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Abstract: Radiative heat transfer at the nanometre scale can be several orders of magnitude
higher than predicted by the Stefan-Boltzman law. When the distance between objects is small
compared to the thermal wavelength, evanescent waves contribute significantly to the heat trans-
fer, so that the blackbody limit can be exceeded. This is especially important when considering
the thermalisation between two objects that are in close proximity and exchange heat by thermal
radiation. In this project, radiative thermalisation is investigated theoretically and numerically in
the particular case of two bodies and a thermal bath. The stationary temperature of one of the
bodies is studied as a function of the separation distance between the objects and it is shown that
the thermalisation induces a saturation of the heat flow.

I. Introduction

The Stefan-Boltzmann law states that the power radi-
ated per unit area from a blackbody in thermal equilib-
rium is proportional to the fourth power of its tempera-
ture [1], which constitutes an important tool to describe
the radiative heat transfer between objects out of con-
tact. This law is valid when the bodies exchanging energy
are separated by large distances. When the separations
are below the characteristic wavelength of the thermal
radiation, a different theoretical framework is needed to
describe the heat exchange [2].

The mechanism of radiative heat transfer originates
from the random thermal movement of charges within ob-
jects, such as electrons in metals or ions in polar materi-
als, which generate fluctuating electric currents. Accord-
ing to Maxwell’s equations, these currents create fluc-
tuating electromagnetic (EM) fields around the mate-
rial. It is these fields that mediate the energy transfer
through the vacuum between bodies, especially at suf-
ficiently small distances where the energy flux can be
accurately predicted by means of the fluctuational elec-
trodynamics approach [2–4].

The radiative heat exchange is classified into far-field
and near-field regimes depending on the separation dis-
tance d between the objects relative to the thermal wave-
length λT . In the far-field regime, for which d ≫ λT , the
Stefan-Boltzmann law applies and the radiative transfer
is realised via propagating waves, so the energy exchange
does not depend on the distance. In contrast, for d < λT ,
in the near-field regime, there is a significant contribution
from evanescent waves, which arise from frustrated total
internal reflection and decay exponentially with the dis-
tance from the interface, increasing heat transfer beyond
the blackbody limit [2–4].

In this final degree project, we study the radiative heat
transfer between two bodies made of the same mate-
rial interacting with a thermal bath; one of the bodies
is considered semi-infinite (a half-space) and the other
body is a suspended membrane which is assumed opti-
cally opaque (in practice, it is semi-infinite as well). By

letting free the temperature of the membrane and keep-
ing the other temperatures fixed, we investigate the ther-
malisation process that takes place when the separation
distance between the bodies is reduced close to contact.
Here we follow the approach proposed in [5] and, as dis-
cussed in this reference, we show that the heat flux be-
tween the bodies saturates at short distances due to the
process of thermalisation.

This work has the following structure: In Sec. II the
system under study is introduced. In Sec. III the theoret-
ical framework of radiative heat transfer in the near-field
regime is described, including specific formulas adapted
to the proposed setup. In Sec. IV, we numerically inves-
tigate the thermalisation process, in particular the trans-
mission coefficients, the equilibrium temperature of the
membrane and the energy flux. Finally, in Sec. V final
remarks are presented.

II. The system: stationary temperatures and
thermalisation

The system under consideration, depicted in Fig. 1,
consists of a substrate (body 1) and an opaque membrane
(body 2) interacting with a thermal bath of radiation
which plays the role of a third body. The membrane
is placed at a separation distance d from the substrate
whereas the thermal bath at fixed temperature T3 acts
on the membrane from the other side. The substrate
is maintained at a constant temperature T1, while the
temperature of the membrane T2 is not fixed. Here we
consider that both substrate and membrane are made of
the same material, either silicon carbide (SiC) or gold
(Au).

As illustrated in Fig. 1, Φ1(T2) represents the thermal
radiation energy flux in the vacuum region between body
1 and body 2, and Φ2(T2) denotes the flux to the right of
body 2. While T1 and T3 are held fixed, these fluxes de-
pend on the temperature of the intermediate body which
is free to reach the steady state value T2 = T st

2 . This
stationary temperature is obtained by requiring that the
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FIG. 1: System setup showing the two semi-infinite bodies
the membrane and the substrate, and the thermal bath. The
temperatures of the bodies and the fluxes are shown. The
figure also highlights the two mechanisms for heat exchange,
the propagative and evanescent modes.

