
Bachelor’s Thesis

Degree in Computer Science

Faculty of Mathematics and Computer
Science

Universitat de Barcelona

FoodMem: A Fast and Precise
Food Video Segmentation

Author: Adrián Galán Pacheco

1. Supervisor: Petia Radeva

2. Supervisor: Ricardo Marques

3. Supervisor: Ahmad AlMughrabi

Barcelona, June 10, 2024

Abstract

Food segmentation is crucial in various research fields, such as health, agriculture,
and food biotechnology. Segmenting and tracking different types of food in images
or videos is undeniably a significant achievement, and it is currently considered a
newly emerging topic in today’s society. Our study aims to find and develop a
production-grade framework for segmenting and tracking various types of food in a
given set of images or videos at high-quality performance and near-real-time speed
with minimum hardware resources. This unlocks many challenges in real-world ap-
plications, such as food volume estimation, calorie estimation, 3D reconstruction,
augmented and virtual reality, or digital twins. We introduce FoodMem, a novel
framework for segmenting food in 360° scenes. Our framework can effectively seg-
ment food portions in a given video and generate accurate masks. Most semantic
segmentation models, especially for food-related tasks, have limitations that affect
their performance, such as handling different camera locations that did not exist
in the training set. Plus, the inference speed for individual images does not fit
real-world applications, especially those that focus on video processing. In con-
trast, memory-based models are becoming popular in object-tracking applications
because of their performance and speed. Still, they are limited since they rely on
user input, such as the user drawing the input mask manually, which indicates a
lack of automation. To overcome these limitations, we propose FoodMem, a novel
food video segmentation framework that combines the (1) SETR model to generate
segment one- or few- masks of the food portions in a given scene and (2) XMem++,
a memory-based tracking model, to track the food masks in complex scenes. Our
framework performs better than the state-of-the-art food segmentation frameworks
in segmenting food in different camera-capturing locations, illumination, reflection,
scene complexity, and food diversity, achieving significant segmentation noise re-
duction, artifact elimination, and completing the missing parts. We also introduce
an annotated food dataset, which covers new challenging use cases not found in
previous benchmarks. We conduct extensive experiments on Nutrition5k and Veg-
etables & Fruits datasets, showing that FoodMem improves the state-of-the-art by
2.5% mean average precision in food video segmentation. Moreover, FoodMem is
58 times faster than the state-of-the-art on average for both datasets. The source
code is accessible at: 1.

Resumen

La segmentación de alimentos es fundamental en diversos campos de investigación,
como la salud, la agricultura y la biotecnoloǵıa alimentaria. Segmentar y rastrear
diferentes tipos de alimentos en imágenes o videos es un logro considerable y actual-
mente se considera un tema emergente en la sociedad. Nuestro estudio pretende
segmentar y rastrear diferentes tipos de alimentos en un conjunto de imágenes o
videos, con un alto rendimiento y velocidad casi en tiempo real, utilizando recur-

1https://amughrabi.github.io/foodmem

i

sos de hardware mı́nimos. Esto abre numerosos desaf́ıos en aplicaciones del mundo
real, como la estimación del volumen de alimentos, la estimación de caloŕıas, la
reconstrucción en 3D, la realidad aumentada y virtual, o los gemelos digitales.
Presentamos FoodMem, un nuevo marco de trabajo para segmentar alimentos en
escenas de 360°. Nuestro marco puede segmentar eficazmente porciones de alimen-
tos en un video dado y generar máscaras precisas. La mayoŕıa de los modelos de
segmentación semántica, especialmente aquellos relacionados con alimentos, tienen
limitaciones que afectan su rendimiento, como el manejo de diferentes ubicaciones
de cámaras que no estaban presentes en el conjunto de entrenamiento. Además,
la velocidad de inferencia para imágenes individuales no se adapta bien a aplica-
ciones del mundo real, especialmente aquellas que se centran en el procesamiento
de videos. En cambio, los modelos basados en memoria están ganando popularidad
en aplicaciones de seguimiento de objetos debido a su rendimiento y velocidad. Sin
embargo, están limitados porque dependen de la intervención del usuario, como
dibujar manualmente la máscara de entrada lo que indica una falta de automati-
zación. Para superar estas limitaciones, proponemos FoodMEM, un nuevo marco
de segmentación de videos de alimentos que combina (1) el modelo SETR para
generar una o pocas máscaras de las porciones de alimentos en una escena dada
y (2) XMem++, un modelo de seguimiento basado en memoria, para rastrear las
máscaras de alimentos en escenas complejas. Nuestro marco supera a los marcos
de segmentación de alimentos más avanzados en la segmentación de comidas en
diferentes ubicaciones de captura de cámara, iluminación, reflejo, complejidad de
la escena y diversidad de alimentos, logrando una reducción significativa del ruido
de segmentación, la eliminación de artefactos y la completación de las partes fal-
tantes. También presentamos un conjunto de datos anotados de alimentos, que
cubre nuevos casos de uso desafiantes no encontrados en ”benchmarks” anteriores.
Realizamos extensos experimentos en los conjuntos de datos Nutrition5k y Vegeta-
bles & Fruits, demostrando que FoodMem mejora el estado del arte en un 2.5%
en precisión media promedio en la segmentación de videos de alimentos. Además,
FoodMem es 58 veces más rápido que el estado del arte en promedio para ambos
conjuntos de datos. El código fuente está disponible en: 1.

Resum

La segmentació d’aliments és crucial en diversos camps de recerca, com la salut,
l’agricultura i la biotecnologia alimentària. Segmentar i seguir diferents tipus d’aliments
en imatges o v́ıdeos és un assoliment significatiu i actualment es considera un tema
emergent a la societat. El nostre estudi té com a objectiu segmentar i rastrejar
diferents tipus d’aliments en un conjunt d’imatges o v́ıdeos, amb un alt rendiment
i velocitat gairebé en temps real, utilitzant recursos mı́nims de maquinari. Això
planteja nombrosos desafiaments en aplicacions del món real, com l’estimació del
volum d’aliments, l’estimació de calories, la reconstrucció en 3D, la realitat aug-
mentada i virtual, o els bessons digitals. Presentem FoodMem, un nou marc per
segmentar aliments en escenes de 360°. El nostre sistema pot segmentar de manera
eficient porcions d’aliments en un v́ıdeo determinat i generar màscares precises. La

ii

majoria dels models de segmentació semàntica, especialment els relacionats amb
aliments, tenen limitacions que afecten el seu rendiment, com la gestió de diferents
ubicacions de càmeres que no estaven presents en el conjunt d’entrenament. A més,
la velocitat d’inferència per a imatges individuals no s’adapta bé a aplicacions del
món real, especialment aquelles que se centren en el processament de v́ıdeos. En
canvi, els models basats en memòria estan guanyant popularitat en aplicacions de
seguiment d’objectes a causa del seu rendiment i velocitat. No obstant això, estan
limitats perquè depenen de la intervenció de l’usuari, com dibuixar manualment la
màscara d’entrada, la qual cosa indica una manca d’automatització. Per superar
aquestes limitacions, proposem FoodMem, un nou marc de segmentació de v́ıdeos
d’aliments que combina (1) el model SETR per generar una o poques màscares de les
porcions d’aliments en una escena determinada i (2) XMem++, un model de segui-
ment basat en memòria, per rastrejar les màscares d’aliments en escenes complexes.
El nostre sistema supera els marcs de segmentació d’aliments més avançats en la
segmentació de menjars en diferents ubicacions de captura de càmera, il·luminació,
reflexos, complexitat de l’escena i diversitat d’aliments, aconseguint una reducció
significativa del soroll de segmentació, l’eliminació d’artefactes i la completació de
les parts mancants. També presentem un conjunt de dades anotades d’aliments, que
cobreix nous casos d’ús desafiants no trobats en ”benchmarks” anteriors. Duem a
terme extensos experiments en els conjunts de dades Nutrition5k i Vegetables &
Fruits, demostrant que FoodMem millora l’estat de l’art en un 2.5% en precisió
mitjana en la segmentació de v́ıdeos d’aliments. A més, FoodMem és 58 vegades
més ràpid que l’estat de l’art en mitjana per a ambdós conjunts de dades. El codi
font està disponible a: 1.

iii

Acknowledgements

I would like to express my gratitude to my supervisors, Petia, Ricardo, and Ahmad,
for trusting me and giving me the opportunity to work on such an interesting,
innovative, and impactful project. Their support and encouragement have been
invaluable.

I especially want to acknowledge the unwavering support I have received from
Ahmad throughout this entire process. He has been by my side every step of the
way, providing guidance, feedback, and attention to my work.

I would also like to extend my thanks to my mother, Esperanza, for her support
throughout the project.

