
ADVANCED MATHEMATICS
MASTER’S FINAL PROJECT

Extended persistence and duality in cubical complexes

Author: Supervisor:
Junhan Cui Carles Casacuberta Vergés

Facultat de Matemàtiques i Informàtica

June 28, 2024

Contents

Introduction ii

1 Introduction 1
1.1 Introduction of topological data analysis 1
1.2 Basic concepts of TDA . 2

1.2.1 Simplicial complexes and cubical complexes 2
1.2.2 Filtration . 4
1.2.3 Homology group and n-cells 5
1.2.4 Persistent homology . 6
1.2.5 Total persistence . 8
1.2.6 Persistence entropy . 9

1.3 Purpose of this work . 10

2 Extended persistence for manifolds 12
2.1 Extended persistence . 12
2.2 Morse functions and critical points . 14
2.3 Cohomology and extended filtration 15

2.3.1 Singular cohomology . 15
2.3.2 Extended filtration . 16

3 Construction for cubical complexes 18
3.1 Cubical complexes . 19
3.2 Direct and indirect adjacency . 20
3.3 T-construction and V-construction . 21
3.4 Modification for duality and padded T-construction 24

4 Duality for cubical complexes 26
4.1 Basic definitions and notations . 26
4.2 Dual filtered cell complexes and persistence pair 26
4.3 Rank values for total boundary matrix 29

4.4 Formal definition for V- and T-constructions 33
4.5 Duality between deformed constructions 35
4.6 Persistence of deformed dual constructions 39

5 Practical experiment using codes 43
5.1 Some examples using Python codes 43
5.2 Velocity of computation . 45
5.3 Discriminant classification using topological features 46

6 Conclusion 49

Bibliography 50

Python codes we used and some calculation results 51

Abstract

In this work, I will continue to investigate the techniques of topological data
analysis based on my bachelor thesis [4] and apply it to some image-type data
sets. The tools and analysis methods we used are homology, cohomology, cubical
complexes, persistent homology, barcode, extended persistence, super- and sub-
level set, total persistence, persistence entropy, etc.

Our goal is to try to construct the cubical complex of the image through the
above methods, and then study the topological features of two-dimensional and
three-dimensional grayscale images, such as total persistence and persistence en-
tropy. And try to combine it with statistical methods to determine the attribution
of the image.

We found some kind of duality in the bachelor thesis of Marina Anguas [1].
She performed sub-level set filtration from bottom to top and super-level set from
top to bottom on a 3D image and calculated extended persistence. Then she found
some pairs of results they were similar. So we hope to study the relationship be-
tween cycles of different dimensions such as H0, H1 and H2 by studying a duality
analogous to Poincaré duality or Lefschetz duality, and simplify the calculation
through the relationship between them.

Keywords: Algebraic topology, Homology, Cohomology, Cubical complexes, Ex-
tended persistence, Duality, Digital image.

2020 Mathematics Subject Classification. 55N31, 62R40, 68T09

Chapter 1

Introduction

1.1 Introduction of topological data analysis

Before we get into the main body of this article, we would like to introduce
some basic concepts about topological data analysis (TDA). Topological data anal-
ysis is a discipline that uses topological tools to analyze and understand the struc-
ture of data. TDA focuses on the shape and spatial structure of data, especially the
high-dimensional characteristics and overall structure of data, rather than relying
solely on local features of traditional statistics.

TDA constructs simplicial complexes (or other complexes, such as singular
complexes and cubical complexes, which are used in this article) associated with
the data and infers qualitative features of the set from the homology of the com-
plexes. These features can quantify the complex topological shapes and geometric
structures in the data to answer questions about the data set. The data is usually
represented as a point cloud in Euclidean or more general metric space. We will
use a common topological tool, persistence graph, to reflect the connectivity of
data points to represent loops and holes in space.

TDA is a new field that emerged in the 2000s from various works in algebraic
topology and computational geometry. Although the history of data analysis via
geometric methods goes back a long way, TDA was actually started by Edelsbrun-
ner et al. [5] in the field of topological persistence.

This marked the real beginning of TDA. Later persistent homology of Zomoro-
dian and Carlsson [10] made TDA a very powerful technique.

Although the underlying principles of topological data analysis are not easy
to understand, thanks to the existing topological data analysis codes in various
programming languages, even novices can complete the analysis. This work uses
the ultra-fast C++ Ripser package as the core computing engine, and uses a mod-
ule named Cripser.py developed based on Python’s built-in Ripser.py module to

1

2 Introduction

implement the analysis of cubical complexes.
The Python program used later in this article (i.e., Cripser.py) was developed

by Takeki Sudo and Kazushi Ahara from Meiji University in 2018, and modified
by Shizuo Kaji from Kyushu University in 2019. The paper related to this program
is [7].

Next we will briefly introduce the basic concepts of TDA. For a more detailed
introduction, please refer to Chapter 3 of my bachelor thesis [4].

1.2 Basic concepts of TDA

First of all, we need to define some basic concepts in algebraic topology as well
as related theorems and conclusions.

We divide these concepts into two parts:

1. Simplicial complexes, cubical complexes and their filtrations.

2. Homology groups.

According to the definition, in affine space the difference between two points
is a vector, and the addition of a point and a vector yields another point, although
addition between points cannot be done.

From this definition, we can deduce the following fact. There are n + 1 affinely
independent points in a k-dimensional Euclidean space (k ≥ n) if and only if there
is no (n− 1)-dimensional hyperplane that contains n + 1 points. The hyperplane
that contains n + 1 points needs to be at least n-dimensional.

1.2.1 Simplicial complexes and cubical complexes

Definition 1.1. An n-simplex is a n-dimensional polytope which is the convex hull
of n + 1 points in a Euclidean space Rd, called vertices. Thus, an n-simplex is a
subset of Rd of the following form:

C = {θ0P0 + · · ·+ θnPn |
k

∑
i=0

θi = 1, θi ≥ 0, i = 0, . . . , n},

where {P0, . . . , Pn} are n + 1 affinely independent points.

Thus, a 0-simplex is a point, a 1-simplex is a line segment, a 2-simplex is a
triangle, a 3-simplex is a solid tetrahedron, etc.

Definition 1.2. The convex hull of any nonempty subset of the vertices of an
n-simplex is called a face of the simplex. Faces are also simplices themselves.

1.2 Basic concepts of TDA 3

Example 1.3. The faces of a 3-simplex (tetrahedron) are its triangular faces, which
can be viewed as 2-simplices. The faces of a 2-simplex (triangle) are its sides. The
faces of a 1-simplex are its vertices.

If we wish to study more complex structures, it is not enough to rely on one
simplex. We want to study the graphics formed by simplices according to certain
rules. And those combinations of simplices ar called simplicial complexes. In
mathematics, a simplicial complex is a set composed of points, line segments,
triangles, and their n-dimensional analogues.

Definition 1.4. A cubical complex (also called cubical set and Cartesian complex) is
a set composed of points, line segments, squares, cubes, and their n-dimensional
counterparts.

Hence, a cubical complex is a collection of multiple "n-dimensional cubes"
connected by faces, edges, and vertices. Each "cube" can be of any dimension, such
as a point (0 dimension), a line segment (1 dimension), a square (2 dimension), a
cube (3 dimension), etc.

We can understand simplicial complexes as a combination of n-dimensional
"triangles" and cubical complexes as a combination of n-dimensional "cubes".

Cubical complexes are used analogously to simplicial complexes in the com-
putation of the homology of topological spaces.

Definition 1.5. A simplicial complex K is a set of simplices that satisfies the follow-
ing conditions:

1. Every face of a simplex from K is also an element (a simplex) in K.

2. Each non-empty intersection of any two simplices σ1, σ2 ∈ K is a face of both
σ1 and σ2.

Note that the common faces of cubical complexes are vertices or sides of cubes.
The reason we define a simplicial complex is that we need to create a simplicial

complex based on a data cloud. Each data point in a data point cloud is usually
considered as a vertex, so we can consider the data point cloud as a set of vertices.

Similarly, the reason we define a cubical complex is that we need to create
a cubical complex based on image-type data. We can transform a binary image
(consisting of white and black) into a numerical matrix with grayscale number in
each element of this matrix. Obviously, if we need to study the topological features
of a digital image, the best way is not to consider each pixel (or voxel) as a vertex
in a point cloud, but to consider each pixel (or voxel) and consider it as a different
element according to different construction methods, which may be a vertex or a
square.

4 Introduction

We want to create cubical complexes relating voxels of the images. The idea is
to consider subsets of the numerical matrix based on the image and then find out
the possible topological structures of cubical complexes.

1.2.2 Filtration

To study the possible changes of a cubic complex throughout the creation from
a voxel to the entire image, we need to use a concept in set theory which is a
filtration.

Definition 1.6. Given a cubical complex C, a filtration about C is a family of in-
dexed subcomplexes F = {Ci ⊆ C}i∈I , where F is indexed on an ordered set I
such that if i ≤ j then Ci ⊆ Cj and also ∅, C ∈ F.

There exist i0, i1, . . . , in−1, in ∈ I, i0 ≤ i1 ≤ · · · ≤ in−1 ≤ in such that

∅ = Ci0 ⊆ Ci1 ⊆ · · ·Cin−1 ⊆ Cin = C.

For example, a filtration of a cubical complex can be based on the value of
grayscale of each voxel of an image, so that every Cin is the set which contains all
elements with grayscale values less than or equal to in.

Example 1.7. Suppose that we have a 2 × 2 photo that we can transform into
a grayscale matrix. If we build the filtration step by step from small to large
numbers in the matrix, we will get this filtration. In the first step, we only consider
the elements with value 1 and color them; in the second step, we consider the
numbers after that, that is, the elements with value 4, and finally we consider
larger values, that is, color the grid with value 7.(

1 4
4 7

)

Figure 1.1: Step
of the value = 1

Figure 1.2: Step
of the value = 4

Figure 1.3: Step
of the value = 7

If we construct the filtration from the other direction, then we start from the
biggest element to the smallest element.

1.2 Basic concepts of TDA 5

1.2.3 Homology group and n-cells

Algebraic topology has two important tools: Homotopy and Homology. We
explain a little bit these concepts. When two continuous functions from one topo-
logical space to another are called homotopic if one can be "continuously changed"
into the other, such a deformation will be called a homotopy between these two
functions. While the existence of homotopies is difficult to determine in higher
dimensions, there is a more computable alternative than homotopy groups: the
homology groups Hn(X).

Before defining homology groups, it is necessary to know some preliminary
concepts such as n-cells, CW-complexes and boundary functions.

For the part of CW-complexes and n-cells, we can see the theory in [6]. We are
not going to explain it here, because CW-complexes are not the core part in this
work. We just need it to define homology groups.

An n-cell is a space homeomorphic to an n-ball in a Euclidean space. Hence, a
0-cell is a point; a 1-cell is an open arc; a 2-cell is an open disk, etc.

Attaching an n-cell to a space X consists of gluing a closed n-ball Dn to X by
means of a continuous map f : ∂Dn → X, by identifying each point z ∈ ∂Dn with
its image f (z) ∈ X.

A complex formed by attaching n-cells for various values of n is called a cell
complex or CW-complex.

Example 1.8. If we attach a 1-cell to a 0-cell, we obtain a circle. If we attach a 2-cell
to a 0-cell, we obtain a sphere (the surface of a hollow ball) because we glued the
boundary of a 2-cell with the 0-cell. These are examples of CW-complexes.

Given a CW-complex X, we denote by Cn(X), or by Cn for shortness, the free
abelian group with basis the set of n-cells of X. There is a group homomorphism
(called boundary) ∂i : Ci → Ci−1 which sends i-cells to sums of (i − 1)-cells using
the information given by the attaching map of each i-cell; see [6] for details.

We call this homomorphism a boundary because ∂i sends an i-cell to a sum of
(i− 1)-cells which form the boundary of the given i-cell.

There is a sequence of homomorphisms as follows:

· · ·Ci
∂i−→ Ci−1

∂i−1−→ · · · −→C2
∂2−→ C1

∂1−→ C0.

It is shown in [6] that ∂i ◦ ∂i+1 = 0 for all i. Therefore, Im ∂i+1 ⊆ Ker ∂i for all i.
For example, Ker ∂0 contains all vertices because we cannot find lower dimen-

sional elements than them; Ker ∂1 is generated by "cycles" formed by concatena-
tion of 1-cells (edges); Ker ∂2 is generated by "cycles" formed by assembling 2-cells
into surfaces that enclose cavities, and so on. In general, Ker ∂i is generated by

6 Introduction

"cycles" formed by assembling i-cells which wrap (in any dimension) an (i + 1)-
dimensional void space.

So there is a difference between Ker ∂i and Im ∂i+1. In Ker ∂i we find closed
concatenations of i-cells and it does not matter if such a concatenation wraps
something of higher dimension or not. But in Im ∂i+1 we encounter concatenations
which do have cells of higher dimension inside. In this sense, we visualize the fact
that Im ∂i+1 is contained in Ker ∂i.