net energy flux on the membrane vanishes, hence

Φ1(T
st
2 )− Φ2(T

st
2 ) = 0. (1)

This equilibrium condition implies that the fluxes on the
left and on the right of the membrane take the same
value, namely, the energy flux

Φ ≡ Φ1(T
st
2 ) = Φ2(T

st
2 ). (2)

Furthermore, radiative heat fluxes in the near field
strongly increase as the separation distance d is decreased
(explicit expressions are given below in Sec. III). As this
separation is reduced at the same time that the mem-
brane is allowed to reach a thermal steady state, its tem-
perature T st

2 increases due to near-field heat exchange
with body 1 maintained at temperature T1 > T st

2 . In this
way, the temperature difference ∆T ≡ T1−T st

2 decreases
to zero close to contact due to the near-field interaction
between the bodies, resulting in the thermalisation of the
membrane. In the following, we first describe the radia-
tive heat fluxes in the system and in Sec. IV we apply
these concepts to characterise the thermalisation process.

III. Near-field radiative heat transfer

The stochastic motion of charges produced by thermal
excitations inside the materials leads to the emission of
EM fields. The energy per unit surface and unit time at
a point R and time t in each vacuum region γ is given by
the Poynting vector Sγ(R, t) = ϵ0c

2Eγ(R, t)×Bγ(R, t),
where ϵ0 is the vacuum permittivity, c is the speed of light
in vacuum, and Eγ(R, t) and Bγ(R, t) are the electric
and magnetic fields radiated by the bodies, respectively.
Here, γ = 1 labels the region between body 1 and body
2, while γ = 2 indicates the region on the right of body 2.
Although these fields are zero on average, their correla-
tions do not vanish and are related to the temperature by
means of the fluctuation-dissipation theorem [2], allowing
for energy transfer mediated by the emitted radiation.

Considering the surfaces of the bodies as infinite and
lying on the x-y plane, the thermal-radiation energy flux
is given by the averaged component of the Poynting vec-
tor perpendicular to the surfaces,

Φγ ≡ ⟨Sγ
z (R, t)⟩ = ϵ0c

2
∑
j,k

εzjk⟨Eγ
j (R, t)Bγ

k (R, t)⟩, (3)

where ⟨· · ·⟩ means symmetrized statistical average and
εijk is the Levi-Civita tensor with i, j, k = x, y, z. By ex-
panding the EM field into plane-wave components, which
are defined by frequency ω, parallel wave vector k, and
polarisation states p = TE,TM, the energy flux within
each vacuum region γ in many-body systems can be writ-
ten as [6]

Φγ =

∫ ∞

0

dω

2π

∫ ∞

0

dk

2π
k
∑
p

2∑
j=1

ℏωnj,j+1T γ
j (k, ω, p). (4)

Here we have introduced nij ≡ ni − nj , where nj =

1/(eℏω/kBTj − 1) is the Bose-Einstein distribution func-
tion of body j, kB being the Boltzmann constant and ℏ
the reduced Planck constant. For the proposed system,
the non-zero energy transmission coefficients can be ob-
tained from fluctuational electrodynamics and are given
by [6]

T 1
1 (k, ω, p) = Πpw (1− |rp1 |2)(1− |rp2 |2)

|1− rp1r
p
2e

i2kzd|2

+Πew 4Im(rp1)Im(rp2)e
−2Im(kz)d∣∣1− rp1r

p
2e

−2Im(kz)d
∣∣2 ,

T 2
2 (k, ω, p) = Πpw(1− |rp2 |2), (5)

where Πpw = θ(ω − ck) and Πew = θ(ck − ω) are the
projectors for propagating and evanescent waves, respec-
tively, θ(x) being the Heaviside step function. The Fres-
nel reflection coefficients rpj for the vacuum-medium in-
terfaces are given by

rTE
j =

kz − kzj
kz + kzj

, rTM
j =

ϵjkz − kzj
ϵjkz + kzj

, (6)

where kzj =
√
ω2ϵj(ω)/c2 − k2 is the perpendicular com-

ponent of the wavevector in medium j. According to the
above expressions, the heat transfer between the bodies
can be computed by describing the permittivity of the
involved materials.