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.1.1 The Food Volume Estimation project 1

1.1.2 European Sustainable Development Goals 1

1.1.3 Personal motivation . 1

1.2 Problem definition . 2

1.3 Bounded and unbounded scenes . 3

1.4 Objectives . 3

1.5 Contributions . 4

1.6 Document Structure . 5

2 State of the art 7

2.1 Vision transformer (ViT) . 7

2.1.1 Model . 7

2.1.2 Limitations . 8

2.2 The Segment Anything Model (SAM) 8

2.2.1 Model . 9

2.2.2 SAM Training . 10

2.2.3 Main characteristics of SAM 10

2.2.4 Limitations . 11

2.3 FoodSAM . 11

2.3.1 Model . 11

2.3.2 Limitations . 12

2.4 DEVA . 12

2.4.1 Model . 13

2.4.2 Limitations . 14

2.5 XMem . 14

2.5.1 Model . 14

2.5.2 Limitations . 15

2.6 XMem++ . 16

2.6.1 Model . 16

2.6.2 Segmentation process . 17

2.6.3 Improvements over XMem 18

v

2.6.4 Limitations . 18

2.7 kMean++ . 19

2.7.1 Limitations . 19

2.8 Research gap . 19

3 FoodMem Methodology 21

3.1 Overview . 21

3.2 Our research question . 22

3.3 Preliminaries: SETR . 22

3.4 FoodMem . 22

3.4.1 CLI . 22

3.4.2 Workflow . 23

3.4.2.1 SETR . 23

3.4.2.2 XMem++ . 25

3.4.3 Output . 26

3.5 Our dataset . 26

4 FoodMem Implementation 29

4.1 Windows . 29

4.2 IntelliJ IDEA . 29

4.3 Python . 30

4.4 Conda . 31

4.5 LabelMe . 31

4.6 Imagededup . 32

4.7 Mozaic . 32

4.8 Bash . 33

4.9 Docker . 33

4.10 Git . 33

4.11 GitHub . 34

4.12 Communications mediums . 34

4.13 Agile methodologies . 35

4.13.1 SCRUMBAN . 35

4.13.1.1 SCRUM . 35

4.13.1.2 KANBAN . 36

5 Validation 38

vi

5.1 Datasets . 38

5.1.1 Nutrition5k . 38

5.1.2 Vegetables & Fruits . 40

5.2 Image near similarity . 40

5.2.1 Maximum hamming distance threshold 42

5.3 Quality metrics . 42

5.3.1 Mean Average Precision . 44

5.3.2 Recall . 44

5.4 Baselines . 44

5.4.1 FoodSAM . 45

5.4.2 DEVA . 45

5.4.3 kMean++ . 46

5.5 Results and comparison to SOTA 46

5.5.1 Mask comparison . 46

5.5.1.1 FoodSAM and FoodMem 46

5.5.1.2 DEVA and FoodMem 48

5.5.1.3 kMean++ and FoodMem 49

5.5.2 Execution times comparison 51

5.5.3 Quality metrics evaluation comparison 52

5.6 Implementation settings . 55

5.7 Ablation study . 56

5.7.1 Mask comparison . 56

5.7.2 Execution times comparison 57

5.7.3 Quality metrics evaluation comparison 58

5.8 Limitations . 60

6 Conclusions and future work 62

6.1 Conclusions . 62

6.2 Future work . 62

7 Appendix 64

7.1 Supplementary validation material 64

7.1.1 FoodSAM and FoodMem . 64

7.1.2 DEVA and FoodMem . 66

7.1.3 kMean++ and FoodMem 68

vii

7.2 Supplementary ablation study material 70

viii

1 Introduction

1.1 Motivation

1.1.1 The Food Volume Estimation project

The Food Volume Estimation project is focused on the significance of estimating
the volume of objects in computer vision for measuring and analyzing real-world
items. This technology is essential for estimating food volume, which is vital for
dietary assessment, meal planning, and culinary automation. The accuracy of food
volume estimation is crucial for tracking nutrition and creating personalized food
plans for health and well-being. Furthermore, this technology drives advancements
in culinary automation, making cooking processes more efficient and inspiring new
gastronomic innovations. The Food Volume Estimation project presents a new
framework for creating 3D models and accurately estimating object volume from
overlapping images. This advanced capability enhances the precision of dietary
assessment and meal planning, significantly impacting culinary automation and
practical applications in computer vision. The Food Volume Estimation project
is also significant to me because it involves the efficient and quick resolution of
food semantic segmentation, a challenge our framework can adeptly address. Our
framework is a powerful tool for precise food image segmentation, enabling greater
accuracy in food volume estimation.

1.1.2 European Sustainable Development Goals

The proposed research project fits 4 of the sustained development objectives of the
2030 agenda:

• “Objective 2: Zero hunger” by reducing food waste and optimizing resource
allocation in food distribution and management systems.

• “Objective 3: Ensure healthy lives and promote well-being for all at all ages”
by providing advanced tools for food volume estimation with direct application
in health.

• “Objective 9: Build resilient infrastructure, promote sustainable industrial-
ization and encourage innovation” by proposing more efficient (and thus less
energy-demanding) AI-based algorithms for food volume estimation.

• “Objective 11: Sustainable cities and communities” by fostering urban agri-
culture, food production, and waste management initiatives.

1.1.3 Personal motivation

My motivation for developing FoodMem comes from my desire to help people live
healthier and better lives through the use of technology and computer vision. Hav-
ing a look at the current food segmentation models [1], I have noticed so many

1

limitations, and I have seen the opportunity to develop a more specific and efficient
solution that can operate in nearly real-time. In addition, I am interested in educa-
tion and creating awareness about the importance of healthy eating, so I hope that
FoodMem will be a helpful tool in this area. Moreover, the possibility of positively
affecting the food industry motivates me. Last but not least, my objective is to
apply my technical skills to design an innovative solution that improves people’s
lives.

1.2 Problem definition

Food segmentation, the process of identifying and delineating different food items
within images or videos, is an essential aspect of modern computer vision research.
Its application spans various fields, from healthcare and nutrition to agriculture
and culinary arts. In this thesis, we explore the development and application of a
novel framework for food segmentation, addressing key challenges and advancing the
state-of-the-art in this critical area of study. Despite its importance, food segmen-
tation poses several challenges, including variability in food appearance, lighting
conditions, and camera perspectives.

Different models are available to detect and segment objects in images, such as
FoodSAM [2], DEVA [3], kMean++ [4], Detectron2 [5], SAM [6], and YOLOv9
[7]. In contrast, many of these models work on a single image or are not designed
specifically for food segmentation, often leading to poor results. For instance, Food-
SAM fails to generalize the segmentation across multiple frames in a given video;
for example, the estimated mask IDs (i.e., mask colours) are assigned differently
for the same food portion in different frames for the same scene. Moreover, Food-
SAM fails to segment perfectly and generates masks from different camera views,
such as missing food parts, and segments non-food objects, such as plates or tables.
Furthermore, FoodSAM is slow, which makes it an unsuitable scene segmentation
framework for production scenarios.

To overcome these limitations, our framework can segment food into a series
of images and videos. It is designed to deliver high levels of accuracy in near real-
time, representing a significant advancement in the field of computer vision for food.
Importantly, our framework has applications in various food-related fields.

• Improved health and nutrition: Our framework can help individuals mon-
itor their meal consumption, track their diet, manage their weight, and assist
those living with conditions such as diabetes. Food segmentation allows people
to identify healthier food options and better understand their dietary habits.

• Enhanced food safety: Our framework can be applied to implement a novel
approach to quality control across various food production and processing sec-
tors. For instance, our framework can create masks that detect contaminants
and allergens, ensuring that food products adhere to established safety stan-
dards and mitigate health risks for consumers.

2

• Reducing food waste: Our framework can identify where food is being
wasted by accurately tracking food from production to consumption. This
valuable information can be used to develop strategies that minimize waste,
helping to protect resources and promote sustainability.

• Educational tool: Our framework can serve as a powerful educational tool
by increasing awareness of healthy eating. The application can be utilized
in schools and for public health campaigns to educate users about nutrition,
food safety, and the environmental impact of food choices.

• Metaverse and gaming experience: Our framework can improve the re-
alism and detail of cooking and farming simulation games by incorporating
it into viewing synthesis and 3D reconstruction algorithms. This will create
more engaging and lifelike games for players. Introducing food segmentation
will enhance the realism of the gameplay and enhance the overall entertain-
ment experience.

1.3 Bounded and unbounded scenes

In the context of our research, it is important to distinguish between bounded
and unbounded scenes, as these terms describe the movement constraints and op-
erational environments of the camera used for capturing images or videos. Our
framework outperforms state-of-the-art methods at segmenting food objects in un-
bounded scenes, which addresses more complex scenes and applies to many more
situations.

Bounded scenes refer to environments where the camera follows a predefined
path or trajectory. This controlled motion ensures systematic coverage of the scene,
which is crucial for applications requiring consistent and repeatable imaging condi-
tions. The predefined path helps maintain uniformity in image capture, making it
easier to analyze changes over time, detect specific objects, or monitor particular
areas accurately. On the other hand, unbounded scenes are characterized by free
or unrestricted camera movements. These scenarios typically involve handheld or
mobile cameras. Unbounded scenes present a greater challenge for image analysis
due to the variability in camera angles, distances, and motion dynamics. This vari-
ability can lead to inconsistent image capture conditions, making it more difficult
to segment and track objects accurately. An example of a project that deals with
such challenges is MiP-NeRF 360 [8], which addresses neural radiance fields in 360°
scenes with unrestricted camera movement, demonstrating advanced techniques to
handle the complexities of unbounded environments effectively.

1.4 Objectives

Our study aims to apply academic knowledge and practical skills to develop a
production-grade food video segmentation. The objectives are directed toward ap-
plying the knowledge learned at the university, improving programming skills, de-

3

veloping the program, so it is versatile and could be applied anywhere in the world
related to food, learning techniques used in segmentation and tracking, achieving
near real-time execution, and expanding knowledge in the area of computer vision.

• Explore, understand and deep-dive into the computer vision prob-
lems related to image segmentation and tracking: Our main goal is to
study and comprehend segmentation and tracking techniques [9], particularly
in the context of food imagery. This may involve examining current models
and methods and identifying connections between techniques, for example,
using FoodSAM for segmentation and XMem++ for tracking.

• Design and validate a new flexible and globally applicable algorithm
for food segmentation: Our goal is to create a versatile program that can
be used for various applications worldwide. Additionally, the program should
be designed to evolve and adapt to new emerging needs and technologies, such
as panoptic segmentation, volume estimation, and calorie estimation.

• Achieve nearly real-time execution of food segmentation and track-
ing: Our goal is to meet program expectations by achieving near-real-time
performance in segmentation and tracking results. This involves optimizing
algorithms, data processing pipeline, and hardware utilization to reduce exe-
cution latency and enhance user experience.

• Apply university knowledge: Our goal is to apply theoretical and practi-
cal knowledge acquired during university studies in subjects such as computer
vision, image processing, and software engineering. This includes understand-
ing the fundamental concepts, algorithms, and methodologies related to the
development of our framework.

