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5 KTH (Royal Institute of Technology), Alba Nova University Center, Department of Nuclear Physics, S-10691 Stockholm,

Sweden

Received: date / Revised version: date

Abstract. About a decade ago we proposed a new Microscopic-Macroscopic (Mic-Mac) model where the
semiclassical Wigner-Kirkwood expansion of the energy up to fourth-order in h̄ is used to compute the
shell corrections in a deformed Woods-Saxon potential instead of the usual Strutinsky averaging scheme [1,
2]. For a set of 551 even-even nuclei computed with this new model, we found a rms deviation of 610 keV
from the experimental masses, similar to the value obtained using the well-known Finite Range Droplet
Model and the Lublin-Strasbourg Drop Model for the same set of nuclei. In a next step, we compute the
ground-state properties of these 551 nuclei with the same method but using the mean-field provided by
the Gogny forces within an Extended Thomas-Fermi approximation. We find that this Mic-Mac model
using the Gogny D1S (D1M) force gives a fairly good description of the ground-state energies with a rms
deviation of 834 keV (819 keV). This implies that Mic-Mac models based on effective two-body forces,
for example Gogny D1S and D1M interactions, perform practically as well as the most efficient Mic-Mac
models regarding ground-state properties.
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1 Introduction

Masses constitute a fundamental observable of atomic nu-
clei. However, theoretical determination of nuclear masses
with high accuracy is still an open problem in Nuclear
Physics. The comparison between theory and experiment
provides a benchmark on the quality of nuclear models.
The recent development in Nuclear Physics with the ad-
vent of radioactive ion beams, has opened up the nuclear
chart to nuclei far from the line of stability. The current ef-
forts at the newly built and/or soon to be constructed ex-
perimental nuclear facilities will further expand our knowl-
edge of exotic nuclei far from stability (see, for example,
[3]). This will provide additional constraints on the qual-
ity of nuclear models and deepen our understanding of
the effective nuclear force. The measurement of nuclei far
from stability sets new constraints on the astrophysical
processes that are responsible for the creation of the ele-
ments. Also here, the nuclear mass is a key ingredient to
calculations determining the details of, e.g., the r-process.

There are in principle two classes of models used to
calculate nuclear masses: The most common model, of the
so-called Microscopic-Macroscopic (Mic-Mac) type, com-
bines quantal corrections obtained from a phenomenolog-
ical potential with the total energy of the liquid drop,

fitted to measured masses. The quantal corrections can
be obtained by means of the Strutinsky method, which
is a well defined mathematical procedure for dealing with
the smoothing of shell effects in finite nuclei. As shown
in this paper, our group developed an alternative method
for the calculation of the shell corrections based on the
Wigner-Kirkwood (WK) expansion of the density matrix.
The other class of models are fully microscopic employing
effective interactions like Skyrme [4–9] and Gogny [10–13]
forces or based on effective covariant Lagrangians, like the
relativistic mean field models (see, for example, [14]).

In our work we further developed methods to merge
the two different classes of models, by deriving the poten-
tial from the microscopic Gogny interaction. The method
is not restricted to any particular force and will actually
shed insight into possible deficiencies present in the force
used for our calculations. We employ the standard shell
correction method where the energy shell correction δE is
that of the mean-field leading-order component.

The paper is organized as follows. In section two, we
review the common methods available for computing the
shell corrections. In section three, we present the Woods-
Saxon model used for our calculations jointly with the
WK method to obtain the quantal corrections to the liq-
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uid drop model. Note that the Woods-Saxon potential
that is used for our mass calculations has been derived
to fit single-particle energies in magical nuclei and has
been widely employed to describe the ground state of nu-
clei as well as the highest angular momentum and super-
deformation. It accounts well for nuclear charge radii and
has not been fitted in particular to account for masses.

In section four, we analyze the predictions for nuclear
masses from the Mic-Mac model based on the WK method
in comparison with the results from other Mic-Mac mod-
els well known in the literature. In section five, we review
our work made with the Gogny force in deriving a micro-
scopic nuclear potential and the application of the WK-
Gogny Mic-Mac method for mass calculations. In section
six, we perform further investigations of the mass predic-
tions from the WK-based Mic-Mac model. Finally, in the
last section, we present a summary and our conclusions.

In this review paper, we recall and honor key aspects of
our collaboration with Peter Schuck, who made immense
contributions to the entire field of nuclear physics. With
his unique knowledge on semi-classical methods, he pro-
vided deep insight, inspiration and guidance to our work.

2 Shell correction methods

The theoretical foundation of the splitting of the nuclear
masses into a part that varies smoothly with the atomic
and mass numbers and another part that is strongly oscil-
lating lies on the so-called Strutinsky energy theorem [15],

which divides the total energy as E = Ẽ+ δE. The larger
part, Ẽ, varies smoothly with the nucleon number and can
be associated to the liquid drop energy. The smaller part,
δE, is oscillating and corresponds to the shell energy that
can be estimated within the shell model in an external
potential. The calculation of δE can be performed from
the exact energy E but replacing in the density matrix the
quantal occupation numbers by the smooth ones obtained
through the Strutinsky averaging method.

The smoothing of the total energy E can also be ob-
tained from the Wigner-Kirkwood (WK) expansion of the
density matrix [16]. In this approach, the single-particle
and the kinetic energy densities are expressed by means
of functionals of the one-body single-particle mean field V .
The WK expansion of the particle and kinetic energy den-
sities diverges at the classical turning point. These quan-
tities should be considered as distributions rather than
as functions [16,17] in the sense that only the integrated
quantities, i.e. number of particles and kinetic energy, have
physical meaning. Another important property of the WK
expansion in powers of h̄ is its variational content. For a
set of non-interacting fermions in an external potential
well, the variational solution for the particle density that
minimizes the semiclassical WK energy at each order of
the h̄ expansion, is the particle density at the same order
in h̄ [18,19]. In this approach, the shell correction is sim-
ply given by the difference between the quantal and WK
total energies.