IV. Numerical application

The radiative energy fluxes in the near field, in general,
are obtained numerically. Before explaining the scheme
of our numerical calculation, we first describe the models
we use for the optical properties of the materials and the
transmission coefficients that account for these proper-
ties.
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A. Optical properties

The materials considered for both bodies are either
SiC, a polar material, or Au, a metal. For SiC the per-
mittivity is given by the Drude-Lorentz model [8]

ϵ(ω) = ϵ∞
ω2
L − ω2 − iΓω

ω2
T − ω2 − iΓω

, (7)

where ϵ∞ = 6.7 is the infinite-frequency dielectric con-
stant, ωL = 1.83× 1014 rad/s is the longitudinal optical
frequency, ωT = 1.49× 1014 rad/s is the transverse opti-
cal frequency, and Γ = 8.97× 1011 rad/s is the damping
rate. For Au the permittivity is described by the Drude
model [9]

ϵ(ω) = 1− ω2
P

ω2 + iνω
, (8)

where ωP = 1.37× 1016 rad/s represents the plasma fre-
quency and ν = 5.32×1013 denotes the electron collision
frequency.

B. Energy transmission coefficients

It is important to highlight some of the features of the
energy transmission coefficients as they exhibit under-
lying material properties. We show these coefficients in
Figs. 2 and 3, where the light line ω = ck is plotted in yel-
low to differentiate propagating, on the left of this line,
from evanescent modes on the right. In Fig. 2, we set
d = 50nm (near-field regime) in region γ = 1 and repre-
sent the transmission coefficient for TM polarisation for
both materials to illustrate the material resonances. For
the polar material (SiC), a resonance can be observed at
the top panel of Fig. 2 which is called surface-phonon
polariton and emerges as a coupling of an electromag-
netic wave with an optical phonon. The frequency of
these phonon polaritons is in the infrared region and can
be thermally excited because, for the temperatures con-
sidered here, the Bose-Einstein distribution is non-zero
in this region. Therefore the main contribution to heat
transfer in the near-field regime arises from this reso-
nance.

In the case of the metal (Au), the resonance that can be
seen in the bottom panel of Fig. 2 is called surface plas-
mon polariton, which is a surface EM wave that travels
along the interface between the metal and the vacuum,
coupled with the collective oscillations of free electrons in
the metal. Unlike for polar materials, these resonances
typically occur in the visible or ultraviolet, so they are
out of the Planck Window at the close-to-room temper-
atures considered here (i.e. the interval where the Bose-
Einstein distribution is non-zero) and do not contribute
to heat transfer.

In the case of the T 2
2 coefficients, instead of a max-

imum contribution line, a small contribution interval is
observed in the reststrahlen band. This band corresponds

FIG. 2: Energy transmission coefficients T 1
1 for TM polarisa-

tion for both materials: the top of the panel corresponds to
SiC and the bottom to Au. Here the separation between the
bodies is d = 50nm (near-field regime). The yellow solid line
shows the light line ω = ck.

FIG. 3: Energy transmission coefficients T 2
2 for TE polari-

sation for the polar material at a large separation (far-field
regime). The yellow solid line shows the light line ω = ck.

to the frequency range in which the above-mentioned res-
onance occurs (i.e. when Re[ϵ(ω)] = −1). This band
appears precisely because, in the absence of a second in-
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terface on the right side of the membrane, the evanes-
cent waves are quickly extinguished when they leave the
membrane interface and do not contribute to heat prop-
agation. Therefore, in the γ = 2 region, only the prop-
agating modes contribute. As a representative plot, the
coefficient T 2

2 for p = TE is shown in Fig. 3.

C. Steady state temperature and energy flux
saturation

A Fortran program was developed to compute the en-
ergy transmission coefficients defined in equation (5) for
given values of ω, k, p, and separation distance d. This
was used by another program to calculate the flux in each
region by bidimensional numerical integration over ω and
k, using the trapezoidal method. To facilitate integration
over the infinite interval [see equation (4)], a change of
variables was implemented that permits integration in
the interval [0, 1]. Furthermore, since the temperature
of the membrane T2 is not predetermined, it is allowed
to adjust to a steady-state value T st

2 such that the net
energy flux on the membrane is zero. To determine this
variable temperature at a given value of the separation d,
a third Fortran program was written using the Newton-
Raphson method to solve the equilibrium condition in
equation (1). All numerical calculations were performed
at constant temperatures T1 = 400K for body 1 and
T3 = 300K for the thermal bath.
In Fig. 4 we show the stationary temperature T st

2 and
the heat flux Φ in the cavity, given by equation (2), for
the case in which the two bodies are made of SiC. On
the one hand, at small separations, the TM polarisation
dominates the heat flux because of the contribution of
the surface phonon polariton and the flux behaves as [5]