• Expand knowledge in computer vision: Our goal is to expand knowl-
edge and experience in the field of computer vision beyond the academic
curriculum. This involves researching state-of-the-art methodologies and ap-
plications to enhance our framework capabilities and contribute to the growth
of the field.

• Improve knowledge of Python and relevant libraries: Our study aims
to gain a deeper understanding of programming languages such as Python and
related libraries, including NumPy, PyTorch, and scikit-learn. This involves
hands-on applications and experiments to grasp the functionality of these
tools.

1.5 Contributions

Our framework is a significant advancement in segmentation. It provides substantial
improvements and outperforms existing state-of-the-art methods. To overcome the
limitations in Sec. 2, our contributions are listed below:

4

1. We build a novel near-real-time food segmentation architecture for videos that
combines SETR [10] and XMem++ frameworks as a first exploration for food
video segmentation.

2. We introduce a novel dataset tailored for food image segmentation tasks. Our
dataset comprises a comprehensive selection of dishes sourced from the Nu-
trition5k [11] dataset, encompassing 31 distinct dishes with a total of 1356
annotated frames. Additionally, we include 11 dishes from the Vegetable &
Fruits [12] dataset, augmented with 2308 annotated frames. Our dataset fea-
tures 42 diverse dishes, accompanied by 3664 meticulously annotated frames.
We believe this expansive dataset is a valuable resource for advancing research
in video food segmentation and related computer vision tasks.

3. We conducted an extensive series of experiments on our dataset to assess
the effectiveness and flexibility of our framework against the baselines (we
reproduced the results).

4. Our framework outperforms the state-of-the-art performance in video food
segmentation for 2.5% mean average precision with similar recall.

5. Our framework is 58 times faster than the baselines’ inference time on average
for both datasets.

6. Since not all of the baselines are open source, we implemented kMean++ [4]
for better benchmarking.

1.6 Document Structure

The remaining part of this thesis structure can be used as follows:

1. State of the art (Sec. 2): We review and summarize existing literature,
research gaps, and methodologies relevant to the topic. We discuss previous
studies, approaches, and technologies related to food segmentation, tracking,
and computer vision. The aim is to provide context for the thesis and identify
areas for further exploration.

2. FoodMem Methodology (Sec. 3): We present our proposal included in
the thesis project covers our framework subsection, describing the architec-
ture and functionality of the food segmentation and tracking system. It also
explains dataset creation, detailing how the dataset was collected and anno-
tated.

3. FoodMem Implementation (Sec. 4): We explore the technological and
software engineering aspects that were used to develop our framework.

4. Validation (Sec. 5): We demonstrate our methodology in practice and present
and discuss the results. We describe the experimental setup, including the

5

dataset and evaluation metrics. We report the results of experiments con-
ducted with our framework, presenting quantitative performance metrics and
qualitative observations. Moreover, we compare our findings with existing
baselines. We also present our framework modules’ contributions in different
settings. It involves modifying the number of initial masks that the SETR
module must generate so that XMem++ takes into account when segment-
ing the rest of the video. Finally, we list the limitations of our framework,
this aims to provide transparency regarding our framework capabilities and
improvement areas.

5. Conclusions and future work (Sec. 6): We present a summary of the key
findings from our framework. Moreover, we also provide insights for future
research and development, outlining areas where the model can be expanded.

6. Appendix (Sec. 7): Additional information of our framework. It aims to
provide more images and results.

6

2 State of the art

In this section, we examine the methods and studies related to food segmentation
and tracking in the field of computer vision [13]. This review aims to provide con-
text for our thesis by examining previous works that utilize the latest techniques
and advancements in this area. We analyze past projects to identify patterns,
standard practices, and new technologies used in food segmentation and tracking
systems. Furthermore, we outline the limitations and difficulties inherent in the cur-
rent methods, underscoring the necessity for the creation of our framework. More
precisely, this section helps position our framework within the wider research con-
text, demonstrating how our framework contributes to the field by tackling specific
deficiencies and introducing new methodologies. In the following subsections, we
explain the overview, model and limitations of the methods and studies related to
food segmentation and tracking, such as Vision transformers (see Sec. 2.1), SAM
(see Sec. 2.2), FoodSAM (see Sec. 2.3), DEVA (see Sec. 2.4), XMem (see Sec. 2.5),
XMem++ (see Sec. 2.6) and kMean++ (see Sec. 2.7).

2.1 Vision transformer (ViT)

The Vision Transformer (ViT) [14] is a type of neural network architecture primarily
designed for image classification tasks that utilize self-attention mechanisms. The
concept behind ViTs is to treat an image as a sequence of patches. These patches
are linearly embedded and then fed into a transformer architecture consisting of
multiple layers of self-attention and feedforward neural networks. This approach
enables ViTs to capture long-range dependencies in images and learn representa-
tions that are insensitive to translations, rotations, and other transformations.

2.1.1 Model

The model architecture of a ViT comprises several key components enabling it
to process and extract meaningful information from images. These are the main
elements of a ViT model, as shown in Fig. 1:

• Patch embedding: The input image is divided into fixed-size, non-overlapping
patches. Each patch is then transformed into a lower-dimensional vector space
to create initial token embeddings. These embeddings get the information
from the image patches and are used as input for the transformer encoder.

• Transformer encoder: The patch embeddings are processed by a series of
transformer encoder layers.

• Positional embedding: Since ViT does not have convolutional layers that
inherently capture spatial information, positional encodings are added to the
patch embeddings to provide information about the spatial location of each
patch within the image.

7

• MLP Head: The transformer encoder produces a series of token embeddings
that represent the image. A classification head is then included on these
embeddings to generate the final classification predictions.

Figure 1: ViT model design, from [14]. The input image is split into fixed-size
patches, linearly embedded each of them, adds position embeddings, and feeds the
resulting sequence of vectors to a standard Transformer encoder. To classify, an
extra learnable classification token is added to the sequence.

2.1.2 Limitations

Vision Transformers have shown impressive performance in various image process-
ing tasks. However, they also have some limitations. Firstly, ViTs often require
significant memory resources due to the quadratic complexity of self-attention mech-
anisms, especially when dealing with large input images or long sequences of to-
kens. Secondly, despite efforts to integrate positional encodings, ViTs may struggle
to capture precise spatial information important for tasks like localization or ob-
ject detection. Additionally, ViTs rely on fixed-size patches extracted from input
images, limiting their adaptability to images of varying resolutions and potentially
leading to information loss or distortion. Moreover, training large ViT models can
be computationally expensive and time-consuming, requiring significant computa-
tional resources and longer training times. Lastly, ViT performance can be sensitive
to parameters like patch size and grid layout during pre-processing, making it chal-
lenging to find optimal configurations for different datasets or tasks.

2.2 The Segment Anything Model (SAM)

The Segment Anything Model (SAM) [6] is a state-of-the-art model for segmentation
tasks in computer vision. Developed by Meta AI, SAM aims to provide a highly

8

versatile and generalizable solution for segmenting objects and regions of an image
without the need for specific object labels during training.

2.2.1 Model

SAM addresses the issue of promptable segmentation tasks and real-world appli-
cation requirements. Specifically, SAM must support flexible prompts, compute
masks in near real-time for interactive use, and effectively handle ambiguity. The
model is designed to tackle the challenges of promptable segmentation tasks and
the requirements for real-world applications. A simple and effective design consists
of these components, as shown in Fig. 2:

1. Image encoder: It is a Vision Transformer (ViT) (see Sec. 2.1) pre-trained
with Masked Auto-encoders [15] to process high-resolution inputs. The image
encoder processes the input image to generate an image embedding which
captures essential visual features and is computed once per image, allowing it
to be reused with different prompts to optimize efficiency.

2. Prompt encoder:

• Types of prompts: SAM supports different types of prompts, including
sparse prompts like points, boxes, and text, as well as dense prompts like
masks.

• Encoding sparse prompts: Points and boxes are represented using
positional encodings combined with learned embeddings for each prompt
type. Free-form text prompts are encoded using a text encoder from
CLIP [15].

• Encoding dense prompts: Masks are applied using convolutional lay-
ers and then combined with the image embedding using element-wise
operations.

3. Mask decoder:

• Function: The mask decoder utilizes the image embedding, prompt
embeddings, and output token to make predictions for the segmentation
mask.

• Architecture: The mask decoder is inspired by transformer decoder
blocks and uses self-attention and cross-attention mechanisms between
the prompts and the image embedding. This interaction updates the
embeddings and the final output token is passed through a Multi-Layer
Perceptron (MLP) to predict the mask’s probability at each location in
the image.

9

Figure 2: SAM model design, from [16]. SAM model accepts a single image as
an input, which enters into the encoder (ViT) to generate an embedding. User
prompts, such as points, boxes, and masks, are additional inputs to SAM models,
which enter the prompt encoder. Later, the mask decoder uses the image embedding
and the prompt embedding to generate the final masks.

2.2.2 SAM Training

SAM uses a combination of focal loss [17] and Dice loss to supervise mask prediction,
address class imbalance, and improve segmentation boundary accuracy. The model
is trained for promptable segmentation tasks using various geometric prompts. The
training simulates an interactive setup, sampling prompts randomly over multiple
rounds, which helps SAM integrate well into interactive systems.

2.2.3 Main characteristics of SAM

Below are the main characteristics of SAM [6]:

• Generalization: SAM has the ability to generalize across various objects and
scenes. Unlike traditional segmentation models that are trained on specific
tasks or objects, SAM can segment almost anything in any image, making it
flexible and widely applicable.

• High-quality segmentation: SAM is capable of generating high-quality
segmentation masks, even for objects or regions not encountered during train-
ing. This is accomplished by leveraging state-of-the-art deep learning tech-
niques and training on diverse datasets.

• Scalability: SAM is designed for scalability and can handle large, complex
datasets. It excels in a wide range of image types and excels in segmentation
tasks, from simple objects to complex scenes.

