
 

ISSN 1136-8365 
 

Col·lecció d’Economia E24/475 

FARMERS' ADAPTIVE INVESTMENTS 

AND GROUNDWATER RESOURCE 

IMPACT IN A CHANGING CLIMATE. 
 

 

 
  

 

 

 
Julia de Frutos Cachorro 

 

Lucia Sbragia 

 

 

 

 

 

 



 

 

   UB Economics Working Paper No. 475 

Title: Farmers' Adaptive Investments and Groundwater Resource Impact in a Changing 

Climate. 

 

This is a preliminary version of the paper and may be subject to further revisions. Please do 

not cite without permission from the author(s) 

 

 

Abstract:  

One of the many effects of Climate Change is increased drought making water availability 

scarcer in more regions of the world, and primarily affecting the agricultural sector. In this 

context, we study farmers' adaptation to Climate Change by developing a two-period discrete-

time theoretical model of exploitation of a groundwater resource that studies the impact of 

adaptive investments as a response to climate change on farmers' profitability and the 

sustainability of the groundwater resource. In particular, we consider that the resource users, 

the farmers, may belong to different groups: adapters and non-adapters, and analytically solve 

the game under four scenarios: full cooperation, cooperation within groups, cooperation only 

within adapters and full non-cooperation between all farmers. Theoretical results show that 

under full cooperation, adaptation is not beneficial for the environment, meaning that lower 

final stock levels are obtained when farmers adapt compared to when they do not. Those results 

could also be observed numerically when there are strategic interactions among groups and/or 

among all farmers, i.e., when farmers do not cooperate. In contrast, numerical results suggest 

that the impact of adaptation could be positive for the resource and for the overall profits of the 

farmers when only the adapters are cooperating. Finally, defining the profitability (or scope) 

of cooperation as the difference between overall profits under full cooperation and non-

cooperation, preliminary results suggest that the number of investing farmers would be a key 

element in estimating the scope of cooperation. 
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1 Introduction

One of the many effects of Climate Change is increased drought making wa-
ter availability scarcer in more regions of the world. Droughts are occurring
more often, last longer periods and affect wider areas due to higher tempera-
tures, increased evapotranspiration and decreased precipitation, (IPCC (2023)).
Drought threatens people’s livelihoods, increases the risk of disease and death,
impacts on human health and well-being and fuels mass migration. The agricul-
tural sector is particularly affected by droughts, indeed, in 2017, the FAO stated
that 83% of all damage and loss caused by drought worldwide was recorded by
the agricultural sector (FAO (2023)).

Groundwater resources represent the world’s vital store of freshwater and
are increasingly important for irrigated agriculture in arid and semi-arid re-
gions under climate change. One specific way in which climate change can im-
pact groundwater availability and its management is by affecting the recharge
rate of the groundwater aquifer. Meixner et al. (2016) found that six out of
eight aquifers in Western United States will all experience a decrease of their
recharge rate in the future as Climate Change intensifies. The extensive review
by Atawneh et al. (2021) confirms that Climate Change may directly affect
future groundwater recharge. Based on groundwater recharge projections, an
overall negative impact on groundwater recharge emerges, regardless of emission
scenarios or time horizons used.

Societies and individual farmers have been responding to reduction in water
availability by implementing different adaptive measures. Some common adap-
tive measures at farmer’s level to increase the resilience of the agriculture sector
to climate change include the optimization of an irrigation schedule and farmers’
production practices like for example, crop mix, adjustments in planting dates
such as changes in harvest and sowing dates, changes in fertilizer application
frequency and land use changes. Farmers have also been investing in water
savings technologies like drip irrigation and micro irrigation. Other kinds of in-
vestments include the installation of early warning systems, increasing reservoir
storage capacity and the creation of agricultural insurance systems, supportive
financial schemes to protect against crop yield losses, to mention a few (see e.g.,
Iglesias and Garrote (2015) for a review).

Most of the works on farmer’s adaptive measures and water management
as a response to Climate Change effects have an empirical nature: in general,
they focus on a specific geographical area and then they study the determinants
of farmers’ adaptation decisions and their impact. For example, Hornbeck and
Keskin (2014) analyses the historical evolution of farmers’ adaptation to ground-
water and droughts in the Ogalalla Aquifer (EEUU) and conclude that while
in the short run, farmers change irrigation practices to reduce the impact of
droughts on crop yields, in the long run, farmers also shift land toward water
intensive crops. However, the study does not include projections of technological
change to deal with changes on water availability.

Indeed, few theoretical works deal with farmer’s adaptation and groundwa-
ter resources in a changing climate by considering the dynamics of the resource.
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De Frutos Cachorro et al. (2017) uses a dynamic optimization model at farm
level and focuses on land-use and irrigation water choices to assess the impact
of dry weather conditions and possible restriction policies on farmers’ payoffs in
the Beauce area in France. Koundouri and Christou (2006) analyse the optimal
management of a groundwater resource with desalinisation as a backstop sub-
stitute to adapt to resource scarcity. Robert et al. (2018) addresses investment
in irrigation adaptive measures to climate change by using a dynamic stochas-
tic approach, with an application to groundwater irrigation in India. Quintana
Ashwell et al. (2018) compares optimal and myopic solutions in a model of
groundwater extraction and estimates that predicted gains from optimal man-
agement for a region in the Ogallala Aquifer are larger when accounting for
climate change and technical progress.

In this paper we contribute to the literature on farmers’ adaptation to Cli-
mate Change by developing a theoretical model of exploitation of a groundwater
resource that studies the impact of adaptive investments as a response to cli-
mate change on farmers’ profitability and the sustainability of the groundwater
resource, and considers dynamic and strategic interactions between several farm-
ers. In particular, we assume that Climate Change affects the dynamics of the
groundwater, and this is modelled as an exogenous decrease in the recharge rate
from one period to another, so that the impact of Climate Change is experi-
enced equally by all water users. In contrast to Quintana Ashwell et al. (2018),
which considers technical change as an exogenous variable, farmers’ adaptive
response to climate change is modelled as an endogenous and costly private
investment that increases the efficiency of water used for irrigation by reducing
the marginal extraction cost (e.g., one could think of an investment in a better
irrigation system).

We develop a two-period discrete-time game of exploitation of a groundwater
resource by a finite number of farmers, who may belong to two different groups
(adapters and non-adapters). We consider that groups can have different sizes
and identical farmers within each group. In the first period, farmers decide only
their extraction rates and in the second period they simultaneously choose both
their extraction rates and how much to invest in adaptation. We analytically
solve the game under four scenarios: full cooperation, cooperation within groups
while groups are not cooperating, cooperation only within adapters and full non-
cooperation between all farmers.

Theoretical results show that under cooperation, adaptation is not beneficial
for the environment. Specifically, higher extractions (equivalently, lower final
stock levels) are obtained when farmers adapt compared to when they do not,
and this result holds regardless of the number of adapters. Those results are
also observed numerically when there are strategic interactions within groups
and/or among farmers, i.e., when farmers do not cooperate within each group.
However, these results are not always observed when assuming cooperation only
among adapters, which can lead to a positive effect of adaptation on the final
stock levels.

In contrast, numerical results show that adaptation could be beneficial for
the profitability of the “adapters” and for the overall profitability of the farm-
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ers, under different levels of cooperation. Defining the profitability (or scope)
of cooperation as the difference between overall profits under full cooperation
and non-cooperation, preliminary results suggest that the number of investing
farmers would be a key element in estimating the scope of cooperation.

The paper is organized as follows. In Section 2, we present the theoretical
game, while in Sections 3-6 we analytically solve the model for different scenarios
corresponding to different levels of cooperation. In Section 7 we describe the
results from the numerical simulations, while Section 8 provides the conclusion.

2 Model

We consider N > 2 farmers whose production activity requires exploiting a
common pool groundwater resource over two periods of time t = 1, 2. The
number of total farmers, N , is fixed over the two periods. Denote by git > 0 the
individual extraction rate of farmer i, (i = 1 . . . N) in period t, we assume that
the benefits from water extraction in a given period are a quadratic function
of the individual extraction rate git, as considered in previous literature (e.g.,
Rubio and Casino (2001), Pereau (2020) in continuous time and a recent study
de Frutos Cachorro et al. (2024) in discrete time), that is

Rit (git) = agit −
b

2
g2it (1)

with t = 1, 2 and a, b > 0.
Farmers’ extraction activity accumulate over time and the time evolution

of the groundwater stock is assumed to be governed by the linear discrete-time
equation

Gt+1 = Gt + r −Bt+1 − α
N∑
i=1

git+1 with t = 0, 1 (2)

where Gt > 0 is the previous period stock of groundwater, r is the natural
recharge rate and α ∈ (0, 1] is the coefficient of water used for irrigation that
percolates into the aquifer1. The parameter Bt+1 is an exogenous parameter
that represents the negative impact of climate change on the natural recharge
rate2 and we assume that r > B2 > B1 > 0.3

In each period, farmers bear an extraction cost that linearly depends both
on the extraction rate and on the stock of the groundwater resource that is
available at the beginning of each period, that is

Cit (git, Gt−1) = (z − cGt−1) git (3)

with t = 1, 2 and z, c > 0.