Now we have introduced all we need to define homology groups.

Definition 1.9. The n-dimensional homology group Hn(X) of a CW-complex X is a
quotient group defined as

Hn(X) := Ker ∂n/Im ∂n+1.

From this definition we can observe that elements of a homology group Hn

can be viewed as concatenations of n-cells that do not wrap anything inside. And
the concatenations of n-cells which wrap some (n + 1)-cell have been eliminated
by the quotient group operation.

In the following summary, we explain the interpretation of Hn from the previ-
ous definition 1.9.

1. The 0-dimensional holes (H0) are the connected components.

2. The 1-dimensional holes (H1) are the holes formed by linear combinations
of 1-cells. Each such hole is a cycle which is formed by a concatenation of
edges (1-cells).

3. The 2-dimensional holes (H2) are the holes formed by linear combinations of
2-cells. The interior of a hollow sphere is the most common example.

1.2.4 Persistent homology

In this section, we define the core conception of TDA by referring to the article
[5] by Edelsbrunner et al.

As we have already defined filtration in Definition 1.6, we have ∅ = Ci0 ⊆ Ci1 ⊆
· · ·Cn1 ⊆ Cn = C, we apply the homology functor, which for each space gives a
vector space and for each inclusion gives a linear map:

0 = H(C0)→ H(C1)→ · · · → H(Cn) = H(C)

referring to this sequence as a persistence module.
As we defined above in 1.9 Hn is the n-th homology group with n the dimen-

sion. We assume coefficients in a field F, so that Hn = F
⊕

F
⊕ · · ·⊕ F = Fβn is

1.2 Basic concepts of TDA 7

a vector space over F, with βn = rank Hn known as the n-th Betti number. (The
n-th Betti number refers to the number of n-dimensional holes on a topological
surface.)

It is instructive to split the module into indecomposable summands of the form

0→ F → · · · → F → 0.

There is a unique such decomposition whose direct sum gives the original
module. Each summand can be interpreted as the birth of a homology class at
its first non-zero term and the death of the same class right after its last non-zero
term.

In other words, we can define it using mathematical language more precisely.

Definition 1.10. Given a simplicial complex C with FC = {Ci ⊆ C}i∈I , every h ∈
Hn(Ci) is an n-dimensional hole of the homology group in the subspace Ci.

The birth time of hole h is the first time j in which h appears as an n-dimensional
hole. We define the homomorphism fi,j : H(Ci)→ H(Cj) so that

Tbirth(h) := in f {j ∈ I | h ∈ Im f j,i}.

The death time of hole h is the first time j in which h disappears and no longer
is an n-dimensional hole, so that

Tdeath(h) := in f {j ∈ I | h /∈ Im fi,j}.

Hence the persistent homology is the homology where the persistence of a hole
refers to the time between its birth and its death. And we use persistence to assess
the variation of holes along the process of the related filtration.

For cubical complex, it will be convenient to define creator and destroy cells to
locate the cycles.

Definition 1.11. The creator of a cycle is the unit that produces the cycle. And the
destroyer of a cycle is the unit that destroy the cycle.

For example, the voxel of a n-dimensional image with the lowest filter value
in a connected component creates a 0-dimensional cycle, while a voxel connecting
two independent connected components destroys the component with a higher
birth time.

The creator and destroyer units are not uniquely identified, as it is possible for
multiple destroyer units to destroy the same cycle at the same time, but they still
provide useful information to locate cycles.

8 Introduction

Example 1.12. If we have a 2-dimensional image and we transform it into a matrix
of their grayscale values. Then we can observe the filtration from the lowest value
to highest value. 1 4 9

4 7 3
6 8 5

Figure 1.4: Step
of the value = 1

Figure 1.5: Step
of the value = 3

Figure 1.6: Step
of the value = 4

We observe that in the first step of the filtration when we filled the element
with value = 1 and in the second step we filled the element with value = 3. Until
here we have two separated connected components, i.e. two H0. And in the third
step we filled the element with value = 4 and the connected component created
by the element of in the top left corner and the other created by the right block
they both have been destroyed because of the generation of two blocks filled in
the third step. So we can call these two blocks with value = 4 are destroyer cells
of these two H0 generated until the second step.

1.2.5 Total persistence

One of the disadvantages of TDA is the difficulty to interpret and explain the
meaning of the results we obtained. For example, once we made the persistence
diagram, we cannot find out a conclusion directly from this diagram.

So we need a method to quantify the diagram with a certain number that
allows us to do a numerical analysis and what we found is a intrinsic topologi-
cal property called total persistence. We used the concept defined in the work of
M. Rucco [8].

Definition 1.13. Total persistence is a numerical property of the persistence diagram
defined by

Total Persistence := ∑
i∈I

li with li = deathi − birthi,

where I is the set of hole indices.

1.2 Basic concepts of TDA 9

So the total persistence is simply the sum of the persistence time of all holes
once generated during the process of filtration. It is obviously a real positive
number. So we can consider it as a numerical descriptor of a persistence diagram.

1.2.6 Persistence entropy

In information theory, the entropy of a random variable is the average level
of "information" inherent in the variable’s possible outcomes. And this average
information level is determined according to the unexpectedness and uncertainty
of the event.

We need to notice that events with a smaller probability will provide more in-
formation entropy, because an ordinary event will not make people feel surprised,
nor will it make people feel that something special has happened. And once an
unusual event occurs, it is natural to notice possible changes, and this provides us
with more information.

According to this idea, Claude Shannon defined the information entropy in his
paper ’A mathematical theory of communication’ [9] as a reasonable measure of
information contained.

Definition 1.14. Given a discrete random variable X with the distribution accord-
ing to p : X → [0, 1] (i.e., the probability), the Information entropy is defined as

H(X) := − ∑
x∈X

p(x) log(p(x)) = E[− log(p(X))].

The base of logarithm can be defined depending on the situation we study.

By the definition of information entropy, we can see that the event with lower
probability will give a greater information.

Scholars who use TDA for data analysis are inspired by the definition of in-
formation entropy (defined in 1.14), thus defining a new entropy based on total
persistence and persistence of holes (defined in 1.10) to measure the amount of
topological information. This entropy is called persistence entropy and we will use
the definition in the work of M. Rucco [8].

In the case of persistent topology, we define the probability of n-hole.

Definition 1.15. The parameter for the distribution is defined as:

pi :=
deathi − birthi

Total persistence
.

Before the definition of persistence entropy, we would like to see that this
parameter we defined above is a probability.

It is easy to see that:

10 Introduction

(1) pi ≥ 0 because the death time will never be earlier than the birth time.

(2) ∑i∈I pi =
Total persistence
Total persistence = 1.

(3) P(
⋃n

i=1 hi) = P(h1
⋃ · · ·⋃ hn) = P(h1) + · · ·+ P(hn) = ∑n

i=1 P(hi).

Definition 1.16. Persistence entropy is defined as

Persistence entropy(X) := − ∑
x∈X

p(x) log2(p(x)) = E[− log2(p(X))],

where X is a set of holes exist in a certain persistence diagram and x ∈ X are the
holes. The logarithm is with base 2: log2.

1.3 Purpose of this work

The advantage of TDA is that it can effectively process high-dimensional and
complex data, capture the global topological structure in the data, and provide
a deep understanding of the shape of the data. However, compared with tradi-
tional statistical methods, TDA has some disadvantages, that is, the computational
complexity is too high, especially for the computation of H2 or Hn the homol-
ogy groups with higher dimensions. The processing of large-scale data sets may
require efficient algorithms and computing resources, and the interpretation of
topological features may require professional knowledge.

As we have said in the abstract, we found some relations between the numer-
ical values of the total persistence time of H0, H1, H2. So we want to study the
possible dual relations between the homology groups with different dimensions.

In the practical usage of TDA, we usually calculate the homology groups with
dimensions less than 3, vertex H0, cycle H1, cavity H2. Because they are the most
easy to imagine and to understand. And in the most cases, these Hn are sufficiently
to study the variation of topological structure of an object.

The problem is the complexity of computation of H2. It is natural that the dif-
ficulty to compute the Hn will be raised as the dimension raised. To compute H0,
we just need to count the number of connected components, that is the simplest
case. To compute H1, we need to do a little bit more works to count the cycles
formed. And to compute H2, we need to consider the 3-dimensional space and it
will cause very high computational cost. Generally, we cannot do the analysis just
using H0 and H1 especially for 3-dimensional objects. Although the computation
for H2 will be expensive, it is necessarily to be analyzed.

The main purpose of this work is finding a way using duality relations between
H0, H1, H2 to compute in a easier way the homology with higher dimension.
For example, we can calculate H2 as easy as calculate H0 using some duality

1.3 Purpose of this work 11

between them. This will improve a lot the efficiency of algorithm. And we can
also generalize the case to higher dimensions to calculate Hi as easy as calculate
Hj with j ≤ i.

And one of the other objective with less importance is the discriminant classi-
fication of images using their topological features.

Chapter 2

Extended persistence for
manifolds

Before we start to study cubic complexes, we need to understand the con-
cept of extended persistence for simplicial complexes. Because we need extended
persistence to use duality to more easily calculate homology groups in different
dimensions.

Generally speaking, ordinary TDA does not use extended persistence, but only
uses filtration built from one direction to study the possible changes in the topo-
logical structure of the object when the filtration step changes. For example, if we
cut a three-dimensional object through countless cross sections, and then we build
subsets of this object little by little from the bottom up, we can get the results we
need.

It should be noted that in actual calculations, there will be two different fil-
trations from top to bottom or from bottom to top, which will lead to completely
different results. Although there is a certain duality between the filtrations built
in these two directions, it does not mean that we can directly regard these two
directions as the same.

2.1 Extended persistence

First, let us introduce extended persistence for simplicial complexes (it should
be noted that although cubical complexes also have their corresponding extended
persistence, the two are not connected, but their ideas have certain similarities).

Example 2.1. Here we use a picture that is often used when introducing extended
persistence. This picture is a smooth closed manifold without boundaries embed-
ded in three-dimensional space, with an axis describing the height attached to the

12

2.1 Extended persistence 13

side, on which the positions of all critical points are marked.

Figure 2.1: A closed smooth manifold.

If we decompose this image into countless cross-sections and study the shapes
of each cross-section, we will find that the shape of the cross-section is different
every time we encounter a critical point. To be more precise, the shapes of the
cross-section are not homeomorphic in different intervals formed by critical points.

For example, the cross section in the interval (a1, a2) is a circle on a plane. After
passing the critical point a2, when entering the interval (a2, a3), the cross section
becomes two unconnected circles on a plane. Obviously, the shape of this cross
section is not isomorphic to the previous one. After passing the point a3, the two
unconnected circles on the cross section merge into a larger circle.

In addition, if we consider not just the cross section, but the entire part below
point a4, then we will find that this part (subset) is homeomorphic to a hemi-
sphere. If we pass through point a4 and are in the interval (a4, a5), then the subset
consisting of all parts below point a5 is not homeomorphic to a hemisphere, but
to a semi-torus.

(a) Half-sphere (b) Half-torus

Figure 2.2: Subspaces that are not homeomorphic.

14 Extended persistence for manifolds

And if we start from the critical point a10 and do the same in the other direction
from up to down, then we can have different results than the previous one. This
is an example of extended persistence, "extended" means another way.

2.2 Morse functions and critical points

We first define Morse functions on smooth manifolds.

Definition 2.2. For a smooth function f : M→ R, where M is a smooth manifold,
a critical point of f is a point p ∈M such that ∂ f

∂xi
(p) = 0 for all i = 1, . . . , n, where

(x1, . . . , xn) are local coordinates in any chart around p.

If p is a critical point of f , then f (p) is a critical value.

Definition 2.3. A smooth function f : M → R defined on a smooth manifold M

is called a Morse function if its Hessian matrix ∂2 f
∂xi∂xj

is non-degenerate at every
critical point p ∈M.

Morse functions were originally used to describe the geographical environ-
ment in the real world. Given a location, the function value is equal to the altitude
at this point. The critical points are the top of the mountain, the bottom of the val-
ley, and other places in the real world (i.e., the saddle point). Generally speaking,
the graph of this type of function is usually accompanied by contour lines, just
like the picture in the previous example.

As the Hessian matrix of a Morse function is non-degenerate at critical points,
this implies that critical points of this type of function are isolated and therefore
there are only finitely many critical points, assuming that M is compact.

Based on Morse functions, we can now define the sub-level sets and super-level
sets which will be used in the extended filtration in both directions.

Definition 2.4. For a Morse function f : M→ R, denote, for each h ∈ R,

1. Lh(f) = {x ∈ M | f (x) ≤ h}. Note that Ls(f) ⊆ Lt(f) if s ≤ t. These are
called sub-level sets of f .

We have that Lh(f) = ∅ if h < in f (f) and Lh(f) = M if h ≥ sup(f).

