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Abstract. An analytic parametrization of the cold hypernuclear matter a equation of state based on mi-
croscopic Brueckner–Hartree–Fock calculations is constructed using realistic nucleon-nucleon and hyperon-
nucleon interactions. The parametrization is based on a simple phase-space analysis and reproduce with
good accuracy the results of the microscopic calculations with a small number of parameters. This
parametrization allow for rapid calculations that accurately mimic the microscopic results, being therefore,
very useful from a practical point of view. As an example of its application we determine the composition,
equation of state of neutron stars and some properties such as mass-radius relation, tidal deformability
and moment of inertia using the equation of state derived from this parametrization.

PACS. 13.75.Ev Hyperon-nucleon interactions

1 Introduction

Neutron stars offer an interesting interplay between nu-
clear processes and astrophysical observables [1–4]. Prop-
erties of neutron stars, such as their masses, radii relation-
ship, moment of inertia, crust thickness or cooling rates,
are closely related to the underlying nuclear matter equa-
tion of state (EoS) for a wide range of densities and tem-
peratures [5]. Thus its determination is an essential ingre-
dient for understanding such properties.

At densities near the saturation density of nuclear mat-
ter, neutron star matter is thought to be mainly composed
of neutrons, protons and leptons (electrons and muons)
in equilibrium with respect to weak interaction processes
(β-stable matter). As the density increases, new hadronic
degrees of freedom may appear in addition to nucleons.
Hyperons, baryons with a strangeness content, are an ex-
ample of such additional degrees of freedom. Contrary to
terrestial conditions, where hyperons are unstable and de-
cay into nucleons through the weak interaction, the equi-
librium conditions in neutron stars can make the inverse
process, i.e., the conversion of nucleons into hyperons,
happen, so the formation of hyperons becomes energet-
ically favorable. Although hyperonic matter is an ideal-
ized physical system, the theoretical determination of the
corresponding EoS is an essential step towards the un-
derstanding of properties of neutron stars. Moreover, the
comparison of theoretical predictions for the properties
of these objects with the observations can provide strong
constraints on the interactions among their constituents.

Since the pioneering work of Ambartsumyan and Saakyan
[6] the EoS of hyperonic matter has been considered by
several authors either from phenomenological [7–16] or mi-
croscopic [23–36] approaches.

In phenomenological approaches the input is a density-
dependent interaction which contains a certain number
of parameters adjusted to reproduce experimental data.
Within this approach Balberg and Gal [7] derived an ana-
lytic effective EoS using density-dependent baryon-baryon
potentials based on Skyrme-type forces including hyper-
onic degrees of freedom. The features of this EoS rely
on the properties of nuclei for the nucleon-nucleon (NN)
interaction, and mainly on the experimental data from
hypernuclei for the hyperon-nucleon (YN) and hyperon-
hyperon (YY) interactions. This EoS reproduces charac-
teristic properties of high-density matter found with theo-
retical microscopic models. Within the same scheme, sev-
eral authors [17–22] have developed Skyrme-like YN po-
tentials to study properties of single- and multi-Λ hyper-
nuclei within the Skyrme–Hartree–Fock formalism.

An alternative phenomenological approach involves the
formulation of an effective relativistic mean field theory
(RMFT) of interacting hadrons [37, 38]. This fully rela-
tivistic approach treats the baryonic and mesonic degrees
of freedom explicitely, and is, in general, easier to handle
because it only involves local densities and fields. The EoS
of dense matter with hyperons was first described within
the RMFT by Glendenning [9–12] and latter by other au-
thors [13–16]. The parameters in this approach are fixed
by the properties of nuclei and nuclear bulk matter for
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the nucleonic sector, whereas the coupling constants of
the hyperons are fixed by symmetry relations, hypernu-
clear observables and compact star properties.

