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Abstract: This essay presents an analysis of the American Physical Society (APS) dataset, com-
prising metadata and citations of APS articles. We focus on network structures behind the dataset.
We build three different networks: citation network, author citation networks, and co-author net-
work. We compute key network metrics such as degree distribution, clustering coefficients, and cen-
trality measures. We expect the degree distribution of the different networks to follow a power-law
distribution. Through simulations, we compare the citation network structure to randomly gener-
ated directed graphs built by the configuration model with the same degree distribution, obtaining
substantially different structural configurations. The in-degree distribution of the citation network
exhibited scale-free properties, compatible with the preferential attachment network development.
This study provides a comprehensive understanding of the APS citation network and emphasizes the
importance of temporal and preferential attachment mechanisms in shaping real-world networks.

I. INTRODUCTION

In recent years, the study of complex networks has be-
come a crucial field to understanding systems in various
scientific fields. Networks can represent a multitude of
systems and it’s relations, from social interactions to bi-
ological systems, and eventually, scientific collaborations
and citations [1].

Citation networks, in particular, are directed graphs
where nodes represent scientific papers and directed
edges represent citations from one paper to another.
These networks are invaluable for analyzing the dissemi-
nation of knowledge, the influence of researches, and the
evolution of scientific fields [2].

The American Physical Society (APS) is one of the
foremost organizations in the field of physics, publish-
ing a vast array of research papers across its numerous
journals. By analyzing this network, we can uncover the
structural characteristics of scientific collaborations, the
impact of individual papers, and the overarching trends
within the field of physics.

A key concept in the study of complex networks is the
power-law distribution, which is often observed in the
degree distributions of these networks. In a power-law
network, a small number of nodes (papers) have a very
high degree (many citations), while most nodes have a
low degree (few citations). Preferential attachment (PA)
is a mechanism that allow us to obtain a power law dis-
tribution from a simple rule where new nodes are more
likely to connect to highly connected nodes. Therefore,
PA mechanism plays a significant role in the develop-
ment of scale-free networks. In the context of citation
networks, this means that new papers are more likely to
cite well-known, highly cited papers, leading to a ”rich-
get-richer” phenomenon.

Furthermore, time it’s a critical factor in the evolution
of citation networks, a property that makes these net-
works unique. The temporal aspect influences on how
citations accumulate and how the network grows over
time. Older papers have had more time to accumulate

citations, leading to temporal biases in the network struc-
ture.
For this study, we utilize a unique dataset from the

APS, specifically the dataset of citations since 1893 up
to 2022. This dataset provides a comprehensive view of
the citation dynamics within the APS. It is composed by
720.535 files corresponding to 2.76 GB of data.
The primary objective of this study is to investigate the

statistical properties and structural characteristics of the
APS citation network. Key metrics such as degree dis-
tribution, clustering coefficients, and centrality measures
will be studied to provide a comprehensive understand-
ing of the network. Degree distribution reveals the spread
of citations among papers, clustering coefficients indicate
the tendency of papers to form tightly-knit groups, and
centrality measures identify influential papers within the
network.

II. DATASET AND NETWORKS

The APS citations dataset consists of a CSV file that
relates the DOI of citing papers to the DOI of cited pa-
pers, this will be used as our edge list for the graphs cre-
ation since it forms the basis for constructing the citation
network, allowing us to identify the directional relation-
ships between papers based on their citations. Addition-
ally, we utilize a metadata dataset that provides detailed
information about each paper. Key fields in these JSON
files include the paper’s title, publication date, journal
information, and authorship details.
Using these datasets, and with the help of libraries

such as NetworkX and graphtools, we decided to model
the system through three different networks represented
by three different graphs. In Table I we can see the con-
figuration of these graphs, detailing the number of nodes
and edges in each network:
In first place we have the citation network (CN), where

each node represents a paper and each directed edge rep-
resents a citation between two papers. Given that the
citations can be considered with a direction, this graph
is a directed graph (DG).
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Graph # Nodes # Edges

Citations Network (CN) 709.782 9.832.517

Author Citations

Network (ACN)
504.282 74.775.017

Coauthors Social

Network (COAN)
500.083 3.578.387

TABLE I: Amount of nodes and edges related to each one of
the networks. It’s relevant to see that the ACN it’s a much
more dense graph than the CN and the COAN. Also the num-
ber of authors in the COAN is less than the number of authors
in the ACN, this difference can be associated to the number
of authors that have never collaborated since they won’t be
part of the COAN.