2. Lh(f) = {x ∈ M | f (x) ≥ h}. Note that Lt(f) ⊆ Ls(f) if s ≤ t. These are
called super-level sets of f .

We have that Lh(f) = M if h < in f (f) and Lh(f) = ∅ if h ≥ sup(f).

Sub-level sets will be used in the case of the filtration from bottom to top, and
the super-level sets will be used in the case of the filtration from top to bottom.

2.3 Cohomology and extended filtration 15

Based on these concepts, we can construct a chain complex of homomorphisms
using sub-level sets

0 = Hm(Li0)−→Hm(Li1)−→ · · · −→Hm(Lin) = Hm(M)

for interleaved values i0 < · · · < in and each homological dimension m. The
interleaved values are the values between the extremes of intervals formed by the
critical points of the manifold, that means these {i0, . . . , in} have no element equal
to some critical points. Then we do not need to consider the case if we reached
exactly the thresholds.

Note that we are now constructing the filtration from bottom to top, using
sub-level sets to construct each subset that needs to calculate the homology group.
Obviously, we cannot add the previously defined boundary functions on the ar-
row, because boundary functions only allow the input of high-dimensional space
to be mapped to a lower-dimensional space, so we are just building a chain be-
tween homology groups, which is irrelevant to boundary functions. Obviously, i0
must be a value less than inf(f), and in must be a value greater than sup(f). Ac-
cording to the previous definition, we can traverse all possible homology groups
and their variations from the empty set to the entire M in this way.

2.3 Cohomology and extended filtration

A natural problem is if we can construct from up to bottom using super-level
sets. We can do that but to study the extended persistence and filtration in both
directions, we need to introduce the concept of cohomology.

In homology theory and algebraic topology, cohomology is a general term for
a sequence of abelian groups, usually associated with a topological space, often
defined from a cochain complex (we will define it later). Cohomology can be viewed
as a method of assigning richer algebraic invariants to a space than homology.
Some versions of cohomology arise by dualizing the construction of homology;
actually, we construct it in this work dualizing the homology and also dualizing
sub-level sets.

2.3.1 Singular cohomology

Singular cohomology is a powerful invariant in topology that relates commu-
tative rings to arbitrary topological spaces. Every continuous mapping f : X → Y
determines a homomorphism from the cohomology ring of Y to the cohomology
ring of X; this imposes strict restrictions on the possible mappings from X to Y.

16 Extended persistence for manifolds

Unlike topological invariants such as homotopy groups, cohomology rings are of-
ten computable in practice for the space of interest and this is also the reason why
we use homology instead of homotopy to investigate their topological features.

For a topological space X, singular cohomology is based on the singular chain
complex:

· · ·Ci
∂i−→ Ci−1

∂i−1−→ · · · −→C2
∂2−→ C1

∂1−→ C0.

Here Ci is the free abelian group on the set of continuous maps from the stan-
dard i-simplex into X, and ∂i is the corresponding i-th boundary homomorphism.
The groups Ci are zero for i negative.

Now fix an abelian group A and replace each free abelian group Ci by its dual
group defined as Ci := Hom(Ci, A) where, Hom denotes the set of all possible
group homomorphisms from Ci to A and it is also an abelian group.

On the other side, we also need to replace the boundary homomorphisms ∂i

by their dual homomorphisms ∂i : Ci → Ci+1. Since we reversed the arrows of the
boundary homomorphisms, we can also reverse all arrows of the previous chain
complex and we obtain a cochain complex:

· · ·Ci ∂i
←− Ci−1 ∂i−1

←− · · ·←−C2 ∂2

←− C1 ∂1

←− C0.

For each integer i, the i-th cohomology group of X with coefficients in A is de-
fined as

Hi(X; A) := Ker ∂i/Im ∂i−1.

The group Hi(X; A) is zero for i negative and the elements of Ci are called
singular i-cochains with coefficients in the group A.

As we reversed all the arrows in the sequence of homomorphisms and added
a “co” prefix to indicate the other direction, we can also call the elements of Ker ∂

cocycles and those of Im ∂ coboundaries.

2.3.2 Extended filtration

Let a1 < a2 < · · · < an be the homological critical values of the Morse function
f : M → R as defined before. From the interleaved values i0 < i1 < · · · < in we
saw before contained in the interior of intervals formed by the critical values as
extremes. We can get sub-level sets Lij = f−1(−∞, ij] which are 2-manifolds (figure
2.1) with boundary (as they are subsets of whole manifold without boundary).
Symmetrically, we define super-level sets Lij = [ij, ∞) which are also 2-manifolds
with boundary. That means we define the free abelian groups A in the chain of
cohomology as we saw previously.

In fact, we are now constructing the cohomology using one of all versions that
is dualizing the construction of homology, dualize the sub-level set to super-level

2.3 Cohomology and extended filtration 17

set, dualize the direction up to down to the reverse direction bottom to up, and
dualize homology group to cohomology group.

Then we can construct a sequence (with p fixed) of homology groups going
up from bottom and a sequence of relative homology groups coming back down
from the top:

0 = Hp(Li0)→ Hp(Li1)→ · · · → Hp(Lin)

= Hp(M, Lin)→ Hp(M, Lin−1)→ · · · → Hp(M, Li0) = 0.

where relative homology groups are defined as Hn(X, Y) := Ker ∂′n/Im ∂′n+1 with
∂′n : Cn(X)/Cn(Y)→ Cn−1(X)/Cn−1(Y) with Y some subspace of X.

We know that for modulo 2 arithmetic the homology groups are isomorphic to
the cohomology groups in complementary dimensions, so that Lefschetz duality
implies that

Hp(M) ∼= Hd−p(M, Li)

where d is the dimension of M. This result suggests the idea to prove the duality
in chapter 4 for cubical complexes.

Chapter 3

Construction for cubical
complexes

Obviously, simplicial complexes is different with cubical complexes. Simpli-
cial complexes consist of combinations and concatenations of n-dimensional sim-
plices as we defined in 1.1. They are points, segments, triangles, tetrahedra and
their n-dimensional counterparts. Cubical complexes consist of combinations and
concatenations of points, line segments, squares, cubes, and their n-dimensional
counterparts.

Visual shape is not the most important difference between them, there are
something more such as simplicial complex triangulate object and usually be used
in the case that investigate a smooth manifold, that means the object is continuous.
And cubical complex will usually be used in the case that investigate a object that
can be transformed into matrix or multidimensional array of numbers, that means
they can be considered as a discrete object.

In this work, we will focus on cubical complexes. This is because our research
object this time is image-type files, such as two-dimensional or three-dimensional
electronic scanned images. The study of image types is not the same as the study
of data point clouds. Because data point clouds can usually form a manifold, and
two-dimensional images are regarded as (or converted into) a numerical matrix
composed of the multiplication of the length and width of the image (calculated
in pixels). Three-dimensional images are regarded as a collection of countless
cross-sectional slices. If each slice is regarded as a two-dimensional image (that
is, a numerical matrix), then a three-dimensional image is a multidimensional
numerical array similar to a Rubik Cube as the following figures.

18

3.1 Cubical complexes 19

(a) 2D-image (b) 3D-image

Figure 3.1: Transformation of images into numerical type data

Obviously, cubical complex is more appropriate to the image-type data.
One more detail about the transformation of images into numerical data is that

we only consider the grayscale images because in such case we only need to save
one numerical value which represents the magnitude of grayscale in the place of
a voxel. But for coloured images, there will be more values to save.

3.1 Cubical complexes

Definition 3.1. An elementary interval is a subset I ⊂ R of the form

I = [l, l + 1] or I = [l, l]

for some l ∈ Z. An elementary cube Q is the finite product of elementary intervals,
i.e.,

Q = I1 × I2 × · · · × In ⊂ Rn

where I1, I2, . . . , Id are elementary intervals. Equivalently, an elementary cube is
any translate of a unit cube [0, 1]n embedded in Euclidean space Rd (for some
n, d ∈ N ∪ {0} with n ≤ d). A set X ⊆ Rd is a cubical complex (or cubical set) if it
can be written as a union of elementary cubes (or possibly, is homeomorphic to
such a set).

Example 3.2. Every vertex is a unit cube [0, 1]0 and every edge is homeomorphic
to a interval [0,1]. Then we can say that all graphs are homeomorphic to a 1-
dimensional cubical complex.

Another example can be the set of 2-dimensional cubes in a plane like we have
seen in example 1.12.

20 Construction for cubical complexes

3.2 Direct and indirect adjacency

The fundamental principles of the following part is mainly came from the
paper of [2], the theorems, figures, proofs. . . . We will not cite it very frequently
along the following part. This chapter will be a stepping stone for the next chapter
which is the most theoretical of the book and is the center of this work. This and
the next chapter will be a mixture of my interpretations and notes with the content
of the article [2].

There are two ways to construct a cubical complex from an image I: The V-
construction V(I) represents voxels by vertices and the T-construction T(I) repre-
sents voxels by top-dimensional cubes.

In fact, V-construction and T-construction correspond respectively to two dif-
ferent voxel connectivity methods.

The V construction corresponds to the direct adjacency in image analysis,
where voxels are connected if and only if their grid positions differ by 1, so each
voxel has 2d neighbors. For d = 2, the pixels are 4-connected, with direct neighbors
to the left and right and above and below.

The T-construction corresponds to indirect adjacency, where voxels are also
connected diagonally, each voxel has 3d − 1 neighbors, and the pixels are 8-
connected.

It is well known that the choice of direct or indirect adjacency affects the overall
topology of binary images and the critical points of grayscale image functions.
This effect is particularly significant when the structure of the image is similar to
the length scale of a digital grid.

This figure was came from [2].

Figure 3.2: Smooth closed manifold without boundaries

As shown in Figure 3.2, this is a non-square matrix, but we still found a diag-
onal line where all elements are equal to 0. If we use direct connectivity, we only
consider the four directions of the element directly above, directly below, directly
to the left, and directly to the right, without considering the connectivity in the

3.3 T-construction and V-construction 21

diagonal direction. In this case, the yellow direct connection will only connect the
two 0s in each row, and will not connect to the 0s diagonally above the left and
diagonally below the right. In this way, four connected components are finally
constructed.

If we use indirect connectivity, we will consider the connectivity of this ele-
ment in all possible eight directions around the two-dimensional nine-square grid,
including the diagonal direction. In this way, the blue indirect connection will con-
nect the two 0s in each row and connect them to the 0s above and below the left
and right diagonally. In this way, a connected component is finally constructed.

Similarly, it is obvious that direct connection does not consider diagonal con-
nectivity, so it can be equivalent to treating each element as a vertex, because
vertices do not have diagonal connectivity, so it is equivalent to V-construction.
Indirect connection considers all eight directions, which is equivalent to replacing
each element with a square, and the four sides and four vertices of the square can
be connected to other sides and vertices, so it is equivalent to T-construction.

Using different connectivity methods will result in changes in the number of
homology groups and their respective birth and death times.

3.3 T-construction and V-construction

In this section, we are not only define the V- and T-construction (informally,
see the next chapter for formal definition start from def 4.18), we also make an
example to compute the persistence of their homology groups H0 and H1. To
compare their difference and figure out why this will happen.

Definition 3.3. If we transform all voxels of the image into a vertex (i.e., 0-dim-
ensional unit cubes) and only consider four connectivity directions of the element
directly above, below, to the left, to the right and connect them only use edges (i.e.,
homeomorphic to the interval which is 1-dimensional unit cubes) then we call this
type of construction as V-Construction. (In some sense, this is a graph.)

And if we transform all voxels into a cube (i.e., 2-dimensional unit cubes) and
consider all eight connectivity directions of the element allowing the connections
through the four vertices and four sides of the cube. And do not allow the con-
nection just using vertices or edges. Then we call this type of construction as
T-Construction.

We are so concerned with the different construction ways because this is also
a huge difference between simplicial complexes and cubical complexes. Although
in simplicial complexes there are various ways to construct the filtration such as
Čech complex and Vietoris-Rips complex (for more details please see my bachelor

22 Construction for cubical complexes

thesis ??) but it just differs in the counting distance between the vertices (all points
are vertices in simplicial complex no matter the construction) and the criterion to
make them connected. In the case of V- and T-construction, the voxels are not
equal, it will be vertex or cubes depending on different construction, and the way
of connecting are also different will be just edges or vertices&edges of a cube.

So that we can easily apply the same method for a Čech complex or a Vietoris-
Rips complex and then get some different results without dual relation between
them. In the following sections, we can see the dual relation between the ho-
mology groups of V- and T- constructions using respectively sub-level set and
super-level set for cubical complexes.