In microscopic approaches, on the other hand, the in-
put are two-body baryon-baryon interactions that describe
the scattering observables in free space. These realistic in-
teractions have been mainly constructed within the frame-
work of a meson-exchange theory, although recently a new
approach based on chiral perturbation theory has emerged
as a powerful tool. In order to obtain the EoS one has to
solve the complicated nuclear many-body problem [39, 40].
A great difficulty of this problem lies in the treatment
of the repulsive core, which dominates the short-range
be- havior of the interaction. Various methods have been
considered to solve the nuclear many-body problem: the
variational approach [41], the correlated basis function
(CBF) formalism [42], the self-consistent Green’s func-
tion (SCGF) technique [43, 44], or the Brueckner–Bethe–
Goldstone (BBG) [45, 46] and the Dirac–Brueckner–Hartree–
Fock (DBHF) theories [47–49]. Nevertheless, although all
of them have been extensively applied to the study of nu-
clear matter, up to our knowledge, only the BBG theory in
the Brueckner–Hartree–Fock (BHF) approximation [23–
31], the DBHF one [32, 33], the Vlow k approach [34], and
very recently the quantum Monte Carlo method [35, 36]
have been extended to the hyperonic sector.

The microscopic approach is in general technically com-
plex and very CPU-time consuming. Therefore, from a
practical point of view, it would be interesting to have
an analytic parametrization of the hyperonic matter EoS
based on such approach that allow to mimic the micro-
scopic results in a fast way with a small number of pa-
rameters. In the present work we will build a density
functional for the EoS based on microscopic Brueckner—
Hartree–Fock (BHF) calculations of hyperonic matter at
zero temperature. We should mention here that an ana-
lytical parametrization of hynuclear matter BHF calcu-
lations at finite temperature was already constructed by
Burgio, Schulze and Li in Ref. [50] to study the proper-
ties of protoneutron stars containing hyperons. The strat-
egy followed by these authors in the construction of their
parametrization is, however, different from the one adopted
here which is based, as it said in the abstract and will be
shown, on a simple analysis of the phase space. In addition
to the nucleonic degrees of freedom here we will consider
only Λ and Σ− hyperons in the construction of our func-
tional, the reason being that these two types of hyperons
are the ones appearing first in calculations of β-stable neu-
tron star matter based on microscopic approaches [23–36].
The other hyperons, Σ0, Σ+, Ξ0 and Ξ−, being heavier,
either do not appear or only show up at very large densi-
ties in these microscopic calculations.

The manuscript is organized in the following way. The
BHF approach of hypernuclear matter is briefly reviewed
in Sec. 2 whereas the construction of the parametriza-
tion is described in detail in Sec. 3, and applied in Sec.
4 to determine the composition, EoS and properties of
neutron stars such as the mass-radius relation, the tidal

deformability and the moment of inertia. The manuscript
is finished with a short summary presented in Sec. 5.

2 Brief review of the BHF approach of
hypernuclear matter

The BHF approach starts with the construction of all
baryon-baryon (nucleon-nucleon (NN) and hyperon-nucleon
(YN) in the present case) G-matrices which describe the
interaction between two baryons in the presence of a sur-
rounding medium. The G-matrices are obtained by solving
the well-known coupled-channel Bethe–Goldstone integral
equation, written schematically as

G(ω)B1B2,B3B4
= VB1B2,B3B4

+
∑
BiBj

VB1B2,BiBj

QBiBj

ω − EBi
− EBj

+ iη
G(ω)BiBj ,B3B4

(1)

where the first (last) two subindices indicate the initial
(final) two-baryon states compatible with a given value
S of the strangeness, namely NN for S = 0 and YN for
S = 1; V is the bare baryon-baryon (NN or YN) interac-
tion, QBiBj is the Pauli operator that prevents the inter-
mediate baryons Bi and Bj from being scattered to states
below their respective Fermi momenta, ω is the sum of
the non-relativistic single-particle energies of the interact-
ing baryons, and η is an infinitesimal positive quantity. We
note here that, although we have considered only Λ and
Σ− hyperons in the construction of our parametrization
of the EoS, the Σ0 and Σ+ hyperons have been also taken
into account in the intermediate YN states when solving
the Bethe–Goldstone equation. The interested reader is
referred to Refs. [23–31] for computational details.