A slightly different method, also based on the WK ex-
pansion, is the Extended Thomas-Fermi (ETF) approach.

It allows one to express, by elimination of the single-particle
potential, the kinetic energy density as a functional of the
particle density ρ and its gradients [20]. The combination
of the ETF kinetic energy density with a potential en-
ergy density functional, as the one provided by Skyrme
forces, leads to the Density Functional Theory (DFT).
The ground-state particle density is obtained by the vari-
ational principle and the theoretical justification is pro-
vided by the Hohenberg-Kohn theorem [21]. In the DFT
formalism, the shell corrections can be estimated by the
so-called Strutinsky integral method [22]. In this method,
the shell correction is obtained from the difference between
the sum of the lowest occupied single-particle levels and
the corresponding semiclassical counterpart of the single-
particle mean field potential computed with the density
solution of the variational problem (see an explicit exam-
ple of this method for a functional based on the Gogny
force in [23]). The WK and ETF methods exhibit small
but significant differences. On the one hand, the turning
point of the WK expansion is pushed to infinity, and, on
the other hand, the variational content of the WK expan-
sion is not preserved, as far as ETF does not properly
sort out the different powers of h̄ and partially adds terms
to all orders in h̄ [18,19]. The small differences between
the WK and ETF methods can be appreciated in Figures
1 and 2 of [19], where the energy per particle calculated
with the WK and ETF methods is displayed for a set of
fermions in harmonic oscillator and Woods-Saxon external
potentials.

The connection between the Strutinsky and WK level
densities has been recently discussed in Ref.[24]. This pa-
per presents an analytical link in the asymptotic limit
between the level density obtained through the Strutin-
sky method and in the semiclassical (WK) approximation.
The Strutinsky averaging is established rigorously through
a least-squares approximation of the level density, as sug-
gested earlier in Ref.[25]. The Strutinsky average depends
on two open parameters, namely, the smoothing param-
eter γ and the degree M of the fitting polynomial. At
difference with the semiclassical approach, the Strutinsky
average contains an intrinsic noise (remainder), which is
proportional to (γ/λ)M with λ the chemical potential. For
realistic potentials in the asymptotic limit and far from
the drip lines, i.e. λ � 0, this remainder is small, spe-
cially for high values of M , and therefore the Strutinsky
method averages well level densities and energies. This can
be seen in, e.g., Figures 1 and 2 of [19] where there is an
excellent agreement between Strutinsky and WK calcula-
tions. However, for realistic potentials near the drip point
(weakly bound nuclei) where λ→ 0, due to the singularity
of the semiclassical level density at the top of the well, the
Strutinsky averaging strongly depends on the value of γ
and can get compromised in this region (see in this respect
Fig.6 of Ref.[24]).
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3 Theoretical framework

3.1 The Wigner-Kirkwood energy

The key quantity for describing a system of N interacting
fermions at zero temperature in an external potential well
is the partition function, given by

Z (β) = Tr
(

exp (−βĤ)
)
, (1)

where the Hamiltonian of the system is expressed by

Ĥ =
−h̄2

2m
∇2 + V (r) + V̂LS(r) . (2)

In Eq.(2) V (r) is the central potential and V̂LS(r) the
spin-orbit potential that, in general, can be written as:

V̂LS =
ικh̄2

2m
(∇f ×∇) · σ̂ , (3)

where σ̂ is the unit Pauli matrix, κ is the strength of the
spin-orbit interaction, and f is the spin-orbit form factor.

The semiclassical WK partition function is obtained by
performing the expansion of Eq.(1) in powers of h̄ [16,20,
26–31]. The lowest order of this expansion corresponds to
the well-known Thomas-Fermi (TF) approach and the ad-
ditional powers of h̄ yield systematic corrections to the TF
energy and particle numbers. The semiclassical WK parti-
tion function up to the fourth order in h̄ can be schemat-
ically expressed as:

Z
(4)
WK(β) = Z(4)(β) + Z

(4)
SO(β) . (4)

where, Z(4)(β) (Z
(4)
SO(β)) is the WK partition function

for the central potential (spin - orbit part). Explicit ex-
pressions for these partition functions including the spin-
orbit contribution to the nuclear potential can be found
in Refs.[1,28].

Following Ref.[28], we write the WK energy as

EWK = λN −
(
ECNh̄0 + ECNh̄2 + ECNh̄4

)
−
(
ESOh̄2 + ESOh̄4

)
(5)

where ECN
h̄k and ESO

h̄k denote the contribution to the en-

ergy of the order h̄k arising from Laplace inversion of the
central and spin-orbit parts of the partition function (4),
respectively. Explicit expressions of each contribution to
the WK energy in Eq.(5) are reported in Ref.[2].

3.2 The single-particle potential

In our model the nuclear mean field is taken of the Woods-
Saxon (WS) type:

V (r) =
V0

1 + exp [l(r)/a]
, (6)

where V0 is the strength of the potential, a the diffuseness
and l(r) is the distance function. As in our previous works

[1,2,32], we follow the treatment of the distance function
for a deformed WS potential as defined by Ref.[33], re-
quiring that the skin thickness remains constant along the
nuclear surface. For our calculation of nuclear masses, we
consider three degrees of freedom, namely, β2, β4 and γ,
which are related with the parameters αλ,µ (see [1,33,34]
for the explicit relations and other details).