The second network is the author citations network
(ACN). In this graph, nodes represent the authors of the
papers, and directed edges represent the citations be-
tween authors. If an author cites another author multiple
times, the edge will be weighted according to the num-
ber of citations, therefore consolidating multiple parallel
edges into a single weighted one.

The last network is the coauthors social network
(COAN), which focuses on the collaborative relation-
ships between authors. Here, nodes represent authors,
and undirected edges represent the existence of a paper
co-authored by two authors. Unlike the authors’ citation
network, the coauthors network highlights collaboration
rather than citation relationships, providing insights into
the co-authorship patterns within the APS community.

III. NETWORK COMPONENTS

We look at the size of the components of the graph.
A Connected Component (CC) is defined as the maxi-
mal subgraph in which any two nodes are connected by
paths. For directed graphs, the paths have a direction,
and two nodes must have two paths to be connected.
This is called strongly connected component (SCC). If
the directionality is ignored, we have Weakly connected
component (WCC). Note that a node is always connected
with itself.

During the initial analysis of the citation network’s
structure, we computed the number of SCC within the
graph. Due to temporal coherence, it should be impossi-
ble for a paper to cite another paper that cites it. On this
basis, when computing the SCC of the citation network,
we expect no cycles or, at most, only small exceptions
[11], which means that mainly we should find SCC com-
posed by just one node. However, the citation network
exhibited a SCC comprising 67.876 nodes, which consti-
tutes approximately 10% of all the nodes.

Upon closer examination of this large SCC, several in-
consistencies were discovered in the database (see Ap-
pendix A for further explanation). The most critical error
identified was that some papers were erroneously citing
other papers that were published much later in the future
(see FIG. 1).
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FIG. 1: Representation of the erratic citations in the dataset.
The figure shows the year of publication of the paper vs. the
number of days passed to the publication of the cited paper.

To address these inconsistencies, we implemented two
corrective measures. In first place the removal of self-
citations, all instances where papers cited themselves
were removed from the database. In second place, we
used the time gap as means to remove incorrect cita-
tions. In fact, we can see in FIG. 1 that these inconsis-
tencies are majorly found in old papers, suggesting an
OCR problem. Given this, we decided to neglect all the
edges pointing to papers that were published more than
1.000 days later.
Altogether this accounts for only 29 references. Al-

though the number of edges neglected is small, the SCC
comprising the 10% of the nodes disappears. The tables
for SCC and WCC are presented in the Appendix B.
After the correction, the CN comprises the approxi-

mated acyclicity expected. The results are coherent with
the expected properties of a citation network. The ab-
sence of a large SCC aligns with the temporal constraints
of citation practices. Instead, we observe many single-
node and some small SCC, likely representing groups of
papers published simultaneously and citing each other.
The largest WCC encompasses almost all citations, high-
lighting the extensive connectivity of the APS citation
network. Given the absence of big SCC and the unique-
ness of a huge WCC indicates that the CN mainly has
the form of a unique global tree [3].
On the contrary, the ACN presents a big SCC and

therefore an even bigger WCC. In the COAN case, which
is not directed and only presents connected components
(CC), we have the presence of a large principal CC, al-
together with the ACN indicating a vast collaborative
hub within the scientific community. This extensive in-
terconnectedness illustrates the openness and collabora-
tive spirit prevalent among physicists. Smaller WCC/CC
likely represent isolated research groups or specialized
subfields with limited interaction outside their niche.