The single-particle energy of a baryon Bi is given by

EBi(k) = MBi +
~2k2

2MBi

+ Re[UBi
(k)] , (2)

where mBi
denotes the rest mass of the baryon, and the

(complex) single-particle potential UBi
(kBi

) represents the
average field “felt” by the baryon owing to its interaction
with other baryons. In the BHF approximation, UBi(k) is
calculated through the “on-shell” G-matrix, and is given
by

UBi
(k) =

∑
Bj

∑
k′

nBj
(|k′|)

×
〈
kk′

∣∣G (ω = EBi
(k) + EBj

(k′)
)∣∣kk′〉A . (3)

Here nBj
(|k′|) is the occupation number of the baryon

species Bj , and the index A indicates that the matrix ele-
ments are properly antisymmetrized when baryons Bi and
Bj belong to the same isomultiplet. We note here that
the so-called continuous prescription has been adopted
for the single-particle potentials when solving the Bethe–
Goldstone equation, since, as it was shown in Refs. [51, 52],
the contribution to the baryon energy per particle from
three-hole line diagrams is minimized in this prescription.
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All the calculations carried out in this work have been
performed with the realistic Argonne V18 (AV18) NN in-
teraction [53] supplemented with a three-nucleon force of
Urbana type [54], which, for the use in the BHF calcula-
tions, was reduced to a two-body density-dependent force
by averaging over the spatial, spin, and isospin coordinates
of the third nucleon in the medium [55–57]. This three-
nucleon force contains two parameters that are fixed by
requiring that the BHF calculation reproduces the energy
and saturation density of the symmetric nuclear matter.
The interested reader is referred to the works of Refs. [58–
60] for a recent analysis of the use of three-nucleon forces
in nuclear matter. The YN G-matrices have been con-
structed using the NSC97e hyperon-nucleon interaction
model of the Nijmegen group [61]. The reason behind the
choice of this models is that this model results in the best
predictions for hypernuclear observables among the po-
tentials constructed by the Nijmegen group. The hyperon-
hyperon interaction as well as three-body forces involving
hyperons, i.e., forces of the type NNY, NYY, and YYY,
have not been taken into account in the present work due
to the large uncertainties still existing on them.

In order to solve Eqs. (1)–(3), one starts from a reason-
able guess for the single-particle potentials and obtain ini-
tial values of the G-matrices from Eq. (1), which is solved
in a partial wave basis including contributions up to a
total angular momentum J = 4. Then, the new single-
particle potential is computed from Eq. (3) and used as
an input in Eqs. (1)–(2). This iteration procedure contin-
ues until a desired level of convergence is reached. Once
a self-consistent solution of Eqs. (1)–(3) is obtained, the
baryon energy per particle can be calculated simply as(

E

A

)
B

=
∑
Bi

∑
k

nBi
(|k|)

(
~2k2

2MBi

+
1

2
Re[UBi

(k)]

)
≡ K

A
+
V

A
, (4)

where
K

A
=
∑
Bi

∑
k

nBi(|k|)
~2k2

2MBi

(5)

and
V

A
=
∑
Bi

∑
k

nBi
(|k|)1

2
Re[UBi

(k)] (6)

are, respectively, the free Fermi gas and the correlation
energy contributions to the baryon energy per particle,
which are functions of the partial densities ρn, ρp, ρΛ and
ρΣ− or, equivalently of the quantities

ρ = ρn + ρp + ρΛ + ρΣ− , (7)

Y =
ρΣ− + ρΛ

ρ
, (8)

β =
ρn − ρp
ρn + ρp

, (9)

α =
ρΣ− − ρΛ
ρΣ− + ρΛ

, (10)

where ρ is the total baryon number density, Y the total
hyperon fraction, β the usual isospin asymmetry param-
eter, and α gives the asymmetry between the Λ and Σ−

hyperons.