The full single-particle potential needed to obtain the
energy consists of the central, spin-orbit and Coulomb con-
tributions. The central part is given by (6) and the spin-
orbit potential by Eq.(3) with a form factor given by

f(r) =
1

1 + exp [l(r)/a]
. (7)

The parameters that define the central and spin - orbit
parts of the single - particle potential are reported in
Ref.[1]. The corresponding strengths and the half-density
radius (the same for the central and spin-orbit contribu-
tions) have isospin dependence. The diffuseness parameter
is assumed to be the same for neutron and protons in both,
central and spin-orbit, parts. This potential yields a rea-
sonably good description of charge radii (both magnitude
and isospin dependence) [35] as well as of the moments of
inertia for a wide range of nuclei. It is also quite success-
ful in reproducing energies of single-particle and collective
states [36]. The Coulomb potential is obtained by folding
the proton density distribution with the Coulomb inter-
action. For simplicity the proton density is assumed to
be of the WS type with the same parameters of the nu-
clear potential for protons. The reason of using a folded
potential is that the WK expansion is not valid for po-
tentials with sharp surfaces, which invalidates the hard-
sphere approach for the Coulomb potential. The mass
model constructed using the Woods - Saxon potential and
the Coulomb potential thus obtained is labeled ‘StkI’ in
this work, whereas the Woods - Saxon parameters are la-
beled ‘Stockholm-I’ parameters.

One of the apparent drawbacks of the StkI model is
that there is a slight inconsistency in it. The Woods -
Saxon parameters (mean field as well as spin - orbit)
have been obtained for the hard-sphere approximation for
Coulomb potential, whereas the mass calculation has been
done by assuming a potential that has a surface with finite
diffusivity. This leads to a bit less repulsive Coulomb po-
tential as discussed in Ref. [1], thereby shifting the proton
single-particle states slightly. One of the ways of remov-
ing this inconsistency is to renormalise the Woods - Saxon
potential parameters in this case, through a re-fit to the
measured single-particle states. The StkI model thus re-
quires the Woods - Saxon parameters to be consistent with
the new Coulomb potential.

In the following we treat the charge density assum-
ing a Fermi function form with the parameters fitted to
measured charge radii [35] of 132 spherical nuclei. The
half-density radius was assumed to be of the form:

R1/2 = r0

(
1 + r1 I + r2 I

2
)
A1/3 (8)

where, I = (N−Z)/A. The three parameters, r0, r1 and r2

along with the diffusivity parameter a were considered to
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be free parameters of the model, and were determined us-
ing the standard Levenberg-Marquardt optimisation pro-
cedure. Their explicit values are: r0 = 1.231, r1 = −0.332,
r3 = 0.461 and a = 0.320. The value of the rms deviation
turned out to be merely 0.017 fm, indicating that the fit is
indeed reliable. It implies that our folded charge density
is not consistent with the parameters of the Woods Saxon
potential that is used for the nuclear mean field. Still, we
expect this inconsistency to be of minor importance.

The Stockholm-I parameters were then re-fitted to re-
produce some of the measured single-particle states of se-
lected spherical nuclei. It turned out that it is sufficient to
adjust only the strengths of the mean field. Specifically, it
was assumed that the strengths are parameterised by

V (n) = V
(n)
0 (1− κn|I|) (9)

V (p) = V
(p)
0 (1 + κp|I|) . (10)

Using Powell’s algorithm for χ2 minimisation, the param-
eters were determined and their explicit values turn out to

be: V
(n)
0 = 53.084 MeV, V

(p)
0 = 53.095 MeV, κn = 0.779

and κp = 0.912. The single-particle states turn out to be
equally well - described in this fit as compared to the one
used Stockholm - I potential. The mass model constructed
using this modified single-particle potential will be labeled
‘StkII’ and the Woods - Saxon parameters will be labeled
‘Stockholm-II’ parameters in this work.

3.3 The microscopic contribution to the energy

The total shell correction of a nucleus is the sum of the
neutron and proton shell corrections. For each kind of
nucleons, the shell correction is given by the difference
between the quantum mechanical and the averaged ener-
gies. In our approach the shell correction is obtained by
subtracting the semiclassical WK energy from the quan-
tal energy, which is the sum of the eigenvalues obtained
by solving the Schrödinger equation for a set of nucleons
moving in the corresponding single-particle potential well.

It may be interesting to compare the shell correction
obtained using the WK approach for the average energy
with the results provided by the Strutinsky average. To
this end we have performed WK and Strutinsky calcu-
lations of the shell energy along the Ni and Sn isotopic
chains with the StkI and StkII potentials discussed in
the previous subsection (spherical symmetry has been as-
sumed in this case) and the corresponding results are dis-
played in Fig.1.

We can see that both, the WK and Strutinsky results,
show similar trends. As expected, we can see, on the one
hand, that WK and Strutinsky shell corrections obtained
using the StkI and StkII potentials are practically identi-
cal. On the other hand, we can also see that the WK and
Strutinsky results computed with these two potentials for
both considered isotopic chains show similar trends. As ex-
pected, both isotopic chains show prominent minima for
neutron numbers corresponding to double shell closures:
N=28, 34, 40 and 50 (Ni isotopes) and N=50 and 82 (Sn

isotopic chain). Along these isotopic chains, in particu-
lar at mid-shell, the WK shell corrections are somewhat
stronger than the ones obtained in the Strutinsky calcula-
tion, with the former shifted with respect to the latter by
an amount of 1-2 MeV. In spite that for nuclei far from
the drip lines the Strutinsky and WK methods predict
quite close shell corrections, larger differences may exist
between the corrections computed with the two methods
in nuclei at the drip lines, as discussed in detail in Ref.
[24] (see in particular Figure 6 of this reference).