But for now, we see first an example that compare the different homology
groups because of two different constructions. Note that here we only use one
filtration based on sub-level set which is similar to what we defined before but not
using the height but grayscale value.

Example 3.4. Note that this figure and the following barcode for homology groups,
the padded image also came from the paper of [2].

Figure 3.3: V- and T- construction for an image

This figure is cited from the paper [2]. We transformed the original 2D− image
into a numerical grayscale matrix and then we used the V- and T- construction for
this image. Note that from V-construction we get a 2 × 2 cubical complex and
from T-construction we get a 3× 3 cubical complex equal to the original image.
This detail will be used in the definition 4.18.

We put the birth and death time of homology groups with dimensions 0 and 1
in the form of barcode.

We use sub-level sets based on the grayscale values starts from 1. As V-
construction do not consider the connectivity in diagonal directions so that in the

3.3 T-construction and V-construction 23

Figure 3.4: Barcode for H0 and H1 of V-construction

first four steps we only have four separated vertices, four connected components
H0 and from the step with value equal to 5 we destroyed a H0 with birth time equal
to 2 because the criterion for destroying the n-cycles (said in def 1.11) is always
choosing the one with larger birth time, so we chose the connected component
generated by the vertex with value 2.

Then we repeat the same process until the step with value equal to 8 when a
1-cycle (simply cycle) was born and then it died in the next step because the cycle
has been filled by the last vertex.

Now we are going to see the case using T-construction.

Figure 3.5: Barcode for H0 and H1 of T-construction

It is easy to see we just have one connected component because in each step
the cube can be connected diagonally or directly by its side so that this H0 persists
forever. And the unique cycle H1 was born in the step with value equal to 4
because the cubes enclose an empty space and this space died in the last step
filling by the last vertex with value 9.

Obviously, if we use the same filtration and the same direction without any
modification for the original image, the persistence for these homology groups
are different so that it cannot help us to find the possible dual relation between
them.

24 Construction for cubical complexes

3.4 Modification for duality and padded T-construction

As we have seen in the previous section, we need to do some modification to
make the dual relation between to be established.

The method we will use is called Padding and it will be defined formally in def
4.20.

Here we are just looking an example to compare the relation between them.

Example 3.5. First we padded an outer layer that enclose the matrix with values
N which are larger then the maximal value of the image.

Figure 3.6: Padded image

Then we can choose the V-construction using padded image IP or T-construction
use it. In the figure 3.6 we used V-construction considering all boundary elements
as vertices same to the interior number.

And now we see another figure that shows a dual relation exist in the case we
used padded image and two reversal directions.

Figure 3.7: Padded image with T-construction in negative direction

3.4 Modification for duality and padded T-construction 25

In this case we also used the sub-level set started from −N with N > maxIP

but the idea is actually given by super-level set.
We can see that there are two H0 with persistence [−N, ∞) and [−9,−8). In

practical cases we usually eliminated the persistence which contains ∞ so we only
consider [−9,−8). And it is exactly (with exchange the extremes and symbols)
the result of H1 of V-construction using non-padded image and positive direction
filtration with persistence [8, 9). And the rest H1 are also exchanging the extremes
and symbols from the persistence of H0 in the figure 3.4. Note that N can be seen
as ∞ so that [−N,−1) corresponds to [1, ∞).

So that it is possible to calculate H1 using H0 with this dual phenomenon and
it will be more efficient because H0 is easier to compute.

Chapter 4

Duality for cubical complexes

In this chapter, we will prove the dual relation between the T- and V-constructions
using sub-level sets in two directional filtrations.

4.1 Basic definitions and notations

Definition 4.1. A CW-complex is regular if the closure of each k-cell is home-
omorphic to the closed k-dimensional ball Dk. In this work, we call every fi-
nite regular CW-complex as a cell complex. And the dimension of a cell com-
plex C is the maximum dimension of cells in C, they are defined formally as
dim(C) = max{dim(c) | c ∈ C}.

Let C be a cell complex with cells τ and σ with different dimensions.

1. If τ ⊆ σ then τ is called a face of σ, and σ is then called a coface of τ, denoted
by τ ⪯ σ. (In this paper the symbol ⪯ do not related to partially ordered
sets.)

2. The codimension of a pair of cells τ ⪯ σ is the difference of their dimensions,
codim(τ, σ) := dim(σ)− dim(τ). If codim(τ, σ) = 1, we call τ is a facet of σ,
and it will be denoted by τ ◁ σ. For example, σ is a triangle and a side of it
τ is its facet.

3. A function f : C → R on the cells of C is monotonic if it increases with the
dimension, that is, f (τ) ≤ f (σ) whenever τ ⪯ σ.

4.2 Dual filtered cell complexes and persistence pair

Definition 4.2. Two d-dimensional cell complexes C and C∗ are combinatorially dual
if there is a bijection C → C∗ and σ 7→ σ∗ between the sets of cells σ, σ∗ such that

26

4.2 Dual filtered cell complexes and persistence pair 27

1. Dimension complementary: dim(σ∗) = d− dim σ for all σ ∈ C.

2. Face reversal σ ⪯ τ ⇐⇒ τ∗ ⪯ σ∗ for all σ, τ ∈ C.

Definition 4.3. A filtered cell complex (C, f) is ordered pair with a cell complex C
together with a monotonic function f : C → R. Consider a sequence of the cells
σ0, σ1, . . . , σn in C, such that σi ⪯ σj implies i ≤ j.

We call this sequence of cells is compatible with the function f if it satisfies

f (σ0) ≤ f (σ1) ≤ · · · ≤ f (σn).

We can define sub-level sets with respect to a monotonic function in a similar
way the sub-level sets and super-level sets as above with respect to Morse function.

The sub-level set Cr := f−1(∞, r] is a subcomplex of C.
Unlike the previous Morse function, the f (σ) here reflects when a cell σ enters

the filtration given by this sequence of subcomplexes. For example, f (σ) = r
means the cell σ has been contained in the subcomplex until the filtration reached
step r.

This result also implies that we can construct a filtration based on sub-level
sets using monotonic function.

Definition 4.4. Two filtered complexes (C, f) and (C∗, g) are dual filtered complexes
if C and C∗ are combinatorially dual to one another and if there exists a sequence
σ0, σ1, . . . , σn of the cells in C that is compatible with f and its dual sequence
σ∗n , σ∗n−1, . . . , σ∗0 of the cells in C∗ is compatible with g.

Proposition 4.5. Suppose two functions f : C → R and f ∗ : C∗ → R satisfy
f ∗(σ∗) = − f (σ). Then (C, f) and (C∗, f ∗) are dual filtered complexes.

We have defined the concept of persistence of homology groups in the chapter
of introduction, the definition 1.10. Based on the persistence, we can define a
multiset of persistence.

Definition 4.6. Given a filtered complex (C, f), we obtain inclusions f−1((−∞, r])→
f−1((−∞, s]) of sub-level sets for r ≤ s. We construct the filtration using this
inclusion then calculate the n-dimensional homology groups Hn and also their
persistence.

The n-dimensional persistence set of f is the multiset defined as

Pern(f) := {[birthi, deathi)|i ∈ I}

28 Duality for cubical complexes

where I is the index set with cardinality equal to the number of the corre-
sponding n-dimensional homology groups Hn, and Pern(f) can be considered a
set which contains all birth and death time of Hn.

The multiset of persistence pairs for all dimensions is defined as

Per(f) =
dim(C)⋃

n=0

Pern(f).

It is possible that some homology groups have death time at ∞, so we also
classify the finite and infinite persistence. Writing PerF(f) for the multiset of
finite intervals with death time < ∞, and Per∞(f) for the remaining cases. We
obtain Per(f) = PerF(f) ∪ Per∞(f).

To compute the persistence of f , Per(f), we choose an ordering σ0, σ1, . . . , σn of
the cells in C that is compatible with f .

We say that cells σi and σj appear at the same step of filtration generated by
the sequence of sub-level sets (f−1((−∞, r]))r∈R if f (σi) = f (σj) (as we defined
previously, the value of f indicates when the cell enter the filtration). We must
add exactly one cell at every step to make the computation. It is similar to the
construction of filtration for simplicial complexes but more careful because each
time we do not add subcomplex but just add exactly one cell.

Each {σ0, . . . , σi} is a union of cells and it also is a subcomplex.

∅ ⊂ {σ0} ⊂ {σ0, σ1} ⊂ · · · ⊂ {σ0, σ1, . . . , σn−1} ⊂ {σ0, σ1, . . . , σn} = C.

Every sub-level set f−1((−∞, r]) appears somewhere in this sequence:

f−1((−∞, r]) = f−1((−∞, f (σi)] = {σ0, σ1, . . . , σi}

for i = max{i = 0, . . . , n | f (σi) ≤ r}.
Based on this type of filtration using the sub-level sets generated by the anti-

image of f , we can calculate the birth and death time using the value of f .

Definition 4.7. A pair (σi, σj) of cells where σj kills the homology group created
by σi is called a persistence pair. That means σi is the creator and σj is the destroyer
of the homology group as we defined in the definition 1.11.

A persistence pair (σi, σj) corresponds to the interval [f (σi), f (σj)) ∈ PerF(f).
If f (σi) = f (σj) then this interval can be empty.

A creator cell σi with no corresponding destroyer cell is called essential, and
corresponds to the interval [f (σi), ∞) ∈ Per∞(f). For example, we usually get an
essential cell in the case of H0. The creation of the first cell and this connected

4.3 Rank values for total boundary matrix 29

component will persist until the whole filtered cell complex has been constructed
in the last step of filtration.

To investigate the boundary of subcomplex consist of cells, we need to define a
matrix that contains total information of their boundaries. Similar to the adjacency
matrix in graph theory.

4.3 Rank values for total boundary matrix

Definition 4.8. In persistent homology, we work with the Z/2Z (i.e. binary matrix
with just 0 and 1) total boundary matrix D which is defined by Di,j = 1 if σi ◁ σj and
0 otherwise.

That means if σi is a facet of σj then we indicate it with 1. Obviously the
boundary of n-cell are n− 1-cells which have common faces with it and the codi-
mension between them is equal to 1. So the one facet can be seen as a subset of
the boundary.

Definition 4.9. Define a rank value for total boundary matrix and its sub-matrix

rD(i, j) = rank Dj
i − rank Dj−1

i − rank Dj
i+1 + rank Dj−1

i+1

where Dj
i = D[i : n, 0 : j] is the lower-left sub-matrix of D attained by deleting the

first rows up to i− 1 and the last columns starting from j + 1.

Obviously this ranking value rD(i, j) consider the order of the indexes because
rD(i, j) ̸= rD(j, i), deleting the first rows up to j− 1 and the last columns starting
from i + 1 yields different matrices.

Theorem 4.10. Pairing Uniqueness theorem
This theorem is proven in [3]. Given a linear ordering of the cells σ0, σ1, . . . , σn

in a filtered cell complex C, (σi, σj) is a persistence pair (as defined in definition
4.7) if and only if rD(i, j) = 1.

Corollary 4.11. If rD(i, j) ̸= 1 and rD(j, i) ̸= 1 for all j then the cell σi is essential.

Proof. Pairing Uniqueness theorem told us that if (σi, σj) is a persistence pair
(means they are creator and destroyer of Hn) then rD(i, j) = 1.

So that (σi, σj) can not be a persistence pair because rD(i, j) ̸= 1, neither (σj, σi)
because of rD(j, i) ̸= 1.

These two cells are neither a creator nor a destroyer, that implies that σi must
be an unpaired cell. It is possible to have a cell without death but it is impossible

30 Duality for cubical complexes

that we have a cell with only death without birth. So this σi only can be a cell with
certain birth time and persist forever, which means it is essential.

We have defined persistence pair consist of creator and destroyer cells in order.
If cells have their own dual, then it is also possible to find dual persistence pair
and it will help us to study dual cells and homology groups.

The anti-transpose matrix is to flip the matrix about the secondary diagonal
(the diagonal from the upper right to the lower left). The elements on the sec-
ondary diagonal remain unchanged, and the other elements are mirrored along
the diagonal.

For a matrix A of order n, then its AAT will put each ai,j in an−j+1,n−i+1.

Example 4.12.

A =

a b c
d e f
g h i

AAT =

 i f c
h e b
g d a

Thus, we have the anti-transpose of AAT.

We denote the anti-transpose of the matrix D by DAT and then Di,j delete the
first rows up to i − 1 and the last columns starting from j + 1 becomes to delete
rows up to n − j + 1 − 1 and the last columns starting from n − i + 1 − 1, i.e.
DAT

i,j = Dn−j,n−i. Anti-transposition is also the composition of standard matrix
transposition with a reversal of the order of the columns and of the rows.

