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Abstract. We study the norm of point evaluation at the origin in the Paley–

Wiener space PWp for 0 < p < ∞, i.e., we search for the smallest positive

constant C, called Cp, such that the inequality |f (0)|p ≤ C‖f‖
p
p holds for every f

in PWp. We present evidence and prove several results supporting the following

monotonicity conjecture: The function p 7→ Cp/p is strictly decreasing on the

half-line (0,∞). Our main result implies that Cp < p/2 for 2 < p < ∞, and

we verify numerically that Cp > p/2 for 1 ≤ p < 2. We also estimate the

asymptotic behavior of Cp as p → ∞ and as p → 0+. Our approach is based

on expressing Cp as the solution of an extremal problem. Extremal functions

exist for all 0 < p < ∞; they are real entire functions with only real zeros,

and the extremal functions are known to be unique for 1 ≤ p < ∞. Following
work of Hörmander and Bernhardsson, we rely on certain orthogonality relations

associated with the zeros of extremal functions, along with certain integral formulas

representing respectively extremal functions and general functions at the origin.

We also use precise numerical estimates for the largest eigenvalue of the Landau–

Pollak–Slepian operator of time–frequency concentration. A number of qualitative

and quantitative results on the distribution of the zeros of extremal functions are

established. In the range 1 < p < ∞, the orthogonality relations associated with
the zeros of the extremal function are linked to a de Branges space. We state a

number of conjectures and further open problems pertaining to Cp and the extremal

functions.
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1 Introduction

This paper studies the following problem on time–frequency localization: What

is the smallest positive constant C, to be called Cp in what follows, such that the

inequality

(1.1) |f (0)|p ≤ C‖f‖p
p

holds for every f in the Paley–Wiener space PWp with 0 < p < ∞? Here PWp is

the subspace of Lp(R) consisting of entire functions of exponential type at most π,

and ‖f‖p
p denotes the Lp integral of f . By the translation invariance of PWp, we may

replace |f (0)| by |f (x)| for any real number x in (1.1) without affecting the value

of Cp. Consequently, the constant C 1/p
p also represents the norm of the embedding

of PWp into PW∞.

We observe that C2 = 1 from the reproducing kernel formula

(1.2) f (0) =

∫ ∞

−∞

f (x) sincπx dx,

valid for all f in PW2, by use of the Cauchy–Schwarz inequality. In (1.2) and in

what follows, we employ the notation

sinc x :=
sin x

x
.

There seem to be few nontrivial results for p 6= 2, with a notable exception for the

case p = 1 which has been studied by several authors (see, e.g., [2, 5, 9]) owing

largely to its relevance for problems in analytic number theory. The best numerical

estimates in this case,

(1.3) 0.5409288219 ≤ C1 ≤ 0.5409288220,

were found by Hörmander and Bernhardsson [13], whose interest in C1 was moti-

vated by its appearance in a Bohr-type estimate for the Cauchy–Riemann operator

in R2.
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We will present evidence and prove several results supporting what we will

refer to as the monotonicity conjecture, namely that p 7→ Cp/p is a strictly

decreasing function on the half-line (0,∞). Our first result to that effect reads as

follows.

Theorem 1.1. If 2 ≤ p ≤ 4, then

Cp ≤
p

2

(
1 − 2(p − 2)

∫ ∞

1

(sincπx)2 4x + p − 2

(2x + p − 2)2
dx

)
.

We have not been able to find a similar explicit bound for Cp in the range

1 < p < 2. We will however offer some numerical evidence for the monotonicity

conjecture also here. To this end, let B denote the beta function and set

(1.4) fp(z) :=
2

B(1/2, 2/p)

∫ π

−π

(
1 −

ξ2

π2

) 2
p
−1

eizξ dξ

2π
.

The normalization factor is chosen so that fp(0) = 1. The lower bound in (1.3) is

obtained by a small perturbation of

(1.5) f1(z) =
3 sinπz − 3πz cosπz

π3z3

while f2(z) = sincπz is the extremal function for p = 2. In general, fp can be

expressed as a confluent hypergeometric function or in terms of Bessel functions

of the first kind.

Figure 1 exhibits numerical evidence for the monotonicity conjecture in the

range 1 ≤ p ≤ 4, obtained using the integrate and special.hyp0f1 packages

from SciPy. At p = 1, the lower bound arising from (1.5) differs from Hörmander

and Bernhardsson’s bounds only in the fourth decimal place. We believe that the

blue curve in Figure 1 in essence represents the true value of Cp for 1 ≤ p ≤ 4.

In Section 9.4, we will present further evidence for this claim in the case p = 4.

However, as we will see below, the case p = 1 is particularly favorable, and it

seems hard to get numerical bounds of similarly high precision for p > 1.

By the power trick (see Lemma 2.1 below), which implies that C2p ≤ 2Cp,

Theorem 1.1 and these numerics yield bounds for Cp in the whole range 0 < p <∞.

In particular, we find that Cp < p/2 for all p > 2. This is an improvement on

the best previously known estimate Cp ≤ ⌈p/2⌉ for all p > 2, which follows from

C2 = 1 and the power trick (see e.g. [10, 14, 15]). We may also obtain a uniform

bound

Cp ≤ p/2 − A(p − 2)

for 2 < p < ∞ by an elaboration of the method used to prove Theorem 1.1. Of

greater interest, however, is the asymptotic behavior of Cp as p → ∞ and p → 0+,

respectively. In the former case, we obtain the following precise result.
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Figure 1. Plot of the lower bound for Cp obtained numerically by testing with the

function fp from (1.4) for 1 ≤ p ≤ 4 and the upper bound for Cp from Theorem 1.1

for 2 ≤ p ≤ 4. The line p/2 can be seen in the background.

Theorem 1.2. There exist two positive constants A and B such that

−A
log p√

p
≤ Cp −

√
πp

2
≤ −B

log p√
p

for all sufficiently large p.

In the case p → 0+ which is of a rather different nature, our result reads as

follows:

Theorem 1.3. (a) There is a positive number c0 such that

lim
p→0+

2

p
Cp = c0.

(b) The number c0 lies in the interval [1.1393830, 1.1481785].

Our approach is based on expressing Cp as the solution of an extremal problem,

namely

(1.6)
1

Cp

= inf
f∈PWp

{‖f‖p
p : f (0) = 1}.

This extremal problem was studied by Levin and Lubinsky [20], who found that

the quantity C −1
p appears as a scaling limit for certain Christoffel functions. See

also Lubinsky’s survey [22], where Problems 4 and 5 specifically ask for estimates
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of Cp and for information on the solutions of (1.6). Our upper bounds for Cp imply

new estimates for the Nikolskii constants for trigonometric polynomials by [11,

Theorem 1].

A compactness argument shows that the extremal problem (1.6) has solutions

for any 0 < p < ∞, and a rescaling argument shows that the type of these

extremal functions is exactly π. The analysis of the particularly simple case p = 2

above also shows that the corresponding extremal problem has the unique solution

ϕ2(z) = sincπz. In this case, all zeros are simple, and the zero set consists of the

nonzero integers. Our first main result pertaining to the solutions of (1.6) is a

qualitative analogue of this observation.

To state that result, we introduce the following notation and terminology. Given

an entire function ϕ, we let Z (ϕ) denote its zero set. We define the separation

constant of a set of real numbers3 as

σ(3) := inf{|λ− µ| : λ,µ ∈ 3 and λ 6= µ}.

We say that3 is uniformly discrete if σ(3) > 0 and that3 is uniformly dense

if there exists a positive number L such that every interval of length L contains at

least one element from3.

Theorem 1.4. Fix 0 < p <∞ and suppose that ϕ is a solution of the extremal

problem (1.6). The zeros of ϕ are all real. Moreover,

(a) Z (ϕ) is a finite union of uniformly discrete sets;

(b) if p ≥ 1
2
, then Z (ϕ) is uniformly discrete;

(c) if p ≥ 1, then Z (ϕ) is uniformly dense.

It is not difficult to see that the extremal problem (1.6) has a unique solution

for fixed p in the convex range 1 ≤ p < ∞. This extremal function ϕp must then

necessarily be even and consequently of the form

ϕp(z) =

∞∏

n=1

(
1 −

z2

t2
n

)
,

where (tn)n≥1 is a strictly increasing sequence of positive numbers. Our second

main result on solutions of (1.6) and a crucial ingredient in the proof of Theorem 1.1

is the following quantitative version of Theorem 1.4(b).

Theorem 1.5. If 2 ≤ p ≤ 4, then

(a) t1 ≥ 2
π

;

(b) tn+1 − tn ≥ 2
3

for every n ≥ 1.
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We have verified that our methods allow us to improve both these bounds

slightly; we could for instance have replaced 2/3 by 0.6778 in part (b). Here the

point is, however, that 2/3 is the exact bound required in the proof of Theorem 1.1.

The weaker bounds t1 ≥ 1/2 and tn+1 − tn ≥ 3/5 will be shown to hold respectively

in the full range 0 < p <∞ and for 2 < p < ∞.

Outline of the paper. As a guide to the reading of this rather long paper, we

now give an outline of the various sections and the main ideas involved in them.

The reader may find it useful to consult the dependence relations between these

sections shown in Figure 2.

The next section—the prologue of our paper—addresses what appears to be a

main challenge to establish the monotonicity conjecture: How can we extend the

inequality C2p ≤ 2Cp to all pairs p < q to get Cq/q ≤ Cp/p? This question is

reminiscent of the problems discussed in [4], one of which was solved in a striking

way in [16]. See also the preprint [21] which solves another problem from [4].

The basic question in all these problems is how to circumvent the obstacle that the

familiar tools of interpolation theory are unavailable.

Our partial remedy for this impasse is the topic of Section 2; it is an explicit

integral formula for |ϕ(0)|q for any extremal function ϕ and any q > 0. This

formula will be the starting point for the proof of Theorem 1.1, similarly to how

(1.2) was the starting point for the proof that C2 = 1. It also clarifies the need for

precise information about the zeros of ϕ and thus serves as a motivation for our

detailed study of those zeros.

The three subsections of Section 3 present some preliminary results. Section 3.1

deals with the most basic properties of the zeros of extremal functions, including

the important orthogonality relations that will be extensively used in subsequent

sections. Roughly speaking, this subsection enunciates that the majority of the

results of [13] for p = 1 extend to the full range 0 < p < ∞. Section 3.2

deduces various consequences of convexity in the range 1 ≤ p <∞. Of particular

importance is the following counterpart of (1.2),

(1.7) f (0) =

∫ ∞

−∞

f (x)
|ϕp(x)|p−2ϕp(x)

‖ϕp‖
p
p

dx

which holds for all f in PWp when 1 ≤ p < ∞. The fact that |ϕp|
p−2ϕp only takes

values ±1 when p = 1 played a crucial role in [13], and we will also see it used

in Section 4. The final Section 3.3 discusses briefly the Landau–Pollak–Slepian

operator of time–frequency concentration [27, 17, 18]; the numerical value of

its largest eigenvalue will be required in the proofs of both Theorem 1.4 (c) and

Theorem 1.5.
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Sections 4 and 5, giving the proofs of Theorem 1.4 and Theorem 1.5, study

respectively the geometry of the zero sets of extremal functions and numerical

bounds on the separation of such zero sets in the range 2 < p < ∞. In both cases,

the main difficulty is that the zero sets are only indirectly accessible through the

orthogonality relations alluded to above. Sections 4 and 5 aim at bringing out as

much explicit information as possible from these relations.

Section 6 gives the proof of Theorem 1.1. The idea is to put into effect the

numerical bounds of Theorem 1.5 in the formula of Section 2. In carrying out this

idea, we rely on somewhat intricate combinatorial arguments.

Section 7 presents the proof of Theorem 1.2 and Theorem 1.3. The example

functions

gα(z) :=
Ŵ2(α)

Ŵ(α− z)Ŵ(α + z)

play a central role in our asymptotic analysis of the lower bounds for Cp, because

these functions seem to mimic the extremal functions for suitable choices of α.

We believe that g1/2+1/p is “close” to the extremal function ϕp when p is “close”

to 2. However, when p → ∞ or p → 0+, we will see that this connection is more

subtle.

The two final sections of the paper present ideas for further developments. Sec-

tion 8—the epilogue of our paper—revisits two central notions used throughout the

preceding sections, namely those of duality and orthogonality. We first prove that

(1.7) extends in a distributional sense beyond the convex regime to 1/2 ≤ p < 1.

We then show that there is a natural Hilbert space—more specifically a de Branges

space—induced by the orthogonality relations associated with the zeros of ϕp for

1 < p < ∞. The basic questions suggested by this section are both related to

convexity: How to extend results more generally beyond the convex regime, and

how to take advantage of the theory of de Branges spaces in the strictly convex

case? The final Section 9 lists a number of conjectures and further open problems,

suggested by our analysis and numerical experiments.

We hope the final two sections of our paper may inspire further work.

4 8

1 2 3 5 6 9

7

Figure 2. Dependence relations between sections of the present paper.
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2 Prologue: The power trick and its extension to posi-
tive powers

We will set the stage for our study by scrutinizing the well known power trick,

which in our context reads as follows.

Lemma 2.1. Fix 0<p<∞. If there is a positive integer k such that q=kp, then

Cq

q
≤

Cp

p
.

Proof. Consider f in PWq. Clearly, f k is entire and of exponential type at

most kπ. The function g(z) = f k(z/k) is then of exponential type at most π.

Consequently,

|f (0)|q = |g(0)|p ≤ Cp

∫ ∞

−∞

|g(x)|p dx = kCp

∫ ∞

−∞

|f (x)|q dx = kCp‖f‖q
q.

This implies that Cq ≤ kCp, which is equivalent to the asserted estimate. �

We have already seen that C2 = 1, so the power trick implies that C4 ≤ 2. It

turns out that we can do better by a slight twist on the power trick. Indeed, suppose

that f is a function in PW4. Then the function g(z) := f (z/2)f ∗(z/2) is in PW2,

where f ∗(z) := f (z). Replacing f by g in the reproducing formula (1.2), we find that

(2.1) |f (0)|2 = g(0) =

∫ ∞

−∞

g(x) sincπx dx = 2

∫ ∞

−∞

|f (x)|2 sinc 2πx dx.

We now obtain the following result.

Theorem 2.2. C4 ≤ 2 − 1
12

.

Proof. Starting from (2.1), we obtain an upper bound for the right-hand side

after replacing sinc 2πx by max(sinc 2πx, 0). Squaring both sides and using the

Cauchy–Schwarz inequality, we find that

|f (0)|4 ≤ 4‖f‖4
4

∫ ∞

−∞

max(sinc 2πx, 0)2 dx.

We estimate

4

∫ ∞

−∞

max(sinc 2πx, 0)2 dx = 2 − 2

∞∑

k=0

∫ k+1

k+1/2

sin2(2πx)

π2x2
dx

≤ 2 − 2

∞∑

k=0

1

π2(k + 1)2

∫ k+1

k+1/2

sin2(2πx) dx = 2 −
1

12

to obtain the desired bound. �
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In our context, we may in fact replace g by f 2(x/2) in the above argument, in

view of the following observation.

Lemma 2.3. Fix 0 < p < ∞. Any solution of (1.6) is real-valued on R.

Proof. Suppose that ϕ is a solution of (1.6) and define

ψ(z) :=
ϕ(z) + ϕ∗(z)

2
,

which is in PWp and satisfies ψ(0) = 1 since ϕ(0) = 1. If x is a real number, then

clearly ψ(x) = Reϕ(x). Hence if ϕ is not real-valued on R, then ‖ψ‖p < ‖ϕ‖p

which contradicts the assumption that ϕ is an extremal function.

We may now interpret what we gained in Theorem 2.2 as follows. The map

f (x) 7→ f 2(x/2) from the set of real-valued functions in PW4 fails to be onto the set

of real-valued functions in PW2. This is quite obvious since for example sincπx

has alternating signs. Another way to understand this is to think of squaring f as

“smoothing” its Fourier transform, and there is no way we may arrange this so that

such a “smoothed” Fourier transform equals a characteristic function.

To get access to Cp in the range 2 < p < 4, we may ask if there is a way to

make sense of the power trick for non-integer powers of our function. If this can

be done, we may again think of powers larger than 1 as corresponding to suitable

“smoothings” of the Fourier transform and thus hope for a saving in accordance

with the monotonicity conjecture.

Taking non-integer powers of entire functions can in general only be done

locally. However, if the zeros are real, then we may make sense of such powers in

respectively the lower and upper half-planes. Pursuing the idea of extending the

power trick, we are thus led to the following representation formula. (Here and

elsewhere we account for multiplicities in the usual way when listing the zeros of

a given entire function.)

Theorem 2.4. Fix 0 < p < ∞. Suppose that f is a function in PWp which

does not vanish at the origin and has only real zeros (tn)n∈Z\{0} ordered such that

· · · ≤ t−2 ≤ t−1 < 0 < t1 ≤ t2 ≤ · · · .

For any 0 < q <∞,

|f (0)|q =

∞∑

n=0

∫ t−n

t−n−1

|f (x)|q
sinπq(x + n)

πx
dx +

∞∑

n=0

∫ tn+1

tn

|f (x)|q
sinπq(x − n)

πx
dx,

where we use the convention that t0 := 0.
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t−2 t−1

0

t1 t2 t3

Figure 3. The contour ŴT,ε from the proof of Theorem 2.4. The contribution from

the lower part vanishes as T → ∞, while the upper part becomes the contour Ŵε

in the same limit.

Proof. Inspecting the stated formula, it is clear that we may assume that

f (0) = 1 without loss of generality. Combined with the assumption that f is PWp,

we have (see, e.g., [19, Lecture 17]) the representation

(2.2) f (z) = lim
T→∞

∏

|tn|<T

(
1 −

z

tn

)
.

For every q > 0, we may define f q in the slit plane C\((−∞, t−1]∪[t1,∞)
)
. Let T

be a large positive number and ε a small positive number. Consider the contour

ŴT,ε defined as the line segments connecting the points

−T −iε,
t−1

2
−iε,

t−1

2
+ iε,

t1

2
+ iε,

t1

2
−iε, T −iε, T −iT, −T −iT,

oriented clockwise. See Figure 3 for an illustration. From Cauchy’s formula, we

conclude that

1 = f q(0) = −
1

2πi

∫

ŴT,ε

f q(z)
e−qπiz

z
dz.

Our goal is next to show that the contribution of the part of the contour in the lower

half-plane vanishes as T → ∞. We begin with the horizontal part of the contour.

If q ≥ p, then f is in PWq and we estimate

∣∣∣∣
∫ −T−iT

T−iT

f q(z)
e−qπiz

z
dz

∣∣∣∣ ≤
e−qπT

T

∫ ∞

−∞

|f (x − iT)|q dx ≤
‖f‖q

q

T
,

where the final inequality is the Plancherel–Pólya theorem (see, e.g., [19, Lec-

ture 7]). If q < p, then we first use Hölder’s inequality to the effect that

∣∣∣∣
∫ −T−iT

T−iT

f q(z)
e−qπiz

z
dz

∣∣∣∣ ≤
(

e−pπT

∫ ∞

−∞

|f (x − iT)|p dx

) q

p
(∫ ∞

−∞

dx

|x − iT|r

) 1
r

,
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where r = p/(p − q) > 1 so the final term vanishes as T → ∞. The rest of

the argument is similar. For the vertical part of the contour, we argue as follows.

If q ≥ p, then f is in PWq and consequently g(z) := f q(z)e−qπiz is in the Hardy

space H1 of the lower half-plane. Since integration along a vertical line is a

Carleson measure for the latter space (see, e.g., [8, Chapter 2]), we conclude that

there is a constant C > 0 such that

∣∣∣∣
∫ T−iT

T−iε

f q(z)
e−qπiz

z
dz

∣∣∣∣ ≤
1

T

∫ ∞

0

|g(T − iy)| dy ≤
C

T
‖g‖1 =

C

T
‖f‖q

q.

If q < p, then we first use Hölder’s inequality as above and argue similarly. We

conclude from this that

(2.3) 1 = −
1

2πi

∫

Ŵε

f q(z)
e−qπiz

z
dz,

where Ŵε is the contour obtained from the line segments connecting

−∞ − iε,
t−1

2
− iε,

t−1

2
+ iε,

t1

2
+ iε,

t1

2
− iε, ∞ − iε.

A similar argument involving a rectangular contour of integration oriented counter-

clockwise in the upper half-plane shows that

(2.4) 0 =
1

2πi

∫ ∞+iε

−∞+iε

f q(z)
eqiπz

z
dz.