The pairing correlations, important for describing open
shell nuclei, have also been included in the microscopic
part of the energy. In our model, pairing is treated using
the Lipkin-Nogami scheme [37–39], which allows to over-
come the difficulties associated to the BCS scheme (see [1]
for more details).

3.4 The macroscopic contribution to the energy

Following [2], the LDM part of the binding energy is writ-
ten as

ELDM = av

[
1 +

4kv
A2

Tz (Tz + 1)

]
A

+ as

[
1 +

4ks
A2

Tz (Tz + 1)

]
A2/3
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Fig. 1. Comparison between Wigner-Kirkwood and Strutinsky
shell corrections along the Ni and Sn isotopic chains (see text
for more details).



A. Bhagwat, M. Centelles, X. Viñas, R. Wyss: Mic-Mac model based on the Wigner-Kirkwood method 5

+ acur

[
1 +

4kcur
A2

Tz (Tz + 1)

]
A1/3

+
3Z2e2

5r0A1/3
+
C4Z

2

A
+ EW , (11)

where the different terms represent the volume energy, the
surface energy, the curvature energy, the Coulomb energy,
the correction to Coulomb energy due to surface diffuse-
ness of the charge distribution and the Wigner energy,
respectively. The coefficients av, as, acur, kv, ks, kcur, r0

and C4 are free parameters; Tz is the third component
of isospin, and e is the electron charge. For the Wigner
energy, EW , we adopt the following ansatz

EW = w1 exp

{
−w2

∣∣∣∣N − ZA

∣∣∣∣}Θ (Z − 20)Θ (A− 40) ,

(12)

where, w1 and w2 are free parameters. The cut offs on
charge and mass numbers have been introduced since it
is expected that the Wigner term will make significant
contributions for nuclei with low masses. The deforma-
tion effects have explicitly been included in the Coulomb,
surface and curvature energies in Eq.(11), details of which
can be found in [2].

3.5 The total energy in the Wigner-Kirkwood
Microscopic-Macroscopic model

The total energy in our model of a nucleus containing N
neutrons and Z protons and deformation parameters β2,
β4 and γ is given by

E (N,Z, β2, β4, γ) = ELDM (N,Z, β2, β4, γ)

+ η δE (N,Z, β2, β4, γ) , (13)

where δE represents the microscopic part of the binding
energy (shell correction plus pairing energy). The micro-
scopic part has been multiplied by a factor η=0.85 to ac-
count for the fact that the Coulomb potential used in the
present work is less repulsive near r = 0 than the Coulomb
potential calculated in ‘sharp surface’ approximation used
in the fit of the proton mean field (see [1] for more details).

The free parameters of the liquid drop formula (11),
namely av, as, acur, kv, ks, r0, C4, w1 and w2 are de-
termined by minimizing the χ2 value respect the experi-
mental energies [50] of 561 even-even spherical nuclei with
Z ≥ 8 and N ≥ 8 following the procedure explained in de-
tail in Ref.[2].

It is important to note that the coefficient of the isospin
dependent term in the curvature energy, kcur, is very diffi-
cult to determine using experimental masses. In our fit, the
resulting statistical error in this parameter turns out to
be more than 50% of its value. Further, this term is found
to weaken the strength of the isospin dependent term in
the surface energy by a factor of 5. Therefore, the isospin
dependence of the curvature term has been dropped in
the present fit. The values of the LDM parameters of our
model are given in Table 1. Large-scale Mic-Mac calcu-

Table 1. Values of the liquid drop parameters obtained
through the χ2 minimization for StkI and StkII models.

Quantity StkI StkII
av (MeV) -15.435 -15.458

kv -1.875 -1.873
as (MeV) 16.673 16.855

ks -2.430 -2.408
acur (MeV) 3.161 2.790
r0 (fm) 1.219 1.219
C4 (MeV) 0.963 0.985
w1 (MeV) -2.763 -2.650

w2 3.725 4.016
rms dev. (MeV) 0.610 0.613

lations, such as the tabulation of masses along the whole
periodic table, demand fast computational codes. In this
respect we have shown in [2] that the ratio between the
fourth-order to second-order WK energies (see Eq.(5)) be-
haves in a very systematic manner and that this ratio
can be parametrised accurately by a simple expression im-
plying that the fourth-order corrections can be absorbed
into the second-order contributions in a very simple way
[2]. Using this absorption of the h̄4 contributions into the
h̄2 ones, we practically recover the same parameters for
the macroscopic part without deterioration of the quality
achieved with the full WK calculation including explicitly
the fourth-order contributions.

4 Mass predictions from the
Wigner-Kirkwood microscopic-macroscopic
model

In Figure 2 we show the nuclear mass chart computed
with our Mic-Mac models built up with the phenomeno-
logical single-particle Woods-Saxon potentials Stockholm-
I (StkI) [1] and Stockholm-II (StkII), discussed previously
in this work, where the shell corrections are obtained using
the WK expansion. In the same figure, the StkI and StkII
results are compared with those of the Mic-Mac Finite-
Range Droplet Model of Möller and Nix (MN) [40] and
of the Lublin-Strasbourg Drop Model (LSD) [41], where
the shell corrections were computed using the Strutinsky
averaging method. The net rms deviation of the binding
energies of 551 spherical and deformed even-even nuclei
calculated with the Stockholm-WK models with respect
to the experimental values are 609 keV (StkI) and 607
keV (StkII). The MN [40] and LSD [41] models yield, for
the same set of nuclei, rms deviations of 657 keV and 630
keV, respectively. The differences between the calculated
and experimental binding energies are displayed in Fig-
ure 2.