1Equivalently, (1−α) represents the return flow coefficient of water extraction that comes
back to the aquifer by percolation.

2Here we think of droughts as a consequences of climate change.
3This can be re-written as having two possibly different recharge rates for the two periods,

i.e. r1 > r2 > 0.
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This cost function shows the following properties. About the marginal ex-
traction cost:

∂C

∂g
= z − cGt−1 > 0

∂2C

∂g∂G
= −c < 0

from which we have that the marginal extraction cost is positive and it is de-
creasing with the level of the natural groundwater resource that is available.

Furthermore,
∂C

∂G
= −cGt−1git < 0

∂2C

∂G∂g
= −cGt−1 < 0

which means that larger groundwater stocks reduce the extraction cost but, as
the extraction rate increases, the savings from the positive stock effect decrease.

As a response to the adverse effect of climate change which, in this case,
hinders the availability of the natural resource, we assume that farmers, only in
the second period, can invest in adaptive measures. In particular, we assume
that farmers make investments that allow them to reduce the marginal extrac-
tion cost, like better irrigation practices. When a farmer i, in the second period,
invests in an adaptive measure, the extraction cost function becomes

Ci2 = (z − Ii2 − cG2) gi2 (4)

where Ii2 is the level of investment in adaptive measures. The cost of adaptive
investments is increasing and convex in the level of adaptation and is given by

Ki(Ii2) =
γ

2
I2i2.

Next, to model the asymmetry among farmers regarding the investment
option, we partition the set of farmers into two groups: a set of size n, called
”adapters” (indexed by A) which includes all the farmers that decide to invest
in adaptive measures in the second period and a group of size N −n = m called
”non-adapters/regulars”(indexed by NA) which includes all the farmers that
decide not to invest in adaptive measures.

In the sequel, to simplify the exposition, we denote the extraction rate and
investment adaptation decisions of an individual adapter (indexed by i) by the
pair (xit, Ii2) and the extraction rate a non-adapter (indexed by j) by yjt.

Considering the previous assumptions about farmers’ benefits and costs, the
overall profit function of an individual non-adaptive farmer j is given by

πNAj = πNAj1 + βπNAj2 with j = 1 . . .m (5)
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with the (per period) profit, πNAjt ,

πNAj1 (yj1, G0) = ayj1 −
b

2
y2j1 − (z − cG0) yj1, (6)

πNAj2 (yj2, G1, G2) = ayj2 −
b

2
y2j2 − (z − cG1) yj2 +AG2, (7)

and the overall profit function of an individual adaptive farmer i is given by

πAi = πAi1 + βπAi2 with i = 1 . . . n (8)

with the (per period) profit, πxit,

πAi1 (xi1, G0) = axi1 −
b

2
x2i1 − (z − cG0)xi1, (9)

πAi2 (xi2, G1, G2) = axi2 −
b

2
x2i2 − (z − Ii2 − cG1)xi2 −

γ

2
I2i2 +AG2. (10)

where β represents the discount factor and the product AG2 adds the possibility
that the farmers value the final resource stock at the end of the second period4.

The objective of each type of farmer is to maximize her/his overall profit,
(5) or (8) depending on the group to which the farmer belongs, subject to the
resource constraint (2). This problem is solved by backward induction starting
from the second period.

Denote the total extraction in period 1 by T1 =

n∑
i=1

xi1+

m∑
j=1

yj1 and the total

extraction in period 2 by T2 =

n∑
i=1

xi2 +

m∑
j=1

yj2. The second period profit of a

farmer i that adapts, accounting for the resource constraint, can be rewritten
as

πAi2 = axi2 −
b

2
x2i2 − (z − Ii2 − c (r −B1 +G0 − αT1))xi2 −

γ

2
I2i2

+A (2r −B2 −B1 +G0 − αT1 − αT2) (11)

and for the farmer j that does not adapt, it is given by

πNAj2 = ayj2 −
b

2
y2j2 − (z − c (r −B1 +G0 − αT1)) yj2 (12)

+A (2r −B2 −B1 +G0 − αT1 − αT2) .

After some further manipulations, those expressions can be rewritten as

πA
i2 = −1

2
bx22i + (L+ Ii2 + c (r −B1 − αT1))x2i +

γ

2
I2i2 + (A (E − αT1 − αT2))

(13)

πNA
j2 = − b

2
y2j2 + (L+ c (r −B1 − αT1)) yj2 + (A (E − αT1 − αT2)) (14)

4For example they can sell their right to exploit the resource.
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with

L = a− z + cG0,

E = 2r −B1 −B2 +G0.

Moving now to the first period problem, the overall profit of farmer i that adapts
and accounts for the resource constraint can be rewritten as

πAi = − b
2
x2i1 + Lxi1 + βπAi2 (15)

and the profit of a farmer j that does not adapt corresponds to

πNAj = − b
2
y2j1 + Lyj1 + βπNAj2 . (16)

In what follows we address the key question about the impact of adaptation.
We do this any size of the adapters’ group and different scenarios related to
the degree of cooperation, that is, the full cooperative case (FC), cooperation
within groups case (CG), cooperation within adapters case (CA) and the full
non-cooperative case (NC).

For each setting, we study the impact of adaptation by comparing the results
obtained in the game without adaptation (benchmark) with the ones when any
fraction of adapters is allowed.

3 Full cooperative case (FC)

In this section we assume a full cooperative setting, meaning that farmers choose
their control variables to maximize the aggregate profit of all farmers and we
allow for any degree of asymmetry in the number of adaptive farmers, i.e., the
number of farmers who choose to invest in adaptation, n ∈ [0, N ].

The problem to solve is then:

max
{xi1,xi2,Ii2≥0}ni=1,

{yj1,yj2≥0}mj=1

n∑
i=1

πA
i +

m∑
j=1

πNA
j , (17)

s.t. (2),

G1, G2 ≥ 0

We solve the problem in two steps by backward induction starting from
the second period. As farmers are symmetric within each group, we denote in
what follows xt = xit, yt = yjt, π

A
t = πAit , π

NA
t = πNAjt , t = 1, 2 and I2 = Ii2,

the second period profits of an adaptive (13) and a non-adaptive (14) farmer,
accounting for the resource constraint become
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πA
2 (x2, y2, T1) = −1

2
bx22 + (L−D1 + I2 − cαT1)x2 −

1

2
γI22 +A (E − αT1 −mαy2)

πNA
2 (x2,y2, T1) = −1

2
by22 + (L−D2 − cαT1) y2 +A (E − αT1 − nαx2)

with

D1 = Anα+ cB1 − cr
D2 = Amα+ cB1 − cr.

The second period problem then reads as

max
x2,y2,I2≥0

Π2 = nπA2 +mπNA2

and from the first order conditions we obtain the reaction functions of the de-
cisions in the second period as a function of first-period extraction decisions

x2 (I2, T1) =
L−D1 −Amα+ I2 − cαT1

b

and
I2 (x2) =

x2
γ

which together give

x2 (T1) = γ
L−D1 −Amα− cαT1

bγ − 1
. (18)

Finally, we have

y2 (T1) =
L−D1 −Amα− cαT1

b
. (19)

It is immediate to note that

x2 (T1) =
bγ

bγ − 1
y2 (T1) .

Sufficient conditions for optimization in the second period are satisfied when

SOC2FC : bγ − 1 > 0.

We can now compute the second period profit of a farmer i that adapts as a
function of T1, the total extractions in period 1,

π
A
2 (T1) =

bγ (L−D1 − Amα− cαT1)
2 + 2Amα (L−D1 − Amα− cαT1)− 2Ab (bγ − 1) (−E + αT1)

2b (bγ − 1)
.

(20)

Similarly, for a farmer j that does not adapt, the second period profit as a
function of T1 is given by
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πNA
2 (T1) =

(bγ + 1) (L−D1 −Amα− cαT1)2 − 2 (L−D2 − cαT1) (L−D1 −Amα− cαT1)

2b (bγ − 1)
(21)

−
2Ab (bγ − 1) (−E + αT1)

2b (bγ − 1)
.

Finally, the aggregate profit in period 2 as a function of T1 is given by

Π2 (T1) =
(bγN −m) (L−D1 −Amα− cαT1)

2 − 2AbN (bγ − 1) (αT1 − E)

2b (bγ − 1)
.