Adding (2.3) and (2.4), we find that

1 =

∫ t1/2+iε

t−1/2+iε

f q(z)
sinπqz

πz
dz +

(∫ t−1/2+iε

−∞+iε

+

∫ ∞+iε

t1/2+iε

)
f q(z)

eqiπz

2πiz
dz

−

(∫ t−1/2−iε

−∞−iε

+

∫ ∞−iε

t1/2−iε

)
f q(z)

e−qiπz

2πiz
dz + O(ε).

The remainder term O(ε) accounts for the contribution from integration along the

two segments [t−1/2 − iε, t−1/2 + iε] and [t1/2 + iε, t1/2 − iε] in (2.3). We now

wish to take the limit ε→ 0+. Let us define

f
q
±(x) := lim

ε→0+
f q(x ± iε).

If t−1 < x < t1, then evidently f
q
+ (x) = f q

−(x) = f q(x) = |f (x)|q. This means that the

total contribution from these x as ε→ 0+ is

∫ t1

t−1

f q(x)
eiπqx − e−iπqx

2πix
dx =

∫ t1

t−1

|f (x)|q
sin qπx

πx
dx.



606 O. F. BREVIG, A. CHIRRE, J. ORTEGA-CERDÀ AND K. SEIP

If tn < x < tn+1 for some n ≥ 1, then f
q
±(x) = |f (x)|qe∓iπqn in view of (2.2).

Consequently, for these x we get as ε → 0+ the contribution

∫ tn+1

tn

f q
+ (x)

eqiπx

2iπx
dx −

∫ tn+1

tn

f q
−(x)

e−qiπx

2iπx
dx =

∫ tn+1

tn

|f (x)|q
sin qπ(x − n)

πx
dx.

The case when t−n−1 < x < t−n for some n ≥ 1 is similar. �

We will see in the next section that the zeros of any solution of (1.6) are real, so

Theorem 2.4 could possibly replace the power trick. Indeed, setting q = p/2 in the

theorem, we could hope to proceed in a similar way as in the proof of Theorem 2.2,

using the Cauchy–Schwarz inequality and accounting suitably for both the size

and the sign of the kernel that |f |q is integrated against. Note that when q = 2, the

location of the zeros plays no role, and we are back to (2.1).

To succeed with this approach and thus prove Theorem 1.1, we need to have

quite detailed information about the location of the zeros of the extremal functions.

A good part of our paper will therefore study the zero sets of those functions, and

we will be particularly interested in precise results in the range 2 < p ≤ 4. The

reader may notice that if it were known that the zeros lie in suitable neighborhoods

of the nonzero integers, then Theorem 1.1 would be a trivial consequence of

Theorem 2.4. While this kind of location is likely to be true, our results are quite

far from verifying that. Fortunately, however, Theorem 1.5 is sufficiently strong,

though barely so, for the above proof idea to work.

The representation formula of Theorem 2.4 was, as just described, established

to prove Theorem 1.1 by a non-integer version of the power trick. We will see,

however, that it will also be a convenient tool in the study of the asymptotic behavior

of Cp when p → 0+. As to the asymptotics when p → ∞, we observe that the

integrals in Theorem 2.4 become increasingly oscillating as q = p/2 gets large, in

accordance with the “phase shift” in the order of Cp/p exhibited by Theorem 1.2.

3 Preliminaries

This section compiles some preliminary results, most of which are already known.

In Section 3.1 we work in the full range 0 < p < ∞, while in Section 3.2, we

restrict our attention to the convex range 1 ≤ p < ∞. Section 3.3 is concerned

with the Landau–Pollak–Slepian problem, where the relevant theory has only been

developed for p = 2.

3.1 Zeros and associated orthogonality relations. What follows is

largely inspired by the variational arguments used in the proof of [13, Theorem 2.6].
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Here and in what follows, we say that f is a real entire function if f is real-valued

on R. Similarly, we say that a rational function is real if it is the ratio of two real

polynomials.

Lemma 3.1. Fix 0 < p < ∞ and let ϕ be a solution of (1.6). If r = r1/r2

is a real rational function such that deg(r1) ≤ deg(r2), r(0) = 0, ϕr is an entire

function, and |ϕ|pr is integrable, then

(3.1)

∫ ∞

−∞

|ϕ(x)|pr(x) dx = 0.

Proof. For every real number ε, the function ψ(z) := ϕ(z) + εϕ(z)r(z) belongs

to PWp and satisfies ψ(0) = 1. If we set

F(ε) := ‖ψ‖p
p =

∫ ∞

−∞

|ϕ(x) + εϕ(x)r(x)|p dx,

then the assumption that ϕ is a solution of the extremal problem implies that

F(ε) ≥ F(0) for all ε. We will show that this can only hold if (3.1) is true.

Let x1, x2, . . . , xk be the real poles of r with multiplicities m1,m2, . . . ,mk. Then

the zero of ϕ at xj has multiplicity nj ≥ mj, and we also have

(3.2) pnj > mj − 1

since |ϕ|pr is assumed to be integrable. Fix a small number δ > 0 and set

Ej := {x : |x − xj| ≤ δ|ε|1/mj }

for j = 1, 2, . . . , k, and let E := E1 ∪ E2 ∪ · · · ∪ Ek. Then

∫

R\E

|ϕ(x) + εϕ(x)r(x)|p dx = ‖ϕ‖p
p +

(∫ ∞

−∞

|ϕ(x)|pr(x) dx + O(δm)

)
ε + o(|ε|).

On the other hand, we find that

∫

Ej

|ϕ(x) + εϕ(x)r(x)|p dx = O
(
|ε|

p+ 1
mj

(p(nj−mj)+1)
)

= O(|ε|1+ηj )

with ηj := (pnj + 1)/mj − 1 > 0 by (3.2). Fixing a sufficiently small δ, we see that

we may obtain F(ε) < F(0) for some small ε should

∫ ∞

−∞

|ϕ(x)|pr(x) dx 6= 0.
�

We have two applications of Lemma 3.1. The first reads as follows.
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Lemma 3.2. Fix 0 < p < ∞. The zeros of a solution of (1.6) are real.

Moreover,

(a) if p ≥ 1/2, then the zeros are simple;

(b) if p < 1/2, then the zeros have multiplicity at most 1/p.

Proof. Let ϕ be a solution of (1.6). It follows from Lemma 2.3 that if a + bi

is a zero of ϕ and b 6= 0, then a − bi is also a zero of ϕ. Pick ε > 0 so small that

(x − a)2 + b2 > (x − a)2 + b2 − εx2 > 0

for every real number x 6= 0. The function

ψ(z) :=
(z − a)2 + b2 − εz2

(z − a)2 + b2
ϕ(z)

is in PWp and satisfies ψ(0) = 1. However, since |ψ(x)| < |ϕ(x)| for every

real number x 6= 0 by our choice of ε, this contradicts the assumption that ϕ is an

extremal function. Consequently, all zeros of ϕmust be real. Suppose that p > 1/2

and that t is a real zero of ϕ of order 2 or more. Since ϕ(0) = 1, we can exclude

the possibility that t = 0. We apply Lemma 3.1 to the function r(z) = z2

(z−t)2 , where

|ϕ|pr is integrable since p > 1/2, and we obtain that

∫ ∞

−∞

|ϕ(x)|px2

(x − t)2
dx = 0,

which yields a contradiction. The same proof works if 0 < p < 1/2 and the

multiplicity of the zero of ϕ at t is strictly larger than 1/p because in this case |ϕ|pr

is again integrable.

Next we deal with the case p = 1/2. We can no longer apply Lemma 3.1

as above, since |ϕ|1/2r may not be integrable. Suppose nevertheless that ϕ has a

double zero at t and introduce

ϕε(x) :=
(1 − x

t−ε
)(1 − x

t+ε
)

(1 − x/t)2
ϕ(x)

for 0 < ε < 1. Our plan is to show that there exists a positive constant c such that

‖ϕε‖
1/2
1/2 = ‖ϕ‖

1/2
1/2 − cε log

1

ε
+ O(ε)

as ε → 0+, contradicting the assumption that ϕ solves the extremal problem. We

set x = t + ξ and see that

(3.3) |ϕε(t + ξ)| =
|ξ2 − ε2|

ξ2|1 − ε2/t2|
|ϕ(t + ξ)|.
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This entails that
∫

|ξ|>1

|ϕε(t + ξ)|1/2 dx =

∫

|ξ|>1

|ϕ(t + ξ)|1/2 dx + O(ε2).

Since ϕ(t + ξ) = O(ξ2) for small ξ, we also find that both

∫

|ξ|<ε

|ϕε(t + ξ)|1/2 dx = O(ε2) and

∫

|ξ|<ε

|ϕ(t + ξ)|1/2 dx = O(ε2).

Since ϕ(t + ξ) = aξ2 + O(ξ3), it is however clear from (3.3) that

∫

ε≤|ξ|≤1

|ϕε(t + ξ)|1/2 dx =

∫

ε≤|ξ|≤1

|ϕ(t + ξ)|1/2 dx − cε log
1

ε
+ O(ε).

�

The second application of Lemma 3.1 is the following orthogonality relations

between the zeros of the extremal functions, which will be the workhorse of

Sections 4, 5, and 8.

Lemma 3.3. Fix 0 < p < ∞, and let ϕ be a solution of (1.6).

(a) If t is a zero of ϕ, then ∫ ∞

−∞

|ϕ(x)|px

x − t
dx = 0.

(b) If t and s are distinct zeros of ϕ, then

∫ ∞

−∞

|ϕ(x)|px2

(x − t)(x − s)
dx = 0.

Proof. The zeros are real by Lemma 3.2. To prove (a), we apply Lemma 3.1

with r(z) = z
z−t

, and to establish (b), we use Lemma 3.1 with r(z) = z2

(z−t)(z−s)
. �

We will also use the following estimate, which is due to Hörmander [12, p. 26].

Lemma 3.4. Suppose that f is a real function in PW∞ and that |f (ξ)| = ‖f‖∞.

Then

|f (x)| ≥ ‖f‖∞ cosπ(x − ξ)

for |x − ξ| ≤ 1/2.

3.2 Consequences of convexity. The convexity of Lp(R) for 1 ≤ p < ∞

can be employed to obtain additional information about the solutions of (1.6)

compared to what we obtained for the full range 0 < p <∞ above.

The strict convexity of Lp(R) for 1 < p <∞ implies that the extremal problem

(1.6) has a unique solution. It is also known that (1.6) has a unique solution for

p = 1. We refer to [20, Lemma 6.1] for a clean proof of this fact. A slightly
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different proof can be found in [5, Section 3.1]. The same argument can also be

extracted from the proof of [13, Theorem 2.6].

It is plain that if ϕ is a solution of (1.6), then so is ψ(z) = ϕ(−z). Hence the

uniqueness of the extremal function forces it to be even. Consequently, we obtain

the following result from Lemma 3.2(a) and the canonical product representation

of functions in Paley–Wiener spaces (see, e.g., [19, Lecture 17]).

Lemma 3.5. Fix 1 ≤ p < ∞. The extremal problem (1.6) has a unique

solution of the form

ϕp(z) =

∞∏

n=1

(
1 −

z2

t2
n

)
,

where (tn)n≥1 is a strictly increasing sequence of positive numbers.

In the range 1 ≤ p < ∞, we have in Lemma 3.5 adopted the notation ϕp for

the unique solution of (1.6). Before stating our next result, we set

(3.4) 8(x) :=
|ϕ(x)|p−2

‖ϕ‖
p
p

ϕ(x)

for any nontrivial function ϕ in PWp. Another variational argument shows that

the unique extremal function gives rise to a reproducing kernel formula for PWp.

In the case p = 1, the same argument may be found in [5, Section 3.2] or in [13,

Section 2].

Theorem 3.6. If 1 ≤ p < ∞, then ϕ = ϕp if and only if

(3.5) f (0) =

∫ ∞

−∞

f (x)8(x) dx

holds for every f in PWp.

Proof. Suppose first that (3.5) holds for every f in PWp. If f (0) = 1, then

Hölder’s inequality applied to (3.5) yields ‖ϕ‖p ≤ ‖f‖p. This shows that ϕ = ϕp

by Lemma 3.5. Conversely, suppose that ϕ = ϕp. Let g be a real function in PWp

which satisfies g(0) = 0. Mimicking the proof of Lemma 3.1, we begin by setting

ψ := ϕp + εg and

G(ε) := ‖ψ‖p
p =

∫ ∞

−∞

|ϕp(x) + εg(x)|p dx.

Since 1 ≤ p < ∞, we may differentiate under the integral sign without worry-

ing about the zeros of ϕp (which we know are simple by Lemma 3.2(a)). The

assumption that ϕp is an extremal function shows that

(3.6) 0 = G′(0) =

∫ ∞

−∞

|ϕp(x)|p−2ϕp(x)g(x) dx.
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For f in PWp, we set g(z) := f (z) − ϕp(z)f (0) and write
∫ ∞

−∞

|ϕp(x)|p−2ϕp(x)f (x) dx =

∫ ∞

−∞

|ϕp(x)|p−2ϕp(x)g(x) dx +

∫ ∞

−∞

|ϕp(x)|pf (0) dx.

Since ϕp(0) = 1 and since ϕp is real by Lemma 2.3, we see that (3.6) implies (3.5)

under the additional assumption that f is real. This additional assumption can be

removed by the linearity of the integral and the fact that every f in PWp can be

written as f = g + ih for functions g and h in PWp that are real. �

We will discuss a further interesting consequence of convexity in Section 8.2,

where the following simple consequence of Theorem 3.6 will have a role to play.

Corollary 3.7. If 1 ≤ p < ∞, then

(3.7)

∫ ∞

−∞

x2|ϕp(x)|p dx = ∞.

Proof. We prove this by first noting that if 0 < ε < 1/2, then
∫ ∞

−∞

x2 sinc2(πεx)ϕp((1 − 2ε)x)|ϕp(x)|p−2ϕp(x) dx = 0

by Theorem 3.6. If the integral on the left-hand side of (3.7) is finite, then we may

let ε → 0+ and reach the absurd conclusion that this integral vanishes. �

Let us sketch a different proof of Theorem 3.6. Consider the bounded linear

functional L defined on PWp by L (f ) = f (0). By the Hahn–Banach theorem and

the Riesz representation theorem, we deduce that there is some 9 in Lq(R) such

that L (f ) = 〈f,9〉. By Lemma 3.5, we know that ‖L ‖ = ‖ϕp‖
−1
p . It follows from

this and Hölder’s inequality that9 = 8p (in the case p = 1, we use that ϕ1 vanishes

on a set of measure 0). This means that the bounded linear functional generated

by8p on Lp(R) when restricted to the subspace PWp yields the reproducing kernel

formula at the origin. In Section 8.1, we will explore what traces of this duality

remain in the range p < 1.

In the special case p = 2, we may use Theorem 3.6 to solve the extremal

problem (1.6) without knowledge of the reproducing kernel formula (1.2). We will

give yet another proof based on Theorem 2.4 in Example 6.2 below. Note that

Corollary 3.8 in combination with (3.4) and Theorem 3.6 recovers the reproducing

kernel formula (1.2), which we have then established by a variational argument.

Corollary 3.8. C2 = 1, and the unique extremal function is ϕ2(z) = sincπz.

Proof. By Lemma 3.5 we know that there is a strictly increasing sequence of

positive numbers (tn)n≥1 such that

ϕ2(z) =

∞∏

n=1

(
1 −

z2

t2
n

)
.
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Suppose that g is a function in PW2 such that g(t1) = 0 and apply Theorem 3.6 to

the function g(z) z
z−t1

. Multiplying both sides by ‖ϕ2‖
2
2, we infer that

(3.8) 0 =

∫ ∞

−∞

g(x)
x

x − t1
ϕ2(x) dx.

Let f be any function in PW2 and define

g(z) := f (z) −
f (t1)

t1ϕ
′
2(t1)

xϕ2(x)

x − t1
,

where ϕ′
2(t1) 6= 0 by Lemma 3.2(a). Since ϕ2(t1) = 0, we find that g(t1) = 0. It

therefore follows from (3.8) that

0 =

∫ ∞

−∞

f (x)
x

x − t1
ϕ2(x) dx −

f (t1)

t1ϕ
′
2(t1)

∫ ∞

−∞

∣∣∣
x

x − t1
ϕ2(x)

∣∣∣
2

dx,

which we rewrite as

(3.9) f (t1) =

∫ ∞

−∞

f (x)
ψ2(x)

‖ψ2‖
2
2

dx,

where ψ2(z) = 1
t1ϕ

′
2
(t1)

z
z−t1

ϕ2(z). Since f is any function in PW2, we conclude from

Theorem 3.6 and (3.9) that

ψ2(z)

‖ψ2‖
2
2

=
ϕ2(z − t1)

‖ϕ2‖
2
2

⇐⇒ zϕ2(z) = C(z − t1)ϕ2(z − t1),

where C is a nonzero constant. Since these two entire functions are equal, their

zero set must be (nt1)n∈Z and consequently ϕ2(z) = sincπz/t1. Since the extremal

function is of exponential type π and t1 > 0, we must have t1 = 1. We conclude

that C2 = 1 by the well known fact that the L2 integral of sincπx is 1.

It is of interest to interpret Theorem 3.6 in terms of the Fourier transform of

|ϕ|p−2ϕ. To this end, we begin by fixing the following normalization:

f̂ (ξ) =

∫ ∞

−∞

f (x) e−ixξ dx and f (x) =

∫ ∞

−∞

f̂ (ξ) eiξx dξ

2π
.

By the Lp version of the Paley–Wiener theorem (see, e.g., [1, Theorem 4]), we

have another formula for the functional of point evaluation in PWp, namely

(3.10) f (0) =

∫ π

−π

f̂ (ξ)
dξ

2π
.

If 1 ≤ p ≤ 2, then it follows from the Hausdorff–Young inequality that in fact f̂ is

a function in Lq([−π, π]). In the range 2 < p < ∞, we interpret f̂ in (3.10) as a
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tempered distribution which is supported on [−π, π]. If we define 8 as in (3.4), a

similar argument shows that 8̂ is in Lp(R) if ϕ is in PWp for 2 ≤ p <∞, while in

the range 1 ≤ p < 2 we can only interpret 8̂ as a tempered distribution.

At any rate, we obtain the following result from Theorem 3.6, (3.10), and an

approximation argument.

Corollary 3.9. If 1 ≤ p < ∞, then ϕ = ϕp if and only if

8̂χ(−π,π) = χ(−π,π)

in the sense of distributions and where 8 is as in (3.4).

By the convolution theorem for Fourier transforms, the condition of Corol-

lary 3.9 can be reformulated as 8 ∗ ϕ2 = ϕ2, where ϕ2(z) = sincπz. In the range

1 < p < ∞, this reformulation makes sense pointwise. The fact that ϕ2 is not

in PW1, means that for p = 1, the reformulation must also be interpreted in the

sense of distributions. This means that if p = 1 in the following result, then

‖ϕ2 − 8 ∗ ϕ2‖∞ should be interpreted as the norm of the (possibly unbounded)

linear functional on S ∩ L1(R), where S denotes the Schwartz class.

Theorem 3.10. Fix 1 ≤ p <∞. If ϕ is a function in PWp with ϕ(0) = 1, then

(3.11)
1

‖ϕ‖p

≤ C 1/p
p ≤

1

‖ϕ‖p

+ ‖ϕ2 −8 ∗ ϕ2‖q,

where8 is as in (3.4) and p−1 + q−1 = 1.

Proof. The lower bound in (3.11) is trivial. For the upper bound, consider the

function F := ϕ2 + (8−8 ∗ ϕ2) and let f be a function in S ∩ PW2. Computing

using (1.2), we find that F ∗ f = f . By Hölder’s inequality and density, it follows

that

C 1/p
p ≤ ‖F‖q ≤ ‖8‖q + ‖ϕ2 −8 ∗ ϕ2‖q =

1

‖ϕ‖p

+ ‖ϕ2 −8 ∗ ϕ2‖q.
�

The above result should be compared to the second part of [13, Theorem 2.6].

Indeed, if we add the assumption that the Fourier transform of 8 restricted to

(−π, π) be in Lp(−π, π), then we get from (3.11) to

(3.12)
1

‖ϕ‖p

≤ C 1/p
p ≤

1

‖ϕ‖p

+

(∫ π

−π

∣∣1 − 8̂(ξ)
∣∣p dξ

2π

) 1
p

by the Hausdorff–Young inequality when 1 ≤ p ≤ 2. Weaker than (3.11), (3.12) is

more manageable from a numerical point view as we integrate over a finite interval.
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Since |8| is constant and 8 changes sign at the zeros of ϕ when p = 1, we may

compute 8 and thus 8̂ once we know the zeros of a given function ϕ. This fact

enabled Hörmander and Bernhardsson to use (3.12) rather than (3.11) to bound C1

from above.