IV. POWER-LAW DISTRIBUTION AND SCALE
FREE NETWORKS

Upon analyzing complex networks often is indicated
that many real-world networks exhibit a power-law de-
gree distribution. This characteristic can be indicative of
a scale-free network, where a few nodes have a very high
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degree, while most nodes have a low degree. The term
“scale-free” is rooted in a branch of statistical physics
called the theory of phase transitions [4]. The degree
distribution p(k) of a scale-free network follows the form:

p(k) = C · k−α (1)

where α is the exponent of the power law, and C is a nor-
malization constant. A network is considered scale-free
if 2 ≤ α ≤ 3. This range of the exponent has significant
implications for the network’s properties. To understand
this, we can look at the moments of the degree distribu-
tion [5]. The mean degree for a power-law distribution
⟨k⟩ is given by:

⟨k⟩ =
∑
k

k · p(k) = C

∞∑
k=kmin

k1−α (2)

where kmin is the minimum degree. Given this, on one
hand for α ≥ 2, this series converges, and the mean de-
gree is finite. On the other hand, the variance is given
by σ2 = ⟨k2⟩ − ⟨k⟩2 where

⟨k2⟩ =
∞∑

k=kmin

k2 · p(k) = C

∞∑
k=kmin

k2−α, (3)

this makes the series diverge when α ≤ 3 since the term
k2−α decreases slowly enough. Thus, ⟨k2⟩ becomes infi-
nite, leading to an infinite variance.

An infinite variance implies that the distribution has
a heavy tail, characteristic of scale-free networks. This
heavy tail means that while most nodes have a low de-
gree, there are a few nodes with very high degrees, form-
ing hubs. The mechanism of PA, is an example that
explains the emergence of scale-free networks. In a PA
model, new nodes are more likely to connect to already
highly connected nodes. This ”rich-get-richer” mecha-
nism leads to the formation of hubs, or nodes with a
very high degree, which are characteristic of scale-free
networks [4].

V. FITTING OF A POWER LAW
DISTRIBUTION

Given the power-law distribution observed in the de-
gree distributions of the three networks, we need to rig-
orously test whether these distributions can indeed be
classified as scale-free networks. To achieve this, we must
fit a power-law distribution to the empirical data. Con-
ventional methods such as least-squares fitting are often
inadequate for this purpose as they can produce inaccu-
rate parameter estimates and fail to confirm whether the
data truly follow a power-law distribution [6].

A. Estimation of the Scaling Parameter

To estimate the scaling parameter α, we need to iden-
tify the lower bound kmin of the power-law behavior in
the data. Initially, we assume this value is the mini-
mum degree, but it will be determined more accurately
from the data later. The method for fitting parameter-
ized models like power-law distributions is the method of
maximum likelihood estimator (MLE).

a. MLE Assuming that the data follows a power law
for k ≥ kmin, we can find α with the MLE, an approxi-
mation for the result is given by [6]:

α ≈ 1 +N

(
N∑
i=1

ln
ki

kmin − 1
2

)−1

σα =
α− 1√

N
, (4)

where N is the number of nodes with a degree greater
than or equal to kmin, and the sum is over all nodes
with k ≥ kmin, and σα is the statistical error on α.
The normalization constant in (1) is computed as C =
1/ζ(α, kmin) where ζ is the Riemann zeta function.
b. Estimation of kmin To refine the value of kmin,

we proceed as follows [6]:

1. Choose an initial range for kmin from the minimal
degree to a given kmax.

2. For each kmin in this range, estimate the degree
exponent α using 4.

3. With the obtained (α, kmin) pair, assume the de-
gree distribution has the given power-law form and
so the associated cumulative distribution function
(CDF) is:

P (k) = 1− ζ(γ, k)

ζ(γ, kmin)
(5)

4. Use the Kolmogorov-Smirnov test to determine the
maximum distance D between the CDF of the data
S(k) and the fitted model provided by the CDF,
with the selected (γ, kmin) parameter pair:

D = max
k≥kmin

|S(k)− P (k)| (6)

5. Finally, repeat steps 1-4 by scanning the whole kmin

range. We end up obtaining the koptmin value for
which D is minimal.

c. Goodness of Fit To validate the power-law model,
we employ a goodness-of-fit test using synthetic data [4].
This involves:

1. Using the CDF to estimate the KS distance be-
tween the empirical data and the best fit, denoted
as Dreal.

2. Generating synthetic degree sequences consistent
with the estimated degree distribution and calcu-
lating the corresponding KS distances, Dsynthetic.

3. Repeating step 2 multiple times to obtain the dis-
tribution p(Dsynthetic) and comparing Dreal against
this distribution.