For (C, f) and (C∗, g) dual filtered cell complexes with n + 1 cells. Suppose
there are a sequence σ0, σ1, . . . , σn of the cells in C that is compatible with the
monotonic function f of filtered cell complex (C, f), and that σ∗n , σ∗n−1, . . . , σ∗0 is the
dual sequence that is compatible with g. And we can construct a bijection σ∗ 7→ σ

with σi the i-th cell in the sequence and σ∗ is the n− i-th cell of the dual sequence.
As these filtered cell complexes are dual, then satisfies the property of dimen-

sion complemantary which means dim(σ∗) = n− dim(σ).
Let D be the total boundary matrix of C and D∗ be the total boundary matrix

of C∗ with their respective orderings.

Lemma 4.13. The dual total boundary matrix D∗ is the anti-transpose DAT of D,
that is,

D∗i,j = Dn−j,n−i = DAT
i,j .

4.3 Rank values for total boundary matrix 31

Proof. To prove the equality between matrices then we can prove it using aribitrary
element of them.

If we can prove for all i, j arbitrary, the DAT
i,j = D∗i,j then we make the proof.

Remember the definition (Dn−j,n−i = 1 if σi ◁ σj) and the face reversal property
by dual filtered cell complexes.

DAT
i,j = 1 ⇐⇒ Dn−j,n−i = 1 ⇐⇒ σn−j ◁ σn−i ⇐⇒ σ∗n−i ◁ σ∗n−j ⇐⇒ D∗i,j = 1

Lemma 4.14. The sub-matrices defined in 4.9 Dj
i = D[i : n, 0 : j] satisfies

(Dj
i)

AT = (DAT)n−i
n−j

and thus
rankDj

i = rank(DAT)n−i
n−j

and
rD(i, j) = rDAT (n− j, n− i).

Proof. The first statement follows from

(Dj
i)

AT =
de f 4.9

(D[i : n, 0 : j])AT =
Lemma4.13

DAT[(n− j) : n, 0 : (n− i)] =
de f 4.9

(DAT)
n−j
n−i .

From the first statement we know (Dj
i)

AT = (DAT)n−i
n−j, then the rank value will

be the same rank(Dj
i)

AT = rank(DAT)n−i
n−j. And the anti-transposition operation is

rank preserving, so the second statement can be proved.
By the definition of rank value (def 4.9)

rD(i, j) = rankDj
i − rankDj−1

i − rankDj
i+1 + rankDj−1

i+1

=
rankDj

i=rank(DAT)n−i
n−j

rank(DAT)
n−j
n−i− rank(DAT)

n−j+1
n−i − rank(DAT)

n−j
n−i+1 + rank(DAT)

n−j+1
n−i+1

= rD⊥(n− j, n− i).

32 Duality for cubical complexes

Theorem 4.15. Persistence of Dual Filtrations
Let (C, f) and (C∗, g) be dual filtered complexes with compatible ordering

sequence σ0, σ1, . . . , σn. Then
1. (σi, σj) is a persistence pair in the filtered cell complex (C, f) if and only if

(σ∗j , σ∗i) is a persistence pair in (C∗, g).
2. σi is essential in (C, f) if and only if σ∗i is essential in (C∗, g).

Proof. From the Lemma 4.13 we know that D∗i,j = DAT
i,j and the third statement

of lemma 4.14 implies that rD(i, j) = rDAT (n − j, n − i). Therefore, rD(i, j) =

rD∗(n−j,n−i), and then

rD(i, j) = 1 ⇐⇒ rD∗(n− j, n− i) = 1.

By the Pairing Uniqueness Theorem 4.10, the above implies that (σi, σj) is a
persistence pair meanwhile the (n− j)-th cell of the dual filtration (X∗, g) is paired
with the (n − i)-th. As we said before, σ∗j is the (n − j)-th cell of the ordering
sequence σ∗n , σ∗n−1, . . . , σ∗0 . So that (σ∗j , σ∗i) is a persistence pair in (C∗, g).

For the second statement, we can also see the third statement of Lemma 4.14
that tells us that the following two statements are equivalent:

• Both rD(i, j) ̸= 1 and rD(j, i) ̸= 1 for all j.

• Both rD∗(n− j, n− i) ̸= 1 and rD∗(n− i, n− j) ̸= 1 for all n− j.

(Because rD(i, j) = rD∗(n−j,n−i))
By Corollary 4.11, this means that σi is an essential cell in (C, f) if and only if

the (n− i)-th cell σ∗i is essential in the dual filtration (C∗, g).

We have proved all above theorems and propositions to build a relation be-
tween dual filtered complexes and persistence of a monotonic function f . We
focus on Per(f) because persistence is deeply related to homology groups.

And the following corollary made this:

Corollary 4.16. Let (C, f) and (C∗, g) be dual filtered complexes. Then
1.

[f (σi), f (σj)) ∈ Pern,F(f) ⇐⇒ [g(σ∗j), g(σ∗i)) ∈ Perd−n−1,F(g).

2.
[f (σi), ∞) ∈ Pern,∞(f) ⇐⇒ [g(σ∗i), ∞) ∈ Perd−n,∞(g).

Proof. A persistence pair (σi, σj) of an ordering sequence compatible with the func-
tion f , the birth value is f (σi) and the death value is f (σj) as we said after the
definition 4.7. The result then follows directly from respectively the statements
1, 2 of Theorem 4.15.

4.4 Formal definition for V- and T-constructions 33

4.4 Formal definition for V- and T-constructions

Now we are going to define more formally the V- and T-constructions than the
definition in chapter 3.

As we said in the chapter 3 that we can transform a digital scanned 2D or 3D
images into a numerical matrix (or array) with grayscale value for each pixel (or
voxel). Then we can say that for a d-dimensional image of size (n1, . . . , nd) is a
real-valued function that returns a numerical array defined as

I : I = [[1, n1]]× · · · × [[1, nd]]→ R

where each ei is the size of a dimension and each interval [[1, ni]] is a closed
interval of natural numbers because the size of a certain dimension of the image
cannot be non-integer or negative numbers.

For d = 2, then each element (point) p ∈ I is called pixel and if d > 2 then it
will be called voxel.

In the definition 3.1, we defined the concept of elementary interval I = [l, l + 1]
or I = [l, l] and elementary cube Q = I1 × · · · × In ⊂ Rn. We go one step further
defining elementary k-cube.

Definition 4.17. An elementary k-cube γ ⊂ Rd is the product of d elementary inter-
vals (note that the elementary intervals defined here is almost the same to the Ii)

γ = e1 × e2 × · · · × ed.

The difference is the dimension, if we have a lower dimension k < d of the intervals
have the form ei = [li, li + 1] and the rest d− k are degenerate, ei = [li, li].

Note that as what we defined previously a cubical complex C ⊂ Rd is a cell
complex consisting of a set of elementary k-cubes with all faces of γ ∈ C are also
in C.

Based on this new definition of cubical complex we have the formal definition
for V- and T-constructions.

Definition 4.18. Given a d-dimensional grayscale digital image I : I → R, of size
(n1, n2, . . . , nd), the V-construction is a filtered cell complex (V(I), V(I)) (note that
I is the image and I is the grayscale function on I) defined as follows.

1. V(I) is a cubical complex built from an array of (n1 − 1) × · · · × (nd − 1)
elementary d-cubes as the figure 3.3 displayed in the previous example and
all their faces.

34 Duality for cubical complexes

2. The vertices v(0) ∈ V(I) (here we using the notation (0) because we consider
the order for V start from 0-cells, i.e. vertices) are indexed exactly by the
elements p ∈ I, and we define the function V(I) firstly on these vertices as,

V(I)(v(0)) = I(p).

Then for an elementary k-cube γ which can be seen as a subcube of I, the
function takes the maximal value of grayscale for its vertices.

V(I)(γ) = max
v(0)⪯γ

V(I)(v(0)).

And then the function V(I) is also monotonic by the definition.

Definition 4.19. Given the same conditions as above. The T-construction is a fil-
tered cell complex (T(I), T(I)) defined as follows.

1. T(I) is a cubical complex built from the array of n1× · · · × nd elementary d-
cubes and all their faces. Note that here is a difference with V− construction,
we replace all vertices of I by an elementary d-cube so there is no need to
minus 1.

2. The d-cells τ(d) ∈ T(I) are indexed exactly by the elements p ∈ I, and we
define the function T(I) firstly on these top-dimensional cells as,

T(I)(τ(d)) = I(p).

Note that for T(I) we use d-cells instead of vertices in the case of V(I).
Then for an elementary k-cube γ, the function takes the smallest value of

grayscale of all its adjacent (by sides and vertices) d-cubes,

T(I)(γ) = min
γ⪯τ(d)

T(I)(τ(d)).

This ensures that T(I) is monotonic with respect to the face relation on T(I).

Definition 4.20. The padded image IP : IP → R has image domain IP = [0, n1 + 1]×
· · · × [0, nd + 1] and image function.

IP(p) =

{
I(p), for p ∈ I

N, for p ∈ IP \ I.

with N > maxp∈I I(p) and in practical cases we consider N as ∞.

So that the padded image can be compatible perfectly with V- and T- construc-
tions.

4.5 Duality between deformed constructions 35

4.5 Duality between deformed constructions

If we identify the padded boundary vertices of V(IP) then we can transform
this cubical complex into a sphere just like the construction of Riemann sphere
identifying the ∞ as a point.

Figure 4.1: Sphere formed by identifying boundary vertices

As the padded V-construction has been transformed into a sphere so the image
created using T-construction will be also deformed into a cursive manifold with
boundary. So we consider a new deformed figure obtained by attaching a d-cell
κ(d) along the boundary of T(I) and denote it by T(I) ⊔∂T(I) κ(d).

We can see some dual relations between these two deformed figures, it seems
like a version of Alexander duality because we deformed padded V-image into a
compact, locally contractible subspace of the sphere S2. But the formal demon-
stration is not here, it is just an idea that may implies the existence of duality.

Lemma 4.21. Given an image I, the quotient of the padded V-construction mod-
ulo its boundary, V(IP)/∂V(IP), is combinatorially dual (defined in def 4.2) to
T(I) ⊔∂T(I) κ(d) T-construction no padded attaching boundary with d-cell.

Proof. Each elementary k-cube, γ ∈ V(IP) takes the form

γ = e1 × · · · × ed, ei = [li, li + 1] or ei = [pi, pi]

where k of the elementary intervals are non-degenerate with li ∈ {0, . . . , ni} with
the size until ni and the maximal k-cube will be [ni, ni + 1] and (d− k) are degen-
erate with pi ∈ {0, . . . , ni + 1}. Note that γ ∈ ∂V(IP) if this cube has at least one
degenerate interval with pi = 0 or (ni + 1) because two extreme values represent

36 Duality for cubical complexes

the boundary of both sides. Now we consider the following cell constructed from
γ:

γ∗ = e∗1 × · · · × e∗d , e∗i = [li +
1
2

, li +
1
2
] or [pi −

1
2

, pi +
1
2
]

with li and pi as defined above. This cell has k degenerate intervals because we
replace these k non-degenerate intervals into degenerate ones and similarly it has
(d − k) non-degenerate ones so γ∗ is an elementary (d − k)-cube, i.e. we con-
structed a dual elementary cube with respect to γ.

If we suppose that γ ̸∈ ∂V(IP), then we see that pi cannot be neither 0 nor
ni + 1 which formed degenerate intervals in boundary then pi ∈ {1, . . . , ni}, and
the degenerate coordinate values (li + 1

2) ∈ {
1
2 , 3

2 , . . . , (ni +
1
2)} for li ∈ {0, . . . , ni}.

We can see the dimension complementary property for γ and γ∗ and then we
obtain a bijection between k-cells γ in V(IP) \ ∂V(IP) and (d− k)-cells γ∗ in T(I).

And then consider the γ ∈ V(IP)/∂V(IP), the vertices in the boundary are
0-cells so that their dual cells are d-cells such that the boundary ∂T(I) attached
in it. So the mapping from 0-cell [∂V(IP)] ∈ V(IP)/∂V(IP) to the d-cell attached
to ∂T(I) yields with previous paragraph a dimension complementary bijection
between all cells of V(IP)/∂V(IP) and those of T(I) ⊔∂T(I) κ(d) then the dimension
complementary property of def 4.2 is done.

The next step is to confirm that the face relations between cells in V(IP)/∂V(IP)

are mapped to coface relations in T(I)⊔∂T(I) κ(d) to prove the face reversal property.
By the construction above, all interior (out of boundary) face relations for V(IP)

map to coface relations for T(I) because of the bijection between interior cells and
their dual.

The last thing we need to check is that the (identified) vertex [∂V(IP)] in
V(IP)/∂V(IP) has dual face relations to the d-cell κ(d) attached to the boundary of
T(I) in T(I) ⊔∂T(I) κ(d).

From Face reversal σ ⪯ τ ⇐⇒ τ∗ ⪯ σ∗ for all σ, τ ∈ C we have the equivalent
statement as the following:

[∂V(IP)] ⪯ γ in V(IP)/∂V(IP) ⇐⇒ γ∗ ⪯ κ(d) in T(I) ⊔∂T(I) κ(d).