To get more insight about the ability of the WK model
in describing binding energies along the periodic table, we
report in Table 2 the partial rms deviation corresponding
to different regions of the mass number compared with
the values obtained using the different models analyzed in
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Fig. 2. Nuclear chart of theoretical minus experimental energies along the periodic table computed with the Mic-Mac based on
the Wigner-Kirkwood method using the Stockholm-I (upper left) and Stockholm-II (upper right) phenomenological mean-field
potentials discussed in this paper. The Mic-Mac predictions of the Finite-Range Droplet Model [40] and of the Lublin-Strasbourg-
Drop parametrisation [41], which compute the shell corrections using the Strutinsky averaging method, are displayed in the
lower left and lower right panels.

this work. It can be seen that all the considered Mic-Mac
models do not describe very accurately the binding ener-
gies of nuclei with mass number smaller than 100. For the
160 nuclei considered in this region the rms deviations are
808, 795, 895 and 940 keV when the binding energies are
calculated with the StkI, StkII, LSD and MN models, re-
spectively. In the region of mass numbers between 100 and
200, where we have considered 301 nuclei, the calculated
binding energies are in much better agreement with the ex-
perimental values, being the rms deviation 422, 424, 502

and 503 keV when the calculation is performed using the
StkI, StkII, LSD and MN models, respectively. Globally
for the 461 nuclei with mass numbers smaller than 200,
the predictions of the Stockholm model are slightly better
than the ones obtained using the LSD and MN models.
In this case the rms deviations of the StkI and StkII cal-
culations are 584 and 579 keV, while they are 673 and
695 keV if the energies are computed with the LSD and
MN models. However, the Stockholm model is slightly less
competitive for nuclei with mass number above 200. For
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Table 2. Values of the rms deviation with respect to experiment of the binding energies (in keV) corresponding to different
regions of the mass number (A) obtained using the WK, LSD [41] and MN [40] Mic-Mac models.

Mass Regions
(Number of Nuclides)

A < 100 100 ≤ A < 200 A < 200 A ≥ 200 Net rms dev.
Model (160) (301) (461) (90) (551 Nuclides)
StkI 808 422 584 716 609
StkII 795 424 579 720 607
LSD 895 502 673 342 630
MN 940 503 695 423 657

WK-D1S 978 695 805 972 834
WK-D1M 942 711 800 918 819

the considered set of 90 heavy and superheavy nuclei, the
StkI and StkII rms values are 716 and 720 keV, which is
larger than the rms deviations obtained for the same set
of nuclei with the LSD and MN models, which are 342
and 423 keV, respectively. Possible reasons for the rela-
tive failure of the Stockholm models in the actinide and
superheavy regions are the following. One of the reasons is
a possible deficiency in the extrapolation of the Stockholm
single-particle potential to these experimentally unknown
regions and also the fact that the MN and LSD models
use a richer deformation space. Another possible reason
is the fact that the macroscopic part of the LSD model
includes an explicit isospin dependence in the curvature
term, which is absent in the Stockholm models by the
reasons pointed out in Section 2.5.

5 Microscopic-macroscopic approach based
on the Wigner-Kirkwood averaging method
with the Gogny force

As we have discussed in the previous section, the use of the
WK expansion to compute the shell correction allows one
to obtain ground-state masses along the whole periodic
table with a quality similar to that found for the same set
of nuclei using the well-established Mic-Mac models such
as the FRDM of Möller-Nix [40] or the Lublin-Strasbourg
Drop [41], which use the Strutinsky averaging method to
evaluate the shell correction. Following Ref.[42], we ex-
plore the interesting possibility of employing self-consistent
single-particle potentials computed with effective nuclear
interactions to calculate the shell corrections using the
WK method. This idea reflects the imaginative and in-
sightful nature of Peter Schuck, who invented it as an
approach that would provide a link between the well-
known mean-field approximation with effective forces and
the Mic-Mac models. To this end, instead of the fully
quantal mean-field potential obtained from the Hartree-
Fock-Bogoliubov (HFB) scheme, we use, in the spirit of
the so-called expectation value method [20,43], the semi-
classical single-particle potentials developed in Ref. [44].
These potentials have been calculated in the Extended
Thomas-Fermi (ETF) approximation (see [44] for further
details). The ETF approach has been widely used together

with Skyrme forces for describing binding energies of fi-
nite nuclei at zero and finite temperature [20] as well as in
the RMF framework [45,46]. The ETF approach has also
been generalized to the case of non-local single-particle
Hamiltonians [47] and, therefore, can be applied to the
case of effective finite range forces, like the Gogny inter-
action [47–49].

5.1 Fitting procedure

In this Section we use the Gogny mean-field obtained with
a Gogny force as external single-particle potential in or-
der to compute the corresponding shell corrections and
then to fit the macroscopic part of the energy by mini-
mization of the residues of the theoretical minus experi-
mental binding energies. As we have explained in Ref.[42],
we proceed as follows in the particular cases of the D1S
and D1M interactions. First, using the deformation prop-
erties for each nucleus obtained in the Mic-Mac WK cal-
culation with the Stockholm-I single-particle potential we
determine the parameters entering in the macroscopic en-
ergy Eq.(11), which in turn is used to determine the new
deformation properties of the microscopic part by mini-
mizing a second time the energy residues. However, with
this protocol we find that the isotopes 182,184,186Pb show a
well-deformed structure in the ground state instead of be-
ing spherical as semi-magic nuclei of a robust proton shell
closure Z = 82. As discussed with more detail in [42], it
is found that this deficiency can be solved by considering
the deformation properties not only of the macroscopic
surface term (as in the case of the fit with the potential
Stockholm-I [2]) but also of the curvature term.