3 Construction of the parametrization

As the reader can immagine Brueckner-type calculations
are very CPU-time consuming since, as said above, one has
to solve a self-consistent set of coupled-channel equations
for different strangeness sectors. Therefore, from a practi-
cal point of view, it would be very interesting and useful
to characterize the dependence of the baryon energy per
particle (E/A)B on the particle densities ρn, ρp, ρΛ and
ρΣ− or, on ρ, Y, β and α in a simple analytical form. The
free Fermi gas contribution is already analytic and reads

K

A
=

∑
Bi=n,p,Λ,Σ−

3

5

~2k2FBi

2MBi

ρBi

ρ

=
3

20
~2k2F

[
(1− Y )5/3

(
(1 + β)5/3

Mn
+

(1− β)5/3

Mp

)
+Y 5/3

(
(1− α)5/3

MΛ
+

(1 + α)5/3

MΣ−

)]
,(11)

where kFBi
= (3π2ρBi)

1/3 is the Fermi momentum of the

baryon Bi, and we have defined kF ≡ (3π2ρ/2)1/3. An
idea of the possible terms appearing in the correlation en-
ergy contribution, V/A can be obtained from the follow-
ing phase space analysis of the single-particle potentials,
similar to the ones performed in Ref. [62] for isospin asym-
metric nuclear matter and in Ref. [63] for spin-polarized
isospin asymmetric nuclear matter. Replacing the matrix
elements

〈
kk′

∣∣G (ω = EBi(k) + EBj (k′)
)∣∣kk′〉A by an av-

erage value gBiBj
(k, ρ, Y, β, α), in the Fermi sphere with

radius k′ ≤ kFBj
and integrating over the corresponding

Fermi sea, the single-particle potentials of the four baryon
species under consideration can be written as

Un(k) ∼ gnnρn + gnpρp + gnΛρΛ + gnΣ−ρΣ− ,

Up(k) ∼ gpnρn + gppρp + gpΛρΛ + gpΣ−ρΣ− ,

UΛ(k) ∼ gΛnρn + gΛpρp ,

UΣ−(k) ∼ gΣ−nρn + gΣ−pρp , (12)

where we have omitted the dependence on k, ρ, Y, β and
α in the average G-matrices to simplify the notation.

For small values of the hyperon fraction, the isospin
asymmetry and the Λ-Σ− asymmetry, one can neglect
the depedence on Y, β and α of the G-matrices assuming
gBiBj

(k, ρ, Y, β, α) ∼ gBiBj
(k, ρ) and

gnn ≈ gpp ≡ g1(k, ρ) ,

gnp ≈ gpn ≡ g2(k, ρ) ,

gnΛ ≈ gΛn ≈ gΛp ≈ gpΛ ≡ g3(k, ρ) ,

gnΣ− ≈ gΣ−n ≡ g4(k, ρ) ,

gpΣ− ≈ gΣ−p ≡ g5(k, ρ) . (13)
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ai bi ci di

V1 23090 1.191 −23010 1.187

V2 54.56 3.757 −72.12 0.5256

V3 −157 0.7538 238.3 2.679

V4 −1047 0.9701 955.4 0.9691

V5 −2019 0.6446 2063 0.6577

Table 1. Set of parameters ai, bi, ci and di characterizing the
density dependence of the coefficients Vi(ρ). The parameters ci
and di are dimensionless, whereas the units of the parameters
ai and bi are MeV×fm3ci and MeV×fm3di , respectively.

Note that the quantities gi(k, ρ) receive contributions from
different isospin (I) and strangeness (S) channels. Whereas
g1(k, ρ) receives contributions only from the isospin triplet
and zero strangeness channel, g2(k, ρ) has in addition a
contribution from the isospin singlet, g3(k, ρ) and g4(k, ρ)
are, respectively, purely isospin 1/2 and 3/2 with strangeness
−1, and g5k, ρ has contributions from boyh I = 1/2 and
I = 3/2 with S = −1.

Using the set of Eqs. (12) and (13), the single-particle
potentials can be written as

Un(k) ∼ ρ(1− Y )

2
[g1(k, ρ)(1 + β) + g2(k, ρ)(1− β)]

+
ρY

2
[g3(k, ρ)(1− α) + g4(k, ρ)(1 + α)] , (14)

Up(k) ∼ ρ(1− Y )

2
[g2(k, ρ)(1 + β) + g1(k, ρ)(1− β)]

+
ρY

2
[g3(k, ρ)(1− α) + g5(k, ρ)(1 + α)] , (15)

UΛ(k) ∼ ρ(1− Y )g3(k, ρ) , (16)

UΣ−(k) ∼ ρ(1− Y )

