in probability space
is chosen to be the Fisher information matrix F, as it
is the only one invariant under sufficient statistics. It
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turns out that for positive wavefunctions, this is directly
related to the previously defined matrix F = F/4, and
the squared distance between two wavefunctions in the
parameter space can be written as ds2 =

∑
i,j Fijdθ

∗
i dθj .

Thus, the matrix F, also called Quantum Fisher Matrix,
plays the role of a Riemannian metric.

Interestingly, it has been shown in [5] that the spectral
properties of the QFM can reveal insights of the many-
body state. Since the QFM is positive semi-definite,
we can estimate a set of eigenvectors and non-negative
real eigenvalues. The eigenvalue can be thought as the
steepness in parameter space in the associated eigenvec-
tor direction. Moreover, the eigenvectors of the QFM
contain information about the real spin correlations of
the quantum many-body state. Let us first remind that
the QFM is a N +M +NM square matrix that we can
divide into two first blocks associated with the biases
and a third block associated with the weights between
hidden and visible layers. As previously mentioned, the
correlation between two nodes from the visible layer are
only induced via the hidden layer, which means that all
spin correlation information is already encoded into the
weights subblock. We can then diagonalize the QFM
where the biases part has been truncated, and quantify
the entanglement between the visible and hidden layers of
the resulting renormalized eigenvectors |Ψw

i ⟩. The entan-
glement entropy of the reduced density matrix describ-
ing the visible layer, ρ̂v⃗i = Trh⃗ [|Ψ

w
i ⟩ ⟨Ψw

i |], is given by

S[Ψi] ≡ −Tr
[
ρ̂v⃗i log ρ̂

v⃗
i

]
.

III. RESULTS: APPLICATION TO THE
FERROMAGNETIC ISING MODEL

The previous defined concepts will be now applied to
the paradigmatic one-dimensional tranverse Ising Model,
whose Hamiltonian can be expressed as:

HIsing = −
N∑
i=1

σz
i σ

z
i+1 − h

N∑
i=1

σx
i . (7)

Where N is the total number of spins, σk
i is the Pauli

operator in the k-direction acting on site i, and h is the
(dimensionless) transverse field. We will consider peri-
odic boundary conditions, by setting N+1 → 1. Despite
the model can be analytically solved, we will use here
exact diagonalization to benchmark our results.

Moreover, we will generalize the model and consider
also a tunable range for the ZZ interactions:

Hγ = −
N∑
i=1

N∑
j=1

σz
i σ

z
j · 1

|r(i, j)|γ
− h

N∑
i=1

σx
i . (8)

In order to preserve periodic boundary conditions in this
model, we define the distance ri,j as the minimal distance
r(i, j) = min(|i− j|, |N + i− j|). We will refer to Eq.(7)
by γ = ∞.

Figure 2: Relative error of ground state energy ϵrel versus
number of epochs, for the case h = 1 and N = 20. Each line
is for a different value of the hidden layer density α = M/N .

A. Ground State Energy

First, we test the ability of the RBMs to find the exact
ground state energy, for different densities of the hidden
layer α = M/N , where where N is the number of spins
in the visible layer and M is the number of hidden nodes.
We evaluate the relative error in energy as ϵrel = |ERBM−
Eexact|/|Eexact| as a function of the epochs or iterations,
where each epoch corresponds to a Monte Carlo sampling
with N iterations .
The result for h = 1 and N = 20 is shown in Fig.2. For

bigger value of α we expect to get a better representation
of the ground-state energy, but the we found that gains
are marginal for α > 2. Even more, the convergence is
much slower for bigger α. From our testing, we decide to
use the results with α = 2, and keep N constant, since
the relative error for all values of h is practically the
same. We suspect, that bigger α might lead to better
representation of higher order moments.

We now evaluate ϵrel per epoch for different values of
h, as shown in Fig. 3(a). We observe that convergence
is slower close to the critical point (h = 1). In the same
figure, we perform the same analysis for the long-range
model, with γ = 1, and find that the neural network
is still able to make a good representation of the wave
function. It seems in this case convergence is faster, but
it decreases as h is increased. This could be explained as
for this model the critical point is shifted towards larger
values of h.

B. Spectral Analysis of the QFM

In this section we explore the spectral features of the
QFM accross the quantum phase transition emerging in
the Ising model. According to [5], we expect that the
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(a)

(b)

Figure 3: Relative error of ground state energy ϵrel versus
number of epochs for different values of h. (a) Short-range
Ising model, and (b) long-range Ising model (γ = 1). (N = 20,
α = 2).

spectral features that the spectral distribution of any sys-
tem should hold relatively constant and only depends on
the phase it is, and how far it is from a critical point.
However, it is important to keep in mind that our sys-
tem is finite-sized, so the transition will be smooth. For
the first-neighbour interacting Ising model (γ = ∞), we
compute the eigenvalues and order them to obtain the
spectra as shown in Fig.4(a). The corresponding entan-
glement entropies are also plotted in Fig.4(b).