We start from the direction left to right.If γ∗ ∈ ∂T(I) is a cell of the boundary,
then it must be a face (or maybe a facet) of κ(d) because the whole boundary is
attached in a same d-cell κ(d). And in the other direction, if γ∗ is a face of κ(d) then
it also must belongs to the boundary ∂T(I) as it was attached with the d-cell.

γ∗ ⪯ κ(d) ⇐⇒ γ∗ ∈ ∂T(I)

This equivalence means that there is at least one of the degenerate elementary
of all possible k degenerate intervals of γ∗ has 0 + 1

2 = 1
2 or (ni +

1
2) with extreme

4.5 Duality between deformed constructions 37

values li = 0 and ni as γ∗ belongs to the boundary ∂T(I). So the corresponding
dual elementary interval in the dual cell γ is ei = [li, li + 1] = [0, 1] or [ni, ni + 1].

Note that γ ∈ ∂V(IP) if this cube has at least one degenerate interval ei =

[pi, pi] with pi = 0 or (ni + 1) then this fact means the dual cell γ must be contained
in the boundary ∂V(IP) and then the vertex [∂V(IP)] is a face of the elementary
k-cube.

The converse implication follows in the same manner just replace γ∗ by the
vertex [∂V(IP)] and κ(d) by the dual cell γ then do the same, and we are done with
the proof.

Lemma 4.22. Given an image, I, the quotient of the padded T-construction modulo
its boundary, T(IP)/∂T(IP), is the combinatorially dual of V(I) ⊔∂V(I) κ(d).

As we have seen in the previous two lemmas, the padded image identifying
the boundary of one construction is always combinatorially dual with the other,
and the ordering cells sequence σ0, σ1, . . . , σn and σ∗n , σ∗n−1, . . . , σ∗0 are also reversal
dual because of the two properties of combinatorially dual in def 4.2.

So that it is natural to consider using the idea of sub- and super-level sets
in two directions to construct dual filtrations, in the next step we will define it
formarlly.

If we multiply −1 to all elements of I, then if we start from the minimum
value (considering negatives) is equal to start from the largest value of I, means
we reversed the direction.

By the definition of the padded image, the functions V(IP) and V(−IP) (also
true for T) are constant on the boundary with the value N or −N respectively.
This fact induces a function defined as

Ṽ(−IP) : V(IP)/∂V(IP)→ R

identifying all boundary vertices because they are constants with respect to the
function V(−IP).

And particularly
Ṽ(−IP)([∂V(IP)]) = −N.

We used −N instead of 0 or NULL of other quotient group functions and this
N is actually ∞ in practical cases for essential cells in both directions.

For other k-cubes p ∈ IP out of the boundary,

V(−IP)(p) = max
v(0)⪯p

V(−IP)(v(0)).

38 Duality for cubical complexes

Note that the negative symbol do not mean numerically be negative but the
direction of filtration so that V(−IP) is almost the same to V(IP) just differing
the order.

Similarly, the function T(I) extends to a function T̂(I) on T(I) ⊔∂T(I) κ(d)

T̂(I) : T(I)/κ(d) → R

with T̂(I)(κ(d)) = N. As identifying the boundary cubes in T(I) to a same d-cell
induces this function. Note that we are doing for I not −I in a positive direction
so the value is positive for N.

For the reversal case, we have T̃(−IP) : T(−IP)/∂T(−IP) → R with padded
modification in negative direction and V̂(I) : V(I)/κ(d) → R without padded
boundary in positive direction.

Lemma 4.23. For each γ ∈ T(I)⊔∂T(I) κ(d) and dual cell γ∗ ∈ V(IP)/∂V(IP) as we
have defined and used in lemma 4.21

−T̂(I)(γ) = Ṽ(−IP)(γ∗).

Proof. Firstly, suppose dim γ = d and γ ̸= κ(d) means that γ is a d-cell different
from the one which is attached along the boundary ∂T(I). Suppose p ∈ I is the
corresponding element of the image so that by the definition 4.19 I(p) = T̂(I)(γ).
The dual cell γ∗ ∈ V(IP)/∂V(IP) corresponds to the same voxel, as γ ̸= κ(d) then
γ∗ ̸= [∂V(−IP)] so that Ṽ(−IP)(σ∗) ̸= −N and by the definition the result is
given as following

Ṽ(−IP)(γ∗) = −I(p) = −T̂(I)(γ).

Note that the value is −I(p) because of the reverse direction by the negative
symbol.

Then the first case with γ ̸= κ(d) is done then we consider the particular case.
For γ = κ(d), with its dual [∂V(IP)]∗, as we defined T̂(I) : T(I)/κ(d) → R and

T̂(I)(κ(d)) = N the function values satisfy the following

−T̂(I)(κ(d)) = −N = Ṽ(−IP)([∂V(IP)]).

The previous proof based on the case dimγ = d so we classified if it is equal
to κ(d). Now we suppose γ ∈ T(I) ⊔∂T(I) κ(d) and dim γ < d. As we said above,
for the cases when γ ̸= κ(d) and γ∗ ̸= [∂V(IP)]∗ then T̂(I) and Ṽ(I) are the
same forms to T(I) and V(I). So by the definitions 4.18 and 4.19, we have the
following:

−T̂(I)(I) =
4.19
− min

τ(d)⪰γ
T̂(I)(τ(d)) = max

τ(d)⪰γ
−T̂(I)(τ(d))

4.6 Persistence of deformed dual constructions 39

Because of the face reversal property of definition 4.2 σ ⪯ τ ⇐⇒ τ∗ ⪯ σ∗ for
all σ, τ ∈ C, we have

τ(d) ⪰ γ ⇐⇒ v(0) ⪯ γ∗

and
−T̂(I)(τ(d)) = −I(p) = Ṽ(−IP)(v(0))

then

max
τ(d)⪰γ

−T̂(I)(τ(d)) = max
v(0)⪯γ∗

Ṽ(−IP)(v(0)) = Ṽ(−IP)(γ∗)

as required.

Now we then define the functions T̃(−IP) on T(IP)/∂T(IP) and V̂(IP) on
V(IP) ⊔∂V(IP) κ(d) similarly to those above.

Lemma 4.24. For each γ ∈ V(IP) ⊔∂V(IP) κ(d) and its dual cell γ∗ ∈ T(IP)/∂T(IP)

we have
−V̂(IP)(γ) = T̃(−IP)(γ∗).

Corollary 4.25. For a grayscale digital image I : I → R

1. The filtered complexes (T(I) ⊔∂T(I) κ(d), T̂(I)) and (V(IP)/∂V(IP), Ṽ(−IP))

are dual.

2. The filtered complexes (V(IP)⊔∂V(IP) κ(d), Ṽ(IP)) and (T(IP)/∂T(IP), T̃(−IP))

are dual.

Proof. The key of this proof is the previous lemmas and the Theorem 4.5, these
results yield directly this corollary.

4.6 Persistence of deformed dual constructions

In the previous lemmas, we have studied the effect of padding a extra layer
with value N to their persistence, the operations we used are below:

1. Padding the image with a layer of voxels with value N.

2. Attach the boundary of V(IP) or T(I) to a d-cell κ(d). Means the creation of
functions we defined previously with hat symbol.

40 Duality for cubical complexes

3. Identify the boundary in a negative directional padded filtration. Means the
creation of functions we defined previously with tilde symbol and −IP .

The first operation (padding the image) does not change the persistence and
the second operation (attaching a d-cell) only creates an essential d-cycle (Hd) with
birth an N because the positive directional filtration create that d-cycle when it
reached the value equal to N > max(I) and then persist forever.

Formally we can state them in the following proposition.

Proposition 4.26. For an image I : I → R we have the following equalities be-
tween persistence of padded and original images

1. From the first operation we have

Per(V(IP)) = Per(V(I)) and Per(T(IP)) = Per(T(I))

2. From the second operation we have

Per(V̂(I)) = Per(V(I)) ∪ {[N, ∞]d}

and
Per(T̂(I)) = Per(T(I)) ∪ {[N, ∞]d}

We want to study the effect of taking the quotient of a padded image modulo
the boundary (the third operation) to figure out the explicit relation with the per-
sistence (mentioned in def 4.6) of f which is the key to do the fast computation of
homology groups.

As we did the transformation of image to padded construction and deformed
the cubical complex to closed, locally compact sphere identifying the boundary
with value N and deform the other to a cursive manifold attaching a d-cell along
the boundary. So we can see that now the deformed sphere is homeomorphic to
a closed disc Dd and we can compute the persistence Per(f) with f a monotonic
function (definition 4.6) of this sphere using the following lemma.

Lemma 4.27. Let C be a cell complex and take a monotonic function f : C ∼= Dd →
R with

γ ∈ ∂C ⇒ f (γ) = −N = min f

and induced quotient map f̃ : C/∂C → R. Then

Per(f̃) = (Per(f) \ {[−N, max f)d−1}) ∪ {[max f , ∞]d}.

4.6 Persistence of deformed dual constructions 41

The whole proof is too long and we can see that in [2] page 19. Obviously, the
definition of f̃ is similar to T̃ and Ṽ with −IP and then the result of Per(f̃) can
help us to calculate Per for padded construction with negative direction.

Corollary 4.28. For a d-dimensional image I : I → R

Per(Ṽ(−IP)) = Per(V(−IP)) \ {[−N,−min I]d−1} ∪ {[−min I, ∞]d}

and

Per(T̃(−IP)) = Per(T(−IP)) \ {[−N,−min I]d−1} ∪ {[−min I, ∞]d}

Proof. This corollary is the direct result of the previous lemma replacing f by
V(−IP) and T(−IP) and using max V(−IP) = −min I and max T(−IP) =

−min I .

Finally, after all results proved above, we can reach the core result of this work,
the equality between persistence of padded T-construction with negative direc-
tional filtration and V-construction with original image in positive directional fil-
tration and this result is also true vice versa.

Theorem 4.29. For a grayscale image I : I → R the persistence of the V- and
T-constructions satisfy

PerF(V(I)) = {[−q,−p)d−k−1 | [p, q)k ∈ PerF(T(−IP))} \ {[min I , N)0}.

Note that {[min I} are all persistence of homology group with dimension 0 which
are connected component, i.e., H0 and

Per∞(V(I)) = {[min I , ∞)0}

only consists of essential cell which is a connected components H0 that persist
forever.

Proof. The infinite persistence for the function V(I) only formed by H0 and no
other dimensions no matter what is the value of the dimension of I . This result
follows from the fact that V(I) ∼= D(d) for example for a 2D−dimensional image
with four pixels, V-construction will construct a square border that is homeomor-
phic to a 2D−disc.

There will be a H0 generated by the first element with minimal value added
into the filtration, this connected component will be growing along the filtration

42 Duality for cubical complexes

adding more elements with higher values and will never get killed that persists
as a subset until when it reached the maxV(I) and keep living until ∞ as whole
set homeomorphic to a disc D(d) which is also a H0. So we always have only one
essential homology group Per∞(V(I)) = {[min I , ∞)0}.

For the finite case:

PerF(V(I)) =
4.26

PerF(V(IP)) =
4.26, f inite

PerF(V̂(IP))

=
4.16(1)

{[−q,−p)d−k−1 | [p, q)k ∈ PerF(T̃(−IP))}

=
4.28
{[−q,−p)d−k−1 | [p, q)k ∈ PerF(T(−IP))} \ {[−N,−min I)d−1}}

= {[−q,−p)d−k−1 | [p, q)k ∈ PerF(T(−IP))} \ {[min I , N)0}}

And the last equality is deduced from Poincaré duality and the symbol just
represent the direction so they are still isomorphic.

This part is purely theoretical and now we have reached the result that allow
us to compute the persistence of homology groups using their own dual. This will
be a powerful tool to simplify the calculation and then we will do some practical
examples in the next chapter.

Chapter 5

Practical experiment using codes

In this chapter we will use some Python codes to accomplish several objectives
related to our purpose of the work.

1. To check the correctness of the duality theorem we proved in the last section
of chapter 4 with some practical examples.

2. First, we use one construction method and one filtration method to calculate
H0, H1, and H2. Then, we use the duality theory to calculate H0, H1 and
use another construction (with padding function) and another direction of
filtration to calculate H0 to calculate H2. Finally, we compare the efficiency
and speed of these two calculation methods.

3. Use the more efficient algorithm obtained above to calculate the topologi-
cal features of the image, and then try to use simple statistical methods to
classify and distinguish based on these results.

The Python codes we use to achieve these objectives are created by Takeki Sudo
and Kazushi Ahara, modified by Shizuo Kaji. More details can be found in their
paper [7].

The fundamental of this algorithm is highly related to the paper [2] which is
also the theoretical basis of this work.