If Dreal is within the distribution of Dsynthetic, the
power-law model is considered a reasonable fit for the
data. When the value of p is close to 1, the differ-
ence between the empirical data and the model can be
attributed to statistical fluctuations alone. By follow-
ing this method, we ensure that the degree distribu-
tions of the CN, ACN, and COAN are thoroughly tested
for power-law distribution, and in the case of having
2 ≤ α ≤ 3 determining their scale-free behaviour.
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FIG. 2: Representation of the power law (P.L.) fittings done for each of the networks in our model and their respective degree
distributions. The kopt

min is the optimum value for the minimum degree to make the P.L. fitting whereas karb
min is chosen arbitrarily,

both can be for the indegree or the outdegree. The α value is the scaling parameter.

B. Results

The detailed values of the different parameters used in
the fitting process are summarized in a table included in
the Appendix C, along with the goodness-of-fit p-value
for each distribution.

Both the in-degree and out-degree [12] distributions
for the CN and ACN follow a power law distribution.
However, only the in-degree distribution for the CN ex-
hibits the characteristics of a scale-free network [7], as
indicated by the value of the power-law exponent α. The
degree distribution for the COAN was also fitted to a
power law successfully but, as the ACN, it does not ex-
hibit scale-free properties. Notice that this distributions
might not be entirely following a power law but a similar,
even though not the same, distribution as it could be the
log-normal [2].

VI. CLUSTERING MEASURES

Apart from analyzing the degree distribution of the
graphs, additional measures such as the number of trian-
gles and transitivity have been computed to better under-
stand the structure of these networks. These measures
provide insights into the clustering tendencies and local
interconnectedness of the nodes. A triangle is a set of
three nodes that are all connected to each other. The
presence of triangles in a network indicates a tendency
for nodes to form tightly-knit groups or clusters. Tran-
sitivity, also known as the global clustering coefficient,
is a measure of the overall tendency of nodes to cluster
together. It is calculated as the ratio of the number of
triangles in the graph to the number of possible triangles:

T = 3 · # Triangles

# Triads
(7)

where triad is the identifier for a possible triangle, this
can be computed as the amount of pair edges that share

a same vertex. Therefore, transitivity can be perceived
as a normalized measure of clustering that is independent
of the size of the network.

Graph Triangles Transitivity

CN 22.931.859 0.05

ACN 3.688.142.228 0.10

COAN 13.264.171 0.15

TABLE II: Table with the amount of triangles and transitivity
for all the graphs representing the three different networks. In
the case of the ACN, the computation for the triangles and
transitivity has been done neglecting the repeated citations
in-between two authors and the self citations.

The number of triangles in the CN is substantial, but
this value alone may not be representative due to the dif-
ferences in the number of nodes and edges between the
different graphs. The transitivity for the CN is relatively
small, indicating that it is uncommon for two cited pa-
pers to be cited between them. Both the the ACN and
the COAN, have a higher number of triangles and tran-
sitivity compared to the CN. This higher transitivity in
both implies a greater tendency for authors to form col-
laborative clusters.

VII. SIMULATION OF THE CITATION
NETWORK

To investigate whether the structural properties of the
citation network can be easily replicated, we performed a
simulation by generating a random directed graph based
on the number of nodes and the degree sequence of the
citation network.

A. Configuration Model Algorithm

The configuration model algorithm is a well-
established method for generating random graphs with
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a specified degree sequence [8, 9]. The algorithm works
as follows:

1. A prerequisite is a given degree sequence, which
specifies the number of edges (in-degree and out-
degree) for each node.

2. Create a list of ”stubs” (half-edges), where each
node contributes a number of stubs equal to its
degree.

3. Randomly pair the stubs to form edges, ensuring
that each pair of stubs connects two nodes to form
a directed edge and assemble these edges into a
directed graph.

This process preserves the degree sequence of the origi-
nal network while randomizing the connections between
nodes.

B. Results of the simulation

We used the configuration model algorithm together
with the degree sequence from the CN. Once generated
the random directed graph, we can compare its struc-
tural properties with those of the actual CN, focusing
on the number of triangles, transitivity, and connected
components.

The number of triangles obtained 270.259 in the ran-
domly generated graph is significantly lower than in the
CN. This indicates that the CN has a higher tendency for
local clustering that can’t be accounted for by the degree
sequence alone.