2
[g4(k, ρ)(1 + β) + g5(k, ρ)(1− β)]

(17)
where the particle densities ρn, ρp, ρΛ and ρΣ− have been
written in terms of ρ, β, Y and α. These equations pre-
dict a linear dependence of the single-particle potentials
on the hyperon fraction, the isospin asymmetry and the
asymmetry between Λ’s and Σ−’s. Deviations from the
linear behavior are, however, expected at higher values
of Y, β and α. These deviations have to be associated to
the dependence of the average G-matrices on Y, β and α,
which have been neglected in the present analysis (see the
set of Eqs. (13)).

Now using Eqs. (14)-(17), and replacing the quantities
gi(k, ρ) by their averages ḡi(ρ) in the corresponding Fermi
spheres, one can see, after integration, that the correlation

Fig. 1. Density dependence of the coefficients Vi. Solid circles
show the result of the microscopic BHF calculation whereas
solid lines refer to the power law fit of Eq. (21) with the pa-
rameters ai, bi, ci and di given in Tab. 1 .

energy behaves like

V

A
∼ ḡ1(ρ)

2ρ
(ρ2n + ρ2p) +

ḡ2(ρ)

ρ
ρnρp

+
ḡ3(ρ)

ρ
(ρn + ρp)ρΛ +

ḡ4(ρ)

ρ
ρnρΣ−

+
ḡ5(ρ)

ρ
ρpρΣ− , (18)

or replacing the particle densities in terms of ρ, β, Y and
α

V

A
∼ ρ

4
ḡ1(1− Y 2)(1 + β2) +

ρ

4
ḡ2(1− Y 2)(1− β2)

+
ρ

2
ḡ3Y (1− Y )(1− α)

+
ρ

4
ḡ4Y (1− Y )(1 + α)(1 + β)

+
ρ

4
ḡ5Y (1− Y )(1 + α)(1− β) . (19)

From this simple analysis we can finally infer the form of
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the correlation energy

V

A
∼ V1(ρ)(1− Y 2)(1 + β2) + V2(ρ)(1− Y 2)(1− β2)

+ V3(ρ)Y (1− Y )(1− α)

+ V4(ρ)Y (1− Y )(1 + α)(1 + β)

+ V5(ρ)Y (1− Y )(1 + α)(1− β) . (20)

The coefficients V1(ρ), · · ·, V5(ρ) have been fitted to
reproduce the microscopic BHF results corresponding to
the following five set of values of Y, β and α:

(Y = 0, β = 0, α = 0)

(Y = 0, β = 1, α = 0)

(Y = 0.1, β = 0.875, α = 1)

(Y = 0.15, β = 0.7, α = 0.5)

(Y = 0.14, β = 0.4, α = 0.75)

in the density range 0.01ρ ≤ ρ ≤ 0.5 fm−3. The first two
sets guarantee that the parametrization reproduces the
microscopic results for symmetric and pure neutron mat-
ter. The other three have been chosen in order to mimic
three representative β-stable matter compositions for den-
sities above the hyperon threshold obtained with micro-
scopic approaches (see e.g., Refs. [23–36]). In addition, we
have adjusted the density dependence of the coefficients
Vi(ρ) using a power law fit

Vi(ρ) = aiρ
bi + ciρ

di (21)

where the set of parameters ai, bi, ci and di are given in
Tab. 1. The coefficients Vρ obtained from the microscopic
(exact) BHF calculation together with the power law fit
defined in Eq. (21) are show in Fig. 1 as a function of the
density.

It is clear that the determination of these coefficients is
not unique. However, we have checked that with the choice
of this set of values of Y, β and α, we get a parametrization
that reproduces with good quality the results of the BHF
calculation for a wide range of arbitrary values of Y, β and
α. This can be seen for instance in Fig. 2 where we com-
pare the correlation energy for two different arbitrary com-
positions of hypernuclear matter obtained from the micro-
scopic calculation (solid circles) and the parametrization
(solid lines).

The main advantage of the parametrization of the baryon
energy per particle just constructed is that it allows the
analytical calculation of the chemical potential of the dif-
ferent baryons, needed to determine the equilibrium com-
position of neutron star matter, and of the baryon contri-
bution to the pressure of the system.