The liquid drop parameters in Eq. (11) for the Gogny-
based WK Mic-Mac model with the D1S as well as D1M
forces fitted to the experimental energies [50] (without the
electronic binding energy, which has been subtracted from
the energies reported in [50]) of 551 even-even spherical
and deformed nuclei are reported in Table 3. The com-
plete list of energies of these 551 nuclei can be found in
the supplemental material of Ref.[42]. The rms deviation
of the energies from experiment is of 834 keV (819 keV)
for Gogny D1S (D1M) based WK Mic-Mac model, as re-
ported in the bottom row of Table 3. It has been explicitly
verified that when the macroscopic part of our model is
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fitted to Gogny-D1S HFB (Gogny D1M-HFB) energies,
the corresponding HFB energies are reproduced very well
(see Ref. [42] for further details). In Ref.[42] we have shown
that the Gogny-D1S WK Mic-Mac model, whose macro-
scopic part is fitted to the HFB binding energies of 551
spherical and deformed even-even nuclei [51], is able to
reproduce fairly well these quantal values with a similar
rms deviation for the binding energies as the one provided
by the full quantal HFB calculation [51]. This fact points
out that the Mic-Mac approach used together with the
underlying Gogny forces captures the essential physics of
the full HFB calculation.

Table 3. Liquid drop parameters in Eqs. (11) and (12).

Parameter D1S D1M
av (MeV) -15.903 -15.744
kv -1.855 -1.842
as (MeV) 20.265 19.171
ks -2.102 -2.072
acur (MeV) -3.777 -2.498
r0 (fm) 1.192 1.209
C4 (MeV) 1.321 1.025
w1 (MeV) -1.528 -1.167
w2 7.856 7.283
η 0.67 0.62
rms dev. (MeV) 0.834 0.819

5.2 Mic-Mac versus HFB calculations

In the right panels of Figure 3 we display the nuclear chart
computed with the Mic-Mac WK model using the D1S
(upper) and D1M (lower) mean-field potentials, respec-
tively. For useful comparisons, we also show in the left
panels of the same Figure the nuclear charts at full HFB
level obtained with the D1S (upper) and D1M (lower)
Gogny interactions. We see from the top left panel of Fig-
ure 3 that the HFB energies reproduces quite precisely
the experimental values around magic proton and neu-
tron numbers, as a consequence of the fitting procedure of
the Gogny forces. However, the inter-shell region between
magic numbers is not so well predicted with residues that
in many cases are larger than +2 MeV. This fact is spe-
cially dramatic near the neutron-drip lines for heavy nu-
clei, in particular for the D1S force, where the well-known
energy drift exhibited by this force [52] can be clearly ap-
preciated. Also residues with a negative value smaller than
−2 MeV can be seen around the proton drip line. The nu-
clear chart computed with the Gogny-D1S WK Mic-Mac
model with the macroscopic part fitted to experimental
masses shows a completely different pattern. We can see
that it is much more similar to the one predicted by the
WK Mic-Mac model using the phenomenological Stock-
holm potential by comparing the right upper panel of
Fig.3 with the upper panels of Fig.2. This result points
out that the WK Mic-Mac models with the macroscopic

part fitted to the experimental data are to some extent
independent of the external potential used to determine
the microscopic part. The underlying reason for that is the
fact that the relatively small differences in the microscopic
energies computed with different external potentials can
be easily absorbed by the large macroscopic part through
a variation of the liquid drop parameters. In this respect,
it is expected that the energies predicted by the Gogny-
based model starting from a different Gogny interaction,
D1M [13] for example, will predict on average similar en-
ergies if the parameters of the macroscopic part are fitted
to the experimental data, the differences with the results
obtained using the D1S force, being relatively marginal.
This is confirmed by the results shown in the lower right
panel of Fig. 3 that correspond to the Gogny WK Mic-
Mac calculation based on the D1M interaction instead of
D1S.

As can be seen from the comparison between the left
and right upper panels of Figure 3, the Mic-Mac model
based on the Gogny D1S force with the macroscopic part
fitted to the experimental masses, displayed in the right
panel, also removes the drift in the HFB energies along
isotopic chains shown in the left panel. As a consequence,
it is expected that the Gogny WK Mic-Mac model can re-
produce the experimental energies in heavy neutron-rich
nuclei better than the pure HFB calculations using in both
cases the same Gogny interaction. To analyze more in de-
tail the differences between the full HFB and the Mic-Mac
ground-state energies, we report in Table 4 the energies
along the Pb isotopic chain computed at the HFB level
[53] with the D1S and D1M forces and with our Gogny-
D1S and Gogny-D1M WK Mic-Mac models, where the
macroscopic part has been fitted to experimental masses.
From this Table it is seen that along this isotopic chain
the HFB energies exhibit a systematic behaviour with re-
spect to the Mic-Mac Gogny results. In particular, we see
that far from the shell closure at N=126, the Mic-Mac
results agree nicely with the experimental values, while
the HFB predictions show discrepancies with the exper-
iment, which are more relevant in the case of the D1M
force for the neutron-deficient Pb isotopes. However, near
the shell closure, the HFB results computed with both,
D1S and D1M forces, reproduce the experimental values
fairly well, whereas, in turn, for these isotopes the Mic-
Mac predictions slightly deteriorate.