If p is a positive even integer, then we can compute 8̂ by the convolution

theorem (see Section 9.4). However, in this case we cannot use the Hausdorff–

Young inequality and Theorem 3.10 to obtain an upper bound for Cp.

3.3 Eigenvalues of prolate spheroidal wave functions. In a series

of seminal papers, Landau, Pollak, and Slepian studied in the early 1960’s the

eigenvectors and eigenvalues of the time–frequency concentration operator. We

will only need certain specific values of these eigenvalues, but we would like to

place our application in context by recapitulating the basic results of [27, 17, 18].

The concentration operator is defined on PW2
�, which consists of the L2 func-

tions with Fourier transform supported on [−�,�]. We define two operators, the

band-limiting operator B� which is the orthogonal projection from L2(R) to PW2
�

and the time-limiting operator DT which is the orthogonal projection of func-

tions in L2(R) to the subspace of functions supported in [−T/2,T/2]. Finally, the

concentration operator C�,T : PW2
� → PW2

� is the composition

C�,T := B�DT .

Landau, Pollak, and Slepian studied the eigenfunctions and eigenvalues of C�,T

with a view to applications in signal processing. The concentration operator C�,T

is compact and self-adjoint, and by the spectral theorem, PW2
� has an orthonormal

basis of eigenfunctions with real eigenvalues. Clearly, since C�,T is a composition

of two projection operators, all its eigenvalues lie between 0 and 1. The eigenvalues

are simple and denoted by λ0, λ1, . . . and ordered by descending magnitude so that

1 > λ0 > λ1 > · · · . What is important for us and in many applications, is that the

largest eigenvalue λ0 satisfies the extremal property

(3.13) λ0 = sup
f∈PW2

�

{∫ T/2

−T/2

|f (x)|2 dx :

∫ ∞

−∞

|f (x)|2 dx = 1

}

and the unimodular scalar multiples of the corresponding eigenfunction ψ0 are

the only functions that achieve this supremum. The eigenvalues depend only

on the product of T and �, and the same holds for the eigenfunctions, up to a

trivial scaling. It is therefore customary to introduce the parameter c := �T/2 and

write λj = λj(c) and ψj(t) = ψj(c, t) for the eigenfunctions associated with � = c

and T = 2.
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Specifically, we will apply this as follows: If f is a function in PW2 = PW2
π,

then ∫

I

|f (x)|2 dx ≤ λ0

(π|I|

2

)
‖f‖2

2.

It is therefore important for us to have good estimates for λ0. A remarkable fact

proved by Landau, Pollak, and Slepian is that the concentration operator C�,T

commutes with the differential operator

L(x) :=
d

dx
(1 − x2)

d

dx
− cx2.

This “lucky accident” shows that the eigenfunctions of the concentration operator

are also eigenfunctions of the corresponding Sturm–Liouville operator associated

with L. This helps identifying them because this equation arises in the study of the

three-dimensional wave equation in prolate spheroidal coordinates, and there is an

abundant literature on them (see, e.g., [24]). The eigenfunctions are the prolate

spheroidal angular functions, and the corresponding eigenvalues are given by the

prolate spheroidal radial function R0,n. In particular,

λ0(c) =
2π

c
R2

0,0(c, 1).

The prolate spheroidal functions R0,n can be computed by an expansion in Bessel

functions. We have used a Fortran implementation of the algorithm by Zhang and

Jin in [29, p. 536] to compute the values in Table 1 that we require in our analysis

of Cp. We have also verified the table using Mathematica.

c λ0(c)

2π/3 0.896107188059

2 0.880559922317

3π/5 0.858990907475

1.080420803046π/4 0.500000000028

Table 1. Principal eigenvalue of Cc,2.

4 Geometric properties of the zero sets of extremal
functions

The purpose of this section is to establish Theorem 1.4. We will enumerate the

zero set Z (ϕ) = (tn)n∈Z\{0} according to the convention that

· · · < t−2 < t−1 < 0 < t1 < t2 < · · · .

The proof splits naturally into two parts that will be treated in the subsequent

subsections.
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4.1 Proof of Theorem 1.4(a) and (b). Recall that the first assertion,

namely that the zeros of any solution of (1.6) are real, has already been established

in Lemma 3.2 above. The parts (a) and (b) have similar proofs, but the latter is

somewhat more refined (and relies on the former).

Proof of Theorem 1.4(a). By symmetry, it is sufficient to consider zeros t

satisfying t ≥ 1. Consider k ≥ max(2, 4/p) consecutive zeros repeated according

to their multiplicity, say

1 ≤ tn ≤ tn+1 ≤ · · · ≤ tn+k−1.

We may assume that tn+k−1 − tn ≤ 1/3, because otherwise we would be done and

tn+k−1 > tn because, by Lemma 3.2(a) and (b), the multiplicity of tn is bounded

above by 1/p. Using Lemma 3.3(b) with t = tn and s = tn+k−1, we find that

(4.1)

∫ ∞

−∞

|ϕ(x)|px2

(x − tn)(x − tn+k−1)
dx = 0.

Setting

ψ(x) := ϕ(x)

k−1∏

j=0

1

x − tn+j

and 9(x) :=
|ψ(x)|p x2

|(x − tn)(x − tn+k−1)|

k−1∏

j=0

|x − tn+j|
p,

we rewrite (4.1) as

(4.2)

∫

R\I

9(x) dx =

∫

I

9(x) dx,

where I := [tn, tn+k−1]. Estimating the right-hand side of (4.2) crudely, we find that

∫

I

9(x) dx ≤ ‖ψ‖p
∞t2

n+k−1|I|
p(k−2)

∫

I

(x − tn)p−1(tn+k−1 − x)p−1 dx

= ‖ψ‖p
∞t2

n+k−1|I|
pk−1 B(p, p).

(4.3)

On the other hand, if ξ is a point at which |ψ| attains its maximum, then

|ψ(x)| ≥
‖ψ‖∞

2
,

when |x − ξ| ≤ 1/3 by Lemma 3.4. Hence, since |I| ≤ 1/3, there exists an

interval of length 1/12 in which all points x are at distance at least 1/12 from I and

|ψ(x)| ≥ ‖ψ‖∞/2. Restricting the integration over R \ I to this interval and using

that kp − 4 ≥ 0, we find by an elementary argument that

(4.4)

∫

R\I

9(x) dx ≥
2−p

12
Ckp−2t2

n+k−1‖ψ‖p
∞
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for an absolute constant C > 0. Now plugging (4.3) and (4.4) into (4.2), we find

that |I| ≥ δ for an absolute constant δ > 0. This leads to the conclusion that Z (ϕ)

can be expressed as the union of ⌊4/p⌋ + 2 or fewer uniformly discrete sets. �

In the proof of Theorem 1.4(a), we used Lemma 3.4 to extract information

about the behavior of certain functions in PW∞ near their global maxima. The

following result allows us to say something about the local behavior of ψ under an

assumption that any extremal function will satisfy in light of Theorem 1.4(a). The

basic idea is to consider the local symmetrization of ψ in a point. The result will

always be employed in conjunction with the arithmetic–geometric mean inequality.

Lemma 4.1. Suppose that ψ is in PWp and that Z (ψ) is a finite union of

uniformly discrete subsets of R. Let ξ be point in R \ Z (ψ) and let

0 < η ≤ dist(ξ,Z (ψ)).

Then, for |y| ≤ η/2 we have

|ψ(ξ − y)ψ(ξ + y)| ≥
3

4

( 2

π

)2m

|ψ(ξ)|2,

where m denotes the maximal number of zeros that ψ has in an interval of length η.

Proof. Using the canonical factorization of ψ, we find that

ψ(ξ − y)ψ(ξ + y)

ψ2(ξ)
=
∏

t∈Z (ψ)

(
1 −

y2

(ξ − t)2

)
.

For each j in Z, we set Ij := Z (ψ) ∩ [ξ + ηj, ξ + η(j + 1)). Note that I0 = ∅,

I−1 ⊆ {ξ − η}, and each set Ij contains at most m points. Therefore, if |y| ≤ η,

then we get

∏

t∈Z (ψ)

(
1 −

y2

(ξ − t)2

)
=
∏

j∈Z\{0}

∏

t∈Ij

(
1 −

y2

(ξ − t)2

)

≥
(

1 −
y2

η2

) ∏

j∈Z\{0}

(
1 −

y2

η2j2

)m

.

Restricting further to |y| ≤ η/2, we obtain the asserted estimate. �

Lemma 4.1 will find several applications in the proof of Theorem 1.4(c). In

the proof of Theorem 1.4(b), we will use a slightly different version of the same

argument. The same idea will also be used in the proof of Theorem 1.5(b) in

Section 6.
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When we estimated the right-hand side of (4.2) in the proof of Theorem 1.4(a),

we got the factor |I|kp−1. For the conclusion at the end of the argument to hold,

we must have kp − 1 ≥ 0. To establish that the zero set is uniformly discrete,

we must be able to take k = 2 here. This is what forces us to require p ≥ 1/2 in

Theorem 1.4(b).

Proof of Theorem 1.4(b). Our plan is to assume that the zero set fails to

be uniformly discrete and show that this leads to a contradiction. To this end, let

(tnj
)j≥1 be a sequence of zeros of ϕp such that δj := tnj+1 − tnj

→ 0. We may assume

without loss of generality that tnj
→ ∞ and also that δj ≤ 1/4 for all j ≥ 1. Since ϕ

has exponential type π, we know that tn/n → 1 as n → ∞. We may therefore also

assume that both

(4.5) tnj
− tnj−1 ≥ δj and tnj+2 − tnj+1 ≥ δj.

We will again invoke Lemma 3.3(b), now with t = tnj
and s = tnj+1 so that k = 2 in

the argument used in the proof of Theorem 1.4(a). We set

ψj(x) :=
ϕ(x)

(x − tnj
)(x − tnj+1)

and 9j(x) :=
|ψj(x)|px2

|x − tnj
|1−p|x − tnj+1|1−p

,

to find that

(4.6)

∫

R\Ij

9j(x) dx =

∫

Ij

9j(x) dx,

where Ij := [tnj
, tnj+1]. Let ξj be a point where |ψj| takes its maximum on Ij.

The right-hand side of (4.6) is estimated as before, so that we get

(4.7)

∫

Ij

9j(x) dx ≤ t2
nj+1δ

2p−1
j B(p, p)|ψj(ξj)|

p.

To estimate the left-hand side of (4.6), we first use the arithmetic–geometric

mean inequality to see that

9j(ξj − y) +9j(ξj + y) ≥ 2
√
9j(ξj − y)9j(ξj + y).

If we restrict our attention to 2δj ≤ y ≤ 1, then

√
9j(ξj − y)9j(ξj + y) ≥ (t2

nj
− 1)

y2(p−1)

2p
|ψj(ξj)|

p|gj(y)|p/2,

for

gj(y) :=
ψj(ξj − y)ψj(ξj + y)

ψ2
j (ξj)

=
∏

t∈Z (ψj)

(
1 −

y2

(ξj − t)2

)
.



POINT EVALUATION IN PALEY–WIENER SPACES 619

It follows that

(4.8)

∫

R\Ij

9j(x) dx ≥ 21−p(t2
nj

− 1)|ψj(ξj)|
p

∫ 1

2δj

y2(p−1)|gj(y)|p/2 dy.

We separate out the zeros of ϕ that are close to our pair of zeros by defining

(4.9) Tj := {t ∈ Z (ϕ) \ {tnj
, tnj+1} : dist(t, {tnj

, tnj+1}) ≤ 2}.

It follows from Theorem 1.4 (a) that there is a positive integer d such that Tj has at

most d elements for every j ≥ 1. Mimicking the proof of Lemma 4.1, we find that

there is a constant C which only depends on ϕ such that

|gj(y)| ≥ C
∏

t∈Tj

∣∣∣1 −
y2

(ξj − t)2

∣∣∣

for 0 ≤ y ≤ 1. For every t in Tj, we have that δj ≤ |ξj − t| ≤ 2 + δj by, respectively,

(4.5) and (4.9). Set

Ej =
⋃

t∈Tj

{
y ∈ [0, 1] : 1 −

1

10d
≤

y

|ξj − t|
≤ 1 +

1

10d

}
.

By construction, |gj|
p is bounded below by a constant which does not depend on j

when y is in [0, 1] \ Ej. Thus restricting the integration to [2δj, 1] \ Ej when we

estimate the right-hand side of (4.8) from below, we find that

∫

Ij

9j(x) dx ≥ (t2
nj

− 1)|ψj(ξj)|
p





Cp, if 1
2
< p <∞;

C 1
2

log 1
δj
, if p = 1

2
,

for a constant Cp which only depends on p and ϕ. We reach a contradiction

as j → ∞, since these bounds are in conflict with (4.6) and (4.7). �

4.2 Proof of Theorem 1.4(c). We will now employ the reproducing for-

mula of Theorem 3.6. As observed both in the introduction and in connection

with the work of Hörmander and Bernhardsson [13] discussed in Section 3.2, this

formula is particularly transparent when p = 1 since then |ϕp|
p−2ϕp takes the val-

ues ±1 and changes sign at the zeros tn. This makes the proof of part (c) rather

simple when p = 1. We therefore begin with this case, which still embodies the

idea to be used for general p ≥ 1.

Proof of Theorem 1.4(c): The case p = 1. If f is a function in PW1

which is nonnegative on R, then the case p = 1 of Theorem 3.6 implies that

(4.10)

∫

In

f (x) dx ≤ ‖ϕ1‖1f (0) +

∫

R\In

f (x) dx,
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where as usual In := [tn, tn+1]. Suppose that 0 < T ≤ |In| and let ψ0 be the solution

of the extremal problem (3.13) with � = π/2. Choosing

f (z) := ψ0(z − µn)ψ∗
0(z −µn)

for µn := (tn + tn+1)/2 in (4.10), we see that

λ0

(πT

4

)
≤ ‖ϕ1‖1|ψ0(−µn)|2 +

(
1 − λ0

(πT

4

))
.

Since |ψ0(x)| → 0 when |x| → ∞, we are led to the bound

lim sup
n→∞

(
tn+1 − tn

)
≤ T0,

where T0 is the number such that λ0(πT0/4) = 1/2. We extract from Table 1

that T0 ≤ 1.0805. �

We will make use of the fact that |ϕp|
p−2ϕp has constant sign on (tn, tn+1) also

when 1 < p < ∞, but now the size of |ϕp| matters as well. This makes the

argument more complicated, and a somewhat elaborate preparation is required

before we can proceed as in the case p = 1. We state the first result in a slightly

more general form than needed in the sequel.

Lemma 4.2. Let (tn)n∈Z be a strictly increasing sequence of real numbers with

no finite accumulation point and let (αn)n∈Z be an associated sequence of positive

numbers. If
∞∑

n=−∞

αn

1 + t2
n

< ∞

and a is any real number, then the function

9(x) := eax
∏

|tn|≤1

|x − tn|
αn

∏

|tn|>1

∣∣∣1 −
x

tn

∣∣∣
αn

eαnx/tn

is well defined on R. The function 9′/9 is strictly decreasing on each interval

(tn, tn+1). In particular, 9 has exactly one maximum on each interval (tn, tn+1).

Proof. The convergence of the infinite product to a continuous function is

immediate. We clearly have 9(tn) = 0, and the remaining part of the lemma

follows by logarithmic differentiation:

(4.11)
d

dx

9′(x)

9(x)
= −

∞∑

n=−∞

αn

(x − tn)2
.

�
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We will use both the orthogonality relation of Lemma 3.3(b) and Theo-

rem 1.4(b), which we have just established. As before, we consider the function

9n(x) :=
x2|ϕp(x)|p

|x − tn| |x − tn+1|
.

Since now9n(tn) = 9n(tn+1) = 0 for 1 < p <∞, Lemma 4.2 shows that there exists

a unique point ξn in (tn, tn+1) such that 9n increases on [tn, ξn] and decreases on

[ξn, tn+1]. We begin by showing that ξn cannot be arbitrarily close to the endpoints

of this interval.

Lemma 4.3. Fix 1 < p < ∞ and let (tn)n≥1 and (ξn)n≥1 be as above. Then

inf
n≥1

dist(ξn, {tn, tn+1}) > 0.

Proof. We set εn := dist
(
ξn, {tn, tn+1}

)
for a fixed n ≥ 1. We have tn+1−tn ≥ σ,

where σ = σ(Z (ϕp)) > 0 by Theorem 1.4(b). No argument is needed when

εn>σ/4, so we assume that εn ≤σ/4. We will also assume that ξn− tn = εn, the con-

verse case being virtually identical. Our starting point is as before Lemma 3.3(b).

Hence we have

(4.12)

∫

R\In

9n(x) dx =

∫

In

9n(x) dx,

where In = [tn, tn+1], and our goal is to estimate the right-hand side from above and

the left-hand side from below.

We first make a preliminary observation. Setting2n(x) := |x − tn|
1−p9n(x), we

have
9′

n(x)

9n(x)
=

p − 1

x − tn
+
2′

n(x)

2n(x)
.

Since 9′
n(ξn) = 0, it is clear that

(4.13)
2′

n(ξn)

2n(ξn)
= −

p − 1

εn

.

We turn to the upper bound for the right-hand side of (4.12). We split the in-

terval into two parts. On the interval [tn, tn + 2εn], we use the trivial estimate

9n(x) ≤ 9n(ξn). On the interval [tn + 2εn, tn+1], we find that

(4.14)
9′

n(x)

9n(x)
≤

p − 1

x − tn
+
2′

n(ξn)

2n(ξn)
=

p − 1

x − tn
−

p − 1

εn

≤ −
p − 1

2εn

.

Here the first inequality holds because x > ξn and x 7→ 2′
n(x)/2n(x) is a decreasing

function by Lemma 4.2. Integrating (4.14), we obtain the pointwise estimate

9n(x) ≤ 9n(ξn) exp
(
−

p − 1

2εn

(x − ξn)
)
.
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Combining these bounds for 9n, we find that

∫

In

9n(x) dx ≤ 9n(ξn)

(
2εn +

∫ tn+1

tn+2εn

exp
(
−

p − 1

2εn

(x − ξn)
)

dx

)

≤ 9n(ξn)
2pεn

p − 1
.

(4.15)

To get a lower bound for the right-hand side of (4.12), we restrict to x that lie in

the interval [tn − 3σ/4, tn − σ/4]. Since ξn ≤ tn + σ/4, we will then have

9n(x)

9n(ξn)
=

|x − tn|
p−12n(x)

|ξn − tn|
p−12n(ξn)

≥
2n(x)

2n(ξn)
≥ cp.

Here the final inequality follows from (4.13) and the fact that the derivative

of 2′
n/2n is bounded for y in [tn − 3σ/4, tn + εn] independently of n, as follows

from (4.11). Consequently,

(4.16)

∫

R\In

9n(x) dx ≥

∫ tn−σ/4

tn−3σ/4

9n(x) dx ≥
σ

2
cp9n(ξn).

If εn is sufficiently small we obtain a contradiction from (4.12), (4.15), and (4.16).

�

We now introduce the notations µn := (tn + tn+1)/2 and τn := tn+1 − tn.

Lemma 4.4. Fix 1≤p<∞, and suppose that n≥2 and τn ≥max(τn+1, τn−1).

There is a positive constant Cp such that

9n(µn) ≥
Cp

τ2
n

9n(ξn),

where ξn denotes the unique point where 9n attains its maximum in (tn, tn+1).

Proof. We may assume that tn < ξn ≤ µn, the converse case being completely

analogous. We set

(4.17) 2n(x) := 9n(x)
|x − tn|

1−p|x − tn+1|
1−p

|x − tn+2|p
.

By the assumption that ξn ≤ µn, the left-hand side of

9′
n(x)

9n(x)
=

p − 1

x − tn
+

p − 1

x − tn+1

+
p

x − tn+2

+
2′

n(x)

2n(x)

is nonpositive for x = µk, and we therefore have

2′
n(µn)

2n(µn)
≤

p

tn+2 − µn

.
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We also have that 2′
n/2n is decreasing on (tn−1, tn+3) by (4.11). Making use of

these observations and integrating, we deduce that

(4.18) 2n(x) ≤ 2n(µn) exp
(p (x − µn)

tn+2 − µn

)
≤ 2n(µn)ep

for µn ≤ x ≤ tn+2. Combining (4.17) and (4.18), we find that

9n(x) ≤ ep9n(µn)
(τn

2

)2−2p |x − tn|
p−1|x − tn+1|

p−1|x − tn+2|
p

|tn+2 − µn|p

on the same interval. We apply this estimate to obtain

9n+1(x) = 9n(x)
|x − tn|

|x − tn+2|

≤ ep9n(µn)
(τn

2

)2−2p( x − tn

tn+2 − µn

)p

|x − tn+1|
p−1|x − tn+2|

p−1.