Moving to the first period problem, the overall period profits of an adaptive (15)
and a non-adaptive farmer (16) accounting for the resource constraint become

πA (T1) = − b
2
x21 + Lx1 + βπA2 (T1)

πNA (T1) = − b
2
y21 + Ly1 + βπNA2 (T1) .

with T1 = my1 + nx1. In the first period, the problem to solve is

max
x1,y1≥0

Π1 = nπA(T1) +mπNA(T1)

and from the first order conditions we obtain

x1 (y1) =
b (bγ − 1) (L− ANαβ) + cαβ (Nbγ −m) (−L+D1 + Amα) + c2mα2β (Nbγ −m) y1

b2 (bγ − 1)− nc2α2β (Nbγ −m)
(22)

and

y1 (x1) =
b (bγ − 1) (L− ANαβ) + cαβ (Nbγ −m) (−L+D1 + Amα) + c2nα2β (Nbγ −m) x1

b2 (bγ − 1)−mc2α2β (+Nbγ −m)
.

(23)

The sufficient condition for optimization in the first-period problem requires

SOC1FC : b2 (bγ − 1)− c2Nα2β (Nbγ −m) > 0.

To find the first period equilibrium extraction levels we solve the system given
by equations (22) and (23), so that we have

x∗1FC (n,m) = y∗1FC (n,m) =
b (bγ − 1) (L−ANαβ)− (L−D1 −Amα) cαβ (Nbγ −m)

b2 (bγ − 1)− c2α2βN (Nbγ −m)
.

(24)

Substituting the results obtained in the reaction functions in period 2, we
obtain

x∗2FC (n,m) = γb
b (L−D1 −Amα)−Ncα (L−ANαβ)

b2 (bγ − 1)−Nc2α2β (Nbγ −m)
, (25)

y∗2FC (n,m) =
bγ − 1

bγ
x∗2FC (n,m) , (26)

I∗2FC (n,m) =
x∗2FC (n,m)

γ
.
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Proposition 1 Sufficient conditions for the second period extraction levels to
be positive are that b−Ncα > 0 and

Ax∗
2+

=
b (L (b−Ncα) + bc (r −B1))

bαN (b−Ncαβ)
> A > 0

Proof in Appendix 9.1.

Proposition 1 states that in the second period, farmers extract water if farm-
ers valuation of the final stock level at the end of the second period, A, is not
too large.

3.1 Benchmark case (no adaptation) and special case (full
adaptation)

From the above results we can easily retrieve the benchmark case where no
farmer invests in adaptation, that is n = 0 and m = N .

In this case the extraction rate in the first period (being nil the extractions
rates of the adaptive farmers) is given by

yB1FC =
b (L−ANαβ)−Ncαβ (L−ANα+ c (r −B1))

b2 −N2c2α2β
,

and the extraction rate in the second period is

yB2FC =
b (L−ANα+ c (r −B1))−Ncα (L−ANαβ)

b2 −N2c2α2β
,

Second order conditions for the first and second extraction periods become re-
spectively

SOCB2FC : bγ − 1 > 0

SOCB1FC : b2 −Nc2α2β > 0.

We can also compute the special case given by the situation when every farmer
invests in adaptation (S), that is n = N and m = 0. The extraction rates in the
first and second period (being nil the extractions of the non-adaptive farmers)
are given by

xS1FC =
(bγ − 1) (L−ANαβ)−Ncαβγ (L−ANα+ c (r −B1))

b (bγ − 1)− βγN2c2α2

and

xS2FC = γ
b (L−ANα) + c (b (r −B1)−Nα (L−ANαβ))

b (bγ − 1)− βγN2c2α2
.

The second order conditions for the first and second extraction periods are

SOCS1FC : bγ − 1 > 0

SOCS2FC : b (bγ − 1)−N2βγc2α2 > 0.
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3.2 Theoretical results: Impact of adaptation on the final
stock levels

We can now study analytically in the full cooperative setting the impact of
adaptation on the extraction rates of farmers and on the stock of groundwater
left at the end of the program (i.e., at the end of the second period). For
the impact of adaptation on farmers profits, we rely on numerical simulations
in section 7. In order to do this we compare how the equilibrium values of
the above variables change when we move from a situation when there is no
adaptation, (i.e., the benchmark case, where n = 0 and m = M), to a situation
with adaptation, i.e., for any n ∈ [0 . . . N ] . With regard to the extraction levels
and the final stock levels, results are reported in Proposition 2.5.

Proposition 2 Assuming positive extraction levels in the second period, for
any number of farmers investing in adaptation measures,

• in the first period, the water extracted by any farmer under adaptation is
less than what is extracted in the case when nobody adapts (x∗1FC(n) =
y∗1FC(n) < yB1FC);

• in the second period, individual extraction levels of adapters and non-
adapters in presence of adaptation are greater than what is extracted in
the case when nobody adapts (x∗2FC (n) > yB2FC and y∗2FC (n) > yB2FC);

• over the two periods, the overall extraction in the presence of adaptation is
greater than the overall extractions when nobody adapts, making the final
stock levels in the presence of adaptation smaller than when there is no
adaptation at all (G∗2FC (n) < GB2FC).

See Proof in the Appendix 9.2.

Indeed, as in the first period, adapters and non-adapters extract the same
amount of groundwater under adaptation, Proposition 2 states that for both
kinds of farmers, the extraction level in the first period is lower when there
is someone, even just one farmer, doing adaptation in the second period than
when nobody does. The extraction of groundwater is then concentrated in the
second period when it is cheaper, regardless of the number of adapters. This
means that no matter the number of farmers investing in adaptation, just one
farmer making an investment shifts everybody effort in the second period and
the overall extraction is greater with adaptation. In order words, stock level
at the end of the second period is always lower when some farmers invest that
when they not. In the full cooperative case, we can conclude that any degree of
adaptation is negative from a strict environmental point of view.

In what follows, we solve the problem for three different non-cooperative
settings: cooperation within groups, cooperation only within adapters and the
fully non-cooperative case where no farmers cooperate with each other.

5These results hold also in the extreme case n = N .
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4 Cooperation within groups (CG)

In this case, we assume that the two groups of farmers (adapters and non-
adapters) compete against each other, and farmers within the same group co-
operate with each other. The objective of the farmers is to choose their control
variables that maximize the aggregate profit of the group of farmers to which
she/he belong subject to the dynamic constraint (2).

As farmers are symmetric within each group, the problems to solve for a
farmer who belongs to the group of adapters and non-adapters are now respec-
tively:

max
{x1,x2,I2≥0}

nπA, (27)

s.t. (2),

G1, G2 ≥ 0

max
{y1,y2≥0}

mπNA (28)

s.t. (2),

G1, G2 ≥ 0

We again solve the problem in two steps by backward induction. Starting
from the second period, the second period aggregate profits of an adapter and
a non-adapter (equations (13) and (14)) accounting for the resource constraint
are the same ones as in section 3 and given by

πA
2 (x2, y2, T1) = −1

2
bx22 + (L−D1 + I2 − cαT1)x2 −

1

2
γI22 +A (E − αT1 −mαy2)

πNA
2 (x2,y2, T1) = −1

2
by22 + (L−D2 − cαT1) y2 +A (E − αT1 − nαx2) .

The second period problem of an adapter corresponds to

max
x2,I2≥0

nπA2

and from the first order conditions we obtain again the reaction function of
second-period decisions of an adapter as a function of first-period extractions

x2 (I2, T1) =
L−D1 + I2 − cαT1

b

and
I2 (x2) =

x2
γ

(29)

which give

x2 (T1) = γ
L−D1 − cαT1

bγ − 1
. (30)
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The second order condition for this problem is

SOC2CG : bγ − 1 > 0

The second period problem of a non-adapter or regular farmer corresponds to

max
y2≥0

mπNA2

and from the first order condition we derive the second-period reaction function
of the non-adapter

y2 (T1) =
L−D2 − cαT1

b
(31)

We can now compute the second period profit of an adapter and respectively,
of a non-adapter as a funcion of T1

πA
2 (T1) =

bγ (L−D1 − cαT1)
2 − 2A (bγ − 1) (b (T1α− E) +mα (L−D2 − cαT1))

2b (bγ − 1)

πNA
2 (T1) =

(bγ − 1) (L−D2 − cαT1)2 − 2Ab ((bγ − 1) (T1α− E) + nαγ (L−D1 − cαT1))

2b (bγ − 1)

Next, moving to the first period problem, the overall profits of the different
types of farmers (15) and (16) accounting for the resource constraint become
respectively

πA (T1) = − b
2
x21 + Lx1 + βπA2 (T1)

πNA (T1) = − b
2
y21 + Ly1 + βπNA2 (T1)

with T1 = nx1+my1, the total extractions in period 1. The first period problem
of an adaptive farmer then reads

max
x1≥0

nπA1 = n

(
− b

2
x21 + Lx1 + βπA2

)
and from the first order condition we derive

x1 (y1) =
b (bγ − 1) (L−Anαβ)− cnαβ (Amα− bγ (−L+D2 +Anα)) + bc2mnα2βγy1

b (b (bγ − 1)− c2n2α2βγ)
(32)

and the second order condition for this problem corresponds to

SOCA1CG: b (bγ − 1)− c2n2α2βγ > 0.