• Promptable interface: SAM has a unique feature, its promptable interface.
This system lets users interactively specify the segmentation they want by
using different prompts, like points, boxes, or text descriptions. This means
that SAM can be used for segmentation tasks without needing specific training
for those tasks.

10

2.2.4 Limitations

SAM often misses fine structures and incorrectly creates small disconnected com-
ponents [18]. This can result in inaccurate representations of complex objects and
undesired artifacts in the segmentation. SAM’s general nature also requires exten-
sive computations to address all image potentialities and ambiguities. Yet, SAM is
designed for single-image processing, so its segmentation capabilities are optimized
for a single image rather than video data. Considering SAM’s versatility, these
limitations might make it unsuitable for our specific objectives.

2.3 FoodSAM

FoodSAM is a new framework designed specifically to address the challenges of food
image segmentation. It was created because SAM has limitations in capturing spe-
cific class information in the generated masks. This compromises the quality of re-
sults, especially when dealing with diverse food appearances and imbalanced ingre-
dient categories. FoodSAM aims to improve the segmentation process by combining
SAM-generated masks with original semantic masks, enhancing segmentation qual-
ity while preserving category information. FoodSAM also presents methodologies
for object detection to identify non-food objects existing in the images. Through
object detection combined with semantic segmentation methodologies, FoodSAM
can perform panoptic segmentation [19] on food images, including segmentations at
multiple granularity levels.

2.3.1 Model

FoodSAM, as shown in Fig. 3, consists of three main components: SAM, which
identifies objects in images; a semantic segmentation module, which labels the ob-
jects; and an object detector, which recognizes non-food items. The process begins
by improving semantic segmentation by combining the output from SAM with se-
mantic labels to enhance object identification. Subsequently, it conducts semantic-
to-instance segmentation, which treats each object individually and merges related
masks to identify separate ingredients. In the instance-to-panoptic segmentation
stage, non-food items are identified separately using the object detector and com-
bined with instance masks to provide a complete scene overview. Furthermore,
FoodSAM allows interactive segmentation based on user prompts, offering flexible
and interactive food and non-food object segmentation at various levels of detail.

11

Figure 3: FoodSAM model design, from [2]. The FoodSAM model accepts a single
image as an input. Firstly, the image goes through the semantic segmenter module,
which labels the objects. Secondly, the image goes through SAM, which identifies
the objects. Thirdly, once both modules are finished, masks generated by the mod-
ules are matched to enhance the identification of food in the image. Fourthly, the
image goes through the object detector, which recognizes non-food items. Lastly,
the matched and object detector masks are merged to enhance masks, generate an
improved semantic mask, and realize a panoptic segmentation mask.

2.3.2 Limitations

FoodSAM is highly effective for processing individual images, but it lacks the ca-
pability to handle videos directly. As a result, each frame must be segmented sepa-
rately when working with videos, significantly increasing processing time. Addition-
ally, unlike some video processing models, FoodSAM does not remember previous
frames, which further contributes to the extended processing time and makes it
impractical for real-time or efficient video segmentation tasks. Furthermore, Food-
SAM saves all generated masks from SAM and FoodSAM onto the disk, leading
to additional computational overhead, particularly when dealing with numerous
frames in a video, which affects the efficiency and practicality of using FoodSAM
for video segmentation.

2.4 DEVA

Tracking Anything with Decoupled Video Segmentation (DEVA) is the state-of-
the-art computer vision method for tracking objects in videos. Unlike traditional
methods, DEVA separates the process of segmenting objects in each frame from
the tracking process. It starts by precisely identifying and delineating objects in
the individual frames through segmentation. Then, it links the segmented objects
across frames using an advanced tracking algorithm to track the objects over time

12

accurately. This decoupled approach allows DEVA to robustly and accurately track
objects, even in challenging scenarios with occlusions or changes in object appear-
ances.

2.4.1 Model

DEVA approaches the video segmentation task differently by separating it into two
components [3]:

• Image-level segmentation model: Trained specifically for the target task,
this model generates a task-specific segmentation hypothesis for individual
video frames. Each frame’s segmentation is represented as a set of separate
binary segments.

• Bi-directional temporal propagation: Trained on class-agnostic mask
propagation datasets, the model propagates segmentation hypotheses by the
image segmentation model through the full video, incorporating past seg-
mented frames as memory.

The process, as shown in Fig. 4, begins with the image segmentation model,
which provides initial segments for every frame. These segments are then refined
using a small clip of future frames to reach a consensus. The temporal propagation
model propagates the improved segments to the next frames. This process continues
iteratively, with new images’ segmentation results periodically added and combined
with the propagated segmentation results. These are the two key steps involved in
bidirectional propagation:

• In-clip consensus: The segments form a small clip of future frames that are
aligned spatially, represented as object proposals, and an indicator variable is
optimized to select the most appropriate proposals.

• Merging propagation and consensus: The segments propagated from
the previous frames are combined with the consensus segments of the future
frames. This process includes matching segments from both sets and merging
the matched pairs while keeping unmatched segments.

Moreover, inactive segments are periodically cleared from memory to reduce
computational costs, making video segmentation efficient and effective for many
scenarios.

13

Figure 4: DEVA model design, from [3]. Firstly, image segmentation is filtered with
in-clip consensus and temporally propagates this result forward. The propagated
results are merged with in-clip consensus to incorporate new image segments.

2.4.2 Limitations

DEVA has several limitations that impact its performance. One major limitation
is its inability to independently detect new objects due to its temporal propagation
model not being specialized for any particular task. This can delay the detection of
new objects, as they are only incorporated into the segmentation during periodic
updates with the in-clip consensus. Additionally, DEVA’s decoupling approach
requires significant computational resources to reason through various possibilities
and ambiguities within an image, leading to reduced efficiency compared to end-to-
end approaches, especially when large amounts of training data are available. New
objects in the scene may also initially be missing from the segmentation and are
only detected in subsequent frames, causing delays in inference time based on the
frequency of merging with in-clip consensus. Furthermore, DEVA’s generic nature
means it is not optimized for specific tasks or domains, and additional customization
may be necessary for optimal performance in such cases.

2.5 XMem

XMem [20] is a video object segmentation model designed to segment objects of
interest across multiple frames in a video. XMem incorporates a memory mechanism
inspired by the Atkinson-Shiffrin model [21], which retains information about the
segmented objects. Such a memory mechanism also enables the propagation of
segmentation annotation from a few annotated frames to other frames in the video,
ensuring consistent and accurate segmentation in the sequence.

2.5.1 Model

XMem, as seen in Fig. 5, utilizes the following four components to realize its pur-
pose:

14

• Memory mechanism: The memory module in XMem retains segmented
object information over time. This memory enables the model to store the
segmentation annotations of a limited number of annotated frames and prop-
agate them to further frames in the video.

• Propagation of segmentation annotations: Using the information stored
in its memory, XMem propagates segmentation annotations from annotated
frames to other frames in the video, ensuring consistent and accurate segmen-
tation throughout the video.

• Long-term segmentation: XMem tries to attain long-term segmentation
by effectively leveraging the information stored in its memory. It retains the
segmentation annotations of the frames over time, providing consistency and
accuracy in the object segmentation of multiple frames.

• Atkinson-Shiffrin model inspiration: The memory mechanism in XMem
draws inspiration from the Atkinson-Shiffrin model, which allows the exis-
tence of multiple memory stores, including sensory memory, short-term mem-
ory, and long-term memory. XMem adapts this to maintain segmentation
information over a video.

Figure 5: XMem model design overview, from [20]. The memory reading operation
extracts relevant features from all three memory stores and uses those features to
produce a mask. The sensory memory is updated every frame, while the working
memory is only updated every few frames. The working memory is consolidated
into the long-term memory in a compact form when it is full, and the long-term
memory will forget obsolete features over time.

2.5.2 Limitations

XMem has several limitations that affect its performance. One issue is its sensitiv-
ity to fast-moving objects within video frames; even with a fast-updating sensory

15

memory, the model may struggle to capture and track the motion of these objects,
leading to segmentation errors, especially when objects move suddenly. Addition-
ally, XMem faces challenges in situations with significant motion blur, as the pre-
cision of object segmentation may be compromised. The model may have difficulty
accurately differentiating or isolating objects with blurred edges, resulting in inac-
curacies in the segmentation output, particularly in scenes with fast-paced action
or camera movements. Furthermore, the memory-based approach XMem uses re-
sults in increased computational overhead, particularly when propagating segmen-
tation annotations across video frames. This heightened computational complexity
could hinder the model’s scalability, especially when processing high-resolution or
long-duration videos, and may necessitate significant computational resources for
efficient inference. Lastly, while XMem is a versatile tool, its architecture may
lack specialized optimizations for specific tasks or domains, potentially resulting in
suboptimal performance in situations with unique requirements, where task-specific
models might offer better segmentation accuracy and efficiency.

2.6 XMem++

XMem++ [22] is a state-of-the-art video object segmentation model designed to
operate efficiently at a production level. It is based on its predecessor, XMem, and
aims to deliver high-quality segmentation results for video frames with minimal
annotated data. XMem++ refines the memory mechanism and processing efficiency,
making it suitable for real-world applications, considering resources and annotated
data restrictions.

2.6.1 Model

The model, as noticed in Fig. 6, is based on the XMem architecture and includes a
deep convolutional neural network with multiple parts and three types of memory
modules:

• Sensory memory: Captures information about the motion by processing
the changes between consecutive frames.

• Short-term memory: Stores recent frame information for quick access.

• Long-term memory: Compresses and retains key features from earlier
frames to manage memory efficiently and handle longer videos.

Regarding the memory update mechanism, there are two types:

• Permanent working memory: Stores ground-truth references (annotated
frames) for the whole video. This avoids frame compression or moving to
long-term memory, ensuring it strongly affects the segmentation quality.