Using that µn ≤ tn+1 and that τn+1 ≤ τn, we infer that

( x − tn

tn+2 − µn

)p

≤
( 2τn

τn+1

)p

.

Combining the last two estimates and using again that τn+1 ≤ τn, we find that

(4.19)

∫

In+1

9n+1(x) dx ≤ ep23p−2 B(p, p)9n(µn)τn.

By Lemma 4.3, there exists an absolute constant ε > 0 such that ξn − tn ≥ ε

and such that t1 > ε. We may therefore invoke the arithmetic–geometric mean

inequality as in the proof of Theorem 1.4(b) and then Lemma 4.1 (with m = 1) to

the function ψj at the point ξj to get

(4.20)

∫

R\In+1

9n+1(x) dx ≥

∫ ξn+ε/2

ξn−ε/2

9n(x)
|x − tn|

|x − tn+2|
dx ≥

9n(ξn)

τn

√
3ε

22p+2π
.

Combining (4.19) and (4.20) with Lemma 3.3(b), we obtain the asserted result. �

Proof of Theorem 1.4(c): The case 1 < p < ∞. We will argue by

contradiction. Hence we begin by assuming that there is a subsequence (tnk
)k≥1 of

(tn)n≥1 such that τnk
≥ 2, τnk

→ ∞ as k → ∞ and τnk
≥ max(τnk−1, τnk+1) (we can

assume this since ϕp has exponential type π). Consider the function

fk(z) := z2 sinc4
(π

4
(z − µnk

)
)
.

Since fk(0) = 0 and fk8p does not change sign on Ink
, we infer from Theorem 3.6

that

(4.21)

∫

Ink

|fk(x)||ϕp(x)|p−1 dx ≤

∫

R\Ink

|fk(x)||ϕp(x)|p−1 dx.
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Our plan is now to obtain a lower bound for the left-hand side and an upper bound

for the right-hand side, which will contradict the assumption that τnk
→ ∞.

To get the desired lower bound, we first restrict the integral over Ink
to the

interval [µnk
−1/2, µnk

+1/2], then use a pointwise lower bound for |fk| and finally

combine the arithmetic–geometric mean inequality with Lemma 4.1 applied to ϕp

in the point µnk
to obtain
∫

Ink

|fk(x)||ϕp(x)|p−1 dx ≥ Apµ
2
nk

|ϕp(µnk
)|p−1.

Recalling the relationship between ϕp and 9nk
, we reformulate this as

(4.22)

∫

Ink

|fk(x)||ϕp(x)|p−1 dx ≥ Ap9
p−1

p
nk (µnk

)µ
2
p
nk

(τnk

2

) 2(p−1)

p

.

To get an upper bound for the right hand side of (4.21), we first use Hölder’s

inequality to obtain
∫

R\Ink

|fk(x)||ϕp(x)|p−1 dx ≤ H
p−1

p

1 H
1
p

2 ,

where

H1 :=

∫

R\Ink

9nk
(x) dx,

H2 :=

∫

R\Ink

x2 sinc4p
(π

4
(x − µnk

)
)
|x − tnk

|p−1|x − tnk+1|
p−1 dx.

We bound H1 by using Lemma 3.3(b) and Lemma 4.4 so that we get

H1 =

∫

Ink

9nk
(x) dx ≤ τnk

9nk
(ξnk

) ≤ C−1
p τ3

nk
9nk

(µnk
).

To bound H2, we first note that all factors except x2 are symmetric about Ink
.

If x ≥ tnk+1
, then

x2

(x − µnk
)4p

(x − tnk
)p−1(x − tnk+1)p−1 ≤

(µnk
+ 1)2

(x −µnk
)2p
,

by the assumption that τnk
≥ 2. Integrating, we find that H2 ≤ Bp(µnk

+ 1)2τ1−2p
nk

and consequently that

(4.23)

∫

R\Ink

|fk(x)||ϕp(x)|p−1 dx ≤ Dp9
p−1

p
nk (µnk

)(µnk
+ 1)

2
p τ

1− 2
p

nk

for some constant Dp > 0.

Inserting (4.22) and (4.23) into (4.21), we obtain a bound on τnk
that contradicts

the assumption that τnk
→ ∞. �
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It would be of interest to establish Theorem 1.4(b) in the full range 0 < p <∞.

Theorem 8.1, to be established below, yields a suitable extension of Theorem 3.6

when 1/2 ≤ p < 1, but the nature of the problem is quite different in this case,

since we need to control the size of the reciprocal of the extremal function ϕ rather

than ϕ itself. In particular, a major challenge would be to control global variations

in the size of |ϕ|−1. This interesting problem may require a more refined analysis

of the orthogonality relations.

5 Numerical bounds on the separation of zeros of ex-
tremal functions

To place the present section in context, we begin with a brief discussion of how

we may optimize our usage of the orthogonality relations of Lemma 3.3. Let us

consider the following model problem. Given a finite interval I = (t, s) with t > 0,

set

wI(x) :=
x2

|(x − t)(x − s)|
,

and let PWp(I) consist of those functions in PWp that vanish at t and s. Let

(5.1) λp(I) := sup
f∈PW(I)

{∫

I

|f (x)|pwI(x) dx :

∫ ∞

−∞

|f (x)|pwI(x) dx = 1

}
.

Recall from Lemma 3.5 that in the convex range, the extremal functions are of the

form

ϕp(z) =

∞∏

n=1

(
1 −

z2

t2
n

)
.

If we are able to establish that

sup
s−t≤δ
t≥t1

λp(I) <
1

2
,

then it would follow that tn+1 − tn > δ for every n ≥ 1. This is essentially the

problem we wish to solve, up to whatever constraints we may add based on our

knowledge of admissible extremal functions.

Unfortunately, our understanding of the extremal problem (5.1) is rudimentary

at best. Our approach is therefore to rely on the precise numerics known for the

Pollak–Landau–Slepian problem discussed in Section 3.3. This forces us to make

the restriction p > 2, because we use Hölder’s inequality to estimate L2 norms in

terms of Lp norms. In addition, we are faced with the problem that our weight w

blows up at the endpoints of I. We will circumvent that obstacle by doubling the
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size of the interval and use a different approach close to the endpoints of I. In this

analysis, we will also invoke the known properties of the extremal function.

Our ultimate goal is to establish Theorem 1.5, but we begin with the following

weaker result, which holds in more generality.

Theorem 5.1.

(a) If 0 < p <∞, then t1 ≥ 1
2
.

(b) If 2 < p <∞, then tn+1 − tn ≥ 3
5

for every n ≥ 1.

Proof. Part (a) follows at once from Lemma 3.4 with ξ = 0. For some

fixed n ≥ 1, we set

ψ(x) :=
xϕp(x)

(x − tn)(x − tn+1)
and 9(x) := |ψ(x)|p

|x − tn|
p−1|x − tn+1|

p−1

|x|p−2

and note that ψ is in PW2 since ϕp is in PW∞ and ϕp(tn) = ϕp(tn+1) = 0. The

orthogonality relation of Lemma 3.3(b) takes the form

(5.2)

∫

R\I

9(x) dx =

∫

I

9(x) dx,

where I := [tn, tn+1]. We also introduce the notations

µ :=
tn + tn+1

2
, δ := tn+1 − tn and J := [µ− δ, µ + δ].

We adhere to the overall strategy outlined above. Specifically, we use Hölder’s

inequality with the assumption that p > 2 to conclude that

(5.3)

∫

R\I

9(x) dx ≥

∫

R\J

9(x) dx ≥
(
∫
R\J |ψ(x)|2 dx)

p

2

(∫
R\J

x2 dx

(|x−tn| |x−tn+1|)
2(p−1)

p−2

) p−2
2

.

We have chosen J to be concentric to I with |J| = 2|I| = 2δ, so since ψ is in PW2

we get with the convention λ0 of Section 3.3 that

(5.4)

∫

R\J

|ψ(x)|2 dx ≥ ‖ψ‖2
2(1 − λ0(πδ)) ≥ ‖ψ‖2

∞(1 − λ0(πδ)),

where we in the final estimate used that C2 = 1. Making use of the symmetry of

the domain of integration, we next carry out a substitution to write

∫

R\J

x2 dx

(|x − tn| |x − tn+1|)
2(p−1)

p−2

=
2µ2

δ
3p−2

p−2

∫ ∞

1

(
x2 −

1

4

)−
2(p−1)

p−2
(

1 +
δ2x2

µ2

)
dx.
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To estimate the integral on the right-hand side, we use that x2 − 1/4 ≥ 3/4 to

conclude that

2

∫ ∞

1

(
x2 −

1

4

)−
2(p−1)

p−2
(

1 +
δ2x2

µ2

)
dx

≤ 2
(4

3

) 2
p−2

∫ ∞

1

1 + δ2x2

µ2

(x2 − 1
4
)2

dx

=
(4

3

) 2
p−2
(16

3
− 4 log 3 +

δ2

µ2

4 + 3 log 3

3

)
.

Inserting these estimates into (5.3), we find that

(5.5)

∫

R\I

9(x) dx ≥
‖ψ‖

p
∞µ

2−p δ
3p−2

2 (1 − λ0(πδ))
p

2

4
3
( 16

3
− 4 log 3 + δ2

µ2

4+3 log 3

3
)

p−2

2

.

For the upper bound of the integral over I, we estimate
∫

I

9(x) dx ≤ ‖ψ‖p
∞

∫

I

(x − tn)p−1(tn+1 − x)p−1x2−p dx

= ‖ψ‖p
∞µ

2−pδ2p−1

∫

|x|≤1/2

(1

4
− x2

)p−1(
1 −

δx

µ

)2−p

dx.

(5.6)

Since trivially 0 < δ/µ < 2, we compute

(5.7) max
|x|≤1/2

1
4

− x2

1 − δx
µ

=
1√

4 − δ2

µ2 + 2
,

which when employed in (5.6) implies that

(5.8)

∫

I

9(x) dx ≤ ‖ψ‖p
∞µ

2−p δ2p−1 1

6

( 1√
4 − δ2

µ2 + 2

)p−2

.

Combining (5.5) and (5.8) with the orthogonality relation (5.2), then simplifying,

we find that

(5.9) 1 − λ0(πδ) ≤ δA2/pB1−2/p,

where A = 2/9 and

B =
(16

3
− 4 log 3 +

δ2

µ2

4 + 3 log 3

3

)( 1√
4 − δ2

µ2 + 2

)2

.

It is clear that B is increasing as a function of δ/µ. We assume that δ ≤ 3/5 and

aim to obtain a contradiction. We first deduce from part (a) of the current theorem

that
δ

µ
≤

δ
√

2
π

+ δ
2

≤

3
5√

2
π

+ 3
10

<
4

5
.
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It follows that

B ≤
(16

3
− 4 log 3 +

(4

5

)2 4 + 3 log 3

3

)( 1√
4 − ( 4

5
)2 + 2

)2

= 0.169841 . . .

Since B ≤ A we conclude from (5.9) that

1 − λ0(πδ) ≤
2

9
δ.

Here the left-hand side is decreasing as a function of δ, while the right-hand is

increasing as a function of δ. We obtain a contradiction to our assumption that

δ ≤ 3/5 from the fact that

1 − λ0(3π/5) ≥ 0.14,

which can be extracted from Table 1. Consequently, tn+1 − tn ≥ 3/5.

It follows from Theorem 5.1 that the separation constant of Z (ϕp) is at least 3/5.

To improve this, the idea is to argue similarly as in the proof of Lemma 4.1

to estimate 9 on J \ I, an interval which we in the previous argument simply

discarded. In this estimate, we will take into account the information we have

already established on Z (ϕp). This allows us to iteratively improve our estimates.

Since Z (ψ) = (Z (ϕp) \ {tn, tn+1}) ∪{0}, the estimate for t1 and the estimate for

tn+1 − tn for every n ≥ 1 both have an effect on the separation constant of Z (ψ).

If t1 ≥ γ and tn+1 − tn ≥ δ0 for every n ≥ 1, then σ(Z (ψ)) ≥ min(γ, δ0). Setting

(5.10) Gα(x) =
cosπαx

1 − 4(αx)2
,

the most important result of the present section reads as follows.

Lemma 5.2. Fix 2 < p < ∞. Suppose that tn+1 − tn ≥ δ0 for every n ≥ 1 and

that t1 ≥ γ ≥ δ0. If δ = tn+1 − tn for some n ≥ 1 and if δ ≤ 3δ0/2, then

1 − λ0(πδ) ≤ δmax(A,B)

where

A :=
4

3

∫ 1/2

0

(1

4
− x2

)(
2 − min

(
1, 2

(3 − 2x

1 + 2x

)p−1(Gα(1 − x)

Gα(x)

)p))
dx,

B :=
(16

3
− 4 log 3 + β2 4 + 3 log 3

3

)( 1√
4 − β2 + 2

)2

,

for α = δ/δ0 and β = δ/(γ + δ/2).
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Proof. The proof is an elaboration of Theorem 5.1 and we retain the definitions

ofψ,9, I,µ and J from that argument. We also retain the lower bound and deduce

from (5.3), (5.4), (5.5) and the fact that δ/µ ≤ β that

(5.11)

∫

R\J

9(x) dx ≥
‖ψ‖

p
∞µ

2−p δ
3p−2

2 (1 − λ0(πδ))
p

2

4
3
( 16

3
− 4 log 3 + β2 4+3 log 3

3
)

p−2

2

.

For the upper bound, we begin by rewriting

∫

I

9(x) dx −

∫

J\I

9(x) dx

=

∫ µ

µ−δ/2

(9(x) −9(2µ− δ − x)) dx +

∫ µ+δ/2

µ

(9(x) −9(2µ + δ − x)) dx.

Next we estimate
∫ µ

µ−δ/2

(9(x) −9(2µ− δ− x)) dx ≤

∫ µ

µ−δ/2

9(x)
(

1 − min
(

1,
9(2µ− δ − x)

9(x)

))
dx

and similarly for the integral from µ to µ + δ/2. The purpose of these estimates

is that we can now obtain an upper bound by estimating 9 pointwise from above.

If x is in I, then

9(x) = |ψ(x)|p
|x − tn|

p−1|x − tn+1|
p−1

xp−2

≤ ‖ψ‖∞

|x − tn|
p−1|x − tn+1|

p−1

(µ− |x −µ|)p−2
=: ‖ψ‖∞w(x).

The virtue of this estimate is that w(x) = w(2µ− x) for x in I. Using this estimate

and translating the resulting integral, we find that

∫ µ

µ−δ/2

(9(x) −9(2µ− δ − x)) dx

≤ ‖ψ‖∞

∫ δ/2

0

w(µ− x)
(

1 − min
(

1,
9(µ− δ + x)

9(µ− x)

))
dx.

As above, we estimate the integral fromµ toµ+δ/2 similarly. Using the symmetry

of w and the elementary inequality min(1, a) + min(1, b) ≥ min(1, 2
√

ab), which

is valid for a, b ≥ 0, we find that

∫

I

9(x) dx −

∫

J\I

9(x) dx

≤ ‖ψ‖∞

∫ δ/2

0

w(µ− x)

(
2 − min

(
1, 2

√
9(µ− δ + x)9(µ + δ − x)

9(µ− x)9(µ + x)

))
dx.
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By a substitution, we can rewrite the latter integral (denoted J in what follows)

as

J = δ

∫ 1/2

0

w(µ− δx)

(
2 − min

(
1, 2

√
9(µ− δ(1 − x))9(µ + δ(1 − x))

9(µ− δx)9(µ + δx)

))
dx.

Using (5.7) as in the proof of Theorem 5.1, we then estimate

(5.12) w(µ− δx) ≤ δ2p−2µ2−p
( 1√

4 − β2 + 2

)p−2(1

4
− x2

)

for 0 ≤ x ≤ 1/2 and δ/µ ≤ β. We now seek to estimate the function

P(x) =

√
9(µ− δ(1 − x))9(µ + δ(1 − x))

9(µ− δx)9(µ + δx)

from below and set

ψ(µ− δ(1 − x))ψ(µ + δ(1 − x))

ψ(µ− δx)ψ(µ + δx)
=
∏

t∈Z (ψ)

1 − δ2(1−x)2

(t−µ)2

1 − δ2x2

(t−µ)2

.

By the assumption that δ ≤ 3δ0/2 and 0 ≤ x ≤ 1/2, we obtain a lower bound

for each factor by choosing the minimal value of |t − µ| for each t. We know

that Z (ψ) = (Z (ϕp) \ {tn, tn+1}) ∪ {0}. The distance from µ to Z (ψ) is at

least δ/2 + δ0 ≥ 3δ0/2 and following this the zeros will be separated by at least

min(γ, δ0) = δ0. Taking into account the symmetry around µ, we conclude that

√
ψ(µ− δ(1 − x))ψ(µ + δ(1 − x))

ψ(µ− δx)ψ(µ + δx)
≥

∞∏

n=1

1 − δ2(1−x)2

δ2
0
(1/2+n)2

1 − δ2x2

δ2
0
(1/2+n)2

=
Gα(1 − x)

Gα(x)
,

where we recall the convention α = δ/δ0 and (5.10). It follows that

P(x) ≥
(Gα(1 − x)

Gα(x)

)p(3 − 2x

1 + 2x

)p−1(µ2 − δ2(1 − x)2

µ2 − δ2x2

)1−
p

2

.

Since 2 < p < ∞ and 0 ≤ x ≤ 1/2, the final factor is bounded below by 1. This

is attained as µ → ∞. Consequently

(5.13) P(x) ≥
(3 − 2x

1 + 2x

)p−1(Gα(1 − x)

Gα(x)

)p

.

Combining (5.12) and (5.13), we find that

J ≤ δ2p−1µ2−p
( 1√

4 − β2 + 2

)p−2

×

∫ 1/2

0

(1

4
− x2

)(
2 − min

(
1, 2

(3 − 2x

1 + 2x

)p−1(Gα(1 − x)

Gα(x)

)p))
dx.
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Recalling the upper bound

∫

I

9(x) dx −

∫

J\I

9(x) dx ≤ ‖ψ‖∞J

and the lower bound (5.11), we obtain the stated result after simplifying the

resulting inequality (in view of Lemma 3.3(b)), then finally using that p > 2. �

The following elementary result shows that it is sufficient to obtain a contradic-

tion for one p1 > 2 and one δ1 > δ0 from Lemma 5.2 to obtain the same conclusion

for the intervals 2 ≤ p ≤ p1 and δ0 ≤ δ ≤ δ1.

Lemma 5.3. Fix 0 ≤ x ≤ 1/2. The function

(α, p) 7→
(3 − 2x

1 + 2x

)p−1(Gα(1 − x)

Gα(x)

)p

is decreasing as a function of both 0 < p < ∞ and 1 ≤ α ≤ 3/2.

Proof. We first fix 0 < p < ∞ and consider the expression as a function of α.

The function f (y) = G1(y) =
cosπy

1−4y2 satisfies f (y) ≥ 0, f ′(y) < 0 and f ′′(y) ≤ 0 for

0 ≤ y ≤ 3/2. Then,

d

dα

f (α(1 − x))

f (αx)
=

1 − x

f (αx)
f ′(α(1 − x)) −

xf (α(1 − x))

f 2(αx)
f ′(αx)

≤
x

f (αx)
(f ′(α(1 − x)) − f ′(αx)) ≤ 0,

where we first used that f ′(y) < 0 and that 1 − x ≥ x in combination with that

f (α(1 − x)) ≤ f (αx) and that −f ′(y) > 0, then finally that f ′′(y) ≤ 0.

To establish that the expression is decreasing as a function of 0 < p < ∞

if 1 ≤ α ≤ 3/2 and 0 ≤ x ≤ 1/2 fixed, it is sufficient to establish that

(5.14)
3 − 2x

1 + 2x

G1(1 − x)

G1(x)
≤ 1

by the previous claim. This follows at once from the amusing observation that

(5.14) is an equality for all 0 ≤ x ≤ 1. �

In order to iterate our way from tn+1 − tn ≥ 3/5 from Theorem 5.1(b)

to tn+1 − tn ≥ 2/3 in Theorem 1.5(b) we require a better estimate for t1 than

the one established in Theorem 5.1(a).

Proof of Theorem 1.5(a). Fix 2 < p ≤ 4. Let t1 be the smallest positive

zero of ϕp and set

ψ(x) :=
ϕp(x)

x − t1
and 9(x) := |ψ(x)|p|x − t1|

p−1|x|.
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Note that ψ is in PW2 since ϕp is in PW∞ and ϕp(t1) = 0. The orthogonality

relation of Lemma 3.3(a) is

(5.15)

∫

R\I

9(x) dx =

∫

I

9(x) dx,

where I := [0, t1]. Setting J := [−t1/2, 3t1/2], we rewrite (5.15) as

(5.16)

∫

R\J

9(x) dx =

∫

I

9(x) dx −

∫

J\I

9(x) dx.