Turning now to the first period problem of a non-adaptive farmer, this reads

max
y1≥0

mπNA1 = m

(
− b

2
y21 + Ly1 + βπNA2

)

12



Again, from the first order condition we obtain

y1 (x1) =
b (bγ − 1) (L− Amαβ) + cmαβ (L−D2 − bγ (L−D1 − Amα)) + c2mnα2β (bγ − 1) x1

(bγ − 1) (b2 − c2m2α2β)
(33)

and the sufficient condition for optimization

SOCNA1CG: b2 − c2m2α2β > 0.

Both reaction functions (32) and (33) show that the first-period extraction levels
of both types of farmers are strategic complements. This means that the more
one type of farmer extracts in the first period, the more the other type of farmer
will react. We can now compute the Nash equilibrium in the first period as the
solution of the system given by the reaction functions (32) and (33) as{

x1 = Q1+Q2y1
Q3

y1 = W1+W2x1

W3

with

Q1 = b (bγ − 1) (L−Anαβ)− cnαβ (Amα− bγ (−L+D1 +Amα))

Q2 = bc2mnα2βγ

Q3 = b
(
b (bγ − 1)− c2n2α2βγ

)
W1 = b (bγ − 1) (L−Amαβ) + cmαβ (L−D2 − bγ (L−D1 −Amα))

W2 = c2mnα2β (bγ − 1)

W3 = (bγ − 1)
(
b2 − c2m2α2β

)
The equilibrium extraction levels in period 1 are then given by

x∗1CG (n,m) =
W1Q2 +W3Q1

W3Q3 −W2Q2
(34)

y∗1CG (n,m) =
W2Q1 +W1Q3

W3Q3 −W2Q2
(35)

From (29), (30) and (31), by using (34) and (35), we can compute the equilibrium
extractions for both adapters and non-adapters in the second period, as well as
optimal investments of the adapters.

In this case, both the benchmark case (B) where nobody adapts and the
special case (S) where everybody adapts correspond to the same solutions found
in the section of full cooperation (see section 3).

5 Cooperation within adapters case (CA)

In this section, we assume that only the farmers who take adaptive measures
coordinate their decisions with each other while competing against the non-
adapters. Moreover, the non-adapters compete against each other and against
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the group of adapters. Again, we solve the problem in two steps by backward
induction.

In this specific setting, as farmers who invest in adaptive measures choose
their control variables to maximize the aggregate profit of all adapters, and as
they are symmetric within their group, the problem to solve for an adapter
is the same than in the previous section (problem (27)). We can now write

T2 = nx2 + Y2 with Y2 =

m∑
j=1

yj2, the total extractions of the non-adapters, and

the second period profit of an adapter (see equation (13)) accounting for the
resource constraint can be rewritten as

πA2 = −1

2
bx22 + (L−D1 + I2 − cαT1)x2 −

1

2
γI22 +A (E − αT1 − αY2)

with
D1 = Anα+ cB1 − cr.

The second period problem for a farmer who takes adaptive measures is given
by

max
x2,I2≥0

nπA2 .

From the first order conditions we derive

x2 (I2, T1) =
L−D1 + I2 − cαT1

b

and
I2 (x2) =

x2
γ

(36)

which give

x2 (T1) = γ
L−D1 − cαT1

bγ − 1
(37)

which is the same as the one in Section 4. The second order condition requires

SOCA2CA: bγ − 1 > 0

As non-adapters (also named regular farmers) compete against each other and
against the group of adapters, the objective of the individual non-adapter is
to choose his/her control variables yj1, yj2 that maximize the individual total
profits over the two periods. Starting by the second-period, we now write T2 =
O2 + yj2 + nx2 where O2 represents the extractions in the second period of all
the other regular farmers, so that second-period profits (14) accounting for the
resource constraint can be rewritten as

πNAj2 = − b
2
y22j + (L−D − cαT1) y2j +A (E − αT1 − α (O2 + nx2))

with
D = Aα+ cB1 − cr.

14



The second period problem of a regular non-adapter, j, is given by

max
yj2≥0

πNAj2

and from the first order condition we derive

yj2 (T1) = y2 (T1) =
L−D − cαT1

b
. (38)

We can now compute the second period profit of an adapter and a non-
adapter as functions of T1, the total extractions in the first period, as follows

πA
2 (T1) =

γb (L−D1 − cαT1)
2 + 2A (bγ − 1) (b (E − αT1)− αm (L−D − cαT1))

2b (bγ − 1)

πNA
j2 (T1) =

(bγ − 1) (L−D − cαT1)
2 − 2Aα (m− 1) (bγ − 1) (L−D − cαT1)

2b (bγ − 1)

− 2Ab ((bγ − 1) (αT1 − E) + nαγ (L−D1 − cαT1))

2b (bγ − 1)

Moving to the first period problem, considering the reaction functions of second-
period decisions, total profit of an adapter reads

πA (T1) = − b
2
x21 + Lx1 + βπA2 (T1)

with T1 = nx1 + Y1 and Y1 =

m∑
j=1

yj1. The first period problem to solve corre-

sponds to
max
x1≥0

nπA1

and from the first order condition we obtain

x1(Y1) =
b (bγ − 1) (L−Anαβ)− cnαβ (Amα+ bγ (L−D1 −Amα)) + bc2nα2βγY1

b (b (bγ − 1)− c2n2α2βγ)
(39)

and a second order condition

SOCCA1CA: b (bγ − 1)− c2n2α2.βγ > 0

Turning to the non-adapters, the total profit of an individual regular farmer, j,
is given by

πNAj (T1) = − b
2
y2j1 + Lyj1 + βπNAj2 (T1)

with T1 = nx1 +O1 +yj1 and O1 representing the extractions in the first period
of all other regular farmers.

15



The first period problem of a regular farmer j corresponds to

max
yj1≥0

πNAj1

and from the first order condition we get

yj1(x1) = y1(x1) (40)

=
b (bγ − 1) (L−Aαβ)− cαβ ((bγ − 1) (L−D) +Aα (m− 1− bγ (N − 1)))

(bγ − 1) (b2 − c2mα2β)

+
c2α2β (bγ − 1)nx1

(bγ − 1) (b2 − c2mα2β)

with second order condition

SOCNA2CA: b2 − c2α2β > 0.

As found in the previous section, the first period extraction levels of the dif-
ferent kinds of farmers, adapters and non-adapters, are strategic complements.
We can now compute in the first period the Nash equilibrium as the solutions
of the system given by the reaction functions (39) and (40){

x1 = Q1+Q2y1
Q3

y1 = W1+W2x1

W3

with

Q1 = b (bγ − 1) (L−Anαβ)− cnαβ (Amα+ bγ (L−D1 −Amα))

Q2 = bc2α2βγnm

Q3 = b
(
b (bγ − 1)− c2n2α2βγ

)
W1 = b (bγ − 1) (L−Aαβ)− cαβ ((bγ − 1) (L−D) +Aα (m− 1− bγ (N − 1)))

W2 = c2nα2β (bγ − 1)

W3 = (bγ − 1)
(
b2 − c2mα2β

)
The solution is then

x∗1CA (n,m) =
W1Q2 +W3Q1

W3Q3 −W2Q2
(41)

y∗1CA (n,m) =
W2Q1 +W1Q3

W3Q3 −W2Q2
(42)

From (36), (37) and (38), by using (41) and (42), we can compute the equilibrium
investment and extractions for both adapters and non-adapters in the second
period.
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5.1 Benchmark case: no adaptation

We now compute the benchmark case when no farmer adapts and they all
compete against each other. This case can be retrieved by setting n = 0 and
m = N in the previous problem so that we obtain

yB1CA =
b (L−Aαβ)− cαβ (L−D −Aα (N − 1))

b2 −Nc2α2β

yB2CA =
b2 (L−D)−Ncα

(
b (L−Aαβ) +Acα2β (N − 1)

)
b (b2 −Nc2α2β)

being nil the decisions of the adapters, and the second order conditions for the
two periods are

SOCB2CA: b > 0

SOCB1CA: b2 − c2α2β > 0.

The special case where all farmers adapt still corresponds to the solution found
in Section 3 .