16

• Temporary working memory: Stores intermediate frames, and their pre-
dictions are used and updated frequently during the segmentation process.

Figure 6: XMem++ architecture, from [22]. Firstly, the model loads all the available
training data, including annotated frames, into the permanent memory. Secondly,
during the inference, the model looks for memory frames most similar to the current
input frame. It then aggregates the feature maps of these similar frames to create
a richer representation. Thirdly, the aggregated information from similar frames is
input to the decoder module, which uses this information to learn the relationships
between frames and predict the mask for the current frame. Fourthly, the model
focuses on updating the temporary memory, which serves as a short-term store
for recent predictions. Lastly, once the temporary memory is full, the model will
condense the least used frames into the long-term permanent memory.

2.6.2 Segmentation process

1. Frame annotation: The user annotates a frame, which is processed to gen-
erate a dense segmentation mask.

2. Permanent memory: The mask is stored in the permanent working memory
as a reference for segmenting other frames.

3. Feature extraction: Two feature maps are extracted for every frame stored
in memory:

• Key: Contains information about the entire frame used for matching
similar frames.

• Value: Contains target-specific information for predicting segmentation
masks.

4. Segmentation prediction: For a new frame, the model searches for similar
frames in the memory modules, aggregates information from the matched
keys, and predicts the segmentation mask.

17

Figure 7: XMem++ interaction flow, from [22]. The user provides initial annota-
tions, segmentation is performed, and then, using predicted masks, new annotation
candidates are chosen and given to the user. This loop is repeated until segmenta-
tion high quality is achieved.

2.6.3 Improvements over XMem

XMem++ stores annotated frames permanently to ensure they are available during
segmentation. This resolves issues with temporary memory, where additional anno-
tated frames might become compressed and lose their impact. Permanent memory
also helps create seamless transitions when the target object changes between scenes
by providing consistent references throughout the video. Additionally, the model
can perform matching based on content rather than the position of the frames
within the video, improving segmentation quality and efficiency.

2.6.4 Limitations

Even though XMem++ represents an advancement over its predecessor, XMem, it
still exhibits certain limitations [22]. Segmentation quality may suffer for frames
blurred by rapid object movements, and the similarity measure used for selecting
annotation candidates may also be affected by blur. Moreover, the model can er-
roneously switch to the wrong target when multiple similar or identical objects
are present in the frame, particularly when they occlude each other. Addition-
ally, XMem++ heavily relies on user input for segmentation accuracy, necessitating
clicks, masks, or annotations. Furthermore, the method encounters difficulties with
highly deformed objects and intricate details, posing challenges for accurate seg-
mentation. Despite its versatility in handling various video segmentation tasks,
XMem++’s generic nature may sometimes result in suboptimal performance in
highly specialized or extreme scenarios.

18

2.7 kMean++

kMean++ [4] is an improvement over the classic K-means algorithm of clustering
[23] to optimize the selection quality for initial centroids. In the traditional K-
means, the initial centroids are randomly picked from the data points. This may
result in suboptimal clustering, particularly in high-dimensional space. kMean++
solves this problem through a process of iteration on initial centroid points that
are far from each other to increase the possibilities of a solution of global optimal-
ity. Since the article describing the kMean++ algorithm is publicly available, we
developed our implementation due to the code’s unavailability. We needed to im-
plement kMean++ [24] because we required additional methods employing different
segmentation techniques for comparison with our framework.

2.7.1 Limitations

kMean++ exhibits several limitations that impact its performance. Firstly, it suf-
fers from low precision, being unable to capture intricate details in images, which
often leads to failure to distinguish similar objects or accurately identify detailed
boundaries. Secondly, kMean++ lacks contextual understanding or memory in-
corporation, treating each image independently without considering any surround-
ing context. This limitation hampers its ability to comprehend complex scenes or
objects within a broader context. Lastly, while kMeans++ does not necessitate
pre-trained models, relying solely on clustering restricts its capability to effectively
segment objects, as it lacks the benefit of prior knowledge or learned features.

2.8 Research gap

Most of the previous models on semantic segmentation, in particular for food-related
applications, have different limitations that affect their effectiveness. More briefly,
Table 1 identifies the specific research gaps in state-of-the-art models. This makes
FoodMem an even more solid solution for segmentation tasks involving food, in-
creasing its performance and applicability in real scenarios. Table 1 examines var-
ious factors influencing the efficacy of existing segmentation models. Firstly, the
user’s flexibility, denoting the models’ capacity to incorporate user preferences or
directives. Following this, the efficiency of inference time is evaluated across the
models, emphasizing the importance of swiftness. GPUs extensive factor refers
to GPU resource consumption among the models, influencing the computational
demands of segmentation algorithms. Furthermore, memory-friendly represents if
the model relies on a memory system to consider previous frames. Prompts are
also examined, facilitating specific instructions or guidance from users. Moreover,
the table assesses the generalization capabilities of the models, highlighting their
adaptability across different datasets or scenarios. Finally, compatibility with both
image and video inputs is examined, reflecting the models’ versatility in handling
diverse visual data types.

19

Table 1: A summary of the limitations and research gaps in existing models.

SAM FoodSAM DEVA XMem XMem++ kMean++ Ours
User input ✓ ✓ ✓ ✓ ✓
Inference time ✓ ✓ ✓ ✓ ✓ ✓
GPUs extensive ✓
Memory-friendly ✓ ✓ ✓ ✓
Prompts ✓ ✓ ✓
Generalization ✓ ✓ ✓ ✓ ✓
Image input ✓ ✓ ✓ ✓ ✓ ✓ ✓
Video input ✓ ✓ ✓ ✓

20

3 FoodMem Methodology

Temporary memory path

Permanent memory path

Sensory memory path

Linear Projection

x

Transformer Layer

Transformer Layer

…

…

24x

Decoder

…

MLP

Layer Norm

Multi-Head
Attention

Layer Norm

x

Patch
Embedding
Position

Embedding

SETR: SEgmentation TRansformer

Initialize as empty

Long-term memory

Temporary working memory (original)Permanent
Working memory

Sensory
memory

Memory
reading

Memory
reading

Memory
reading

Initialize

Initialize

Memory consolidation if full

Forget obsolete features

Insert new
memory every
r-th frame

…

Long-term memory path

Conditional update

XMem++

(a) SETR: Generate the first mask (b) XMem++: Generates masks using a given mask

x x x

Figure 8: FoodMem model architecture. We used a single image input for simplicity.
Our two-stage framework (a) shows the SETR framework, where it accepts an image
and generates a mask, followed by (b) XMem++, which accepts the mask and a
set of images as a given input and produces masks for all frames.

3.1 Overview

Our proposed model offers a new automated method of segmenting the food portion
per scene and incorporating a per-scene segmentation using the SETR [10] model
that produces one or a few food masks, followed by XMem++ [22], the memory-
based model, to track food masks in the complex scene.

More briefly, in the beginning, our idea was to create a tool for segmenting food
(see Sec. 3.2). However, we soon realized that the time complexity of FoodSAM
program was problematic (see Sec. 2.3.2). We focused on optimizing the algorithm
to find the right solution to address this. Based on our findings, we discovered that
we could develop a program capable of quickly and efficiently segmenting videos,
thus solving the time issue. To accomplish this, we relied on two existing algorithms,
SETR and XMem++, to create our framework. Our strategy involved using SETR
to perform segmentation in the first frame of the video and then passing this mask to
XMem++ to segment the rest of the video. It is important to note that XMem++
has the ability to track segmented objects throughout the video. We incorporated a
memory feature into our framework to track all the foods in the video. This way, we
can overcome the limitations of FoodSAM, as its baseline is SETR, and XMem++
by effectively combining both algorithms.

21

3.2 Our research question

Our research question for this project is: ”If I have a set of frames for different food
objects, can I track and segment them uniquely across all the frames?” This is the
base for our goal: develop a tool to precisely segment and track food objects across
video frames.

3.3 Preliminaries: SETR

SEgmentation TRansformers (SETR) [10] is an architecture created for carrying
out image segmentation tasks in computer vision. It combines transformer archi-
tectures with the specific needs of image segmentation. SETR works by dividing an
input image into embeddings. These embeddings are then processed through a series
of transformer layers, allowing the model to capture local and global dependencies
within the image. This enables SETR to comprehend the spatial relationship be-
tween different parts of the image and make predictions about objects’ presence
and boundaries, as shown in Fig. 8 (a).

SETR has been trained on the FoodSeg103 [25] dataset, which is a recently intro-
duced dataset for food image segmentation tasks. It includes 7118 images showing
730 different dishes. The train set includes 4983 images with 29530 ingredient
masks, while the test set includes 2135 images with 12567 ingredient masks.

3.4 FoodMem

Our framework accepts a set of images and produces a corresponding set of masks.
In Sec. 3.4.1, we explain our Command Line Interface (CLI) and how to use our
framework; in Sec. 3.4.2, we explain the workflow of our framework; and finally,
in Sec. 3.4.3 we describe the expected output of our framework. In Sec. 3.5, we
describe in detail our proposed dataset.

3.4.1 CLI

Our framework’s input is specified using a set of command-line arguments, which
define the paths to the video, masks, and output directory. There are also optional
flags for visualization, timing, and specifying the number of masks to be generated
by SETR. Here is a detailed explanation of each input:

22

Table 2: Input flag options, where we can see flag types, routes, constraints, and
descriptions.

Flags
Type Route Constraints Description

video String Video frames directory
Frames must be (’0.jpg’, ’1.jpg’, ...)
Frames must be in JPG format

Reads video frames

masks String Masks directory
Masks must be (’0.png’, ’1.png’, ...)