Using Hölder’s inequality as in the proof of Theorem 5.1(b), we find that

(5.17)

∫

R\J

9(x) dx ≥
‖ψ‖

p
∞(1 − λ0(πt1))

p

2

(
∫
R\J |x|

− 2
p−2 |x − t1|

−
2(p−1)

p−2 dx)
p−2

2

.

Moreover,
∫

R\J

|x|
− 2

p−2 |x − t1|
−

2(p−1)

p−2 dx

≤ sup
x∈R\J

(|x|−1|x − t1|
−1)

4−p

p−2

∫

R\J

|x|−1|x − t1|
−3 dx

= t
−

p+2
p−2

1

(4

3

) 4−p

p−2
(

2 log 3 −
8

9

)
,

since 2 < p ≤ 4. Inserting this estimate into (5.17), we find that

(5.18)

∫

R\J

9(x) dx ≥
‖ψ‖

p
∞ t

p

2
+1

1 (1 − λ0(πt1))
p

2

( 4
3
)

4−p

2 (2 log 3 − 8
9
)

p−2
2

.

For the upper bound of the right-hand side of (5.16), we discard the contribution

of the interval (t1, 3t1/2] to get

(5.19)

∫

I

9(x) dx −

∫

J\I

9(x) dx ≤

∫ t1/2

0

(9(x) −9(−x)) dx +

∫ t1

t1/2

9(x) dx.

For the second integral in (5.19), we estimate

∫ t1

t1/2

9(x) dx ≤ ‖ψ‖p
∞

∫ t1

t1/2

(t1 − x)p−1x dx = ‖ψ‖p
∞t

p+1
1

∫ 1

1/2

(1 − x)p−1x dx.

For the first integral in (5.19), we use the fact that ϕp is even (from Lemma 3.5) to

estimate
∫ t1/2

0

(9(x) −9(−x)) dx =

∫ t1/2

0

|ψ(x)|p(t1 − x)p−1 2x2

t1 + x
dx

≤ ‖ψ‖p
∞t

p+1
1

∫ 1/2

0

(1 − x)p−1 2x2

1 + x
dx.
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Inserting these two estimates into (5.19), we find that

(5.20)

∫

I

9(x) dx −

∫

J\I

9(x) dx ≤ ‖ψ‖p
∞t

p+1
1

∫ 1

0

(1 − x)p−1w(x) dx,

where w(x) := 2x2

1+x
for 0 ≤ x ≤ 1/2 and w(x) := x for 1/2 < x ≤ 1. By Hölder’s

inequality and the assumption that 2 < p ≤ 4, we deduce that

∫ 1

0

(1 − x)p−1w(x) dx ≤

(∫ 1

0

(1 − x)w(x) dx

) 4−p

2
(∫ 1

0

(1 − x)3w(x) dx

) p−2

2

=
(

4 log
(3

2

)
−

3

2

) 4−p

2
(

16 log
(3

2

)
−

6203

960

) p−2

2

.

Inserting this estimate in (5.20), then combining what we get with the modified

orthogonality relation (5.16) and the lower bound (5.18) we simplify to find that

(5.21) 1 − λ0(πt1) ≤ t1A
4−p

p B
p−2

p ,

where

A =
16

3
log

(3

2

)
− 2 and B =

(
2 log 3 −

8

9

)(
16 log

(3

2

)
−

6203

960

)
.

Since A <
√

B, we find that A
4−p

p B
p−2

p ≤
√

B. Inserting this estimate into (5.21),

we conclude that

(5.22) 1 − λ0(πt1) ≤ t1
√

B.

The left-hand side of (5.22) is a decreasing function of t1, while the right-hand side

is an increasing function of t1. Consequently, if (5.22) fails for some t1 = s, then

we must have t1 > s. Setting s = 2/π, we obtain the desired contradiction since

2
√

B/π ≤ 0.118 and

(5.23) 1 − λ0(2) ≥ 0.119,

where the latter was extracted from Table 1. �

It seems difficult to do much better than t1 ≥ 2/π uniformly in the range

2 ≤ p ≤ 4. We expect the first positive zero of ϕ4 to be close to the first positive

zero of the function f4 defined in (1.4), which is t1 = 0.76547 . . ..

Proof of Theorem 1.5(b). We will use Lemma 5.2 twice. In view of

Theorem 1.5(a) we may take γ = 2/π and by Theorem 5.1(b) we can set δ0 = 3/5.

By Lemma 5.3, we see that A is increasing as a function of both p and δ. We

set δ = 2/π and p = 4 to get a value for A which works for all 3/5 ≤ δ ≤ 2/π
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and 2 < p ≤ 4. Computing numerically with the integrate package from SciPy

we find that

A = 0.1440 . . . and B = 0.1337 . . . .

We obtain a contradiction to the inequality 1 − λ0(πδ) ≤ δA for δ = 2/π by (5.23).

It follows that tn+1 − tn ≥ 2/π for every n ≥ 1 and for all 2 ≤ p ≤ 4.

Repeating the same analysis with γ = δ0 = 2/π, p = 4 and δ = 2/3 we find that

A = 0.1387 . . . and B = 0.1388 . . .

which is a contradiction to the inequality 1 − λ(πδ) ≤ δB for δ = 2/3 by

1 − λ0(2π/3) > 0.103,

which can be extracted from Table 1. This means that tn+1−tn ≥ 2/3 for every n ≥ 1

and for all 2 ≤ p ≤ 4 as desired.

6 An upper bound for Cp when 2 < p < 4

A corollary to Theorem 2.4 will serve as our starting point for the proof of Theo-

rem 1.1. To state it, we fix 1 ≤ p <∞ and recall from Lemma 3.5 that the unique1

solution of (1.6) is of the form

ϕp(z) =

∞∏

n=1

(
1 −

z2

t2
n

)
,

where (tn)n≥1 is a strictly increasing sequence of positive numbers. Recall also our

convention that t0 = 0. Consider the function K : (0,∞) → R defined by

(6.1) K(x) :=

∞∑

n=0

χ(tn,tn+1)(x)
sin p

2
π(x − n)

πx

and set K+(x) := max(K(x), 0).

Corollary 6.1. Fix 1 ≤ p < ∞ and let K+ be as above. Then

Cp ≤ 2

∫ ∞

0

K2
+(x) dx.

Proof. We apply Theorem 2.4 with f = ϕp and q = p/2, then invoke Lemma 3.5

to rewrite the formula as

1 = 2

∫ ∞

0

|ϕp(x)|p/2K(x) dx.

1The fact that the extremal function is unique (and consequently even) is technically only required
in the proof of Theorem 1.5, but it simplifies the exposition of the present section greatly.
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Squaring both sides, then using the definition of K+ and the Cauchy–Schwarz

inequality we find that

1 ≤ 4

(∫ ∞

0

|ϕp(x)|p/2K+(x) dx

)2

≤ 2‖ϕp‖
p
p

∫ ∞

0

K2
+(x) dx.

�

Before proceeding, let us take a look at the situation for the two endpoint cases

p = 2 and p = 4.

Example 6.2. If p = 2, then the expression for K in (6.1) simplifies to

K(x) =

∞∑

n=0

χ(tn,tn+1)(x) (−1)n sincπx.

It is clear that the choice tn = n for n ≥ 1 maximizes the upper bound of Corol-

lary 6.1, since in this case K(x) = K+(x) = | sincπx|. This gives yet another proof

that C2 = 1 and that the unique solution of (1.6) is ϕ2(x) = sincπx.

Example 6.3. If p = 4, then the expression for K in (6.1) simplifies to

K(x) = 2

∞∑

n=0

χ(tn,tn+1)(x) sinc 2πx.

Here the choice of tn for n ≥ 1 is irrelevant. The upper bound of Corollary 6.1

recovers the result from Theorem 2.2.

The reader may at this point notice that if we had known that

(6.2) n − 2/p ≤ tn ≤ n,

then the proof in the case 2 < p < ∞ would have been equally trivial as in these

two examples. It seems likely that (6.2) holds for 2 < p < 4, but, unfortunately,

we only have at our disposal the much weaker assertions of Theorem 1.5. Our plan

is now to deduce from that theorem that the following result applies.

Lemma 6.4. Fix 1 ≤ p < ∞ and let K+ be as above. Suppose that there is

a sequence I = (Ik)k≥0 of bounded measurable subsets of (0,∞) that enjoy the

following properties:

(a) K+(x) = 0 on (0,∞) \
⋃

k≥0 Ik.

(b) Set ξk = inf(Ik). Then ξ0 = 0, ξ1 ≥ 1 and ξk+1 ≥ ξk + 2/p for all k ≥ 1.

(c) For every k ≥ 0,

∫

Ik

K2
+(x) dx ≤

∫ ξk+2/p

ξk

sin2 p

2
π(x − ξk)

π2x2
dx.
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Then

2

∫ ∞

0

K2
+(x) dx ≤

p

2

(
1 − 2(p − 2)

∫ ∞

1

(sincπx)2 4x + p − 2

(2x + p − 2)2
dx

)
.

Proof. Using (a) and (c), then combining (b) with the fact that the func-

tion x 7→ 1/x is decreasing on (0,∞) and periodicity, we find that

2

∫ ∞

0

K2
+(x) dx ≤ 2

∞∑

k=0

∫ ξk+2/p

ξk

sin2 p

2
π(x − ξk)

π2x2
dx

≤ 2

(∫ 2/p

0

sin2 p

2
πx

π2x2
dx +

∫ ∞

1

sin2 p

2
π(x − 1)

π2x2
dx

)
.

The final expression is equal to the one given in the statement. �

By Corollary 6.1 and Lemma 6.4, we will have a proof of Theorem 1.1 if

we can produce the sequence of sets described in the latter result. We begin by

establishing some terminology.

Definition. For n ≥ 0, we refer to the components of
{

x ∈ R : sin
p

2
π(x − n) > 0

}

as the intervals at level n. An interval at level n contained in (tn, tn+1) is called

a stationary interval. For n ≥ 1, we assign a sign (δ, ε) to tn as follows. We

set δ equal to + if tn is in the interior of an interval at level n − 1 and equal to −

otherwise. Similarly, ε is set equal to + if tn is in the interior of an interval at

level n and equal to − otherwise. When the sign of tn is (+,±), we will refer to

the interval at level n − 1 containing tn as a departure interval. When the sign

of tn is (±,+), we will refer to the interval at level n containing tn as an arrival

interval.

We begin by pointing out that the intervals at level n are of the form

I = (ξ, ξ + 2/p), where ξ = n + k4/p for k in Z. We also stress that a station-

ary interval can neither be arrival nor departure. See Figure 4 for an illustration of

the definition.

The idea is that the support of K+ is the union of the intervals at level n

intersected with the interval (tn, tn+1). We traverse (0,∞) and jump from level n to

n + 1 whenever we encounter tn+1. As we go along, we will use an algorithm based

on the signs of tn to construct the sequence I . The following result is trivial, but

we state it separately for ease of reference.

Lemma 6.5. If 2 < p ≤ 4, then an interval at level n intersects at most one

interval at any other level. If I = (ξ, ξ + 2/p) is an interval at level n, then the

interval at level n + 1 intersecting I is (ξ + 1 − 4/p, ξ + 1 − 2/p).
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4

Figure 4. Some intervals at levels n = 0, 1, 2, 3, 4 for p = 3. Here t1 = 5
6

has sign

(−,−), t2 = 3
2

has sign (+,−), t3 = 13
6

has sign (+,+) and t4 = 13
3

has sign (−,+).

From left to right, the highlighted intervals are stationary, departure interval for t2,

arrival interval for t3, stationary, and arrival interval for t4.

The key point of Lemma 6.5 is that ξ + 1 − 4/p ≤ ξ since 2 < p ≤ 4. The

effect of this is that arrival intervals are easier for us to deal with and that the most

problematic case is tn of sign (+,−). We need different arguments for the two

cases 2 < p < 3 and 3 ≤ p ≤ 4. The easier latter case will be handled first. We

invite the reader to consult Figure 4 during the proof.

Proof of Theorem 1.1: The case 3 ≤ p ≤ 4. The separation

σ := inf
n≥1

(tn+1 − tn) ≥
2

3

established in Theorem 1.5(b) and the assumption that p ≥ 3 implies that no

interval can be both an arrival interval and a departure interval. Let I = (Ik)k≥0 be

the sequence of intervals constructed iteratively for n = 0, 1, 2, . . . as follows:

• Include all stationary intervals at level n, ordered left to right.

• If tn+1 has sign (+,−), include its departure interval in I .

• If tn+1 has sign (±,+), include its arrival interval (at level n + 1) in I .

• If tn+1 has sign (−,−), do nothing.

If ξk = inf(Ik), then Lemma 6.5 shows that I is ordered such that ξk < ξk+1. We

need to check that I satisfies the three conditions (a)–(c) of Lemma 6.4, which will

establish the stated estimate by Corollary 6.1. It follows at once from Lemma 6.5

that (a) holds, since we always choose arrival intervals whenever possible. The only

case of (c) which requires an argument is (+,+), where we appeal to Lemma 6.5

again and use the fact that x 7→ 1/x is decreasing on (0,∞) and periodicity. For (b),

there are three cases to consider.
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(i) If Ik and Ik+1 are on the same level, then ξk+1 = ξk + 4/p.

(ii) If Ik is at level n − 1 and Ik+1 is at level n, then ξk+1 = ξk + 1. We cannot have

Ik+1 = (ξk + 1 − 4/p, ξk + 1 − 2/p) (see Lemma 6.5), as this would contradict

the fact that ξk < ξk+1.

(iii) If Ik is at level n − 1 and Ik+1 is at level n − 1 + s for some s ≥ 2, then

s = 2 and ξk+1 = ξk + 2 − 4/p. The key point is that tn has sign (±,−)

and tn+1 has sign (+,+) (the latter due to the assumption that Ik+1 is not at

level n and that σ ≥ 2/3 ≥ 2/p by Theorem 1.5). Consequently, s = 2 and

ξk + 1 < tn+1 < ξk + 1 + 2/p. By Lemma 6.5, the only interval at level n + 1

which overlaps with this interval must be Ik+1.

Using the assumption that p ≥ 3, we deduce from (i)–(iii) the general estimate

ξk+1 ≥ ξk +2/p. If t1 ≥ 2/p, then I0 = (0, 2/p) will be included in I as a stationary

interval. Should t1 < 2/p, we know by Theorem 1.5(a) that

t1 ≥ 2/π > 1/2 ≥ 1 − 2/p

which means that the sign of t1 is (+,−) by Lemma 6.5 and so I0 = (0, 2/p) is

included as a departure interval. Consequently, ξ0 = 0.

For ξ1, there are two cases to consider. If t2 ≥ 2 − 2/p, then we can exclude

the case (iii) as the possible arrival interval at level 2 is I1 = (2 − 4/p, 2 − 2/p).

Hence we have ξ1 ≥ 1. This means that (b) holds and we are done.

In the case that t2 < 2−2/p, we make the following adjustment to the algorithm.

Since t2 > 2/π + 2/3 ≥ 5/4 > 2 − 4/p by Theorem 1.5, it follows that the sign

of t2 is (+,+). According to the algorithm, we should select the arrival interval

I1 = (2−4/p, 2−2/p). We will instead select the departure interval I1 = (1, 1+2/p)

which has ξ1 = 1 as desired. To justify this choice, we need to manually verify that

condition (c) in Lemma 6.4 holds. This condition simplifies to

∫ 2−2/p

t2

sin2 p

2
π(x − 2)

π2x2
dx ≤

∫ 1+2/p

t2

sin2 p

2
π(x − 1)

π2x2
dx.

We first note that 2 − 2/p ≤ 1 + 2/p for 3 ≤ p ≤ 4. Since t2 ≥ 5/4, it is therefore

sufficient to establish that the pointwise estimate

sin2 p

2
π(x − 2) ≤ sin2 p

2
π(x − 1)

holds for 5/4 ≤ x ≤ 2 − 2/p. This pointwise estimate follows from the fact that

both sin-functions are positive on the interval and that the midpoint of (1, 2−2/p) is

3/2−1/p which is at most 5/4. As we have now chosen the interval I1 = (1, 1+2/p)

instead of the interval (2−4/p, 2−2/p), we need to make sure that the next interval

is not (4 − 8/p, 4 − 6/p) so that the requirement ξ2 ≥ ξ1 + 2/p still holds. The
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only way this interval could be included is as the arrival interval of t4. However,

by appealing to the separation, we find that

t4 ≥ t2 + 2σ ≥
5

4
+

4

3
=

31

12
>

5

2
≥ 4 −

6

p

for 3 ≤ p ≤ 4, which shows that this cannot occur. �

In the proof of Theorem 1.1 for 3 ≤ p ≤ 4, the sets in I were all intervals of

length 2/p. In the proof of the case 2 < p < 3, we will at times need to choose

I = (ξ, b)∪ (a, η) where ξ is the left endpoint of some interval at level n and η is the

right endpoint of some interval either at level n or at level n + 2. When checking

condition (c) in Lemma 6.4, the following trivial result will be helpful.

Lemma 6.6. If 0 ≤ ξ < b < a < η satisfy η ≥ ξ+2/p and η−a+b−ξ ≤ 2/p,

then

∫ b

ξ

sin2 p

2
π(x − ξ)

π2x2
dx +

∫ η

a

sin2 p

2
π(η− x)

π2x2
dx ≤

∫ ξ+2/p

ξ

sin2 p

2
π(x − ξ)

π2x2
dx.

Proof. This follows at once from the fact that the function x 7→ 1/x is de-

creasing on (0,∞). �
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4

Figure 5. Some intervals at levels n = 0, 1, 2, 3, 4 for p = 8
3
. Here t1 = 13

8
has

sign (+,+), t2 = 23
10

has sign (−,+), t3 = 73
24

has sign (−,+) and t4 = 89
24

has sign

(+,−). From left to right, we have applied Rule 1, Rule 4.3, Rule 2.2, Rule 2.2,

and Rule 3.1.

Proof of Theorem 1.1: The case 2 < p < 3. In contrast to the previous

case, it is now possible that an interval I = (ξ, ξ + 2/p) is both the arrival interval

for tn and the departure interval for tn+1. By Theorem 1.5(b), this means that

ξ < tn < tn + 2/3 ≤ tn+1 < ξ + 2/p
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and hence tn has sign (−,+) and tn+1 has sign (+,−) in view of Lemma 6.5. We will

choose the sequence I iteratively for n = 0, 1, 2, . . . according to the following

four rules. See Figure 5, Figure 6 and Figure 7 for illustrations of the rules.

Rule 1. All stationary intervals at level n will be included in I .

Rule 2. The sign of tn+1 is (−,+) and the arrival interval is (ξ, ξ + 2/p).

2.1: If Ik−1 = (ξ + 4/p − 2, tn) ∪ (tn+1, ξ + 2/p) is already included in I by either

Rule 3.3 or Rule 4.1 below, then we do nothing and proceed.

2.2: If such a set is not included in I , then we include the arrival interval

Ik = (ξ, ξ + 2/p) in I .

Rule 3. The sign of tn+1 is (+,−) and the departure interval is (ξ, ξ + 2/p).

3.1: If Ik−1 = (ξ, ξ+2/p) is already included in I by Rule 2.2, then we do nothing

and proceed.

3.2: If Ik−1 = (ξ, ξ + 2/p) is not included in I and if tn+2 ≥ ξ + 2 − 2/p, then we

include the departure interval Ik = (ξ, ξ + 2/p) in I .

3.3: If Ik−1 = (ξ, ξ + 2/p) is not included in I and if tn+2 < ξ + 2 − 2/p, then we

include Ik = (ξ, tn+1) ∪ (tn+2, ξ + 2 − 2/p) in I .

Rule 4. The sign of tn+1 is (+,+) and the arrival interval is (ξ, ξ + 2/p). By

Lemma 6.5, the departure interval is (ξ + 4/p − 1, ξ + 6/p − 1).

4.1: If Ik−1 = (ξ + 4/p − 2, tn) ∪ (tn+1, ξ + 2/p) is already included in I either by

Rule 3.3 or by the present rule and if tn+2 < ξ + 2/p + 1, then we include the

set Ik = (ξ + 4/p − 1, tn+1) ∪ (tn+2, ξ + 2/p + 1) in I .

4.2: If Ik−1 = (ξ + 4/p − 2, tn) ∪ (tn+1, ξ + 2/p) is already included in I either by

Rule 3.3 or by Rule 4.1 and if tn+2 ≥ ξ + 2/p + 1, then we include2 the set

Ik = (ξ + 4/p − 1, tn+1) ∪ (ξ + 2/p, ξ + 6/p − 1) in I .