6 Non-cooperative setting

We now address the full non-cooperative case in which each farmer, adapter
or non-adapter, competes against all the other non-adapters and all the other
farmers who takes adaptive measures, i.e., there is no cooperation among any of
the farmers. As a consequence, each farmer, regardless of the type, maximizes
her/his individual profits over the two periods subject to the resource constraint
(2). The problem is solved in two steps by backward induction.

As adapters compete against each other and against the group of non-
adapters, we can write T2 = Y2+O2+xi2 where O2 represents the extractions in

the second period of all the other adapters and Y2 =

m∑
j=1

yj2 corresponds to the

total extractions of the non-adapters, so that second-period profit of an adapter
in (13), considering the resource constraint, can be rewritten as

πAi2 = −1

2
bx2i2 + (L−D + Ii2 − cαT1)xi2 −

1

2
γI2i2 +A (E − αT1 − α (O2 + Y2))

with
D = Aα+ cB1 − cr.

Thus, a representative adapter i faces the second- period problem

max
xi2,Ii2≥0

πAi2.

From the first order conditions we derive

xi2 =
L−D + Ii2 − cαT1

b
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and
Ii2 =

xi2
γ
. (43)

Putting these expressions together, we have the reaction function of second-
period extraction as a function of T1

xi2 (T1) = x2 (T1) = γ
L−D − cαT1

bγ − 1
(44)

and the second order condition (or sufficient condition for optimization) is

SOCA2NC : bγ − 1 > 0.

Similarly, as farmers that do not adapt compete against each other and against
the group of adapters, we can write T2 = X2 +O2 +yj2 where O2 represents the

second-period extractions of all the other non-adapters and X2 =

n∑
i=1

xi2, the

second-period total extractions of the adapters, so that second-period profits of
an adapter in (14), considering the resource constraint, can be written as

πNAj2 = −1

2
by2j2 + (L−D − cαT1) yj2 +A (E − αT1 − α (X2 +O2))

with
D = Aα+ cB1 − cr.

The second period problem of a representative non-adapter j is then given by

max
yj2≥0

πNAj2 .

From the first order condition is immediate to get the reaction function

yj2 (T1) = y2 (T1) =
L−D − cαT1

b
(45)

which is the same as found in Section 5. Note that

x2 (T1) =
bγ

bγ − 1
y2 (T1)

with bγ
bγ−1 > 1.

We can now compute the second period profit of a representative adapter
and a non-adapter as functions of T1

πA2 (T1) =
bγ (L−D − cαT1)

2 − 2Aα (bγ (N − 1)−m) (L−D − cαT1)

2b (bγ − 1)
(46)

−2Ab (bγ − 1) (αT1 − E)

2b (bγ − 1)
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πNA2 (T1) =
(bγ − 1) (L−D − cαT1)

2 − 2Aα (bγ (N − 1) + 1−m) (L−D − cαT1)

2b (bγ − 1)
(47)

− 2Ab (bγ − 1) (αT1 − E)

2b (bγ − 1)

Next, moving to the first period problem, total profits of an adapter i reads

πAi = − b
2
x2i1 + Lxi1 + βπAi2 (T1)

with T1 = O1+xi1+Y1 and where O1 represents the first period total extractions
of all the other adapters. The problem to solve for an adapter is then

max
xi1≥0

πAi

which, from the first order condition, gives

x1 (Y1) =
b (bγ − 1) (L−Aαβ) + cαβ (bγ (−L+D +Aα (N − 1))−Amα) + bc2α2βγY1

b (b (bγ − 1)− c2nα2βγ)
(48)

Second order condition of this problem requires

SOCA1NC : b (bγ − 1)− c2α2βγ > 0

For the representative non-adapter j, total profits read

πNAj = − b
2
y2j1 + Lyj1 + βπNAj2 (T1)

with T1 = X1 + O1 + yj1 and O1 representing the first-period extractions of
all other non-adapters (or regular farmers), so that her/his first-period problem
corresponds to

max
yj1≥0

πNAj .

From the first order condition we derive the reaction function

y1 (X1) =
b (bγ − 1) (L−Aαβ)− cαβ ((bγ − 1) (L−D +Aα)−Aα (Nbγ −m))

(bγ − 1) (b2 − c2mα2β)
(49)

+
c2α2β (bγ − 1)X1

(bγ − 1) (b2 − c2mα2β)

and the second order condition corresponds to

SOCNA1NC : b2 − c2α2β > 0.

19



We can now compute the first-period Nash equilibrium as the solutions of the
system given by the reaction functions (48) and (49). This can be written as{

x1 = Q1+Q2y1
Q3

y1 = W1+W2x1

W3

with

Q1 = b (bγ − 1) (L−Aαβ) + cαβ (bγ (−L+D +Aα (N − 1))−Amα)

Q2 = bc2α2βγm

Q3 = b
(
b (bγ − 1)− c2nα2βγ

)
W1 = b (bγ − 1) (L−Aαβ) + cαβ ((bγ − 1) (−L+D −Aα) +Aα (Nbγ −m))

W2 = c2α2β (bγ − 1)n

W3 = (bγ − 1)
(
b2 − c2mα2β

)
which gives

x∗1NC (n,m) =
W1Q2 +W3Q1

W3Q3 −W2Q2
(50)

y∗1NC (n,m) =
W2Q1 +W1Q3

W3Q3 −W2Q2
(51)

From (43), (44) and (45), by using (50) and (51), we can compute the equilibrium
investment for adapters and extraction levels for both adapters and non-adapters
in the second period.

In this case, the benchmark case where nobody adapts corresponds to the
same solution found in the case ”Cooperation within Adapters” in section 5.

The special case where everybody adapts can be easily obtained by setting
n = N and m = 0 in (48), which gives

xS1NC =
b (bγ − 1) (L−Aαβ)− cαβ (bγ (L−D −Aα (N − 1)))

b (b (bγ − 1)− c2Nα2βγ)

xS2NC = γ
b (bγ − 1) (L−D)−Ncα

(
(bγ − 1) (L−Aαβ) +Acα2βγ (N − 1)

)
(bγ − 1) (b (bγ − 1)−Nc2α2βγ)

.
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7 Numerical simulations

Parameter Description Value
a Coefficient of revenue agricultural use (linear term) 1
b Coefficient of revenue agricultural use (nonlinear term) 1
z Marginal pumping cost intercept 0.8
c Marginal pumping cost slope 0.01
G0 Initial stock level 10
r Natural recharge rate 0.45
B1 Climate change (period 1) 0.05
B2 Climate change (period 2) 0.05
α Return flow coefficient 1
γ Coefficient of the investment cost 1.5
A Coefficient of the valuation of the final stock 0.02
β Discount factor 0.9
N Total number of farmers N = {2, 5, 10}
n Number of adaptive farmers n ∈ [0 . . . N ]
m Number of non adaptive farmers m ∈ [0, N − n]

Table 1: Parameter values of the model.

To perform the numerical simulations, we use parameter values in Table 1 that
satisfy sufficient conditions of optimization for all the different settings. First,
we fix N = 10 farmers with n ∈ [0, 10], the number of adaptive farmers and
m = N − n, the number of non-adaptive farmers. In what follows, we study
if adaptation is beneficial for the resource (i.e., for final stock levels, G2) and
for the profitability of the farmers (i.e., total profits of the farmers defined
by Π =

∑n
i=1 π

A
i +

∑m
j=1 π

NA
j ) depending on the number of adaptive farm-

ers and for different scenarios: full cooperation (FC), cooperation within groups
(CG), cooperation within adapters (CA) and non-cooperation between all farm-
ers (NC). Results are summarized in Figures 1-4. Next, we perform a sensitivity
analysis with respect to all the parameters of the model to test the robustness
of previous results. Finally, we will analyze the scope of cooperation, defined as
the difference between the cooperative and non-cooperative solutions, when the
total number of farmers varies, i.e., for N = 2 and N = 5.
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7.1 Impact of adaption on final stock levels
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Figure 1: Final stock levels in function of the number of adapting farmers, for
the different scenarios and N = 10.

Firstly, we focus on the impact of adaptation on final stock levels of the resource
(see Figure 1). We confirm theoretical results for the full cooperative setting
(FC). Adaptation is not beneficial for the stock level of the resource despite the
number of adaptive farmers. In order words, stock level at the end of the second
period is always lower when some farmers invest n > 0, that when they not,
n = 0, (i.e., the benchmark scenario, green dashed horizontal line). Moreover,
numerical simulations suggest that final stock levels decreases the greater the
number of adapters when all farmers cooperate.