A more quantitative information about the goodness of
the Gogny WK models considered in this work is provided
by the energy rms deviations with respect to experiment,
which are reported in Table 2 in the entries labeled as WK-
D1S and WK-D1M. For the set of considered nuclei, the
rms deviations predicted by our WK Gogny model with
the macroscopic part of the energy fitted to experimental
masses is 834 keV for D1S and 819 keV for D1M. These
deviations are a little larger than the ones obtained with
the Mic-Mac WK model with the phenomenological StkI
(609 keV) and StkII (607 keV) potentials, which in turn
are quite similar to the ones predicted by the FRDM and
LSD Mic-Mac models, as we have mentioned before. From
the comparison of the upper panels of Figure 2 and right
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Fig. 3. Nuclear chart of theoretical minus experimental energies along the periodic table from Gogny HFB calculations with
the D1S (upper left) and D1M (lower left) interactions as well as the results obtained with the Gogny+Mic-Mac method with
D1S (upper right) and D1M (lower right).

panels of Figure 3, we can see that the prediction of the
WK model based on the Stockholm potentials gives bet-
ter description of the experimental energies in the range
between A ∼100 and A ∼200 than the WK Gogny-based
calculations.

In spite of the fact that the global quality of the WK
Gogny-based model is somewhat worse for describing ground-
state energies as compared with the predictions of the
other Mic-Mac models considered in this work (see Ta-
ble 2), it is accurate enough to do predictions in good
agreement with the experimental data.

6 Further investigations

Now we want to perform additional comparisons among
the results obtained with our WK Mic-Mac models, both
using the phenomenological Stockholm potentials and the
mean-fields provided by the Gogny forces, and the predic-
tions of the very well-known FRDM of Möller and Nix [40]
and the LSD model of Pomorski and Dudek [41]. To this
end we analyze the residues corresponding to 551 spherical
and deformed nuclei with well-determined masses accord-
ing to the Audi 2012 evaluation [50], which are displayed
in Fig. 2 and the right panels of Fig. 3.
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Table 4. Energies (in MeV) for Pb isotopes from the Gogny-D1S WK Mic-Mac model. The HFB D1S energies [53] and the
experimental values [50] are also quoted for comparison. Notice that the contribution to the experimental energies from electronic
binding has been removed here.

A WK-D1S HFB-D1S [53] WK-D1M HFB-D1M [53] Expt.
178 -1367.60 -1369.13 -1367.50 -1361.81 -1368.40
180 -1389.28 -1389.94 -1389.24 -1383.13 -1390.05
182 -1410.37 -1410.26 -1410.43 -1403.95 -1411.08
184 -1430.90 -1430.09 -1431.08 -1424.28 -1431.45
186 -1450.88 -1449.44 -1451.20 -1444.14 -1451.23
188 -1470.31 -1468.37 -1470.80 -1463.56 -1470.50
190 -1489.26 -1486.88 -1489.93 -1482.56 -1489.25
192 -1507.70 -1505.02 -1508.56 -1501.17 -1507.54
194 -1525.58 -1522.79 -1526.66 -1519.42 -1525.32
196 -1542.83 -1540.20 -1543.99 -1537.30 -1542.62
198 -1559.33 -1557.26 -1560.30 -1554.83 -1559.45
200 -1575.19 -1573.96 -1575.87 -1571.99 -1575.79
202 -1590.56 -1590.28 -1590.98 -1588.79 -1591.63
204 -1605.48 -1606.21 -1605.66 -1605.19 -1606.94
206 -1619.91 -1621.66 -1619.85 -1621.14 -1621.76
208 -1633.29 -1636.44 -1633.06 -1636.46 -1635.86
210 -1643.09 -1643.79 -1642.93 -1644.74 -1644.98
212 -1652.12 -1650.81 -1652.03 -1652.70 -1653.95
214 -1660.87 -1657.49 -1660.84 -1660.40 -1662.72
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Fig. 4. Binned data and the corresponding Gaussian fits for the different Mic-Mac models considered in the present study (see
text for more detail).

From these Figures we can see that, globally, all the
considered Mic-Mac models are quite equivalent for de-
scribing ground-state energies with residues that are not
larger than ±2 MeV along the whole periodic table. All
these models show, roughly, similar trends, with the largest
residues corresponding to magic numbers. Another com-
mon property of these residues is the fact that they are
relatively larger for low mass than for heavy mass nuclei.
The fact that all the models considered in this work be-
have more or less in a similar way requires a more detailed
analysis. In order to do so and following Ref. [42], we have
binned the residues ∆E = Ecal.−Eexpt, i.e. the difference
between the calculated and experimental energies, in a
suitable way to get the normalized frequency distribution.
The bin size was chosen carefully through the well-known

Freedman-Diaconis procedure [54,55]. In this analysis we
use the results provided by the WK StkI and II, Gogny
WK D1M and D1S, FRDM and LSD models.