4.3: If Ik−1 = (ξ+4/p−2, tn)∪(tn+1, ξ+2/p) is not included in I , then we include

the arrival interval Ik = (ξ, ξ + 2/p) in I .

Rule 5. If the sign of tn+1 is (−,−), then we do nothing and proceed.

We now need to check that conditions (a)–(c) of Lemma 6.4 are satisfied. It is

clear that (a) holds. It is also not difficult to check that (c) holds. For Rule 2.1 and

Rule 3.1 there is nothing to do. That (c) holds for Rule 1 and Rule 3.2 is trivial.

For Rule 2.2 and Rule 4.3 we need to use that x 7→ 1/x is decreasing on (0,∞)

2The second interval is only included to preserve the overall dichotomy that either I = (ξ, ξ + 2/p)
or I = (ξ, b) ∪ (a, η). It could be dropped without affecting conditions (a)–(c) of Lemma 6.4.
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Figure 6. Some intervals at levels n = 0, 1, 2, 3, 4 for p = 8
3
. Here t1 = 2

3
has sign

(+,−), t2 = 11
8

has sign (+,−), t3 = 17
8

has sign (+,+), t4 = 25
8

has sign (+,+),

and t5 ≥ 39
8

. From left to right, we have applied Rule 3.2, Rule 3.3, Rule 4.1 and

Rule 4.2.

and Lemma 6.5 as in the proof of the case 3 ≤ p ≤ 4. For Rule 3.3, Rule 4.1 and

Rule 4.2 we use the separation σ ≥ 2/3 and the assumption that 2 < p < 3 to

show that the conditions of Lemma 6.6 are satisfied. For (b), there are three cases

to consider. Note first that ξk = inf(Ik) will always correspond to the left endpoint

of an interval at some level. We will therefore think of ξk as being on this level.

(i) If ξk and ξk+1 are on the same level, then ξk+1 = ξk + 4/p.

(ii) If ξk is at level n − 1 and ξk+1 is at level n, then ξk+1 = ξk + 1. This is clear

since the rules avoid the interval (ξk + 1 − 4/p, ξk + 1 − 2/p).

(iii) If ξk is at level n − 1 and ξk+1 at level n − 1 + s for some s ≥ 2, then either

s = 2 and ξk = ξk + 2 or s = 3 and ξk = ξk + 3 − 4/p. The key point is that the

interval (ξk + 1, ξk + 1 + 2/p) at level n has been avoided. This is only possible

by an application of Rule 3.3 or Rule 4.1 with tn+1 < ξk + 1, such that the

next rule applied is Rule 2.1. We may reach level n + 2 through either Rule

2.2 or Rule 4.3 applied to tn+2. We refer to Figure 7 for an illustration of the

latter possibility.

In summary, we conclude that ξk+1 ≥ ξk + 1 for all k ≥ 0, which imply the weaker

claim that ξ1 ≥ 1 and ξk+1 ≥ ξk + 2/p for k ≥ 1. It only remains to see that ξ0 = 0.

If t1 ≥ 2/p this is evident, since the interval I0 = (0, 2/p) will be stationary and

included in I . If 2/π ≤ t1 < 2/p, then the sign of t1 is (+,−) by Lemma 6.5 and

the fact that 2/π > 1/3 ≥ 1 − 2/p for 2 ≤ p ≤ 3. This means that ξ0 = 0 either by

Rule 3.2 or by Rule 3.3, depending on t2. �
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Figure 7. Some intervals at levels n = 0, 1, 2, 3, 4 for p = 8
3
. Here t1 = 2

3
has sign

(+,−), t2 = 4
3

has sign (+,−), t3 = 2 has sign (−,+), and t4 = 23
8

has sign (−,+).

From left to right, we have applied Rule 3.2, Rule 3.3, Rule 2.1, and Rule 4.3.

7 Asymptotics for Cp

We have now come to the problems of estimating Cp as p → 0+ and as p → ∞.

The main goals of the present section are to prove Theorem 1.3 and to prove

Theorem 1.2. We begin with some preliminary estimates on a family of entire

functions of exponential type π.

7.1 A family of entire functions. For α > 1
2
, consider the function

gα(z) := (2α− 1) 22α−2 B(α, α)

∫ π

−π

(
cos

ξ

2

)2α−2

eizξ dξ

2π
.

The normalizing factor is chosen so that gα(0) = 1. Note also that g1(z) = sincπz.

By a calculation attributed to Ramanujan (see [28, Section 7.6]), we deduce that

(7.1) gα(z) =
Ŵ2(α)

Ŵ(α− z)Ŵ(α + z)
=

∞∏

n=1

(
1 −

z2

(n + α− 1)2

)
.

The formula (7.1) defines an entire function of exponential type π for all α > 0.

In particular, we see that g1/2(z) = cosπz.

Note the similarity of ĝα and f̂p from (1.4). From this one would expect

that choosing α = 1
2

+ 1
p

could yield a reasonable lower bound for Cp. We have

numerically verified that in the range 1 ≤ p ≤ 4 the lower bounds obtained by fp

are better. However, the virtue of gα is that we know exactly the location of its

zeros. This makes it possible (see, e.g., [9]) to compute

C1 ≥

(
π

∫ 1

0

sincπx dx

)−1

= 0.5399751567 . . .
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by testing (1.1) with the function g3/2(z) = cosπz
1−4z2 . This is only slightly worse than

the numerical lower bound obtained by Hörmander and Bernhardsson in (1.3).

We choose to work with gα for precisely the same reason when obtaining lower

asymptotic estimates for Cp as p → ∞ and p → 0+ by letting α go to respectively 1
2

and ∞. We will rely on the following estimates.

Lemma 7.1.

(a) If 0 ≤ x ≤ α, then

gα(x) ≤
(

1 −
x

α

)−(α−1/2−x)(
1 +

x

α

)−(α−1/2+x)

.

(b) If 1/2 ≤ α ≤ x, then

|gα(x)| ≤ α2α−1 (1 − α + x)1/2−α+x

(α + x)α−1/2+x
| sinπ(α− x)|.

(c) If α ≥ 1/2 and 0 ≤ x ≤ α, then

|gα(x)| ≤ cos
(πx

2α

)
.

Proof. The well-known formula

(7.2) logŴ(z) =
(

z −
1

2

)
log z − z +

1

2
log 2π + 2

∫ ∞

0

arctan t
z

e2πt − 1
dt

is valid for Re z > 0. We begin with (a). If 0 < x ≤ α and t ≥ 0, then it follows

from convexity that

arctan
t

α− x
− 2 arctan

t

α
+ arctan

t

α + x
≥ 0.

We therefore obtain from three applications of (7.2) that

log gα(x) ≤ 2
(
α−

1

2

)
logα−

(
α− x −

1

2

)
log(α− x) −

(
α + x −

1

2

)
log(α + x),

which simplifies to the stated result (a). For the proof of (b), we first use the

reflection formula for the gamma function to obtain

(7.3) gα(x) =
Ŵ2(α)

π

Ŵ(1 − α + x)

Ŵ(α + x)
sinπ(α− x).

Fix t > 0 and consider

F(α, x) := 2 arctan
t

α
+ arctan

t

1 − α + x
− arctan

t

α + x
.
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We verify by differentiation that if α ≥ 1/2, then x 7→ F(α, x) is decreasing.

Another differentiation reveals that α 7→ F(α, α) is also decreasing. It follows that

2 arctan
t

α
+ arctan

t

1 − α + x
− arctan

t

α + x
≤ 2 arctan 2t

for all x ≥ α ≥ 1/2 and t ≥ 0. From this estimate and three applications of (7.2),

we find that

log
Ŵ2(α)Ŵ(1 − α + x)

Ŵ(α + x)

≤ 2
(
α−

1

2

)
logα +

(1

2
− α + x

)
log(1 − α + x)

− (α− 1/2 + x) log(α + x) + log(2π) − 1 + 4

∫ ∞

0

arctan 2t

e2πt − 1
dt.

The integral evaluates to (1 − log 2)/4. Inserting the resulting estimate into (7.3),

we obtain (b). The proof of (c) is the easiest one. If α ≥ 1/2 and n ≥ 1, then

(n − 1 + α) ≤
(

n −
1

2

)
2α.

The stated estimate follows after inserting this estimate into (7.1) for 0 ≤ x ≤ α. �

7.2 Asymptotics as p → ∞. It is not difficult to see that an upper bound

of the form Cp ≤ Cp is not asymptotically sharp as p → ∞. Suppose that f in PWp

is real, even, and satisfies f (0) = ‖f‖∞. Using Lemma 3.4, we find that

(7.4)

∫ ∞

−∞

|f (x)|p dx ≥

∫ 1
2

− 1
2

‖f‖p
∞(cosπx)p dx.

Combining this with the well known asymptotic expansion

(7.5)

∫ 1
2

− 1
2

(cosπx)p dx =
B((p + 1)/2, 1/2)

π
=

√
2

πp
+ O

( 1

p
3
2

)

as p → ∞, we conclude from (1.6) and Lemma 3.5 that

Cp ≤

√
πp

2
+ O

( 1√
p

)

as p → ∞. In Theorem 1.2 we will sharpen this upper bound and provide

a matching lower bound. In addition to (7.4) and (7.9), we require the Riesz

interpolation formula (see, e.g.,[3, Section 11.3]), which states that if f is in PW∞,

then

(7.6) f ′(x0) =
4

π

∞∑

n=−∞

(−1)n f (x0 + n + 1/2)

(2n + 1)2
.
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We will also use Bernstein’s inequality (see, e.g., [19, Lecture 28]), which states

that

(7.7) ‖f ′‖∞ ≤ π‖f‖∞

for every f in PW∞. The inequality is attained if and only if

f (z) = a cosπz + b sinπz.

Proof of Theorem 1.2: Upper bound. Fix 1 < p < ∞. In view of

Lemma 3.5, we may assume without loss of generality that f is real, even, and

satisfies ‖f‖∞ = f (0) = 1. Since f is a nontrivial function in PWp for p < ∞, we

know that (7.7) is not attained. We may consequently assume that ‖f ′′‖∞ = π2 −δπ

for some 0 < δ < π. There are now two cases to consider.

The first case is that δ > c
log p

p
for some positive constant c to be chosen later.

Using Taylor’s theorem at the origin, we obtain the estimate

|f (x)| ≥ 1 −
‖f ′′‖∞

2
x2 = 1 −

π2 − δπ

2
x2.

Restricting the domain of integration to the interval |x| ≤
√

2
π

(1 − δ
π

)−
1
2 and using

this estimate, we find that

(7.8) ‖f‖p
p =

∫ ∞

−∞

|f (x)|p dx ≥

√
2

π

(
1 −

δ

π

)− 1
2

∫ 1

−1

(1 − x2)p dx.

Combining the expansion

(7.9)

∫ 1

−1

(1 − x2)p dx = B(p + 1, 1/2) =

√
π

p
+ O

( 1

p
3
2

)

with the estimate (
1 −

δ

π

)− 1
2

≥ 1 +
δ

2π

which holds for 0 < δ < π, we deduce from (7.8) that

(7.10) ‖f‖p
p ≥

√
2

πp
+

√
2

π

c

2π

log p

p
3
2

+ O
( 1

p
3
2

)
.

as p → ∞, since δ > c
log p

p
.

The second case is that δ ≤ c
log p

p
. Using (7.4) and (7.5) as above, we find that

(7.11)

∫ 1
2

− 1
2

|f (x)|p dx ≥

√
2

πp
+ O

( 1

p
3
2

)
.
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Our goal is now to analyze the contribution to the integral of |f (x)|p for |x| ≥ 1
2
.

By Bernstein’s inequality (7.7) in the form ‖f ′′‖∞ ≤ π‖f ′‖∞, our assumption that

‖f ′′‖∞ = π2 − δπ implies that

‖f ′‖∞ ≥ π− δ.

Let us assume that x0 is a point such that |f ′(x0)| = π− δ. Now let Mδ be the set of

those integers n such that |f (x0 + n + 1/2)| ≤ (1 − 2δ)‖f‖∞ = (1 − 2δ). From the

Riesz interpolation formula (7.6) and the assumption that ‖f‖∞ = 1, we find that

π− δ = |f ′(x0)| ≤
4

π

∑

n∈Z

|f (x0 + n + 1/2)|

(2n + 1)2
≤ π−

8δ

π

∑

n∈Mδ

1

(2n + 1)2
,

where we also used that
∑

n∈Z(2n + 1)−2 = π2

4
. It follows that

∑
n∈Mδ

1
(2n+1)2 ≤ π

8
,

and consequently that

(7.12)
∑

n6∈Mδ

1

(2n + 1)2
≥
π2

4
−
π

8
= 2.07470 . . . .

The maximum of (2n + 1)−2 for integers n is 1, and this is attained only at n = 0

and n = −1. Hence (7.12) implies that the complement of Mδ consists of at least

three integers. This means that there exists a point y = x0 + n + 1/2 with |y| ≥ 1

such that |f (y)| ≥ 1 − 2δ. Let y0 denote the closest local maximum of |f (x)| to y.

There are now two subcases to consider.

First, if |y − y0| ≥ 1√
p
, then there is an interval I of length 1√

p
which contains y

where |f (x)| ≥ 1 − 2δ for every x in I. Since |y| ≥ 1, we can always choose p so

large that I contains no points x with |x| ≤ 1
2
. This means that there is no overlap

between the integral (7.11) and the integral

(7.13)

∫

I

|f (x)|p dx ≥
(1 − 2δ)p

√
p

.

Since δ < c
log p

p
, we see that

(7.14) (1 − 2δ)p ≥
(

1 − 2c
log p

p

)p

= exp
(
−2c log p + O

( log2 p

p

))
≥ C1p−2c

for an absolute constant C1 > 0. Inserting (7.14) into (7.13), we find that

∫

I

|f (x)|p dx ≥ C1p− 1
2
−2c.

Second, if |y − y0| <
1√
p
, then we choose p so large that there are no numbers x

which satisfy both |x| ≤ 1
2

and |x − y0| ≤ 1
2
, which is possible since |y| ≥ 1. By
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Taylor’s theorem and Bernstein’s inequality (7.7) twice, we find that

|f (x)| ≥ (1 − 2δ)
(

1 −
π2

2(1 − 2δ)
(x − y0)2

)
,

where we used that |f (y0)| ≥ (1 − 2δ). This shows that

∫

|x−y0|≤
√

2
π

(1−2δ)1/2

|f (x)|p dx ≥

√
2

π
(1 − 2δ)

1
2

+p

∫ 1

−1

(1 − x2)p dx.

By (7.9) and (7.14), we conclude that

∫

|x−y0|≤
√

2
π

(1−2δ)1/2

|f (x)|p dx ≥ C2p− 1
2
−2c

for an absolute constant C2 > 0.

Combining what we have found from either subcase with (7.11), we conclude

that there is a positive constant C3 such that

‖f‖p
p ≥

√
2

πp
+ C3p− 1

2
−min(1,2c).

If we choose any c < 1/2, then the lower bound obtained from the second case

δ ≤ c
log p

p
is larger than the lower bound obtained from the first case δ > c

log p

p
.

Hence we conclude that the lower bound from (7.10) applies in both cases. This

implies that

Cp ≤

√
πp

2
− B

log p√
p

+ O
( 1√

p

)

as p → ∞, which gives the stated estimate with B = c
2π

√
π
2

for any c < 1/2. �

For the proof of the lower bound in Theorem 1.2, we shall rely on estimates for

the functions gα discussed in Section 7.1.

Proof of Theorem 1.2: Lower bound. Fix 1 < p < ∞ and let α > 1
2

be

a parameter which depends on p to be chosen later. We need an upper bound for

‖gα‖
p
p as p → ∞. We first recall from Lemma 7.1(c) that

|gα(x)| ≤ cos
(πx

2α

)

whenever α ≥ 1/2 and 0 ≤ x ≤ α. For x > α, we deduce from Lemma 7.1(b) that

|gα(x)| ≤
(

1 +
x

α

)−(2α−1)

| sinπ(α− x)|.
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Combining these estimates with the fact that gα is even yields that

‖gα‖
p
p ≤

∫ α

−α

cosp
(πx

2α

)
dx + 2

∞∑

j=1

∫ α+j

α+j−1

(
1 +

x

α

)−(2α−1)p

| sinπ(α− x)|p dx

≤

(
2α + 2

∞∑

j=1

(
1 +

α + j − 1

α

)−(2α−1)p
)∫ 1

2

− 1
2

(cosπx)p dx.

Choosing α = 1
2

+ 1
log 4

log p

p
, we find that the total contribution from the sum is

O(1/p). Using (7.5), we see that

√
πp

2
−

1

log 2

√
π

2

log p√
p

+ O
( 1√

p

)
≤ Cp,

as p → ∞. This implies the stated lower bound with A > 1
log 2

√
π
2
. �

7.3 Asymptotics as p → 0+. The first goal of the present section is to

prove Theorem 1.3(a). We begin with the following consequence of Jensen’s

formula.

Lemma 7.2. Let f be a function in PW∞ that satisfies ‖f‖∞ = |f (0)| 6= 0 and

let 0 < t1 ≤ t2 ≤ · · · be the positive zeros of f .

(a) It holds that tn ≥ n
2e

.

(b) If additionally f is even, then tn ≥ n
e
.

Proof. We may assume without loss of generality that f (0) = 1. If f is entire

and does not vanish at the origin and if r > 0, then Jensen’s formula states that

(7.15) log |f (0)| =
∑

z∈f −1({0})
|z|≤r

log
( |z|

r

)
+

∫ 2π

0

log |f (reiθ)|
dθ

2π
.

The left-hand side of (7.15) is 0 since f (0) = 1. To bound the integral on the

right-hand side, we use the well known estimate |f (x + iy)| ≤ eπ|y|, which holds

since f is in PW∞ and ‖f‖∞ = 1. Computing the resulting integral, we obtain from

(7.15) that

0 ≤
∑

z∈f −1({0})
|z|≤r

log
( |z|

r

)
+ 2r.

If tn ≥ n/2, then the statement of (a) follows. If not, then we choose r = n/2 to

conclude from this that

n log(n/2) − n ≤ log(t1t2 · · · tn) ≤ n log(tn).
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Dividing by n and exponentiating, we arrive at (a). The proof of (b) is similar.

If now tn ≥ n, then (b) follows. If tn < n, then we choose r = n. We use that

the zero set is symmetric about 0 and deduce the asserted estimate from Jensen’s

formula. �

The following result is only of interest as p → 0+. For reasons that will become

clear later, we presently make no effort at optimizing the constant.

Lemma 7.3. For every 0 < p <∞ it holds that Cp ≤ 25
18

p.

Proof. The plan is to use Theorem 2.4 with q = p/2 as in the proof of

Theorem 1.1, replacing Theorem 1.5 with Lemma 7.2 (a). By Lemma 3.2, the as-

sumptions of Theorem 2.4 are satisfied. We may assume without loss of generality

that the integral over (0,∞) is larger than the integral over (−∞, 0). If not, simply

replace f by g(z) = f (−z). It follows from this that

(7.16) |f (0)|p/2 ≤ 2

∞∑

n=0

∫ tn+1

tn

|f (x)|p/2
sin( p

2
π(x − n))

πx
dx.

We now claim that

(7.17)

∞∑

n=0

χ(tn,tn+1)(x)
sin( p

2
π(x − n))

πx
≤





sin(
p

2
πx)

πx
, if 0 < x ≤ 1

2p
;

1
πx
, if 1

2p
< x < ∞.

Suppose that the claim is true. We then square both sides of (7.16), insert (7.17)

and then use the Cauchy–Schwarz inequality to the effect that

|f (0)|p ≤ 4‖f‖p
p

(∫ 1/(2p)

0

sin2( p

2
πx)

(πx)2
dx +

∫ ∞

1/(2p)

1

(πx)2
dx

)

= 4‖f‖p
p

(
p

2

∫ 1/4

0

sinc2 πx dx +
2p

π2

)
≤

25

18
p‖f‖p

p,

where we in the final estimate used that sinc is bounded by 1 and that π > 3. In

the first estimate we tacitly extended the integral of |f |p to the whole real line. It

remains to demonstrate that the claim (7.17) holds. To do this, it is sufficient to

prove that if tn ≤ x ≤ 1
2p

, then

sin
(p

2
π(x − n)

)
≤ sin

(p

2
πx
)
.

By the well-known periodicity and monotonicity properties of the sine function,

this estimate will follow if we can establish that n ≤ 2
p

+ 2x whenever tn ≤ x ≤ 1
2p

.