Interestingly, we observe that in general the spectra
are very similar when the system is in the same phase.
They deviate smoothly close to the phase transition, as
we do not have an infinite number of spins.

We observe that in the ferromagnetic phase, the eigen-
vectors with the biggest eigenvalues tend to have the
smallest entropy. Since the entanglement entropy be-
tween visible and hidden layer is low, this means that
the eigenvectors do not encode correlations between real
spins, and the system is close to a product state. In the
extreme case of h = 0, where all spins are aligned up or
down, it can be proved that the QFM has rank one, with
a single eigenvalue and exactly zero entropy [5]. In these

eigenvectors, most of the information is contained in the
biases part of the QFM, and they will mostly contribute
to first moments or expectation values of the observables
(e.g., the mean spin value), but not to the spin correla-
tions.

The entanglement entropy behavior in the paramag-
netic phase (h > 1) looks very different. In this case we
expect a smoother, exponentially decaying spectra, and a
QFM that is almost a random matrix for the weights [5].
Here we observe that the eigenvalues have much larger
entanglement entropies.

In the following, we will study how this behavior
changes when modifying the range of the interactions
given by the parameter γ. For a fixed value of h, we com-
pare the spectra and entropy for the cases of γ = ∞ (first
neighbour interaction), γ = 3 and γ = 1 (long-range). In
general, we find that the cases of γ = 3 and γ = ∞ are
qualitatively similar. In contrast, the case γ = 1 shows
a different behavior as soon as h > 1. As an example,
we plot the result for h = 4 in Fig. 5. We observe that
for this value, while the γ = ∞ and γ = 3 are already
in the paramagnetic phase, the case γ = 1 shows a spec-
tra more similar to the ferromagnetic phase, but with
larger value of the entropy. This could be a signature

(a)

(b)

Figure 4: (a) Eigenvalues and (b) entanglement entropy of the
associated wave-vectors of the reduced QFM for the short-
range Ising model and different values of h. (N = 20, α = 2).
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that the quantum phase transition occurs at larger value
of h, and that larger spin correlations are built in the
system due to the long range nature of the interactions.
This is in agreement with the expectation that for γ = 1,
and in the thermodynamic limit (N → ∞), hc → ∞ [4].
In this case the system becomes superextensive, and no
true transition should be happening.

Finally, we study the long-range case γ = 1 further
varying the field h. The spectra is presented in Fig. 6,
where we observe a smooth transition around 4 ≤ h ≤ 6,
possibly due to the system finite size (N = 20).

(a)

(b)

Figure 5: (a) Eigenvalues and (b) entanglement entropy of
the associated wave-vectors of the reduced QFM for the long-
range Ising model (γ = 1) and different values of h. (N = 20,
α = 2).

Figure 6: Eigenvalues of the QFM for the long-range Ising
model (γ = 1) and different values of h. (N = 20, α = 2).

IV. CONCLUSIONS

Using RBM we have simulated the quantum many-
body state of the Ising model with tunable interaction
range, and have analysed the corresponding QFM for the
different phases of the model. We find that the spectra
and entanglement entropy of the eigenvectors associated
with the QFM contain valuable information about the
many-body phases of the system and correlations, and
can be used to signal a quantum phase transition. It
would be worth to extrapolate these results to larger sys-
tem sizes, to see if the expected thermodynamic limit is
recovered, and sharper signatures of the quantum phase
transition arise.
It would be interesting to perform a similar study of

the QFM with other models beyond the Ising model, to
see if this can capture more exotic types of ordering, as
well as apply it to open quantum systems or to the time-
evolution of a quantum state after a quench.
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V. APPENDIX

A. Spectra and entropies of h = 1

Here we include the results in the critical point of the
short-range, since the it differentiates the different be-
haviour of the phases.

Figure 7: Magnitude of the eigenvalue for all the ordered
eigenvectors in function with its position in the ordered list
for different values of γ of the coupling interaction with h = 1.

Figure 8: Entropy of the ordered eigenvectors with respect to
its position in the list for different values of γ with h = 1.

B. Time evolution

Using the same procedures as in [1], we also were able
to reproduce a quantum quench. We present the equation
that evolution of the parameters satisfies:

dθ(t)

dt
= −iF−1 ·R (9)

We decided to do a quantum quench from h = 0.5 to
h = 1.0 in the short-range. And decided to use as an
observable ⟨σx⟩:

Figure 9: ⟨σx⟩ with respect to the arbitrary time.

Qualitatively this quantum quench is similar to the one
found in [1], which presents the exact solution.
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