The chemical potential of a given baryon Bi is deter-
mined from the partial derivative of the baryon energy
density, εB = ρ(E/A)B , of the system with respect the
density ρBi

of the baryon

µBi
=

∂εB
∂ρBi

= MBi
+

~2kFBi

2MBi

+
∂εcorr
∂ρBi

, (22)

Fig. 2. Correlation energy for two different arbitrary com-
positions of hypernuclear matter. The solid circles show the
microscopic results (MR) whereas those obtained with the
parametrization (PR) are given by the solid lines.

where the mass of the baryon Bi, MBi
, has been explicitly

included in the definition of the chemical potential and
εcorr = ρ(V/A) is the correlation energy density contri-
bution. An analytic expression for the chemical potential
of the different baryons can be simply obtained by using
the parametrization derived for the correlation energy to-
gether with the set of Eqs. (7)-(10) to write

∂εcorr
∂ρBi

=
∂εcorr
∂ρ

∂ρ

∂ρBi

+
∂εcorr
∂Y

∂Y

∂ρBi

+
∂εcorr
∂β

∂β

∂ρBi

+
∂εcorr
∂α

∂α

∂ρBi

(23)

where
∂ρ

∂ρBi

= 1, Bi = n, p, Λ,Σ− (24)

∂Y

∂ρn
=
∂Y

∂ρp
= −Y

ρ
,
∂Y

∂ρΛ
=

∂Y

∂ρΣ−
=

1− Y
ρ

(25)

∂β

∂ρn
=

1− β
ρ(1− Y )

,
∂β

∂ρp
= − 1 + β

ρ(1− Y )
,
∂β

∂ρΛ
=

∂β

∂ρΣ−
= 0

(26)

∂α

∂ρn
=

∂α

∂ρp
= 0,

∂α

∂ρΛ
= −1 + α

ρY
,

∂β

∂ρΣ−
=

1− α
ρY

(27)

and

∂εcorr
∂ρ

= v′1(ρ)(1− Y 2)(1 + β2) + v′2(ρ)(1− Y 2)(1− β2)

+ v′3(ρ)Y (1− Y )(1− α)

+ v′4(ρ)Y (1− Y )(1 + α)(1 + β)

+ v′5(ρ)Y (1− Y )(1 + α)(1− β) (28)
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∂εcorr
∂Y

= −2Y v1(ρ)(1 + β2)− 2Y v2(ρ)(1− β2)

+ v3(ρ)(1− 2Y )(1− α)

+ v4(ρ)(1− 2Y )(1 + α)(1 + β)

+ v5(ρ)(1− 2Y )(1 + α)(1− β) (29)

∂εcorr
∂β

= 2βv1(ρ)(1− Y 2)− 2βv2(ρ)(1− Y 2)

+ v4(ρ)Y (1− Y )(1 + α)

− v5(ρ)Y (1− Y )(1 + α) (30)

∂εcorr
∂α

= −v3(ρ)Y (1− Y ) + v4(ρ)Y (1− Y )(1 + β)

+ v5(ρ)Y (1− Y )(1− β) (31)

with
vi(ρ) = aiρ

bi+1 + ciρ
di+1 (32)

v′i(ρ) = ai(bi + 1)ρbi + ci(di + 1)ρdi . (33)

The analytical expression for the baryon contribution
to the pressure of the system can be simply obtained from
the well-known thermodynamical relation

PB = ρ2
∂((E/A)B)

∂ρ
= ρ2

∂(K/A)

∂ρ
+ ρ2

∂(V/A)

∂ρ
(34)

where

∂(K/A)

∂ρ
=

~2k2F
10ρ

[
(1− Y )5/3

(
(1 + β)5/3

Mn
+

(1− β)5/3

Mp

)
+Y 5/3

(
(1− α)5/3

MΛ
+

(1 + α)5/3

MΣ−

)]
, (35)

and

∂(V/A)

∂ρ
= V ′1(ρ)(1− Y 2)(1 + β2) + V ′2(ρ)(1− Y 2)(1− β2)