This follows from Lemma 7.2(a), which gives that

n ≤ 2etn ≤ 2(e − 1)tn + 2x ≤
e − 1

p
+ 2x <

2

p
+ 2x.

�
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We are now ready to proceed with the proof of Theorem 1.3(a), which relies on

the just established Lemma 7.3 and on the power trick of Lemma 2.1.

Proof of Theorem 1.3(a). The supremum

(7.18) c0 := sup
k≥1

2kC1/k

is finite by Lemma 7.3. It follows from the power trick (Lemma 2.1) that if k1

divides k2, then 2k1C1/k1
≤ 2k2C1/k2

. Consequently, there is a sequence of integers

(kj)j≥1 which are all strictly greater than 1 such that if p1 = 1 and pj+1 = pj/kj for

j ≥ 1, then

c0 = lim
j→∞

2

pj

Cpj
.

Fix ε > 0. There is a positive integer j such that if q = pj, then

(7.19) c0 − ε ≤
2

q
Cq.

Let us now estimate 2
p
Cp for 0 < p ≤ q/2. We first let k be the smallest positive

integer such that k ≥ q/p. Using that p 7→ Cp is increasing, the power trick, and

the lower bound (7.19), we find that

2

p
Cp ≥

2

p
Cq/k ≥

2

p

Cq

k
≥ (c0 − ε)

q

kp
≥ (c0 − ε)

q

q + p
,

where we in the final inequality used that k ≤ q/p + 1. This shows that

(7.20) lim inf
p→0+

2

p
Cp ≥ (c0 − ε).

We next let k be the largest positive integer such that k ≤ q/p. Using that p 7→ Cp

is increasing in combination with (7.18), we find that

2

p
Cp ≤

2

p
Cq/k ≤

q

pk
c0 ≤ c0

q

q − p
,

where we in the final inequality used that k ≥ q/p − 1. This shows that

(7.21) lim sup
p→0+

2

p
Cp ≤ c0.

The claim follows from (7.20) and (7.21) and the fact that ε > 0 was arbitrary. �

Our next goal is to estimate precisely the constant c0 of Theorem 1.3(a). From

Lemma 7.3 it follows that c0 ≤ 25
9

, while the lower bound c0 ≥ 1 can be deduced

by considering positive integers k and

f (x) = sinc2k
( π

2k
x
)
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as a function in PW1/k. We do not know if there exists an even extremal function

in PWp when 0 < p < 1, and this fact caused us some extra work in Lemma 7.2

and Lemma 7.3 above. However, to compute the constant c0, it suffices to restrict

to even functions. Let us therefore introduce

1

Cp,e

:= inf
f∈PWp

{‖f‖p
p : f (0) = 1 and f is even}

and establish the following consequence of Theorem 1.3(a).

Corollary 7.4. Let c0 be the constant appearing in Theorem 1.3(a). Then

lim
p→0+

2

p
Cp,e = c0.

Proof. We trivially have Cp,e ≤ Cp. Suppose that ϕ2p is an extremal for C2p.

Consider the even function f (x) := ϕ2p(x/2)ϕ2p(−x/2), which is in PWp and which

satisfies f (0) = 1. Moreover, by the Cauchy–Schwarz inequality, we find that

‖f‖p
p =

∫ ∞

−∞

|f (x)|p dx ≤

∫ ∞

−∞

|ϕ2p(x/2)|2p dx = 2‖ϕ2p‖
2p
2p.

This implies that

Cp,e ≥
|f (0)|p

‖f‖
p
p

≥
|ϕ2p(0)|2p

2‖ϕ2p‖
2p
2p

=
C2p

2
.

Dividing by p and taking the limit p → 0+ in the estimates C2p ≤ 2Cp,e ≤ 2Cp,

then appealing to Theorem 1.3(a) implies the stated result. �

Since Corollary 7.4 allows us to restrict our attention to even functions, we are

able to improve the argument used in Lemma 7.3 in several ways to obtain the

following result.

Theorem 7.5. Let c0 be the constant appearing in Theorem 1.3(a). Then

c0 ≤ inf
q>1

2q

q

(∫ 1/2

0

(sincπx)q∗

dx +
2q∗−1

πq∗
(q∗ − 1)

)q−1

,

where q∗ denotes the Hölder conjugate of q.

Proof. By Corollary 7.4 we consider an even function in PWp which does not

vanish at the origin and whose zeros are all real. We fix q > 1 and use Theorem 2.4

with q = p/q to obtain

(7.22) |f (0)|p/q = 2

∞∑

n=0

∫ tn+1

tn

|f (x)|p/q
sin(

p

q
π(x − n))

πx
dx.
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As in the proof of Lemma 7.3, we now claim that

(7.23)

∞∑

n=0

χ(tn,tn+1)(x)
sin( p

q
π(x − n))

πx
≤





sin(
p

q
πx)

πx
, if 0 < x ≤

q

2p
;

1
πx
, if

q

2p
< x < ∞.

To establish (7.23), it is sufficient to prove that n ≤
q

p
+ 2x whenever tn ≤ x ≤

q

2p
.

In this case, we can use Lemma 7.2(b) to prove that

n ≤ etn ≤ (e − 2)tn + 2x ≤ (e − 2)
q

2p
+ 2x <

q

p
+ 2x.

We next raise (7.22) to the power q, then apply (7.23) and Hölder’s inequality on

the right-hand side to conclude that

|f (0)|p ≤ 2q−1‖f‖p
p

(∫ q/(2p)

0

(sin(
p

q
πx)

πx

)q∗

dx +

∫ ∞

q/(2p)

(πx)−q∗

dx

) q

q∗

=
p

2
‖f‖p

p

2q

q

(∫ 1/2

0

(sincπx)q∗

dx +
2q∗−1

πq∗
(q∗ − 1)

)q−1

,

which implies the stated result. �

Optimizing in q, using the integrate and optimize packages from SciPy,

we found that the choice q = 1.784 in Theorem 7.5 yields the upper bound

c0 ≤ 1.1481785,

which is the upper bound for c0 stated in Theorem 1.3(b).

To obtain a lower bound for c0, we will test (1.1) with the functions gα discussed

in Section 7.1.

Theorem 7.6. Let c0 be the constant appearing in Theorem 1.3(a). Then

1

c0

≤ inf
γ>1/2

γ

(∫ 1

0

dx

(1 − x)γ(1−x)(1 + x)γ(1+x)
+

∫ ∞

1

dx

(x − 1)γ(1−x)(1 + x)γ(1+x)

)
.

Proof. We will choose α = α(p) ≥ 1
2

later, obtaining a lower bound for c0 as

follows

1

c0

≤ lim inf
p→0+

p

2
‖gα‖

p
p.

Since gα is even, it is sufficient to consider the Lp integral over x ≥ 0. We will

obtain an upper bound for this integral using Lemma 7.1, so we split it at x = α.
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For the first part, we use Lemma 7.1(a) to the effect that

∫ α

0

|gα(x)|p dx ≤

∫ α

0

(
1 −

x

α

)−(α−1/2−x)p(
1 +

x

α

)−(α−1/2+x)p

dx

= α

∫ 1

0

dx

(1 − x)(α−1/2−αx)p(1 + x)(α−1/2+αx)p

≤ α

∫ 1

0

dx

(1 − x)(α−1/2)p(1−x)(1 + x)(α−1/2)p(1+x)
,

where we in the final inequality used that (1− x)px/2(1 + x)−px/2 ≤ 1. Note that this

inequality is attained in the limit p → 0+. For the second part of the integral, we

deduce from Lemma 7.1(b) and | sinπ(α− x)| ≤ 1 that

∫ ∞

α

|gα(x)|p dx ≤

∫ ∞

α

αp(2α−1) (1 − α + x)(1/2−α+x)p

(α + x)(α−1/2+x)p
dx

= α

∫ ∞

1

(1 − α−1
αx

)(1/2−α+αx)p

(1 + 1
x
)(α−1/2+αx)p

dx

xp(2α−1)

≤ α

∫ ∞

1

(1 − α−1
αx

)(1/2−α)p(1−x)

(1 + 1
x
)(α−1/2)p(1+x)

dx

xp(2α−1)
,

where we in the final inequality used that (1 − α−1
αx

)px/2(1 + 1
x
)−px/2 ≤ 1. We will

now choose α = 1
2

+
γ

p
for some fixed γ > 1/2, which ensures that gα is in PWp.

With this choice of α, the upper bound for the first part of the integral becomes

p

∫ α

0

|gα(x)|p dx ≤
(p

2
+ γ
) ∫ 1

0

dx

(1 − x)γ(1−x)(1 + x)γ(1+x)
.

Taking the limit p → 0+, we obtain the first part contribution to the stated upper

bound. The choice of α means that our upper bound for the second part of the

integral becomes

p

∫ ∞

α

|gα(x)|p dx ≤
(p

2
+ γ
) ∫ ∞

1

dx

(x −
2γ−p

2γ+p
)γ(1−x)(1 + x)γ(1+x)

.

Taking the limit p → 0+, we obtain the second part of the contribution to the stated

upper bound. �

Optimizing the parameter γ of Theorem 7.6 numerically using the integrate

and optimize packages from SciPy, we find that γ = 0.935 gives the lower bound

c0 ≥ 1.1393830,

which provides the lower bound for c0 stated in Theorem 1.3(b).
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8 Epilogue: Duality and orthogonality revisited

This section presents some afterthoughts on the notions of duality and orthogo-

nality, as discussed and employed in the preceding treatise. The first question to

be addressed, is whether Theorem 3.6, which seems to be tied to the usual duality

between Lp and Lp/(1−p), may nevertheless carry over to the range 0 < p < 1. The

second question is whether there is a natural Hilbert space induced by the orthog-

onality relations of Lemma 3.3 (b). An interesting point is that both questions are

intimately related to the same question: What can be said about the decay of the

extremal functions |ϕ(x)| when x → ∞ and x is bounded away from the zeros of ϕ?

8.1 Traces of duality. We begin with the problem of extending the repro-

ducing formula of Theorem 3.6 to the range 0 < p < 1. Since Hölder’s inequality

is no longer available, we may not expect the formula to hold for all functions f

in PWp. Instead, we will aim for a formula that applies to functions in PW2 that

belong to the Schwartz space S on R.

We will rely on Theorem 1.4 (b), and we will therefore only succeed in mak-

ing the desired extension in the range 1/2 ≤ p < 1. Retaining the notation

8 = |ϕ|p−2ϕ/‖ϕ‖p
p from (3.4) in Section 3.2, we may state our next result as fol-

lows.

Theorem 8.1. Suppose that 1/2 ≤ p < 1 and let ϕ be a solution of the

extremal problem (1.6). Then 8 is a tempered distribution and

(8.1) f (0) =

∫ ∞

−∞

f (x)8(x)dx

for every f in S ∩ PW2.

We will use the following two lemmas, the first of which is standard. Its proof

relies on a classical argument of Plancherel and Pólya [25] and follows from [3,

Theorem 6.7.15], either by using that the differentiation operator acts boundedly

on PWp or by employing a Cauchy estimate in the proof of [3, Theorem 6.7.15].

Lemma 8.2. Let 3 be a uniformly discrete set of real numbers and assume

that 0 < p < ∞. Then there exists a constant C depending only on the separation

constant of 3 and on p such that

∑

λ∈3

|f ′(λ)|p ≤ C‖f‖p
p

holds for every f in PWp.
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Lemma 8.3. Fix 1/2 ≤ p < ∞ and suppose that ϕ is a solution of the extremal

problem (1.6). Then there exist positive constants C and γ such that

|ϕ(x)| ≥ C
dist(x,Z (ϕ))

(1 + |x|)γ

for all x in R.

Proof. By symmetry, it is sufficient to establish the estimate for x ≥ 0. Let

Z (ϕ) = (tn)n∈Z\{0} be the zero set of ϕ. For n ≥ 1, we set δn := tn+1 − tn. Since ϕ

has exponential type π, we know that tn/n → 1 as n → ∞. It follows that there is

some N such that δn ≤ tn and tn+2 ≤ 2tn whenever n ≥ N. We restrict our attention

to these n in what follows. Setting

ψn(x) :=
ϕ(x)

(x − tn)(x − tn+1)
and 9n(x) := |ψn(x)|p

x2

|(x − tn)(x − tn+1)|1−p
,

we appeal to Lemma 3.3(b) as before to conclude that

∫

R\In

9n(x) dx =

∫

In

9n(x) dx,

where In := [tn, tn+1]. We estimate the right-hand side in the now familiar fashion,

∫

In

9n(x) dx ≤ max
x∈In

|ψn(x)|pt2
n+1|In|

2p−1 B(p, p) ≤ max
x∈In

|ψn(x)|pt
2p+1
n+1 B(p, p),

where we used that δn ≤ tn ≤ tn+1 for n ≥ N in the final estimate. To bound the left-

hand side from below, we use Lemma 3.4 along with the fact that ‖ϕ‖∞ = ϕ(0) = 1

to conclude that

∫

R\In

9n(x) dx ≥

∫ 1
3

0

9n(x) dx =

∫ 1
3

0

|ϕ(x)|px2

(tn − x)(tn+1 − x)
dx ≥

1

2p

t−2
n+1

34
.

Combining what we have done, we find that

(8.2) max
x∈In

|ψn(x)| ≥
c

t
2+3/p
n+1

for c =
1

2(34 B(p, p))1/p
,

whenever n ≥ N. To parlay this maximal estimate into a pointwise estimate, we

will combine it with that of a neighboring interval. The function ψn has a unique

critical point on the interval (tn−1, tn+2) by Lemma 4.2, where we use the convention

t0 = 0 as usual. Since In is a subinterval of that interval, it follows from this that the

maximum of |ψn| on In will be attained at a unique point which we denote by ξn.

We now set

ψ̃n(x) :=
ϕ(x)

(x − tn)(x − tn+1)(x − tn+2)
.
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A similar argument shows that the minimum of |ψ̃n| on the interval [ξn, ξn+1], which

is a subinterval of (tn−1, tn+3), must be attained at one of the endpoints. Combining

this with (8.2), we find that

(8.3) |ψ̃n(x)| ≥ min
( |ψn(ξn)|

tn+2 − ξn

,
|ψn+1(ξn+1)|

ξn+1 − tn

)
≥

c

t
3+3/p
n+2

≥
c2−3−3/p

x3+3/p

for ξn ≤ x ≤ ξn+1, where we in the final estimate used that tn+2 ≤ 2tn for n ≥ N.

We next estimate

|x − tn| |x − tn+1| |x − tn+2|

dist(x,Z (ϕ))
≥

1

2
inf
n≥1

(tn+1 − tn)2 =
σ2

2
,

and recall from Theorem 1.4(b) that σ > 0. Combined with (8.3), this yields the

stated estimate with

C =
2−5−3/pσ2

(34 B(p, p))1/p
and γ = 3 +

3

p

for x ≥ ξn and n ≥ N. We adjust C if necessary to take into account 0 ≤ x ≤ ξN . �

The assumption that p ≥ 1/2 is only required in the argument above to conclude

that Z (ϕ) is uniformly discrete by Theorem 1.4(b). If p < 1/2 and if Z (ϕ) is

uniformly discrete, then |In|
2p−1 is bounded above by a constant, so in fact we get

a better exponent γ.

Using Theorem 1.4(c) twice in the argument above, we obtain the sharper bound

(8.4) |ϕp(x)| ≥ C
dist(x,Z (ϕp))

(1 + |x|)4/p

for 1 ≤ p <∞. Taking also into account Corollary 3.7, we find that

(8.5) |ϕp(x)| =
dist(x,Z (ϕp))

o((1 + |x|)4/p)

as x → ∞. In the next subsection, we will improve this restriction on the decay of

|ϕp| when p > 1.

Proof of Theorem 8.1. We begin by noting that8 is a tempered distribution

because ∫ y+1

y

|ϕ(x)|p−1 dx = O(|y|(1−p)γ)

by Theorem 1.4(b) and Lemma 8.3.

To establish (8.1), we begin by picking an arbitrary function f in S ∩PW2. We

may assume that f is real entire since PWp is closed under complex conjugation.

We define

F(ε) :=

∫ ∞

−∞

|ϕ(x) + ε(f (x) − f (0)ϕ(x))|pdx.
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Since F(ε) ≥ F(0) for every ε by the extremality of ϕ, it suffices to show that F is

differentiable at 0 with

(8.6) F′(0) = p

∫ ∞

−∞

f (x)|ϕ(x)|p−2ϕ(x) dx − pf (0)‖ϕ‖p
p.

To this end, we note initially that

F(ε) = (1 − εf (0))p

∫ ∞

−∞

∣∣∣ϕ(x) +
εf (x)

1 − εf (0)

∣∣∣
p

dx

=

∫ ∞

−∞

∣∣∣ϕ(x) +
εf (x)

1 − εf (0)

∣∣∣
p

dx − pεf (0)‖ϕ‖p
p + O(εp+1),

Here we used that

|a|p − |b|p ≤ |a + b|p ≤ |a|p + |b|p

holds for arbitrary complex numbers a and b when 0 < p ≤ 1 to get the term

O(εp+1). We now use Lemma 8.2 to obtain

F(ε) =

∫

dist(x,Z (ϕ))≥ε

∣∣∣ϕ(x) +
εf (x)

1 − εf (0)

∣∣∣
p

dx − pεf (0)‖ϕ‖p
p + O(εp+1).

This is justified because if |x− tn| ≤ ε, then |ϕ(x)| ≤ ε|ϕ′(λ)| for some λ between tn

and x. Using Lemma 8.3 and our assumption that f is in S , we infer from this that

F(ε) =

∫

dist(x,Z (ϕ))≥ε

|ϕ(x)|p
∣∣∣1 + ε

f (x)

(1 − εf (0))ϕ(x)

∣∣∣
p

dx − pεf (0)‖ϕ‖p
p + O(εp+1)

=

∫

dist(x,Z (ϕ))≥ε

(|ϕ(x)|p + pεf (x)|ϕ(x)|p−2ϕ(x)) dx − pεf (0)‖ϕ‖p
p + O(εp+1).

Now using Lemma 8.2 and Lemma 8.3 a second time, we find that

F(ε) =

∫ ∞

−∞

(|ϕ(x)|p + pεf (x)|ϕ(x)|p−2ϕ(x)) dx − pεf (0)‖ϕ‖p
p + O(εp+1),

which yields (8.6).

8.2 A family of de Branges spaces. We turn to our investigation of the

Hilbert space structure induced by the orthogonality relation of Lemma 3.3 (b).

This will lead us to a de Branges space associated with the extremal functions ϕp

in the strictly convex range. An immediate application of this study will be an

improvement of (8.5) for p > 1.

We begin by recalling (from, e.g., [6, Problem 50]) that a Hilbert space H of

entire functions is a de Branges space if the following conditions are met:

(H1) Whenever f is in H and has a nonreal zerow, the function f (z)(z−w)/(z−w)

is in H and has the same norm as f .
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(H2) For every nonreal w, the linear functional defined on H by f 7→ f (w) is

continuous.

(H3) The function f ∗(z) := f (z) belongs to H whenever f is in H, and f ∗ has the

same norm as f .

For 1 ≤ p <∞, let mp denote the measure defined on R by

dmp(x) = |ϕp(x)|p−2 dx

and let L2(mp) denote the corresponding L2 space of measurable functions onR. We

furthermore declare Bp to be the closure of PWp ∩ L2(mp) in L2(mp) and endow Bp

with the norm and inner product of L2(mp). It is clear that ϕp is in Bp, since

(8.7) ‖ϕp‖
2
Bp

=

∫ ∞

−∞

|ϕp(x)|2 dmp(x) =

∫ ∞

−∞

|ϕp(x)|p dx = ‖ϕp‖
p
p.

We begin with the following generalization of Corollary 3.7 which will be important

in our investigations of Bp.

Lemma 8.4. If 1 ≤ p < ∞ and if ω is a nonconstant entire function of 0

exponential type, then

(8.8)

∫ ∞

−∞

|ω(x)|2|ϕp(x)|pdx = ∞.

Proof. If ω is a polynomial, the statement follows at once from Corollary 3.7.

We will therefore assume that ω is an entire function of 0 exponential type which

is not a polynomial and that the integral in (8.8) is finite. Our goal is to show that

this premise leads to a contradiction.

By (8.4), our assumption implies that

∫ ∞

−∞

|ω(x)|2
distp(x,Z (ϕp))

(1 + |x|)4
dx < ∞.

Since ω is not a polynomial, it has an infinite number of zeros. Dividing out two

zeros of ω, we may instead assume that

(8.9)

∫ ∞

−∞

|ω(x)|2 distp(x,Z (ϕp)) dx <∞.

By Theorem 1.4(b), we know that Z (ϕp) has a positive separation constant σ.