The transitivity of the randomly generated graph is
6 · 10−4, again much lower than the one obtained for
the CN. This suggests that the citation network has a
more pronounced clustering structure, likely influenced
by factors such as the temporal evolution of citations
and the PA mechanism.

The amount of SCC in the random graph differed
markedly from the CN. The random graph exhibited a

huge SCC, making it a big cycle, therefore having no time
coherence in the citations network.

These big differences underscore the fact that the de-
gree sequence, while an important factor, does not fully
capture the structural complexity of the citation network,
the use of more complex algorithms might overcome this
difficulties[10].

VIII. CONCLUSIONS

In this study, we analyzed the structural properties of
the American Physical Society (APS) citation network
to understand its statistical characteristics and emergent
behaviors. Using the APS citation network database,
we calculated key network metrics such as degree distri-
bution, clustering coefficients, and centrality measures.
Our initial analysis revealed significant SCC, which were
identified as systematic errors such as self-citations and
anachronistic citations. The investigation confirmed that
the degree distributions of the citation network (CN),
the authors citation network (ACN), and the coauthors
network (COAN) follow a power-law distribution. How-
ever, only the in-degree distribution of the CN exhibited
the characteristics of a scale-free network, suggesting the
significant role of PA in the citation network. Further-
more, additional metrics such as the number of triangles
and transitivity provided deeper insights into the cluster-
ing tendencies of these networks. The results indicated
lower transitivity in the CN compared to the ACN and
COAN, reflecting less clustering in the citation network.
A simulation using the configuration model algorithm
highlighted the unique properties of the CN that cannot
be replicated by degree sequence alone, emphasizing the
importance of incorporating temporal dynamics and PA
mechanisms. Future research could explore more sophis-
ticated models to further replicate and understand the
unique structural characteristics of citation networks.
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Appendix A: Inconsistencies in the database

Firstly, there were instances of papers citing them-
selves, which is logically inconsistent. Additionally, it
was observed that some journals publish their papers in
batches when they are related, and as they cite each other
this lead to bidirectional citations that should not exist.
Furthermore, there are citations between a published pa-
per and another one that is about to be published in the
near future.

Appendix B: SCC and WCC

1. Citations Network

Size of the SCC Amount of components

1 700.937

2 4.041

3 212

4 22

5 4

6 2

7 1

TABLE III: Amount of SCC given it’s size for the citation
network graph.

Size of the WCC Amount of components

708702 1

19 2

18 1

13 1

12 2

8 1

7 3

6 4

5 9

4 22

3 75

2 288

TABLE IV: Amount of WCC given it’s size for the citation
network graph.
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2. Author Citations Network

Size of the SCC Amount of components

1 68260

2 172

3 54

4 17

5 4

6 4

7 2

9 1

13 2

14 1

435.357 1

TABLE V: Amount of SCC given it’s size for the author ci-
tation network graph.

Size of the WCC Amount of components

1 16

2 28

3 11

4 6

5 3

504.154 1

TABLE VI: Amount of WCC given it’s size for the author
citation network graph.
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3. Coauthors Social Network

Size of the CC Amount of components

476.479 1

29 1

22 1

21 2

20 1

19 1

18 1

17 3

16 3

15 4

14 8

13 7

12 11

11 22

10 29

9 43

8 75

7 141

6 226

5 412

4 897

3 1908

2 3863

TABLE VII: Amount of CC given it’s size for the coauthors
social network graph.
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Appendix C: Values for the fittings

Graph
Scaling parameter

(α)

Normalization

constant (C)

Minimum degree

(kmin)

Goodness of

fit (p-value)

Citations

Network (CN)

Indegree 4, 1± 0, 2 37.562.628,37 203 0,01

Outdegree 2, 88± 0, 07 214.619,62 492 0,74

Author Citations

Network (ACN)

Indegree 4, 00± 0, 07 26,93 2259 0,01

Outdegree 3, 21± 0, 04 15,47 2551 0,12

Coauthors Social

Network (COAN)
Degree 4, 2± 0, 3 22.334,10 193 0,02

TABLE VIII: Table with the data for each of the networks in our model and their respective distributions. It has the data for
the scaling parameter α, the normalization constant C, the minimum degree kmin, and the goodness of fit p value.
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