The binned data for different Mic-Mac models plot-
ted along with the corresponding fitted Gaussian pro-
files are displayed in the left (StkI, LSD and FRDM) and
right (Gogny WK D1S, Gogny WK D1M and StkII) pan-
els of Figure 4. We can see that all the six sets of data
yield almost Gaussian profiles, with correlation coefficients
greater than 0.95 in all the six cases. All the distributions
have a central peak of height ∼0.13 at ∆E ∼ 0, indicating
that about 13% of the data is described with deviation of
∼ 0 with respect to the experimental data. Apart from
the different standard deviations in all the six models,
the profiles of the residues were found to be very similar,
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supporting the previous observation that all the six mass
models are more or less equivalent, globally speaking. A
more detailed inspection of the two panels of Figure 4
shows that binned data corresponding to our WK models
are well centered around ∆E ∼ 0, while LSD and FRDM
show a small shift towards negative ∆E values, which is
more important for the LSD data. This fact indicates that
on average our WK results are well scattered around the
experimental energies while LSD and FRDM show a slight
tendency of overbinding, at least for the considered set of
nuclei. The widths of the Gaussian fits suggest that, for
the considered set of nuclei, the quality of the WK re-
sults using the phenomenological Stockholm potential is
somewhat better than the quality of the predictions of
the FRDM and LSD calculations. From the right panel of
this Figure it is also clear that the width of the Gaussian
associated to the WK Gogny-based potential calculation
is larger than the other widths displayed in the Figure,
pointing out that the energy description for the set of
considered nuclei provided by the WK Gogny-based Mic-
Mac model is a fringe worse than the one obtained using
the other models considered in this analysis.

7 Summary and conclusions

In this paper we collect some relevant results obtained
with a Microscopic-Macroscopic model using the Wigner-
Kirkwood expansion for evaluating the shell corrections
instead of the Strutinsky averaging method, used in many
mass models of this type, as for example the Finite Range
Droplet Model of Möller and Nix or the Lublin Strasbourg
Drop of Dudek and Pomorski. The use of the Wigner-
Kirkwood approach instead of the Strutinsky average to
compute the microscopic contribution to the energy avoids
the problems of dealing with the continuum, on the one
hand, and with the plateau condition, which is not always
easy to establish [24]. Our model was developed together
with Peter Schuck and the main findings of this investiga-
tion were reported in Refs. [1,2,44,42].

In this work we have slightly modified the phenomeno-
logical single-particle potential used to get the microscopic
energy by using the Coulomb potential obtained with a
smooth proton distribution fitted to reproduce the exper-
imental charge radii instead of a hard-sphere Coulomb po-
tential used in our previous works Ref. [1,2]. A detailed
analysis performed with 551 spherical and deformed even-
even nuclei in different mass regions reveals that the qual-
ity of these Wigner-Kirkwood Microscopic-Macroscopic
models using the old, Stockholm-I, and the new, Stockholm-
II, phenomenological potentials is as good as the quality
provided by well established Mic-Mac models as the Finite
Range Droplet Model or the Lublin-Strasbourg Drop.

In a second part of the paper we have combined the
Wigner-Kirkwood Microscopic-Macroscopic approach with
the mean field provided by the Gogny interaction instead
of using the phenomenological Stockholm potential. The
Gogny mean field is obtained via the semiclassical Ex-
tended Thomas - Fermi method, which includes h̄2 - cor-
rections, with the Gogny D1S and D1M forces. In this

Microscopic-Macroscopic model the microscopic part is
computed with the Wigner-Kirkwood method using the
these Gogny D1S and D1M mean fields. The macroscopic
part is fitted to the experimental binding energies of 551
spherical and deformed even - even nuclei, which is the
database of our calculations. We find that the rms devia-
tions of the binding energies in these calculations are 834
and 819 keV using the D1S and the D1M forces, respec-
tively, which is slightly worse than the rms deviations ob-
tained using the Stockholm potentials. The Microscopic-
Macroscopic Wigner-Kirkwood models based on the Gogny
forces calculations perform better in regions away of shell
closures compared with the full HFB Gogny results, which
are found to be better near shells corresponding to magic
numbers.

A first conclusion of this work is that Wigner-Kirkwood
based Microscopic-Macroscopic approximation is an in-
teresting variant compared to the traditional Strutinsky
average method. So far the former has produced results
which are globally of similar quality to the other Mic-Mac
approaches. At a finer level, one sometimes sees differ-
ences at proton and neutron numbers near the drip lines.
A second relevant conclusion is that effective interactions,
like Skyrme or Gogny forces, which depend on about ten
adjustable parameters, are not able to yield optimal val-
ues of the macroscopic energy and, at the same time, an
accurate description of the shell corrections. In contrast,
a direct fit of the macroscopic part, via the liquid drop
model, can optimize the smoothly varying macroscopic
part of the binding energy, bringing it very close to its
exact value.

In this work we have restricted our Microscopic - Macro-
scopic model with shell corrections computed with the
Wigner-Kirkwood h̄-expansion to discuss basically ground-
state energies. The applications of the method to physical
situations involving very large deformations, such as nu-
clear fission, requires to modify the distance function used
in the calculations reported here. Work in this regard is
undertaken.
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2. A. Bhagwat, X. Viñas, M. Centelles, P. Schuck and R.
Wyss, Phys. Rev. C 86, 044316 (2012).

3. H. L. Crawford et al., Phys. Rev. Lett. 129, 212501 (2022).
4. D. Vautherin and D. M. Brink, Phys. Rev. C 5, 626 (1972).
5. Li Guo-Qiang, J. Phys. G: Nucl. Part. Phys. 17, 1 (1991).
6. E. Chabanat, P. Bonche, P. Haensel, J. Meyer and R. Scha-

effer, Nucl. Phys. A 635, 231 (1998).
7. J. R. Stone and P.-G. Reinhard, Prog. Part. Nucl. Phys.

58, 587 (2007).
8. S. Goriely, N. Chamel and J. M. Pearson, Phys. Rev. Lett.

102, 152503 (2009).
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Rev. C 103, 024321 (2021).
43. O. Bohigas, X. Campi, H. Krivine and J. Treiner, Phys.

Lett. B 64, 381 (1976).

44. A. Bhagwat, M. Centelles, X. Viñas and P. Schuck, Phys.
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