Consider the sequence of intervals In := [σn, σ(n + 1)] for n ≥ 1, and let xn be a

point in I2n such that

|ω(xn)| = max{|ω(x)| : x ∈ I2n and dist(x,Z (ϕp)) ≥ σ/2}.
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The condition (8.9) implies that supn≥1 |ω(xn)| < ∞. Now a classical theorem of

Duffin and Schaeffer (see [7] or [3, Corollary 10.5.4]) implies that ω is bounded

on R. Since ω is assumed to be of 0 exponential type, this implies that ω is a

constant function. This contradicts our assumption that ω is not a polynomial. �

By the singularities of the weight |ϕ1|
−1, every function in B1 must be of the

form ωϕ1 with ω of 0 exponential type, and so B1 consists only of scalar multiples

of ϕ1. We therefore restrict our attention to the nontrivial case 1 < p <∞ in what

follows. To state our next theorem, we set e0(z) := ϕp(z) and

en(z) =
z

z − tn
ϕp(z)

for n in Z \ {0} with the convention that tn = −t−n in view of Lemma 3.5. For

p > 1, it is easy to check that en is in Bp for every n as in (8.7).

Theorem 8.5. If 1 < p < ∞, then Bp is a de Branges space with orthogonal

basis B = (en)n∈Z.

Proof. We have already seen that B is a subset of Bp. It follows at once from

Lemma 3.3(a) that if n 6= 0, then 〈en, e0〉Bp
= 0. When m 6= n and neither m nor n is

zero, we get that 〈em, en〉Bp
= 0 directly from Lemma 3.3 (b). It follows that B is

an orthogonal basis for a subspace of Bp.

To show that this subspace consists of entire functions of exponential type π, it

suffices to show that

(8.10)

∞∑

n=1

1

‖en‖
2
Bp

t2
n

< ∞.

Indeed, writing

SN(x) :=

N∑

n=−N

an

en(x)

‖en‖Bp

= xϕp(x)

N∑

n=−N

an

(x − tn)‖en‖Bp

for an arbitrary ℓ2 sequence (an)n∈Z, we see that (8.10) ensures that the sequence SN

converges uniformly on compact subsets of C and that the limit function will be of

exponential type π. (Here we tacitly used the fact that t−n = −tn.)

We may in fact give an explicit bound for the sum of the series in (8.10). To

this end, setting

fN(x) :=

N∑

n=1

1

‖en‖Bp
tn

en(x)

‖en‖Bp

,

we have

(8.11) ‖fN‖2
Bp

=

N∑

n=1

1

‖en‖
2
Bp

t2
n

.
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On the other hand, when 0 ≤ x ≤ t1, we also have

|fN(x)| = xϕp(x)

N∑

n=1

1

‖en‖
2
Bp

tn(tn − x)
≥ xϕp(x)

N∑

n=1

1

‖en‖
2
Bp

t2
n

,

which implies that

‖fN‖2
Bp

≥

( N∑

n=1

1

‖en‖
2
Bp

t2
n

)2 ∫ t1

0

x2|ϕp(x)|p dx.

Combining this inequality with (8.11), we conclude that

∞∑

n=1

1

‖en‖
2
Bp

t2
n

≤

(∫ t1

0

x2|ϕp(x)|p dx

)−1

.

We prove next that the sequence B is complete in Bp. We begin by recalling

that the zeros of ϕp are simple, which means that en(tn) 6= 0. Let f be any function

in PWp ∩ L2(mp) and set

g(z) :=
(

f (z) −
f (tn)

en(tn)
en(z)

) z

z − tn
.

Since g(0) = 0, Theorem 3.6 yields

〈f, en〉Bp
= 〈g, e0〉Bp

+
f (tn)

en(tn)
‖en‖

2
Bp

=
f (tn)

en(tn)
‖en‖

2
Bp
.

It follows that

h := f −

∞∑

n=−∞

〈f, en〉Bp

‖en‖
2
Bp

en

is an entire function of exponential type π that vanishes at the zeros of zϕp(z),

whence h(z) = zϕp(z)ω(z) for an entire function ω of 0 exponential type. By

Lemma 8.4, we must have ω ≡ 0, and so f must lie in the closure of the span of B.

This means that Bp is a Hilbert space of entire functions.

To finish the proof, we note that the axioms (H1) and (H3) are trivially satisfied,

while (H2) holds because the functional of point evaluation at the point w in C is

( ∞∑

n=−∞

|en(w)|2

‖en‖
2
Bp

)1/2

,

which is finite by (8.10). �

The bound (8.10) from the proof of Theorem 8.5 yields an interesting improve-

ment of (8.5). Indeed, using Lemma 3.3(b), Lemma 4.4 and Theorem 1.4(c),

we find that ‖en‖
2
Bp

is bounded above and below by an absolute constant times

|ϕp(µn)|p. Hence (8.10) yields the following result.
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Theorem 8.6. Fix 1 < p <∞ and let ϕp be the solution of (1.6). Then

(8.12)

∞∑

n=1

1

|ϕp(µn)|pn2
<∞,

where µn = (tn + tn+1)/2.

This result is significantly stronger than (8.5) which merely says that the terms

in the series in (8.12) tend to 0. We may view this enhancement as resulting from

our use of orthogonality on a global scale, in contrast to our former local study

of pairs of zeros. It would be interesting to see if the spaces Bp could be used to

extract more nontrivial information about the extremal functions.

9 Conjectures and further open problems

This section summarizes a number of conjectures and open problems suggested by

our work. We split our discussion into four subsections.

9.1 Problems about Cp. We begin by restating the monotonicity conjec-

ture, which is the main challenge pertaining to Cp.

Conjecture 9.1. The function p 7→ Cp

p
is strictly decreasing on (0,∞).

If we could verify this hypothesis, it seems likely that we should be able get

a simpler and cleaner proof of Theorem 1.1. We should also be able to prove the

following.

Conjecture 9.2. There is a positive constant A such that

Cp ≥
p

2
(1 − A(p − 2))

for 1 ≤ p ≤ 2.

The preceding problem may conceivably be solved by a more refined analysis of

the example functions g1/2+1/p (see Section 7.1). Similar numerical computations

as done with Bessel functions (see Figure 1) suggest that this would be a reasonable

approach. We have performed a preliminary analysis of g1/2+1/p showing that the

conjectured bound holds for p very close to 2.

One could also ask for an upper bound for Cp in the range 1 ≤ p ≤ 2 similar

to that obtained for 2 ≤ p ≤ 4 in Theorem 1.1 or for a lower bound for Cp in

the range 2 ≤ p ≤ 4 similar to the one conjectured in Conjecture 9.2. Related to

these questions is the challenge of extending the numerical work of Hörmander
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and Bernhardsson [13] to the range 1 ≤ p ≤ 4; see the discussion at the end of

Section 3.2.

It remains an interesting problem to determine the constant c0 of Theorem 1.3.

We have no evidence suggesting what one should expect that constant to be, beyond

the fact that it is contained in the interval [1.1393830, 1.1481785].

9.2 Point evaluation on the imaginary axis. Fix 0<p<∞ and y>0.

A natural extension of our problem is that of finding the smallest constant C such

that the inequality |f (iy)|p ≤ C‖f‖p
p holds for every f in PWp. A variant of this

problem was studied by Korevaar [15] who was interested in finding the best

constant K, say Kp, such that the inequality

(9.1) |f (iy)|p ≤ K sinc(iπpy)‖f‖p
p

holds for all y ≥ 0 and all f in PWp. Note that plainly Cp ≤ Kp. Korevaar proved

that if 1 ≤ p ≤ 2, then 1
2

≤ Kp ≤ 1 and if 2 ≤ p < ∞, then 1 ≤ Kp ≤ p.

He conjectured, presumably based on the power trick, that Kp = p/2 for all

1 ≤ p < ∞. However, this conjecture is refuted by (1.3) and the bound C1 ≤ K1.

We believe that the following adjustment should hold.

Conjecture 9.3. We have

Kp =





Cp, if 0 < p < 2;

p/2, if 2 ≤ p <∞.

To justify this conjecture, we will now prove that

(9.2) lim
y→∞

sup
f∈PWp

|f (iy)|pye−pπy

‖f‖
p
p

=
1

4π
.

To this end, we note that if f is in PWp, then eiπzf (z) is in the Hp space of the upper

half-plane (see [8, Chapter 2]), which implies that

e−pπy|f (iy)|p ≤
‖f‖p

p

4πy

holds for all f in PWp. This establishes the upper bound in (9.2). On the other

hand, the function ky(z) := (y − iz)−2/p satisfies

(9.3) |ky(iy)|p =
‖ky‖

p
p

4πy
.

The function ky can be represented using the Fourier transform as

ky(z) =
2π

Ŵ(2/p)

∫ ∞

0

ξ2/p−1e−yξeizξ dξ

2π
.
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The function z 7→ e−iπzky(z) is not entire. Let therefore b be a smooth bump

function such that b(ξ) = 1 for 0 ≤ ξ ≤ π and b(ξ) = 0 for 2π ≤ ξ <∞. Then

fy(z) := e−iπz

∫ ∞

0

k̂y(ξ) b(ξ) eizξ dξ

2π

is in PWp. We next estimate

|eπyky(iy) − fy(z)| ≤ eπy 2π

Ŵ(2/p)

∫ ∞

0

ξ2/p−1e−2yξ(1 − b(ξ))
dξ

2π
≤ Cpe−πy,

using that 1 − b(ξ) = 0 for 0 ≤ ξ ≤ π. A similar estimate shows that

∫ ∞

−∞

|eiπxky(ix) − fy(ix)|p dx ≤ Dpe−πy‖ky‖
p
p.

We see from (9.3) that ‖ky‖
p
p = π/y. Combining these estimates, we then find that

|fy(iy)|pe−pπyy

‖fy‖
p
p

=
1 + o(1)

4π

when y → ∞ which implies the lower bound in (9.2).

We interpret (9.2) as saying that Korevaar’soriginal conjecture is asymptotically

true when y → ∞. Curiously, it seems that the best constant in (9.1) for a fixed y,

say Kp(y), may increase with y when p > 2 and decrease with y when 0 < p < 2.

If we could establish such monotonicity properties, then Conjecture 9.3 would be

verified.

The asymptotic behavior of Kp(y) when y → ∞ reflects that point evaluation

in PWp at iy looks increasingly as point evaluation in Hp, up to an exponential

factor. Since zeros of functions in Hp can be divided out by Blaschke products, it

is immediate that the power trick for Hp extends to all positive powers. This means

that we know the norm of point evaluation for all Hp spaces once we know it for a

single Hp space.

9.3 Problems about the extremal functions and their zero sets. We

begin with the most basic problem that remains to be resolved.

Conjecture 9.4. The extremal problem (1.6)has a unique solution for 0<p<1.

Clearly, if we were able to establish that there is a unique solution ϕp to (1.6),

then ϕp would have to be an even function, since also ϕp(−x) would solve (1.6).

This observation leads to a presumably easier problem.

Conjecture 9.5. Any solution of (1.6) for 0 < p < 1 is even.
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We turn to the zero sets of solutions of (1.6). The following conjecture has

only been established for p ≥ 1/2 in Theorem 1.4(b).

Conjecture 9.6. The zero set of any solution of (1.6) is uniformly discrete for

all 0 < p <∞.

One could also conjecture that the zero set of any solution of (1.6) is uniformly

dense, but we will offer a more precise conjecture (see Conjecture 9.9) which also

implies Conjecture 9.6. The reason for singling out Conjecture 9.6 is that it implies

the following.

Conjecture 9.7. Theorem 8.1 extends to the full range 0 < p < ∞.

We now take the uniqueness of the extremal function for granted. We retain

the notation ϕp for the unique solution of (1.6), and we let tn = tn(p), n ≥ 1, be the

positive zeros of ϕp. We have the following monotonicity conjecture for the zeros.

Conjecture 9.8. The function p 7→ tn is strictly decreasing for all n ≥ 1.

As suggested in the beginning of Section 6, we also believe that

(9.4) n − 1/2 + 1/p ≤ tn ≤ n

when 2 ≤ p < ∞. It also seems reasonable to expect that we have

n ≤ tn ≤ n − 1/2 + 1/p

when 0 < p ≤ 2.

The next conjecture is based on the surmise that the zeros of any extremal

function are regularly distributed.

Conjecture 9.9. We have lim
n→∞

(tn+1 − tn) = 1 for all p > 0.

The result of this paper closest to giving evidence for the preceding conjecture

is the bound lim supn→∞(tn+1 − tn) ≤ 1.0805 when p = 1 (see Section 4.2).

Our analysis also suggests the following asymptotic behavior of t1.

Conjecture 9.10. We have lim
p→∞

t1 = 1/2 and lim
p→0+

pt1 > 0.

Intimately related to the distribution of the zeros Z (ϕp) is the decay of ϕp.

When discussing this relation beyond what was found in (8.5) and Theorem 8.6, it

is quite natural to think of xϕp(x) as the generating function of the set Z (ϕp) ∪{0}.

(Note that xϕ2(x) = 1
π

sinπx and Z (ϕ2) ∪ {0} = Z.) In view of Lemma 8.4, the

following assertion has been verified for p ≥ 2.
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Conjecture 9.11. Z (ϕp)∪{0} is a uniqueness set for PWp if and only if p ≥ 1.

Although it remains to verify the above for p < 2 and in particular in the most

accessible range 1 < p < 2, we believe much more to be true. The rationale

for the above conjecture is that we suspect that xϕp(x)/ dist(x,Z (ϕp) ∪ {0}) in

absolute value to behave roughly as the function (1 + |x|)1−2/p, which is integrable

when p < 1. Although this precise relation may be false, it seems likely that the

following may hold.

Conjecture 9.12. Suppose that 1 < p < ∞. The function

( |xϕp(x)|

dist(x,Z (ϕp) ∪ {0})

)p

is a Muckenhoupt (Ap) weight.

Here we recall that a positive function w is said to be a Muckenhoupt (Ap)

weight (see [8, pp. 246–247]) if

sup
I

1

|I|

∫

I

w(x) dx

(
1

|I|

∫

I

( 1

w(x)

) 1
p−1

dx

)p−1

< ∞,

where the supremum is taken over all finite intervals I. It is easy to verify that

(1 + |x|)p−2 is an (Ap) weight. In view of [23], this conjecture would imply the

stronger property of Z0(ϕp) ∪ {0} that it be a complete interpolating sequence for

PWp. This would give the following stronger link between PWp and the de Branges

space Bp of the preceding section: The expansion

f (x) =

∞∑

n=−∞

f (tn)
en(x)

en(tn)

would hold also for f in PWp, and (
∑

n∈Z |f (tn)|p)1/p would define another norm on

PWp equivalent to the Lp norm.

There are also basic questions about the Fourier transform of the extremal

functions that we are unable to answer. For example, if 0 < p ≤ 1, then every

function in PWp is integrable and has a continuous Fourier transform. Since

these Fourier transforms are compactly supported, they are also integrable. We

believe our extremal functions in the strictly convex regime should enjoy the same

properties.

Conjecture 9.13. If 1 < p < ∞, then the Fourier transform ϕ̂p is a continu-

ous integrable function on (−π, π).

Based on our belief that the extremal functions are close to the functions fp

defined in (1.4), we are also led to the following.
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Conjecture 9.14. Let ϕ be a solution of (1.6). Then ϕ̂ is nonnegative.

Moreover,

(a) if 0 < p < 2, then ϕ̂ is decreasing on (0, π) and ϕ̂(ξ) → 0 as ξ → π−;

(b) if 2 < p <∞, then ϕ̂ is increasing on (0, π) and ϕ̂(ξ) → ∞ as ξ → π−.

By a result of Pólya [26, p. 373], part (b) would imply that

2n − 1

2
< tn <

2n + 1

2

for 2 < p < ∞. This is in particular consistent with the first part of Conjecture 9.10.

If we in addition to (b) assume that ϕ̂ is strictly convex, then it follows from [26,

p. 373] that we have
2n − 1

2
< tn < n,

in accordance with the more precise conjecture (9.4). Presumably, other and more

precise consequences for Z (ϕ) could be deduced from properties that we expect ϕ̂

to have.

In the next section, we will discuss another problem related to the Fourier

transforms of our extremal functions.

−3π −π π 3π

1

Figure 8. Plot of ψ̂ ∗ ψ̂ ∗ ψ̂ for ψ̂ as in (9.6). See Figure 9 for a close-up of the

part of the plot on the interval (−π, π).

9.4 A problem about n-fold convolutions. To conform with the nor-

malization of the Fourier transform given in Section 3.2, we define the convolution

of f̂ and ĝ as follows:

f̂ ∗ ĝ (η) :=

∫ ∞

−∞

f̂ (ξ) ĝ(η− ξ)
dξ

2π
.

We will restrict our attention to integrable functions ψ̂ that are supported on [−π, π]

and continuous on (−π, π). Such ψ̂ will be referred to as admissible functions.

We let the n-fold convolution operator Cn act on admissible functions ψ̂ so that

C0 ψ̂ := ψ̂, C1 ψ̂ := ψ̂ ∗ ψ̂, C2 ψ̂ := ψ̂ ∗ ψ̂ ∗ ψ̂, C3 ψ̂ := ψ̂ ∗ ψ̂ ∗ ψ̂ ∗ ψ̂, . . .
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We now consider the following problem: Is there an admissible function ψ̂ such

that

(9.5) Cn ψ̂(ξ) = 1

for every −π ≤ ξ ≤ π? If such a function exists, we will refer to it as an admissible

solution of (9.5). In the case n = 0, the unique admissible solution is ψ̂ = χ[−π,π].

Consider next the function supported on [−π, π] and defined on (−π, π) by

(9.6) ψ̂(ξ) =
(1

c

) 1
3
(

1 −
ξ2

π2

)− 1
2

for c = 1.7400645117. Note that ψ̂ is equal to the function f̂4 from (1.4) multiplied

by c−1/3 for c = ‖f4‖
4
4. See Figure 8 for a plot of C2 ψ̂ computed with the packages

special.ellipk and integrate from SciPy. At first glance, it would seem that

(9.6) is an admissible solution of (9.5) for n = 2. A closer look—see Figure 9—

reveals that this is not the case.

−π 0 π

0.993

1

1.007

Figure 9. Close-up of the plot from Figure 8 on the interval (−π, π).

We will next explain how this can be interpreted as evidence that f4 is close

to the extremal function ϕ4. Let p = 2(k + 1) for a nonnegative integer k and

let ϕp denote the unique solution of our extremal problem (1.6). As ϕp is real by

Lemma 2.3, it follows that

8p(x) =
|ϕp(x)|p−2ϕp(x)

‖ϕp‖
p
p

=
(ϕp(x))2k+1

‖ϕp‖
p
p

.

By Corollary 3.9, the convolution theorem for Fourier transforms, and Conjec-

ture 9.13, we find that if p = 2(k + 1), then

ψ̂(ξ) := ‖ϕ‖
−

p

p−1
p ϕ̂p(ξ)

is an admissible solution of (9.5) for n = 2k. On the other hand, if ψ̂ is an

admissible solution of (9.5) for n = 2k, then

ψ(0) =

∫ ∞

−∞

ψ2(k+1)(x) dx.
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If we also assume that ψ̂ is even so that ψ is real, then this implies that ψ is in

PW2(k+1). It then follows from the fact that ψ̂ is a solution of (9.5) and Theorem 3.6

that ψ be a multiple of ϕp for p = 2(k + 1).

We have just seen evidence that the equation (9.5) has an admissible solution if n

is an even integer. We will next present evidence that the equation has no solution

if n is an odd integer. Suppose that ψ̂ solves the equation (9.5) for n = 2k + 1 and

has the desired properties. Since ψ̂ is integrable, it follows that ψ is in L∞(R).

Consequently, ψ2k+2 is also in L∞(R). By the convolution theorem for Fourier

transforms and the assumption that ψ̂ is a solution of (9.5), it follows that

(9.7) f (0) =

∫ ∞

−∞

f (x)ψ2k+2(x) dx

for every f in PW1. Ifψwere real-valued onR, then we would obtain a contradiction

to (9.7) from the function

f (z) := sinc2
(π

2
(z + 2)

)

which is in PW1, is nonnegative on R, and satisfies f (0) = 0. It follows from this

analysis that the equation (9.5) cannot have solutions ψ̂ that are real-valued and

even. From this discussion, we are led to the following conjecture.

Conjecture 9.15.

(a) There is exactly one real-valued admissible solution of (9.5) when n is an

even integer, namely ψ̂ = ϕ̂n+2/‖ϕn+2‖
1+1/(n+1)
n+2 .

(b) There are no real-valued admissible solutions of (9.5) when n is an odd

integer.
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