Φ =
1

d2

∫ ∞

0

dω

2π
ℏωn1,2

Im2[r(ω)]Im[Li2(r
2(ω))]

2πIm(r2)
, (9)

where r(ω) is the Fresnel coefficient and Li2(x) is the
dilogarithm function. On the other hand, as shown in
the inset of this figure, at small distances the temperature
difference ∆T = T1 − T st

2 decreases to zero according to
d2, evidencing the thermalisation of the membrane at the
temperature of body 1. Hence, the difference of distribu-
tions n1,2 = n1 − n2 in equation (9) can be linearised for
small ∆T in such a way that n1,2 ≈ (∂n1/∂T1)∆T ∼ d2,
which cancel outs the 1/d2 behaviour of Φ. Thus, as a
consequence of the thermalisation of the membrane, the
heat flux saturates in the limit of small d. Interestingly,
despite working at distances where purely local effects
are involved, a saturation of the energy flux due to ther-
malisation and the presence of the thermal bath can be
observed. At large distances (far-field regime), the flux
decays to a constant value different from zero and the
equilibrium temperature reaches a value higher than the
temperature of the thermal bath. This is because the
system is semi-infinite.

FIG. 4: Steady state temperature of the membrane T st
2 and

radiative heat flux as a function of the separation d. The inset
plots ∆T = T1 − T st

2 for small values of d. Both bodies are
made of SiC.

In Fig. 5 we show the stationary temperature and the
heat flux in the cavity for the case of Au. In the inset
of this figure, it can be seen that ∆T does not follow the
dependence d2 because the surface plasmon polaritons
are not excited at the considered temperatures of the
problem. Therefore, the flux between Au-Au is orders of
magnitude smaller than that between SiC-SiC. However,
for distances smaller than one nanometre (d ≈ 10−3 nm),
this behaviour would be observed due to the resonance of
those surface plasmon polaritons. Then the typical be-
haviour of ∆T ∝ d2 or flux as Φ ∝ 1/d2 seen so far would
manifest on subnanometric scales, and furthermore, the
divergence at d → 0 would be overcome by the non-local
effects such as electron tunnelling.

At distances d > 1 nm, the dominant polarisation is
the TE for Au and the effects are purely local [10]. Also
in this case the flux saturates at small separations due
to thermalisation in the presence of the thermal bath.
At larger distances, the flux and temperature decay to a
constant value due to the symmetry of the system. Os-

cillations are observed due to the nońlinear nature of the
energy transmission coefficients.
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FIG. 5: Steady state temperature of the membrane T st
2 and

radiative heat flux as a function of the separation d. The inset
plots ∆T = T1 − T st

2 for small values of d. Both bodies are
made of Au.

V. Conclusion

To summarise, we have studied the radiative heat
transfer between objects at the nanoscale and observed
that it increases significantly when the distance is less
than the thermal wavelength [2], beyond the blackbody
limit given by the Stefan-Boltzmann law. It has been ob-

served that the transmission coefficients greatly depend
on the polarisation states (TE and TM modes) and the
properties of each material. In particular, for polar mate-
rials such as SiC, the TM polarisation dominates due to
surface phonon polaritons, which contribute significantly
to the heat transfer in the proposed scheme. In contrast,
in metals such as Au, surface plasmon polaritons are not
excited and the heat flux is typically lower than in polar
materials.

It also has been shown that the heat flux saturates due
to the thermalisation mechanism caused by the presence
of the thermal bath. Typically, the flux scales accord-
ing to 1/d2 and does not diverge close to contact due to
predominantly non-local effects on subnanometric scales.
However, saturation has been observed at larger scales
where these effects are negligible and only local effects
are present.

One potential application of radiative heat transfer at
nanometre scales is thermophotovoltaic (TPV) technol-
ogy [11]. Unlike traditional photovoltaic systems that
convert sunlight into electricity, this technology converts
heat radiation into electricity using photovoltaic (PV)
cells. In these systems, the distance between the heat
source and the PV cell is reduced to the nanometric scale.
Depending on the manufacturing material, photon tun-
nelling can be achieved in the IR (e.g. SiC) or at higher
frequencies, which would imply higher source tempera-
tures. Reducing the distance between the cells and the
heat source significantly increases the energy efficiency of
TPV systems. The main technical challenge of this tech-
nology is to keep the separation distance constant at the
nanometre scale and to scale it up to larger devices [12].
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