Next, we study if previous result is maintained under different levels of coop-
eration. In Figure 1, considering the same benchmark situation, we observe that
under cooperation within groups (CG), adaptation is also negative for the envi-
ronment. Same result hold under full non-cooperation between farmers (NC),
being now the benchmark case of no adaptation (n = 0) represented by the
horizontal red dashed line.

However, when farmers cooperate only within adapters (CA), lower final
stock levels are obtained for a low number of adapters and higher stock levels
results for a large number of adapters with respect to the benchmark case (red
horizontal dashed line). In fact, in the case of cooperation within adapters,
numerical results suggest that adaptation could be beneficial for the stock level
of the resource for a high number of adapters.
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7.2 Impact of adaption on farmers’ profits

We next analyze the impact of adaptation on total farmers’ profits over the
two periods (see Figure 2). First, the figure illustrates that adaptation is now
beneficial for the profitability of the farmers for any number of adaptive farmers
in the cooperative setting (FC). In addition, total farmers’ profits increases when
the number of adapters increases. In fact, as observed in the previous section,
total extraction increases (and equivalently, stock level decreases) the greater
the number of adapters, leading to higher profits.

However, results may change for the different scenarios of cooperation. When
considering cooperation within groups (CG) or cooperation only within adapters
(CA), the impact of adaptation on the profitability of the farmers seems to be
negative for a low number of adapters and positive for a high number of adapters.
In the full non-cooperative setting, in contrast with the full cooperative case,
total profits decrease when the number of adapters increase. To understand this
result, in Figure 3 (and Table 2 for detailed numbers), profits (per group) and
total profits are shown for the different scenarios. While in the cooperative case,
the adapters’ profits increase is more important than the non-adapters’ profits
decrease, in the full non-cooperative case, the non-adapters profits drive results
concerning total profits. The intuition behind this result could be that under
full cooperation, the adapters push the non-adapters to extract more than what
they would desire under competition.
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Figure 2: Total farmers’ profits over the two periods in function of the number
of adapting farmers, for the different scenarios and N = 10.
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Figure 3: Profits per group (adapters and non-adapters) and total farmers’
profits in function of the number of adapting farmers for the different scenarios
and N = 10.

Adapters’Profit Non-Adapters’Profit Total profit

n FC NC FC NC FC NC FC-NC

0 0 0 2.05 1.77 2.05 1.77 0.29

1 0.24 0.24 1.82 1.51 2.06 1.74 0.32

2 0.48 0.45 1.59 1.27 2.07 1.72 0.35

3 0.71 0.65 1.37 1.04 2.08 1.69 0.38

4 0.93 0.83 1.15 0.84 2.09 1.67 0.41

5 1.15 0.99 0.94 0.65 2.09 1.65 0.45

6 1.36 1.14 0.74 0.49 2.10 1.62 0.48

7 1.56 1.26 0.55 0.34 2.11 1.60 0.51

8 1.76 1.37 0.36 0.21 2.12 1.58 0.54

9 1.95 1.46 0.17 0.09 2.13 1.55 0.57

10 2.13 1.53 0 0 2.13 1.53 0.60

Table 2: Profits per group (adapters and non-adapters) , total farmers’ profits
and differences in profits in function of the number of adapting farmers for the
cooperative (FC) and full non-cooperative (NC) scenarios and, N = 10.
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7.3 Sensitivity analysis

In this section, we perform an extensive numerical exploration of the set of
feasible model parameter values to test how previous results change with respect
to model parameters for the different scenarios of cooperation. Main results
concerning the impact of adaptation on the resource G∗2 and the total profits of
the farmers Π∗ are summarized in Tables 3-6.

Impact of adaptation (FC)
G∗2FC Π∗FC

Negative for any n Positive for any n

Table 3: Impact of adaptation G∗2FC and Π∗FC in the full cooperative case.

First of all, concerning the full cooperative case in Table 3, we can conclude
that any degree of adaptation, or equivalently, any number of adapters, is pos-
itive from an economic perspective but negative from a strict environmental
point of view, regardless of the other model parameters.

Key parameter Impact of adaptation
A G∗2CG Π∗CG

Large Negative for any n Varies with n (−,+)*
↓ Negative for any n Positive for any n

Table 4: Impact of adaptation G∗2CG and Π∗CG in the cooperation within groups
case.

For the cooperation within groups case (CG) in Table 4 , for any n ∈ [0 . . . N ],
we can conclude that adaptation is negative from a strict environmental point
of view, and it can also be negative from an economic point of view. The
latter result is only observed when the number of adapters (n) is small and the
final value of the final stock levels (A) is large. In all the other cases the two
criteria, the exclusive environmental one and the economic one, reach opposite
conclusions.

Key parameter Impact of adaptation
A G∗2CA Π∗CA

Large Varies with n (−,+) Varies with n (−,+)
↓ Varies with n (−,+) Positive for any n
↓↓ Negative for any n Positive for any n

Table 5: Impact of adaptation G∗2CA and Π∗CA in the cooperation within
adapters case.

Turning to the results concerning the case of cooperation with adapters (see
Table 5, the key parameter that determines the impact of adaptation on the
resource and the total profit is the value given to the final stock levels A. We
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can conclude that when A is large, the impact of adaptation from both a strict
environmental and economic perspective is positive if the number of adapters is
large. For smaller values of A, we can still have that the two criteria point in
the same direction if n is large. The two perspectives reach different conclusions
when A is very small despite the number of adapters.

Key parameter Impact of adaptation
A G∗2NC Π∗NC

Large Negative for any n Negative for any n
↓ Negative for any n Positive for any n

Table 6: Impact of adaptation G∗2CG and Π∗CG in the non cooperative case.

For the non-cooperative case in Table 6, adaptation is again negative for the
resource, regardless of the model parameter values. However, the value assigned
to the final stock, A, is also a key parameter that changes the sign of the impact
of adaptation on the overall profit. For a given set of parameters for which the
impact is always positive regardless of the number of adapters, a reduction of
the final stock values A can change the impact into negative.

7.4 Discussion on the scope of cooperation: Cooperative
vs. Non-cooperative case

We now compare the full cooperative and non-cooperative scenarios by com-
puting differences in terms of final stock and total profits between scenarios. In
Figures 1 and 2, we can observe that final stock levels and total profits are al-
ways greater under full cooperation than under non-cooperation for any number
of adapters, that is, cooperation is always beneficial for the sustainability and
profitability of the resource. This is consistent with the existing literature on
Nash equilibria in resource management (e.g., Rubio and Casino (2001) and de
Frutos Cachorro et al. (2019)).

Moreover, Figures 4 shows how these differences vary depending on the num-
ber of adapters. We can see that stock and profit differences between the co-
operative and non-cooperative solution increases with the number of adapting
farmers. In order words, defining the profitability or the scope of cooperation
as the difference in total profits under cooperation and non-cooperation, this
reaches the maximum for the case in which all farmers adapt (N = n = 10),
(see detailed numbers in the last column, Table 2).
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Figure 4: Final stock and profit differences between the cooperative and non-
cooperative scenarios, in function of the number of adapting farmers, for the
case N = 10.

Finally, we conduct additional simulations to demonstrate the robustness
of our results concerning the total number of farmers N . Focusing on the full
cooperative and non-cooperative cases, in contrast with the case N = 10, total
profits under non-cooperation now increase with the number of adapters for
N = 2 and N = 5 (see Figures 5 and 7 in Appendix 9.3). Anyway, main result
is maintained regarding differences in final stock levels and the profitability
of cooperation with increasing differences as the number of adaptive farmers
increase (see Figures 6 and 8 in Appendix 9.3)
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8 Conclusion

In this study, we develop a two-period discrete game to examine groundwater
exploitation by multiple farmers, focusing on the impact of investment adapta-
tion measures to climate change on the sustainability and profitability of the
resource. Specifically, farmers’ adaptive responses to climate change are mod-
eled as costly private investments that enhance irrigation efficiency by lowering
marginal extraction costs (e.g., investing in improved irrigation systems). We
consider farmers as either adapters or non-adapters, assuming symmetric farm-
ers within each group, and solve the problem under cooperation, cooperation
within groups, cooperation within adapters and full non-cooperation among all
farmers.

Theoretical results indicate that under cooperation, adaptation is not en-
vironmentally beneficial, meaning that, higher total extractions (or lower final
stock levels) are observed when farmers adapt, compared to when they do not,
regardless of the number of adapters. This is mainly due to an increase in ex-
tractions during the second period when some adapters are present. In fact,
since investments in adaptations reduce the cost of extraction in the second
period, farmers prioritize extraction in the second period over the first period.
In addition, numerical simulations indicate that final stock levels decrease as
the number of adapters increases. These outcomes are also numerically ob-
served when there are strategic interactions among groups and/or among farm-
ers. However, interestingly, the impact of adaptation could be positive for the
environment when considering only cooperation among adapters, and a high
number of adapters.