Masks must be in PNG format
Reads and saves masks

output String Masks directory
Output path folder is created

if it does not exist
Saves the results

show vis Boolean On screen
Saves the predicted SETR
mask overlapped to the
corresponding frame

show overlay Boolean On screen
Saves the predicted FoodMEM

masks overlapped to their
corresponding frames

show time Boolean On screen Displays the execution time

num masks Int On console
The number of masks must be between

0 and the total amount of frames
Indicates how many masks will

SETR generate

3.4.2 Workflow

Our framework combines the models of SETR and XMem++ to achieve efficiency
and speed in semantic segmentation in videos. SETR initially segments a single
image, while XMem++ uses this information to track and segment objects in the
video by remembering and tracking everything that has appeared in the scene. The
design model for our framework is shown in Fig. 8.

In Sec. 3.4.2.1, we detail SETR, explaining its implementation and contribution.
In Sec. 3.4.2.2, we detail XMem++, how it integrates with SETR, and how it uses
its memory capability to realize consistent and accurate segmentation across the
video.

3.4.2.1 SETR

FoodSAM comprises three models: SAM, semantic segmenter (i.e. SETR), and
object detector. SAM generates multiple independent binary class masks, the se-
mantic segmenter provides food category labels by matching mask categories, and
the object detector provides non-food classes for background masks. Since we aim
to segment food simply, we have completely isolated the semantic segmenter. This
significantly speeds up execution by removing two models that do not influence our
purpose. Upon running the code, the first step is to identify the first frame of the
video, except if more masks to be generated were introduced in the ”num masks”
flag, which serves as the basis for identifying the food to be segmented using Food-
SAM’s semantic segmenter, SETR. The semantic segmenter operates as follows:

1. The model configuration is loaded from a file.

2. ”cudnn benchmark” optimization is enabled for convolution operations on
GPUs if specified in the configuration.

23

3. Pre-trained model usage is disabled, and the test mode is set.

4. The segmentation model is initialized with the provided configuration and
checkpoint. A data transformation pipeline using the model configuration
is built for the test phase. Input data is prepared for inference, i.e., the
transformations defined in the test pipeline are applied to the input images.
The data is distributed to the specified GPU.

5. Semantic segmentation prediction is performed on the specified images.

6. The result (the masks with the semantic segmentation of the food in the
images) is saved with the specified visualization options at the specified path.
Examples of the outputs for num masks = 1 and num masks = 3 are shown
in Fig. 9 (a) and (b), respectively.

7. Optional: The overlay is saved at the specified path. An overlay example is
shown in Fig. 9 (c).

Figure 9: Outputs from our framework steps. (a) shows the SETR semantic seg-
mentation on the first frame, followed by (b), which shows the SETR semantic
segmentation for num masks = 3, and (c), which shows the overlays of the gener-
ated masks on their respective frames.

Notably, the model is pre-trained (i.e. transfer learning), and we have the check-
point, so there is no need to train the model in each execution. SETR [10] was used
as the baseline for semantic segmentation. The encoder and the decoder were ViT-
16/B and MLA, respectively. The semantic segmentation model is a deep network
model that uses a variant of the ViT called Multi-Level Aggregation (MLA) in an
Encoder-Decoder approach. Model components and configurations are summarized
as follows:

1. Backbone: It is a ViT MLA model with a base ViT architecture, patch size
16, embedding dimensions 768, 3 input channels, 12 layers, 12 attention heads,
and 19 output classes.

2. Decode head: It is a ViT MLAHead model with 1024 input channels from
the encoder output and MLA bottleneck, 512 channels, 104 output classes,
and utilizes cross-entropy loss without a sigmoid function.

24

3. Auxiliary head: It lists 4 auxiliary heads for semantic segmentation, with
configurations similar to decode head but with 256 input channels and cross-
entropy loss with sigmoid function as loss configuration.

Additionally, an SGD-based optimizer [26] with a learning rate of 0.002 is used,
and the learning rate adjustment policy is polynomial [27]. As said previously,
we employ the SETR model to generate segment masks for food items. Com-
prising 251 layers, the SETR architecture initiates with Conv2d, PatchEmbed, and
Dropout layers. It then iterates through a sequence of LayerNorm, Linear, Dropout,
Linear, Dropout, Attention, Identity, LayerNorm, Linear, GELU, Dropout, Linear,
Dropout, Mlp, Identity, and Block layers until reaching layer 196, where three
LayerNorm layers are introduced. Another cycle follows, featuring Conv2d, Sync-
BatchNorm, and ReLU layers. At layer 224, Conv MLA and VIT MLA emerge,
while layer 226 reintroduces the sequence of Conv2d, SyncBatchNorm, and ReLU
layers. Finally, at layer 250, MLAHead and Conv2d layers are incorporated. The
model boasts a total parameter count of 91051880, with an input shape of (3, 768,
768) and an output shape of (-1, 104, 192, 192).

3.4.2.2 XMem++

Once the SETR part has been executed, the next step is to apply the detected food
segmentation to the rest of the video using XMem++. SETR (see Sec. 3.4.2.1)
saves the masks obtained by its model to the specified path. Therefore, XMem++
reads these masks and executes its algorithm based on them. The model first runs
the inference function on the video, processing each frame to generate semantic
segmentation masks. Here is a description of how the algorithm works:

1. The GPU is set as the computing device, and gradient calculation is turned
off since XMem++ comes pre-trained.

2. The main objects necessary for video processing, such as label mappers, sam-
ple processors, video readers, and data loaders, are loaded. The segmentation
model is loaded.

3. The frames that need to be loaded into permanent memory are determined
based on the presence of associated masks. Typically, only the first frame
will be stored. It retrieves the frame and its corresponding mask, converts
the mask using the mapper, and adds the frame-mask pair to the permanent
memory of the inference processor.

4. Each frame of the video is processed one by one. Inference is performed
on the frame using the semantic segmentation model. The inferred masks
are adjusted as necessary, and the inferred mask is saved. The first mask
is ignored because it is already in permanent memory. For each frame, it
is checked whether segmentation in the image is necessary. This involves
encoding a key from the image, calculating features at different scales, and

25

using memory to compare and update the segmentation if necessary. If an
input mask is provided, it updates the predicted segmentation. Finally, the
processed segmentation of the image is returned.

5. The inferred masks are saved to disk for further use.

6. Optional: The overlays are saved to disk.

3.4.3 Output

We explain the outputs that are obtained during the workflow, the cases are shown
visually in Fig. 10:

Figure 10: Use-case diagram of the outputs depending on the visualization flags
the user introduces. If no flag is entered, semantic segmentation masks will be
obtained; the user can create the ”vis” folder if the show vis flag is entered; the
user can create the ”overlay” folder if the show overlay is entered.

• If executed without any flags, semantic segmentation masks will be obtained
for each frame, saved in the path specified in "--output".

• If the "--show vis" flag is executed, a directory named ”vis” will be addi-
tionally generated within the path specified in "--output", where the overlay
of the masks generated by SETR [10] on the original images will be stored.

• If the "--show overlay" flag is executed, a directory named ”overlay” will
be additionally generated within the path specified in "--output", where the
overlay of the masks on their respective original images will be stored.

3.5 Our dataset

Here, we explain our dataset to validate the proper functioning of our framework.
We used two datasets: Nutrition5k [11] and Vegetables & Fruits (V&F) [12]. Both

26

datasets include images and extra information such as IMU data. Upon examining
and researching these datasets, we realized that they are large (e.g. 5000 dishes in
Nutrition 5k), covering many dishes with multiple frames for each dish. We selected
a subset of dishes from each dataset to simplify the work and ensure efficiency in
the validation process. Our selection is based on the variation of the food, the
complexity of the video, and the number of ingredients per video, trying to have
excessively simple and, at the same time, extremely complex scenes within the
dataset.

To solve the problem of duplicate frames, we used Imagededup [28], a Python
library, to find and remove duplicate images from datasets. For the correct project
evaluation, we needed the ground truth semantic segmentation (see Sec. 5.2). We
manually made the ground truth for each frame of every dish selected since it was
not provided by the datasets. We used LabelMe [29], an open-source annotation
used for labelling and annotating images.

The food category labels annotated by LabelMe were based on the official food
classification from the United States Department of Agriculture (USDA). The classi-
fication shown in Fig. 11 provides a coherent and logical framework for categorizing
a wide range of foods into meaningful groups. Using this classification, we ensured
that our food categories were according to standards already recognized in the food
industry and scientific research.

Figure 11: USDA food classification table, from [30]. This table categorizes various
foods into five main groups: Fruits, Vegetables, Grains, Protein Foods, and Dairy.
Each group is subdivided into specific subgroups with representative sample foods.

Our dataset includes 31 dishes from Nutrition5k with 1356 annotated frames and
11 dishes from V&F with 2308 annotated frames, for a total of 42 dishes with 3664
annotated frames. By choosing a subset of images and ensuring annotation accuracy

27

in each frame, we created a robust dataset for effectively testing and validating our
framework.

28

4 FoodMem Implementation

In this section, we discuss the range of technologies, tools and software engineering
techniques used during the development and execution of our framework. Each plays
an important role in different steps of the project lifecycle. The following subsections
provide detailed views on the system environment, development tools, programming
languages, version control systems and agile methodologies used in this project.
Understanding these technologies’ capabilities and application areas will provide
insight into how they work collectively to ensure the successful realization of our
goals.

4.1 Windows

Windows is the operating system used to develop and test our framework. Due
to its user-friendly interface and extensive compatibility with various software and
development tools, it serves as the primary platform for building our project. Key
features of Windows that are beneficial for our framework include:

• Wide range of development tools: Windows supports a wide range of in-
tegrated development environments (IDEs) and text editors, including IntelliJ
IDEA, which was used for developing our framework.

• Ease of use: The graphical user interface (GUI) of Windows makes it easy
to navigate and manage files and applications, enhancing productivity and
reducing the learning curve.

• Compatibility with Docker: Docker, which was used for containerization,
can be easily installed and run on Windows. This facilitated the evaluation
comparison between our framework and other models with Linux-specific in-
structions.