5.1 Some examples using Python codes

We will check the correctness of the duality theorem with some practical ex-
amples.

The first example is easy to see and can be proved manually, just a variation of
the figure 3.3. We consider an image with numerical grayscale matrix

43

44 Practical experiment using codes

1 4 5
3 2 9
2 4 7

The homology groups barcodes are the following in the order V-construction, T-
construction both in positive filtration and padded T-construction in negative fil-
tration.

Figure 5.1: V-construction

Figure 5.2: T-construction

Figure 5.3: Padded T-construction

The first column indicates the dimension of homology group, the second and
third represent birth and death. The columns 3, 4, 5 and 6, 7, 8 are the coordinates
of creator and destroyer cells in the matrix (or array). So that we have

1. V-construction: H0: [2,3), [2,3) and [1,∞)

2. T-construction: H0: [1,∞)

3. Padded T-construction: H0: [−∞, ∞); H1: [-3,2), [-3.2) and [-∞,-1)

We display this example in order to point out two things. The first is that
the two-dimensional coordinates of creator and destroyer cells are exchanged in
the coordinates of their dual if just have one unique creator cell and one unique
destroyer cell. The second is the elimination of essential homology groups. For
the reason we can see the last row of padded T-construction has creator cell with
coordinate (−∞, 0, 0), in fact is equal to (−N, 0, 0). But the corresponding dual
is the last row of V-construction with the same coordinates for creator and death
cells (both are (0, 0, 0)). So that this dual pair of homology group must be omitted

5.2 Velocity of computation 45

in the analysis. The other reason to take off them because it will not be possible
to process homology groups with ∞ birth and death, specially for computing
persistence entropy and total persistence as we introduced in 5.1

The second example came from the data set Data for Automated Cardiac Diag-
nosis Challenge (ACDC) [Segmentation Task] of MIT, it is a set of digitally scanned
three-dimensional figures, for more details you can see their page in kaggle.

As they are 3D graphs, we need to slice them into pieces and transform each
of them into a grayscale numerical matrix then construct a graph with volume
combining all its slices.

There is no need to display all slices of a graph, here we just submit three slices
of a 3D graph of a patient.

(a) (b) (c)

Figure 5.4: Three slices of a 3D graph

We used the code displayed in appendix and calculated the number of H0 is
17226, H1 is 19829, H2 is 3520 eliminating the essential ones. The dual relation is
still correct and we will not put all these results.

5.2 Velocity of computation

Then we will compare the computation velocity between the

1. The algorithm (1) computes all H0, H1, H2 that only use one filtration with-
out padding

2. The algorithm (2) that computes first H0, H1 using a V-construction then
computes H0 using padded T-construction with padding.

If we just compare the difference of the costed time for one patient, the sample
is too restricted to analyze. So we compute the time for all hundred patients and

46 Practical experiment using codes

compute for several times and take the average to compensate for the instability of
the running speed of a computer because the efficiency also depend on the status
of computer.

We have tried five times for each algorithm, and the final result is

1. The algorithm (1) use averagely 290.6901940345764 seconds for computing
all homology groups in one time.

2. The algorithm (2) use averagely 278.4182926177979 seconds for computing
separately homology groups using duality.

So that the second algorithm using duality is more efficient than the first one,
the speed of computation has accelerated by early 4.4%. (In the best time also with
five tries but not recorded, we have reached 8% but it is still too small.)

The overall speed improvement is not as much as expected. For simplicial
complexes, calculating H2 is very expansive and slow, requiring a lot of computing
power, while calculating H0 and H1 is much simpler. However, the current speed
improvement is obviously not so extreme. This may be because the calculation
of cubic complexes itself is relatively simple, so there is not such a big difference.
Another possible reason is that each of our cross-section slice is too small, most of
them are less than 300× 300 pixels.

5.3 Discriminant classification using topological features

We are going to use the the data set Brain Tumor Classification (MRI) with page
in kaggle

https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri.

This dataset consists of a series of two-dimensional grayscale digital scanned
images. These images record the brains of normal people and patients with brain
tumors. The entire dataset has four categories of data, including normal brain
images, brain images with meningioma tumor, glioma tumor or pituitary tumor.

We did not use the entire dataset, but selected 234 images from it, including
117 normal brain images, from image(14).jpg to image(66).jpg. Of course, these
two images are also included.

The remaining 117 images were selected from brain images of patients with
meningioma tumors. I selected 117 images from m(2).jpg to m(118).jpg (including
the first and last two images).

As mentioned at the beginning of this chapter, our third goal is to use the more
efficient (although only 4% improvement) algorithm found in the second goal

5.3 Discriminant classification using topological features 47

to calculate the homology group relatively easily. Then, we can calculate more
topological features through the persistence of the calculated homology group,
such as the total persistence and persistence entropy mentioned in the introduction
of Chapter 1.

Our plan is to first calculate the H0 total persistence, H1 total persistence, H0

persistence entropy and H1 persistence entropy of each 2D-image, and in addition
to the four columns representing the topological features, give the classification
of each image in the fifth column. For example, the value of the last column of a
normal human brain image is equal to zero, while the value of the last column of
a brain with a tumor is equal to one. This is also the standard for our classification
judgment through the logistic regression model later.

When we calculated H0 and H1 for each image, we used the duality principle,
that is, we only used V-construction to calculate H0 and then calculated H0 by
Padded T-constructions to get the dual of H1. For such a large number of images,
using duality still makes the calculation faster.

We have included all the detailed calculation process and the codes used in
the appendix starting from the page 53. Here we will briefly introduce the logistic
regression and why I use it here.

Definition 5.1. Logistic regression, in statistics, is a log-odds model. The probability
of an event occurring is modeled by making the log-odd of the event a linear
combination of one or more independent variables.

Formally, in binary logistic regression, there is a binary dependent variable,
encoded by an indicator variable labeled "0" and "1" (as our case), and the inde-
pendent variables can each be a binary discrete variable (two classes, represented
by the indicator variable) or a continuous variable (with any real value) represents
the probability of happen.

And the logistic function is given as

p(x) =
1

1 + e−(x−µ)/s
(5.1)

We used logistic regression for discriminative classification because our situa-
tion is binary separable, and this regression model is not a black box algorithm
like other machine learning methods. Each step of our process can be clearly de-
fined and explained. In the end, after we found the topological features of all 234
images and classified them, we split them into two-thirds of the training set and
the remaining one-third of the test set. We then used it to train the logistic model
and compared our predicted classification results with the actual classification in
the test set, and found that the accuracy of our model reached an astonishing 99%.

48 Practical experiment using codes

The specific calculation results can be restored using the code in the appendix
and the 234 pictures we just mentioned, or you can directly look at the results at
the end of the appendix. What we want to show is that the topological character-
istics of a graph (or other object) contain a lot of information, which can enable
us to obtain more accurate results than traditional statistical methods. Therefore,
it is particularly necessary to find an algorithm for quickly calculating homology
groups, which is one of the purposes of this article.

Chapter 6

Conclusion

This work has many purposes, but the core is to deform the original electronic
scanned image so that we can construct filtration from two opposite directions,
and finally obtain the duality relation about homology group and its persistence
at the end of Chapter 4. This duality relation allows us to skip some more com-
plicated calculations and perform simpler and faster operations through duality.
Although we finally found that in most cases, especially for image datasets with
smaller size and fewer images, the optimization of speed by duality calculation is
not very significant.

Another goal of this paper is to obtain faster and more accurate results than
traditional statistical methods based on the fast calculation of homology groups
and their persistence. In the last section, we successfully used topological features
based on H0 and H1 and obtained an amazing accuracy of nearly 99% through
non-black box logistic statistical modeling, which is extremely rare in traditional
statistical analysis. This fact once again proves the advantages of topological data
analysis and the necessity of finding more efficient algorithms.

49

Bibliography

[1] Marina Anguas Escobar, Integrating topological features to enhance cardiac disease
diagnosis from 3d cmr images, (2023).

[2] Bea Bleile, Adélie Garin, Teresa Heiss, Kelly Maggs, and Vanessa Robins, The
persistent homology of dual digital image constructions, Research in Computa-
tional Topology 2, Springer, 2022, pp. 1–26.

[3] David Cohen-Steiner, Herbert Edelsbrunner, and Dmitriy Morozov, Vines and
vineyards by updating persistence in linear time, Proceedings of the twenty-
second annual symposium on Computational geometry, 2006, pp. 119–126.

[4] Junhan Cui, Dimensionality reduction based on persistence entropy, (2023).

[5] Edelsbrunner, Letscher, and Zomorodian, Topological persistence and simplifica-
tion, Discrete & Computational Geometry 28 (2002), 511–533.

[6] Allen Hatcher, Algebraic Topology, 2005.

[7] Shizuo Kaji, Takeki Sudo, and Kazushi Ahara, Cubical ripser: Software
for computing persistent homology of image and volume data, arXiv preprint
arXiv:2005.12692 (2020).

[8] Matteo Rucco, Filippo Castiglione, Emanuela Merelli, and Marco Pettini,
Characterisation of the idiotypic immune network through persistent entropy, Pro-
ceedings of ECCS 2014: European Conference on Complex Systems, Springer,
2016, pp. 117–128.

[9] Claude Elwood Shannon, A mathematical theory of communication, The Bell sys-
tem technical journal 27 (1948), no. 3, 379–423.

[10] Afra Zomorodian and Gunnar Carlsson, Computing persistent homology, Pro-
ceedings of the twentieth annual symposium on computational geometry,
2004, pp. 347–356.

50

Python codes we used and some
calculation results

1

2

3 import cripser , tcripser
4 import numpy as np
5

6 #To compute the first example with a matrix 3 * 3.
7

8 a= np.matrix ([[1,4,5],[3,2,9],[2 ,4,7]])
9 pd = cripser.computePH(a,maxdim =2)

10 pd_t = tcripser.computePH(a,maxdim =2)
11 pd_t_padded=tcripser.computePH(a,maxdim=2,embedded=True)
12

13

14 import h5py
15

16 ##To visualize the slices of a 3D graph in h5 format.
17

18 def visualize_h5(file_name , dataset_name):
19 with h5py.File(file_name , ’r’) as f:
20 if dataset_name in f:
21 data = f[dataset_name][...]
22 else:
23 print(f"Dataset {dataset_name} not found in the

file.")
24 return
25

26 print(f"Data shape: {data.shape}")
27

28 # If dim == 3 with three components (num_slices , height ,
width)

29

51

52 Python codes we used and some calculation results

30 # We just need three slices of them
31

32 if data.ndim == 3:
33 num_slices = data.shape [0]
34 print(f"Number of slices: {num_slices}")
35

36 plt.imshow(data[0], cmap=’gray’)
37 plt.title(’Slice 0’)
38 plt.show()
39

40 mid_slice = num_slices // 2
41 plt.imshow(data[mid_slice], cmap=’gray’)
42 plt.title(f’Slice {mid_slice}’)
43 plt.show()
44

45 plt.imshow(data[-1], cmap=’gray’)
46 plt.title(f’Slice {num_slices - 1}’)
47 plt.show()
48

49 ##If the image is two -dimensional then we just have this.
50

51 elif data.ndim == 2:
52 plt.imshow(data , cmap=’gray’)
53 plt.title(’2D Image’)
54 plt.show()
55

56 #To extract the image data set from h5 file f.
57

58 def image_data_h5(file_name , dataset_name):
59 with h5py.File(file_name , ’r’) as f:
60 if dataset_name in f:
61 data = f[dataset_name][...]
62 return data
63 else:
64 print(f"Dataset {dataset_name} not found in the

file.")
65 return
66

67

68 #To visualize the slices of the frame 01 of the first patient.
69

70 file_name = ’patient001_frame01.h5’
71 dataset_name = ’image ’
72 visualize_h5(file_name , dataset_name)

53

73

74

75 #To compute the velocity of computation we need to calculate
the image data for all patients.

76

77 import timeit ,time
78 import os
79

80 folder_path = ’D:\TFM\ACDC_preprocessed\ACDC_training_volumes ’
81 file_list = [os.path.join(file) for file in os.listdir(

folder_path) if os.path.isfile(os.path.join(folder_path ,
file))]

82

83 all_image_data = []
84

85 for file_name in file_list:
86

87 image_data= image_data_h5(file_name , ’image’)
88 all_image_data.append(image_data)
89

90

91

92 #To compute the time for the first algorithm for hundred
patients and each one has two frames.

93

94 start_time = time.time()
95

96 for image_data in all_image_data:
97

98 #To compute all homology groups using V-construction
without padding.

99

100 results = cripser.computePH(image_data ,maxdim =2)
101

102 end_time = time.time()
103

104 # To compute the running time.
105

106 elapsed_time_no_efficient = end_time - start_time
107 print(elapsed_time_no_efficient)
108

109

110

111 #Times for five tries.