In contrast, numerical results indicate that adaptation could enhance the
profitability of the ”adapters” and the overall profitability of farmers for different
levels of cooperation. Preliminary results of the sensitivity analysis suggest that
these outcomes will mainly depend on the value assigned to the final stock levels
and the number of adapters.

To conclude, numerical results suggest that the impact of adaptation could
be positive from an economic and an environmental point of view when only
the farmers who decide to make investment adaptive measures cooperate be-
tween them. Moreover, the number of farmers investing in adaptive measures
is crucial in ensuring a positive impact of adaptation from an economic and an
environmental point of view and in determining the profitability (or scope) of
cooperation, which is defined as the difference between overall profits under full
cooperation and non-cooperation. In fact, the impact of adaptation becomes
positive and the scope of cooperation increases, as the number of adapters rises.
The main policy implication derived from this study is that cooperation be-
comes increasingly necessary as investment measures are implemented to adapt
to a changing climate.

Finally, as this is a preliminary work, there is still work to be done regarding
the sensitivity analysis concerning other important parameters of the model,
as well as other possible extensions. In fact, it will be interesting to analyze
how results could differ when implementing other types of adaptation measures
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related to the revenue function.

9 Appendix

9.1 Proof of Proposition 1

In this section, we check for the positivity of the extraction rates in the second
period in the cooperative setting for any number of farmers investing in adaption
measures.

1. We have obtained that

x∗2 = γ−b
2(−L+D1+Amα)+cαN(b(−L+ANαβ)+cmαβ(D1−D2+Aα(m−n)))

b2(bγ−1)+c2α2βN(m−bγN)

The denominator is always positive because of the sufficient conditions for
optimization. With respect to the numerator,

− b2 (−L+D1 + Amα) + cαN (b (−L+ ANαβ) + cmαβ (D1 −D2 + Aα (m− n))) > 0

⇐⇒ −b2 (−L+ (Anα+ cB1 − cr) + Amα)

+ cαN (b (−L+ ANαβ) + cmαβ ((Anα+ cB1 − cr)− (Amα+ cB1 − cr) + Aα (m− n))) > 0

⇐⇒ Abα
(
−b (m+ n) +N

2
cαβ

)
+ b (L (b−Ncα) + bc (r − B1)) > 0

⇐⇒ Abα
(
−bN +N

2
cαβ

)
+ b (L (b−Ncα) + bc (r − B1)) > 0

⇐⇒ AbαN (−b+Ncαβ) + b (L (b−Ncα) + bc (r − B1)) > 0

If (b−Ncα) > 0 then (−b+Ncαβ) < 0 and the numerator is positive if

A < b(L(b−Ncα)+bc(r−B1))
bαN(b−Ncαβ) = L(b−Ncα)+bc(r−B1)

αN(b−Ncαβ).

2. y∗2 = −b(bγ−1)(−L+D2+Anα)+cαN((bγ−1)(−L+ANαβ)−cnαβγ(D1−D2+Aα(m−n)))
b2(bγ−1)+c2α2βN(m−bγN)

The denominator is always positive because of the sufficient conditions for
optimization. With respect to the numerator,

− b (bγ − 1) (−L+D2 + Anα) + cαN ((bγ − 1) (−L+ ANαβ)− cnαβγ (D1 −D2 + Aα (m− n))) > 0

⇐⇒ −b (bγ − 1) (−L+ (Amα+ cB1 − cr) + Anα)

+ cαN ((bγ − 1) (−L+ ANαβ)− cnαβγ ((Anα+ cB1 − cr)− (Amα+ cB1 − cr) + Aα (m− n))) > 0

⇐⇒ (bγ − 1)
(
L (b−Ncα) + bc (r − B1) + Aα

(
−b (m+ n) +N

2
cαβ

))
> 0

⇐⇒
(
L (b−Ncα) + bc (r − B1) + Aα

(
−bN +N

2
cαβ

))
> 0

⇐⇒ (L (b−Ncα) + bc (r − B1) + AαN (−b+Ncαβ)) > 0

If (b−Ncα) > 0 then (−b+Ncαβ) < 0 and the numerator is positive

if A < L(b−Ncα)+bc(r−B1)
αN(b−Ncαβ). , which is the same condition obtained for the

positivity of x∗2.
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Therefore, if

b−Ncα > 0and

Ax∗
2+

=
b (L (b−Ncα) + bc (r −B1))

bαN (b−Ncαβ)
> A > 0 then

x∗2 > 0

y∗2 > 0

9.2 Proof of Proposition 2

First, concerning the sign of y∗1NA − y∗1 ,

y
∗
1NA − y

∗
1

=
(bγ − 1) (b (L− ANαβ)− cNαβ (L−D2))

(bγ − 1) (b2 −N2c2α2β)

−
(bγ − 1) (b (−L+ ANαβ)− cmαβ (−L+D2 + Anα))− bcnαβγ (−L+D1 + Amα)

−b2 (bγ − 1) + c2α2βN (−m+ bγN)

=
(bγ − 1) (b (L− ANαβ)− cNαβ (L− (ANα+ cB1 − cr)))

(bγ − 1) (b2 −N2c2α2β)

−
(bγ − 1) (b (−L+ ANαβ)− cmαβ (−L+ (Amα+ cB1 − cr) + Anα))− bcnαβγ (−L+ (Anα+ cB1 − cr) + Amα)

−b2 (bγ − 1) + c2α2βN (−m+ bγN)

=
(bγ − 1) (b (L− ANαβ)− cNαβ (L− (ANα+ cB1 − cr)))

(bγ − 1) (b2 −N2c2α2β)

−
(bγ − 1) (b (−L+ ANαβ)− cmαβ (−L+ cB1 − cr + Aα (m+ n)))− bcnαβγ (−L+ cB1 − cr + Aα (m+ n))

−b2 (bγ − 1) + c2α2βN (−m+ bγN)

=
(bγ − 1) (b (L− ANαβ)− cNαβ (L− (ANα+ cB1 − cr)))

(bγ − 1) (b2 −N2c2α2β)

−
(bγ − 1) (b (−L+ ANαβ)− cmαβ (−L+ cB1 − cr + AαN))− bcnαβγ (−L+ cB1 − cr + AαN)

−b2 (bγ − 1) + c2α2βN (−m+ bγN)

=
bcαβ

(−b2 +N2c2α2β) (−b3γ + b2 −Nc2mα2β +N2bc2α2βγ)

(
LNb− Lbm−NbcB1 + bcmB1

− AN2
bα− LNb2γ − LN2

cα+ Lb
2
mγ + Lb

2
nγ +Nbcr − bcmr + ANbmα+ LNcmα

+ AN
2
b
2
αγ + AN

3
cα

2
β −Nb2crγ + b

2
cmrγ + b

2
cnrγ +Nb

2
cγB1 − b2cmγB1 − b2cnγB1

−N3
c
3
α

2
βγB1 − AN2

cmα
2
β − ANb2mαγ − ANb2nαγ − AN4

c
2
α

3
βγ + LN

3
c
2
α

2
βγ

+N
3
c
3
rα

2
βγ +N

2
c
3
mα

2
βγB1 +N

2
c
3
nα

2
βγB1 + AN

3
c
2
mα

3
βγ + AN

3
c
2
nα

3
βγ − LN2

c
2
mα

2
βγ

− LN2
c
2
nα

2
βγ −N2

c
3
mrα

2
βγ −N2

c
3
nrα

2
βγ

)

Symplifying the expression, we obtain that

y∗1NA − y∗1 = bcαβn
ANα (−b+Ncαβ) + L (b−Ncα) + c (r −B1) b

(−b2 +N2c2α2β) (−b3γ + b2 −Nc2mα2β +N2bc2α2βγ)

The denominator is always positive as −b2+N2c2α2β < 0 and −b2 (bγ − 1)+
Nc2α2β (−m+Nbγ) < 0 because of concavity conditions.
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The numerator is always positive, i.e., ANα (−b+Ncαβ) + L (b−Ncα) +
bc (r −B1) > 0 because of the positivity condition of the second period extrac-
tion rate. Therefore,

y∗1NA > y∗1 .