• Python support: Python, the primary programming language used in our
framework, runs smoothly on Windows. This allowed for the execution of
scripts, management of dependencies, and development of functionalities with-
out compatibility issues.

• Integrated CLIs: Windows provides powerful command-line tools, such as
PowerShell and Command Prompt, which were useful for running scripts,
managing version control with Git, and performing various administrative
tasks.

4.2 IntelliJ IDEA

IntelliJ IDEA is an integrated development environment extensively used to develop
our framework. It is known for its powerful features and extensive support for vari-
ous programming languages and frameworks. IntelliJ IDEA provided the following
advantages for our project:

29

• Comprehensive development: IntelliJ IDEA offers a wide range of built-in
tools and features, such as code analysis, refactoring, and debugging, which
streamline the development process and improve code quality.

• Python support: IntelliJ IDEA has excellent support for Python through
the Python plugin. This allowed us to write, test, and debug Python code
efficiently, which is the primary programming language used in our framework.

• Version control integration: The IDE provides seamless integration with
Git and GitHub, enabling easy version control. We could commit changes,
merge branches, and resolve conflicts directly within the IDE.

• User-friendly interface: IntelliJ IDEA’s intuitive and customizable inter-
face enhanced productivity by allowing us to arrange tools and windows ac-
cording to our preferences. This made navigation and project management
more efficient.

• Code completion and suggestions: The intelligent code completion and
suggestions feature helped speed development by predicting the next lines of
code and providing useful hints, reducing the likelihood of errors.

• Plugin ecosystem: IntelliJ IDEA has a rich ecosystem of plugins that can
extend its functionality. We utilized various plugins to enhance our develop-
ment environment, including those for Docker and Python.

4.3 Python

Python was the primary programming language used in the development of our
framework. Its versatility, extensive libraries, and ease of use made it an ideal
choice for our project. Here are the key reasons why Python was integral to our
framework:

• Ease of use and readability: Python’s simple syntax and readability al-
lowed for rapid development and easy codebase maintenance. This was par-
ticularly important for a complex project like FoodMem, where clarity and
ease of understanding are important.

• Extensive libraries and frameworks: Python has a lot of libraries and
frameworks that facilitated various aspects of the project. For instance, we
used OpenCV [31] for image processing, NumPy [32] for numerical compu-
tations, and PyTorch [33] for implementing and training machine learning
models. These libraries significantly reduced development time and effort.

• Strong support of machine learning: Python is a popular language in
the machine learning community, with strong support for machine learning
and deep learning frameworks such as PyTorch. This allowed us to leverage
state-of-the-art algorithms and models for the semantic segmentation tasks in
our framework.

30

• Community and documentation: Python’s large and active community
provided extensive documentation, tutorials, and forums that were invaluable
for troubleshooting and finding solutions to challenges encountered during
development.

4.4 Conda

Conda is a powerful package and environment management system widely used
in data science and software development projects. It efficiently manages depen-
dencies, libraries, and software environments, ensuring the project’s environment
remains consistent across different development and deployment stages. Conda
played an important role in the development of our framework and in maintaining
a stable and reproducible environment. Here are the key elements of Conda used
in our framework project:

• Environment management: Conda allowed us to create isolated environ-
ments for the project, ensuring that all dependencies and packages required by
our framework were contained within a specific environment. This isolation
prevented conflicts between different package versions and made managing
and updating dependencies easier.

• Dependency management: With Conda, we could specify and install all
the necessary libraries and tools required for our framework. This included
essential packages for machine learning, image processing, and other scientific
computing needs, such as PyTorch, OpenCV, NumPy, and more.

• Portability: By using Conda environment files (YAML files), we could easily
share the exact environment setup with other team members and ensure that
anyone had the same setup. This portability is vital for projects, minimizing
issues related to environmental discrepancies.

• Cross-platform compatibility: Conda supports multiple operating sys-
tems, including Windows, macOS, and Linux. This compatibility was ben-
eficial as it allowed team members to work on the project across different
platforms without encountering dependency issues.

4.5 LabelMe

LabelMe is an open-source annotation tool widely used to create labelled datasets
for computer vision applications. It allows users to manually annotate images with
polygons, rectangles, circles, lines, and points. In the FoodMem project, LabelMe
played an important role in generating the ground truth data needed to evaluate
the performance of the segmentation models. Here is a detailed explanation of its
functionality and how it was used:

31

• Annotation tool: LabelMe provides an intuitive interface for manually la-
belling objects in images. Users can draw various shapes around objects to
create detailed annotations.

• Open-source and extensible: As an open-source tool, LabelMe can be
customized and extended to suit specific project needs, making it versatile for
various annotation tasks.

• Managing large datasets: Given the large datasets, LabelMe’s user-friendly
interface and efficient annotation capabilities were essential for effectively han-
dling and labelling the images.

• Attribute tagging: Annotators can add attributes to the annotations, such
as labels or categories, which are useful for detailed segmentation tasks.

• User-friendly: Its intuitive interface makes it accessible even for those who
are not experts in annotation tasks.

• Community support: Being open-source, LabelMe has a large community
of users and developers, offering support and contributing to its continuous
improvement.

• Ground truth creation: For evaluating our framework, accurate ground
truth segmentation masks were necessary. Since the datasets Nutrition5k and
Vegetables & Fruits lacked these masks, we used LabelMe to annotate each
frame manually.

• Annotation process: The process involved manually drawing polygons
around food items in each frame. Although time-consuming, this step was
important for obtaining high-quality, accurate annotations.

4.6 Imagededup

Imagededup is a Python library designed to detect duplicate images in a dataset.
It uses various techniques, such as perceptual hashing, to identify visually similar
images, even with different resolutions or slight modifications. In our pipeline,
Imagededup was used to ensure the dataset’s quality by removing redundant video
frames. This step was important to enhance the accuracy and reliability of the
segmentation model. FoodMem could keep a clean and diverse set of images, leading
to better model performance and more precise food segmentation results.

4.7 Mozaic

Mozaic is a tool designed to streamline the creation of compound figures for visual
comparisons. It automates the process of combining multiple images into a single
figure, minimizing the need for manual editing. In our framework, Mozaic was
used to generate segmentation result images and facilitated visualization by easily

32

comparing different frames and segmentation methods. Using Mozaic, we could
create detailed and informative compound figures, enhancing our qualitative results’
presentation. Mozaic was developed by the GCVCG team at the University of
Barcelona and can be found on GCVCG’s GitHub page [24].

4.8 Bash

Bash [34], which stands for ”Bourne Again Shell,” is a command language inter-
preter typically used in Unix-based operating systems. For our framework, Bash
was utilized for the following purposes:

• Script execution: Bash scripts were created to automate various tasks re-
lated to project setup.

• File and directory management: Bash commands were used to navigate
the project directory structure and manipulate files.

4.9 Docker

Docker [35] is a platform for developers to package, distribute, and run applica-
tions within lightweight, portable containers. These containers encapsulate all the
necessary dependencies and configurations required to run an application, ensuring
consistent behavior across different computing environments.

We used Docker to address compatibility issues between DEVA and the Windows
operating system. To overcome this obstacle and facilitate comparison experiments
between DEVA and our framework, Docker was used as a solution. By encapsulating
DEVA and its dependencies within a Docker container, we effectively abstracted
away the underlying operating system differences. This approach allowed us to
run DEVA seamlessly on Windows systems without requiring manual configuration
or resolving dependency conflicts. Docker worked as a bridge between the Linux-
based DEVA model and the Windows environment, providing a consistent and
isolated runtime environment for conducting comparative experiments with our
framework. This utilization of Docker underscores its versatility in enabling cross-
platform compatibility and facilitating the seamless integration of diverse tools and
technologies within the development workflow.

4.10 Git

Git provides a distributed and decentralized platform for tracking changes to project
files, enabling efficient collaboration, code review, and version management. In
the FoodMem project, Git was utilized as the primary version control system for
tracking changes to the source code, scripts, and documentation. By using Git,
we could modify code, experiment with new features, and address issues while
maintaining a coherent history of changes. Moreover, Git’s branching and merging

33

capabilities facilitated the implementation of various development workflows, such
as feature branching, bug fixing, and release management. Separate branches were
created to work on specific tasks or features, such as isolating experimental changes,
and later merge them back into the main codebase after review and testing.

4.11 GitHub

GitHub is the hosting platform for the FoodMem project’s code repository. GitHub
is a central hub where project code, documentation, and related resources are stored,
managed, and shared. GitHub provides several key functionalities and benefits:

• Code hosting: GitHub hosts the project’s Git repository, allowing team
members to push, pull, and clone code from a centralized location. This
enables seamless collaboration and version control, ensuring all team members
can access the latest project codebase.

• Collaboration tools: GitHub offers collaboration features such as issue
tracking, pull requests, and code reviews. Team members can create and
assign issues, discuss project tasks, and propose changes via pull requests.
This promotes transparent communication and effective coordination among
team members.

• Documentation management: GitHub’s support for markdown format-
ting allows for creating detailed project documentation directly within the
repository. README files, wikis, and documentation pages can be used to
provide project overviews, installation instructions, usage guidelines, and con-
tribution guidelines.