54 Python codes we used and some calculation results

112

113 291.20752716064453+292.75494146347046+286.75698947906494
114 +293.9577124118805+288.77379965782166
115

116

117

118

119 #To compute the time for the second algorithm for hundred
patients and each one has two frames.

120

121 start_time = time.time()
122

123 for image_data in all_image_data:
124

125 ##To compute homology groups without H2 using V-
construction without padding.

126

127 results_v_no2 = cripser.computePH(image_data ,maxdim =1)
128

129 ##To compute H0 using padded T-construction.
130

131 results_tp_0 = tcripser.computePH(image_data ,maxdim=0,
embedded=True)

132

133 end_time = time.time()
134

135 #To compute the running time.
136

137 elapsed_time_efficient = end_time - start_time
138 print(elapsed_time_efficient)
139

140 #Times for five tries.
141

142 279.1985194683075+278.0140290260315+279.47413992881775
143 +279.53665685653687+275.86811780929565
144

145

146

147

148 # For the last section discriminant classification using
topological features.

149

150 from PIL import Image
151 import matplotlib.pyplot as plt

55

152 import os
153

154 folder_path = ’D:\\TFM\\ brain_tumor_classification \\ normal ’
155

156 file_list = [os.path.join(file) for file in os.listdir(
folder_path) if os.path.isfile(os.path.join(folder_path ,
file))]

157

158 image_normal =[]
159 image_data_normal =[]
160

161 for file_name in file_list:
162 file_path = os.path.join(folder_path , file_name)
163

164 image = Image.open(file_path)
165

166 gray_image = image.convert(’L’)
167

168

169 image_normal.append(gray_image)
170 image_data_normal.append(np.array(gray_image))
171

172

173

174

175

176

177

178 folder_path = ’D:\\TFM\\ brain_tumor_classification \\
meningioma_tumor ’

179

180 file_list = [os.path.join(file) for file in os.listdir(
folder_path) if os.path.isfile(os.path.join(folder_path ,
file))]

181

182 image_tumor =[]
183 image_data_tumor =[]
184

185 for file_name in file_list:
186 file_path = os.path.join(folder_path , file_name)
187

188 image = Image.open(file_path)
189

190 gray_image = image.convert(’L’)

56 Python codes we used and some calculation results

191

192 image_tumor.append(gray_image)
193 image_data_tumor.append(np.array(gray_image))
194

195

196

197 ##### The following is for normal #######################
198

199 # Here are the H0 and H1 of each picture.
200

201 result_normal_0 = []
202

203 result_normal_1 = []
204

205

206 for img_array in image_data_normal:
207

208 normal_0 = cripser.computePH(img_array ,maxdim =0)
209 normal_1 = tcripser.computePH(img_array ,maxdim=0,embedded=

True)
210

211 result_normal_0.append(normal_0)
212 result_normal_1.append(normal_1)
213

214

215 # Eliminate rows with infinite
216

217 result_normal_cleaned_0 = []
218

219

220 for array in result_normal_0:
221 # Use boolean indexing to remove rows that contain values

â â g r e a t e r than 255 or less than 0 in the first and
second columns

222

223 valid_rows = (array[:, 1] <= 255) & (array[:, 1] >= 0) & (
array[:, 2] <= 255) & (array[:, 2] >= 0)

224 cleaned_array = array[valid_rows]
225

226 result_normal_cleaned_0.append(cleaned_array)
227

228

229

230

57

231

232 # First convert all negative signs to positive and then swap
the positions of birth and death

233

234 for array in result_normal_1:
235

236 array[:, 1] *= -1
237 array[:, 2] *= -1
238

239 array[:, [1, 2]] = array[:, [2, 1]]
240

241 result_normal_cleaned_1 = []
242

243

244 for array in result_normal_1:
245

246 valid_rows = (array[:, 1] <= 255) & (array[:, 1] >= 0) & (
array[:, 2] <= 255) & (array[:, 2] >= 0)

247 cleaned_array = array[valid_rows]
248

249 result_normal_cleaned_1.append(cleaned_array)
250

251

252

253

254 ############### Total persistence and persistence entropy of H0
for normal images

255

256 # Create an empty column matrix with 117 rows and 1 column ,
using np.zeros

257

258 total_persistence_matrix_0 = np.zeros ((117, 1))
259

260

261 for i in range (117):
262 # Calculate the difference between the third column and the

second column of each row
263

264 differences = result_normal_cleaned_0[i][:, 2] -
result_normal_cleaned_0[i][:, 1]

265

266 # Add these differences to get a number
267

268 result = np.sum(differences)

58 Python codes we used and some calculation results

269

270 total_persistence_matrix_0[i]= result
271

272

273 persistence_entropy_matrix_0 = np.zeros ((117 , 1))
274

275 import math
276 from math import log2
277

278 for i in range (117):
279

280 differences =0
281

282 for j in range(result_normal_cleaned_0[i]. shape [0]):
283

284 differences += (-1)*((result_normal_cleaned_0[i][j, 2]
- result_normal_cleaned_0[i][j, 1])/
total_persistence_matrix_0[i,0]) * log2 (((
result_normal_cleaned_0[i][j, 2] -
result_normal_cleaned_0[i][j, 1])/
total_persistence_matrix_0[i,0]))

285

286

287 persistence_entropy_matrix_0[i]= differences
288

289

290 ############### Total persistence and persistence entropy of H1
for normal images

291

292

293 total_persistence_matrix_1 = np.zeros ((117, 1))
294

295

296 for i in range (117):
297

298 differences = result_normal_cleaned_1[i][:, 2] -
result_normal_cleaned_1[i][:, 1]

299

300 result = np.sum(differences)
301 total_persistence_matrix_1[i]= result
302

303

304 persistence_entropy_matrix_1 = np.zeros ((117 , 1))
305

59

306

307

308 for i in range (117):
309

310 differences =0
311

312 for j in range(result_normal_cleaned_1[i]. shape [0]):
313

314 differences += (-1)*((result_normal_cleaned_1[i][j, 2]
- result_normal_cleaned_1[i][j, 1])/
total_persistence_matrix_1[i,0]) * log2 (((
result_normal_cleaned_1[i][j, 2] -
result_normal_cleaned_1[i][j, 1])/
total_persistence_matrix_1[i,0]))

315

316

317 persistence_entropy_matrix_1[i]= differences
318

319

320

321 ##Create an identification column matrix , the column for normal
graphs is all 0.

322

323 class_normal_matrix = np.zeros ((117 , 1))
324

325 ##Merge the first four columns , that is , four different
topological features , and the last column together.

326

327

328 topo_features_normal_matrix = np.hstack ((
total_persistence_matrix_0 , total_persistence_matrix_1 ,
persistence_entropy_matrix_0 , persistence_entropy_matrix_1 ,
class_normal_matrix))

329

330

331

332

333

334 ##### The following is for tumor #######################
335

336 # We can actually do the same thing just replacing ’normal ’ by
’tumor ’ in the names.

337

338

60 Python codes we used and some calculation results

339 result_tumor_0 = []
340

341 result_tumor_1 = []
342

343

344 for img_array in image_data_tumor:
345

346 tumor_0 = cripser.computePH(img_array ,maxdim =0)
347 tumor_1 = tcripser.computePH(img_array ,maxdim=0,embedded=

True)
348

349 result_tumor_0.append(tumor_0)
350 result_tumor_1.append(tumor_1)
351

352

353

354 result_tumor_cleaned_0 = []
355

356

357 for array in result_tumor_0:
358 valid_rows = (array[:, 1] <= 255) & (array[:, 1] >= 0) & (

array[:, 2] <= 255) & (array[:, 2] >= 0)
359 cleaned_array = array[valid_rows]
360

361 result_tumor_cleaned_0.append(cleaned_array)
362

363

364

365

366

367

368 for array in result_tumor_1:
369 array[:, 1] *= -1
370 array[:, 2] *= -1
371 array[:, [1, 2]] = array[:, [2, 1]]
372

373 result_tumor_cleaned_1 = []
374

375

376 for array in result_tumor_1:
377 valid_rows = (array[:, 1] <= 255) & (array[:, 1] >= 0) & (

array[:, 2] <= 255) & (array[:, 2] >= 0)
378 cleaned_array = array[valid_rows]
379

61

380 result_tumor_cleaned_1.append(cleaned_array)
381

382

383

384

385 ############### Total persistence and persistence entropy of H0
for tumor images

386

387

388 total_persistence_tumor_matrix_0 = np.zeros ((117, 1))
389

390

391 for i in range (117):
392 differences = result_tumor_cleaned_0[i][:, 2] -

result_tumor_cleaned_0[i][:, 1]
393 result = np.sum(differences)
394 total_persistence_tumor_matrix_0[i]= result
395

396

397 persistence_entropy_tumor_matrix_0 = np.zeros ((117 , 1))
398

399 import math
400 from math import log2
401

402 for i in range (117):
403

404 differences =0
405

406 for j in range(result_tumor_cleaned_0[i]. shape [0]):
407

408 differences += (-1)*((result_tumor_cleaned_0[i][j, 2] -
result_tumor_cleaned_0[i][j, 1])/

total_persistence_tumor_matrix_0[i,0]) * log2 (((
result_tumor_cleaned_0[i][j, 2] -
result_tumor_cleaned_0[i][j, 1])/
total_persistence_tumor_matrix_0[i,0]))

409

410

411 persistence_entropy_tumor_matrix_0[i]= differences
412

413

414 ############### Total persistence and persistence entropy for H1
of the tumor image.

415

62 Python codes we used and some calculation results

416

417 total_persistence_tumor_matrix_1 = np.zeros ((117, 1))
418

419

420 for i in range (117):
421 differences = result_tumor_cleaned_1[i][:, 2] -

result_tumor_cleaned_1[i][:, 1]
422 result = np.sum(differences)
423 total_persistence_tumor_matrix_1[i]= result
424

425

426 persistence_entropy_tumor_matrix_1 = np.zeros ((117 , 1))
427

428

429

430 for i in range (117):
431

432 differences =0
433

434 for j in range(result_tumor_cleaned_1[i]. shape [0]):
435

436 differences += (-1)*((result_tumor_cleaned_1[i][j, 2] -
result_tumor_cleaned_1[i][j, 1])/

total_persistence_tumor_matrix_1[i,0]) * log2 (((
result_tumor_cleaned_1[i][j, 2] -
result_tumor_cleaned_1[i][j, 1])/
total_persistence_tumor_matrix_1[i,0]))

437

438

439 persistence_entropy_tumor_matrix_1[i]= differences
440

441

442

443 ##Create an identification column matrix , the column for tumor
images is all 1.

444

445 class_tumor_matrix = np.ones ((117, 1))
446

447 ##Merge the first four columns , that is , four different
topological features , and the last column together.

448

449 topo_features_tumor_matrix = np.hstack ((
total_persistence_tumor_matrix_0 ,
total_persistence_tumor_matrix_1 ,

63

persistence_entropy_tumor_matrix_0 ,
persistence_entropy_tumor_matrix_1 , class_tumor_matrix))

450

451

452

453 ##Now I merge the topological feature matrices of these two
categories together to form a data set of all images and
their topological features.

454

455

456 topo_features_all_matrix = np.vstack ((
topo_features_normal_matrix , topo_features_tumor_matrix))

457

458

459

460

461

462

463 ## Now we use logistic regression
464

465 from sklearn.linear_model import LogisticRegression
466 from sklearn.metrics import accuracy_score , confusion_matrix ,

classification_report
467 from sklearn.model_selection import train_test_split
468

469

470 labels=topo_features_all_matrix [:,4]
471

472 # Use the train_test_split function to randomly split the data
into training and test sets

473

474 train_set , test_set , train_labels , test_labels =
train_test_split(topo_features_all_matrix , labels , test_size
=1/3, random_state =42)

475

476 # Create a logistic regression model
477

478 model = LogisticRegression ()
479

480 # train it
481 model.fit(train_set , train_labels)
482

483 # predict the test_set
484 predictions = model.predict(test_set)

64 Python codes we used and some calculation results

485

486

487

488 Evaluating the Model
489

490

491 accuracy = accuracy_score(test_labels , predictions)
492 conf_matrix = confusion_matrix(test_labels , predictions)
493 class_report = classification_report(test_labels , predictions)
494

495 print(f"Accuracy: {accuracy}")
496 print("Confusion Matrix:")
497 print(conf_matrix)
498 print("Classification Report:")
499 print(class_report)
500

501

502 PS: The results are
503 Accuracy: 0.9871794871794872
504 Confusion Matrix:
505 [[35 1]
506 [0 42]]
507 Classification Report:
508 precision recall f1-score support
509

510 0.0 1.00 0.97 0.99 36
511 1.0 0.98 1.00 0.99 42
512

513 accuracy 0.99 78
514 macro avg 0.99 0.99 0.99 78
515 weighted avg 0.99 0.99 0.99 78