+ V ′3(ρ)Y (1− Y )(1− α)

+ V ′4(ρ)Y (1− Y )(1 + α)(1 + β)

+ V ′5(ρ)Y (1− Y )(1 + α)(1− β) (36)

with
V ′i (ρ) = aibiρ

bi−1 + cidiρ
di−1 . (37)

4 Composition, EoS, and observables of
neutron stars

As an application of the parametrization constructed, in
this section we use it to determine the composition, the
EoS and several observables of neutron stars. Adding to
the baryon energy density εB and the pressure PB the
contribution from the noninteracting leptons, one can ob-
tain the composition and the EoS of neutron star matter
from the requirement of equilibrium under weak interac-
tion processes:

µi = biµn − qiµe (38)

Fig. 3. Composition and EoS of neutron star matter. Upper
panel: Particle fractions as a function of the total baryon den-
sity. Lower panel: pressure as a function of the total energy
density.

where bi and qi denote, respectively, the baryon number
and electric charge of the species i, and electric charge
neutrality ∑

i

qiρi = 0 . (39)

The composition and the EoS (pressure versus total en-
ergy density) obtained with the parametrization are re-
spectively shown in the upper and lower panels of Fig. 3.
The EoS is show for neutron star matter with and with-
out hyperons. As seen in the figure, only Σ− appears in
the system leading to the deleptonization of the system.
The reason for the lepton extinction is simple. They are
relativistic particles which are “expensive” in terms of the
energy of the system. Leptons are present in matter sim-
ply to guarantee electrical charge neutrality and, when it
is energetically allowed, their role is played by the Σ−,
which in addition replaces also highly energetic neutrons.
We should comment that although the Λ hyperon has been
included in our calculations it does not appear because its
chemical potential is always larger than that of the neu-
trons. This is in contrast with the microscopic BHF calcu-
lations, e.g., of Refs. [28, 29] where the Λ also appears. The
reason is probably due to the fact that in the present work
we have used a three-nucleon force that is less repulsive
than the ones employed in those works and, consequently,
the neutron chemical potential does not rises enough to
equal that of the Λ. As far as the EoS regards, as it is
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Fig. 4. Speed of sound (upper panel) and adiabatic index
(lower panel) of neutron star matter with and without hyper-
ons.

Fig. 5. Mass-radius relation for nucleonic and hyperionic.
Horizontal violet, black and blue lines show the observational
upper and lower limits inferred, respectively, from the mass
measurements of PSR J1614-2230 (1.928 ± 0.017M�) [64]
PSR J0348+0432 (2.01 ± 0.04M�) [65] and PSR J0740+6620
(2.14+0.10

−0.09M�) [66].

seen in the lower panel of the figure and it is well known,
due to the presence of the Σ− the pressure exerted by
matter is relieved and, therefore, the EoS becomes softer.
To further illustrate this softening, we show in Fig. 4 the
speed of sound (upper panel) and so-called adiabatic index
(lower panel),

Γ =
ε

P

∂P

∂ε
, (40)

Fig. 6. Dimensionless tidal deformability for nucleonic and hy-
peronic stars. The double arrow shows the range of variation
of the weighted-average dimensionless tidal deformability ob-
tained from the analysis of the event GW170817 event [72–74].

for matter with and without hyperons. As it can be seen
both quantities have a drop at the value of the onset den-
sity of the Σ−. Note that, although the formalism em-
ployed is non-relativistic, causality is guarantee in the full
range of densities considered thanks to the presence of the
Σ−.

We will now examine few neutron star observables.
We start by showing in Fig. 5 the mass-radius relation
obtained using our parametrization of the EoS with and
without hyperons when solving the well-known Tolman–
Oppenheimer–Volkoff (TOV) equations. The observational
upper and lower limits inferred from the mass measure-
ments of PSR J1614-2230 (1.928 ± 0.017M�) [64] PSR
J0348+0432 (2.01 ± 0.04M�) [65] and PSR J0740+6620
(2.14+0.10

−0.09M�) [66] are also shown. As expected the soft-
ening of the EoS due to the presence of hyperons leads
to a reduction of the neutron star mass and, particularly,
of its maximum value which is clearly incompatible with
the current observational constraints. This incompatibil-
ity together with the fact that the presence of hyperons in
neutron star interiors seems to be energetically unavoid-
able is at the origin of the well-known “hyperon puzzle”, a
problem that is still open and whose solution is not easy.
For a discussion of this problem and its possible solutions,
the interested reader can see, e.g., Refs. [67, 68] and ref-
erences therein.