Next, concerning the sign of y∗2NA − x∗2,

y∗2NA
x∗
2

=

b(L−D2)−Ncα(L−ANαβ)
b2−N2c2α2β

γ
−b2(−L+D1+Amα)+cαN(b(−L+ANαβ)+cmαβ(D1−D2+Aα(m−n)))

b2(bγ−1)+c2α2βN(m−bγN)

=

b(L−(ANα+cB1−cr))−Ncα(L−ANαβ)
b2−N2c2α2β

γ
−b2(−L+(Anα+cB1−cr)+Amα)+cαN(b(−L+ANαβ)+cmαβ((Anα+cB1−cr)−(Amα+cB1−cr)+Aα(m−n)))

b2(bγ−1)+c2α2βN(m−bγN)

Simplifying we obtain that,

y∗2NA
x∗
2

=
(
Lb− bcB1 + bcr − LNcα− ANbα+ AN

2
cα

2
β
)

∗
−b3γ + b2 −Nc2mα2β +N2bc2α2βγ

γb (Lb− bcB1 + bcr − LNcα− Abα (m+ n) + AN2cα2β) (−b2 +N2c2α2β)

=
(
Lb− bcB1 + bcr − LNcα− ANbα+ AN

2
cα

2
β
)

∗
−b3γ + b2 −Nc2mα2β +N2bc2α2βγ

γb (Lb− bcB1 + bcr − LNcα− AbαN + AN2cα2β) (−b2 +N2c2α2β)

Therefore,

y∗2NA =
−b3γ + b2 +Nc2α2β (−m+Nbγ)

bγ (−b2 +N2c2α2β)
x∗2

The numerator and denominator of the previous ratio are negative because
of concavity conditions. Moreover

−b3γ + b2 +Nc2α2β (−m+Nbγ)

bγ (−b2 +N2c2α2β)
< 1

⇐⇒ −b3γ+b2+Nc2α2β(−m+Nbγ)
bγ(−b2+N2c2α2β) − 1 = b2−Nc2mα2β

bγ(−b2+N2c2α2β) < 0.

For the numerator, b2 −Nc2mα2β > 0 ⇐⇒ b2

Nmα2β > c2

For the denominator,

−b2 +N2c2α2β < 0 ⇐⇒ b2

N2α2β > c2

The previous conditions are satisfied because b2

Nmα2β >
b2

N2α2β > c2 due to
concavity conditions. Therefore,

y∗2NA < x∗2

Now, concerning the sign of y∗2NA − y∗2 ,
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y∗2NA
y∗2

=

b(L−D2)−Ncα(L−ANαβ)
b2−N2c2α2β

−b(bγ−1)(−L+D2+Anα)+cαN((bγ−1)(−L+ANαβ)−cnαβγ(D1−D2+Aα(m−n)))

b2(bγ−1)+c2α2βN(m−bγN)

=

b(L−(ANα+cB1−cr))−Ncα(L−ANαβ)
b2−N2c2α2β

−b(bγ−1)(−L+(Amα+cB1−cr)+Anα)+cαN((bγ−1)(−L+ANαβ)−cnαβγ((Anα+cB1−cr)−(Amα+cB1−cr)+Aα(m−n)))

b2(bγ−1)+c2α2βN(m−bγN)

=
(
Lb − bcB1 + bcr − ANbα − LNcα + AN

2
cα

2
β
)

∗
−b2 (bγ − 1) + Nc2α2β (−m + Nbγ)

(bγ − 1)
(
Lb − bcB1 + bcr − LNcα − Abα (m + n) + AN2cα2β

) (
−b2 + N2c2α2β

)
=

(
Lb − bcB1 + bcr − ANbα − LNcα + AN

2
cα

2
β
)

∗
−b2 (bγ − 1) + Nc2α2β (−m + Nbγ)

(bγ − 1)
(
Lb − bcB1 + bcr − LNcα − AbαN + AN2cα2β

) (
−b2 + N2c2α2β

)

Simplifying,

y∗2NA
y∗2

=
−b3γ + b2 −Nc2mα2β +N2bc2α2βγ

(bγ − 1) (−b2 +N2c2α2β)
> 0

and,

−b3γ + b2 −Nc2mα2β +N2bc2α2βγ

(bγ − 1) (−b2 +N2c2α2β)
−1 = Nc2α2β

N −m
(−b2 +N2c2α2β) (bγ − 1)

< 0

due to concavity conditions. As

−b3γ + b2 −Nc2mα2β +N2bc2α2βγ

(bγ − 1) (−b2 +N2c2α2β)
< 1,

y∗2NA < y∗2

Finally, concerning the sign of (Ny∗1NA +Ny∗2NA)−(nx∗1 +my∗1 + nx∗2 +my∗2),
First, as x∗1 = y∗1 ,

(Ny∗1NA +Ny∗2NA)− (nx∗1 +my∗1 + nx∗2 +my∗2)

= (Ny∗1NA +Ny∗2NA)− (Nx∗1 + nx∗2 +my∗2)

where

Ny∗1NA = N
(bγ − 1) (b (L−ANαβ)− cNαβ (L−D2))

(bγ − 1) (b2 −N2c2α2β)

= N
(bγ − 1) (b (L−ANαβ)− cNαβ (L− (ANα+ cB1 − cr)))

(bγ − 1) (b2 −N2c2α2β)
,
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Ny∗2NA = N
b (L−D2)−Ncα (L−ANαβ)

b2 −N2c2α2β

= N
b (L− (ANα+ cB1 − cr))−Ncα (L−ANαβ)

b2 −N2c2α2β
,

Nx
∗
1 = N

(bγ − 1) (b (−L + ANαβ) − cmαβ (−L +D2 + Anα)) − bcnαβγ (−L +D1 + Amα)

−b2 (bγ − 1) + c2α2βN (−m + bγN)

= N
(bγ − 1) (b (−L + ANαβ) − cmαβ (−L + (Amα + cB1 − cr) + Anα)) − bcnαβγ (−L + (Anα + cB1 − cr) + Amα)

−b2 (bγ − 1) + c2α2βN (−m + bγN)

= N
(bγ − 1) (b (−L + ANαβ) + cmαβ (L + c (r − B1) − Aα (m + n))) + bcnαβγ (L + c (r − B1) − Aα (m + n))

−b2 (bγ − 1) + c2α2βN (−m + bγN)

= N
(bγ − 1) (b (−L + ANαβ) + cmαβ (L + c (r − B1) − AαN)) + bcnαβγ (L + c (r − B1) − AαN)

−b2 (bγ − 1) + c2α2βN (−m + bγN)
,

nx
∗
2 = nγ

−b2 (−L+D1 + Amα) + cαN (b (−L+ ANαβ) + cmαβ (D1 −D2 + Aα (m− n)))
b2 (bγ − 1) + c2α2βN (m− bγN)

= −nγb
Lb− bcB1 + bcr − LNcα− Abα (m+ n) + AN2cα2β

−b3γ + b2 −Nc2mα2β +N2bc2α2βγ

= −nγb
Lb− bcB1 + bcr − LNcα− AbαN + AN2cα2β

−b3γ + b2 −Nc2mα2β +N2bc2α2βγ
and,

my
∗
2 = m

−b (bγ − 1) (−L+D2 + Anα) + cαN ((bγ − 1) (−L+ ANαβ)− cnαβγ (D1 −D2 + Aα (m− n)))
b2 (bγ − 1) + c2α2βN (m− bγN)

= −m (bγ − 1)
Lb− bcB1 + bcr − LNcα− Abα (m+ n) + AN2cα2β

−b3γ + b2 −Nc2mα2β +N2bc2α2βγ

= −m (bγ − 1)
Lb− bcB1 + bcr − LNcα− AbαN + AN2cα2β

−b3γ + b2 −Nc2mα2β +N2bc2α2βγ

Then by substituting and simplifying,

(Ny∗1NA +Ny∗2NA)− (nx∗1 +my∗1 + nx∗2 +my∗2)

= bn (−b+Ncαβ)
L (b−Ncα) + bc (r −B1)−ANα (b−Ncαβ)

(−b2 +N2c2α2β) (−b2 (bγ − 1) +Nc2α2β (−m+Nbγ))

The numerator of previous expression is negative as (−b+Ncαβ) < 0 and
L (b−Ncα) + bc (r −B1)−ANα (b−Ncαβ) > 0.

The denominator is positive as
(
−b2 +N2c2α2β

)
< 0 and (−b2 (bγ − 1) +

Nc2α2β (−m+Nbγ)) < 0. Therefore, the expression is negative and,

(Ny∗1NA +Ny∗2NA) < (nx∗1 +my∗1 + nx∗2 +my∗2) .
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9.3 Additional figures
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Figure 5: Profits per group (adapters and non-adapters) and total farmers’
profits in function of the number of adapting farmers for the different scenarios
and N = 2.
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Figure 6: Final stock and profit differences between the cooperative and non-
cooperative scenarios, in function of the number of adapting farmers, for the
case N = 2.
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Figure 7: Profits per group (adapters and non-adapters) and total farmers’
profits in function of the number of adapting farmers for the different scenarios
and N = 5.
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Figure 8: Final stock and profit differences between the cooperative and non-
cooperative scenarios, in function of the number of adapting farmers, for the
case N = 5.
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