Gravitational waves (GW) originated during the coa-
lescence of two neutron stars or a black hole and a neutron
star constitute nowadays a new and valuable source of in-
formation on the EoS and internal structure os neutron
stars. In particular, the so-called tidal deformability λ, or
equivalently the tidal Love number k2 = 3

2
λ
R5 of a neutron

star [69–71] can provide priceless information and con-
straints on the related EoS, because it depends strongly
on the M/R ratio (i.e., the compactness) of the star. The
tidal deformability can be obtained by solving the TOV
equations together with an additional differential equation
(see Refs. [69–71] for details). We show in Fig. 6 the di-
mensionless tidal deformability Λ = λ/M5 obtained using
our parametrization for neutron stars with and without
hyperons. The double arrow shows the range of variation
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Fig. 7. Moment of inertia for nucleonic and hyperonic stars.
The double arrow shows the bounds on the moment of inertia
of the double pulsar PSR J0737-3039 [77] inferred from the
GW170817 event .

of the weighted-average dimensionless tidal deformability
obtained from the analysis of the event GW170817 event
[72–74] originated from the merger of two neutron stars.
Requiring both stars to have the same EoS leads to the
constraints 70 < Λ1.4 < 580 and 10.5 < R1.4 < 13.3 km
[73] for a 1.4M� neutron star. Note that the prediction of
Λ for a ∼ 1.4M� nucleonic or hyperonic star is compati-
ble with observation even if in the later case the maximum
mass is smaller than 2M�.

To finish this section we show in Fig. 7 the moment
of inertia of nucleonic and hyperonic stars which has been
obtained by solving the structure a rotating neutron star
using the Hartle–Thorne approach [75, 76]. The double ar-
row shows the bounds on the moment of inertia of the dou-
ble pulsar PSR J0737-3039 [77] inferred from the analysis
of the GW170817 event. As it is seen the moment of iner-
tia of the nucleonic star rises initially almost when increas-
ing the mass in the range ∼ 0.5M� < M < 1.5M�. This
trend, however, is broken for masses larger than ∼ 1.5M�
for which the moment of inertia increases much faster,
and is not observed in the case of the hyperonic star in
any mass range. We note that in both cases the predicted
moment of inertia for a 1.4M� is compatible with the ob-
servational values for PSR J0737-3039 obtained indirectly
from the GW170817 event. However, we should point out
that an independent measurement of the moment of in-
ertia of a neutron star does not exist yet. Therefore, the
compatibility of our results with this observational data
has to be taken with care.

5 Summary

We have constructed an analytic parametrization of the
hyperonic matter equation of state at zero temperature
based on microscopic BHF calculations using the realis-
tic Argonne V18 nucleon-nucleon potential plus a three-
nucleon force of Urbana type and the NSC97e hyperon-
nucleon interaction model of the Nijmegen group. Hyperon-
hyperon interactions as well as three-body forces involving
hyperons, have not been taken into account in the present

work due to the large uncertainties still existing on them.
The construction of this parametrization has been based
on a simple phase-space analysis. We have shown that
the parametrization reproduces with good accuracy the
results of the microscopic calculations, allowing for rapid
calculations that accurately mimic the microscopic BHF
results being, thus, very useful from a practical point of
view. As an example of its application we have determined
the composition and EoS of neutron star matter as well
as several properties of these objects such as their mass-
radius relation, the tidal deformability and the moment
of inertia. The results for the tidal deformability and the
moment of inertia have been compared with observational
data inferred from the analysis of the GW170817 event
finding compatible values of both quantities with obser-
vation. Our parametrization will be extended in the near
future to include finite temperature effects, necessary to
describe the properties of newborn neutron stars, neutron
star merger, and the conditions of matter in relativistic
heavy-ion collisions.
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