4.12 Communications mediums

Effective communication is crucial for the success of our project. We utilized com-
munication tools to ensure seamless coordination and information sharing among
team members. The primary communication mediums we used included Slack, a
WhatsApp group called FoodMem, Gmail, and Google Meet. Slack was our main
platform for daily communication and collaboration. The key features of Slack that
benefited our project were channels that allowed us to organize conversation topics,
making it easier to find and reference past discussions. File-sharing capabilities
enabled us to share quickly and access files, including code snippets, documents,
and images. Additionally, Slack’s integration with other tools and services, such
as GitHub and Google Drive, streamlined our workflow and kept everything in-
terconnected. Real-time communication facilitated instant messaging and quick
responses, enhancing our ability to address issues promptly. The WhatsApp group
named FoodMem served as a more informal and immediate communication channel.
It was beneficial for sharing quick updates or urgent messages when team members
were away from their computers. Coordination of meetings and discussing sched-
ules more conversationally was also a key benefit. This platform allowed us to stay

34

connected and responsive. Gmail was used for more formal communications and
documentation purposes. It played a significant role in sending and receiving offi-
cial communications, such as meeting invitations, and progress reports. Document
sharing was facilitated through email attachments, allowing us to distribute larger
documents and files. Additionally, Gmail provided an efficient way to archive im-
portant communications and documents for future reference. This medium ensured
that all critical information was documented and accessible, contributing to the
overall organization of the project. Google Meet was our go-to platform for virtual
meetings. It was crucial in facilitating face-to-face discussions, essential for doubts
resolution, important announcements, and regular check-ins. The screen-sharing
feature allowed team members to share their screens, which was particularly useful
for demonstrating code and reviewing documents. This platform ensured that our
virtual interactions were productive and effective.

4.13 Agile methodologies

The FoodMem project used various software engineering techniques to ensure effec-
tive project management and development practices. Agile methodologies, specifi-
cally SCRUMBAN, were applied to our framework to simplify the workflow.

Agile methodologies [36] were adopted to provide a flexible and iterative approach
to software development. This approach emphasizes continuous feedback, collab-
oration, and small, incremental changes rather than a monotonous development
process. Agile methodologies helped to change and respond to new requirements
and challenges quickly.

4.13.1 SCRUMBAN

SCRUMBAN is a hybrid project management framework that combines the struc-
tured approach of SCRUM with the visual workflow management of KANBAN.
This integration leverages the strengths of both methodologies to optimize work-
flow, enhance team collaboration, and ensure efficient project delivery. SCRUM-
BAN provides a flexible yet structured environment that adapts to changing project
requirements while maintaining a continuous rate of development.

4.13.1.1 SCRUM

SCRUM [37] is an agile framework that structures the development process into
fixed-length iterations called sprints. It focuses on iterative progress, transparency,
and collaboration. Key elements of SCRUM used in the FoodMem project include:

• Sprints: The development process is divided into sprints, each lasting two
weeks. These sprints focus on completing a predefined set of tasks from the
product backlog.

35

• Daily stand-ups: Short, daily meetings help the team discuss progress,
plan the day’s work, and address any impediments. These meetings ensure
transparency and keep the team aligned. We used Google Meet for these
stand-ups.

• Sprint planning: At the beginning of each sprint, the team plans which
tasks to complete, setting clear goals and defining the sprint backlog.

• Sprint review and retrospective: At the end of each sprint, the supervi-
sors review the completed work and hold a retrospective to discuss what went
well, what could be improved, and how to implement those improvements in
future sprints.

• Global meetings: We held a global meeting with supervisors weekly to
review progress and align on the next steps. These meetings were conducted
in person, at university, except when any team member had an impediment,
in which case we used Google Meet.

4.13.1.2 KANBAN

KANBAN [38] is a visual workflow management method that helps teams manage
tasks and optimize processes. It focuses on continuous delivery and efficiency. Key
elements of KANBAN used in the FoodMem project include:

Figure 12: VolE board. This is a portion of the KANBAN board we used to organize
the project. It includes tasks from the TFG and VolE project.

• Visual management: A KANBAN board provides a visual representation
of tasks and their status, divided into columns such as ”To Do”, ”In progress”,

36

”Review” and ”Done”. This promotes transparency and accountability. We
used JIRA to manage our KANBAN board, as shown in Fig. 12.

• Continuous delivery: KANBAN facilitates a continuous flow of work, en-
abling the team to deliver small, manageable pieces of functionality regularly.
This ensures continuous progress and quick adaptation to changes.

• Documentation: We used Confluence alongside JIRA to document our
progress, decisions, difficulties, and plans, ensuring all team members had
access to up-to-date project information.

By combining SCRUM’s structured approach with KANBAN’s flexibility and vi-
sual management, SCRUMBAN offers a balanced framework that enhances work-
flow efficiency, improves team collaboration, and ensures the timely delivery of
high-quality software. The FoodMem project benefited from this hybrid approach
by maintaining a structured yet adaptable development process, meeting deadlines,
and effectively managing project requirements.

37

5 Validation

We assess our framework performance through an evaluation process. First, we
explain the used datasets and the preprocessing pipeline. Then, the evaluation
process covers quality metrics, result analysis, and comparison to state-of-the-art
methods. Additionally, we outline the implementation settings for transparency
and reproducibility. Plus, we realized an ablation study to examine the effects of
modifying the masks produced by SETR. Finally, we outline the limitations of our
framework, providing context for the findings and guiding further research.

5.1 Datasets

Two principal datasets used in developing our framework were Nutrition5k and
Vegetables & Fruits. These datasets were used to validate segmentation models,
which assure accurate and effective food recognition and segmentation.

5.1.1 Nutrition5k

The Nutrition5k dataset is a comprehensive collection of images that predominantly
feature various types of foods. It is a crucial dataset for researchers and scientists
involved in food recognition and segmentation tasks. This dataset primarily con-
sists of bounded scenes, where the camera follows a predefined path or trajectory
to capture images systematically. This controlled setup ensures consistent image
capture conditions, making it ideal for developing and testing food recognition al-
gorithms. These bounded scenes minimize the variability and unpredictability that
often arise in unbounded scenes, thereby enhancing the reliability and accuracy of
segmentation tasks (see Sec. 1.3). Some key features of the Nutrition5k dataset
include:

1. Imagery:

• Realsense overhead: This includes depth color images, depth raw
images, camera location, and RGB images, offering multiple perspectives
and data types for each dish. The camera used to collect the overhead
data is an Intel RealSense D435.

• Side angles: This subset contains images of 4799 dishes, each captured
in 130 to 560 frames, providing extensive visual information from differ-
ent angles. The images are collected from five cameras oriented above
and around the plate, with one pointing down directly overhead and
the other four from each side of the dishes. The four side-angle cam-
eras sweep 90° simultaneously, capturing the full 360°. Fig. 13 visually
represents the camera box used in Nutrition5k.

38

Figure 13: Image of the camera box used in Nutrition5k, from [11]. The camera
box is utilized to capture the 360° of the plate. The box has four cameras from each
side of the dish and one above the dish. Note that the cameras follow a predefined
path capturing images.

2. Metadata:

• Dish metadata: This file contains metadata related to each dish, pro-
viding contextual information, such as dish ID and ingredient names with
their locations in the dish.

• Ingredients metadata: This file includes detailed information about
each ingredient, such as ingredient name, ID, calories per gram, fat,
carbohydrate, and protein content.

Nutrition5k (see Sec. 3.5) dataset contains about 5000 dishes, a huge collection
that brings diversity to the research and analysis of food items. For complete vali-
dation of our framework, we choose 31 plates. This selection strategy is intended to
include dishes with varied compositions of ingredients for validation of our segmen-
tation model. Each plate has been carefully selected and examined for a diverse
ingredient range, increasing the scope of our framework validation. We tested the
segmentation model across various food compositions by including plates with dis-
tinct ingredient combinations. This broad scope ensured testing our framework’s
segmentation performance across many categories of meals.

Each plate in the selected subset of the Nutrition5k dataset has several hundred
frames; specifically, there are between 130 and 560 frames per plate in this dataset.
To simplify the processing and reduce the computational load, Imagededup [28]
used an image processing pipeline to compress these frames while preserving the
visual information required for segmentation analysis.

39

Through the pipeline, the number of frames per plate was reduced to about
20 to 65 frames. This made it possible to reduce the computational resources
required in the pipeline but ensured that there was enough representation of the
main dish’s visual characteristics. The keyframes were selected strategically to
capture significant visual changes or transitions within each plate. This ensured
that critical visual information for segmentation analysis was still contained, which
is very important for model evaluation to be done accurately and efficiently. The
pipeline process is detailed in Sec. 5.2. With the application of this image processing
pipeline, the Nutrition5k dataset is ready for robust validation of our framework
segmentation capabilities on diverse culinary compositions.

5.1.2 Vegetables & Fruits

The Vegetables & Fruits dataset consists of various fruits and vegetables like apples,
avocados, bananas, blackberries, blueberries, carrots, cucumbers, grapes, peaches,
pears, and strawberries. Each food category in the dataset contains between 10
and 15 different scenes, making the last scene of each food item the most complex.
Within each scene is a file showing the locations of the fruits and vegetables. This
dataset primarily features unbounded scenes, where the camera is not restricted to
a predefined path and can move freely. This setup introduces variability in camera
angles, distances, and motion dynamics, which reflects more natural, real-world
conditions and poses greater challenges for segmentation and tracking tasks (see
Sec. 1.3). In addition, there is a directory including images. Normally, these scenes
vary from 100 to 600 frames, providing a huge amount of visual data to be analyzed.

We selected each food item’s final scenes for our dataset creation process to
challenge our framework with complex scenes. We also used Imagededup to reduce
the number of frames to a reasonable number and control the overlapping between
frames, as mentioned in Sec. 5.1.1, without losing the difficulty of the images needed
to evaluate our framework. The pipeline process is detailed in Sec. 5.2.

5.2 Image near similarity

Imagededup is a Python library developed for finding and removing duplicate im-
ages from datasets. It provides functionalities for detecting and deleting duplicate
and near-duplicate images based on visual similarity. The library uses advanced
algorithms to compare the contents of images and detect similarities, therefore fa-
cilitating the cleaning of redundant images. These are the algorithms involved in
image deduplication:

• Convolutional neural network (CNN): This deep learning model can
learn and extract features from images. Imagededup provides prepackaged
CNN models that can be used for image deduplication tasks. Users can also
integrate custom CNN models tailored to their specific needs.

• Perceptual hashing (PHash): PHash generates compact hash codes for
images based on their visual content. These hash codes capture perceptual

40

similarities between images, enabling the detection of near-duplicate images
with slight variations.

• Difference hashing (DHash): DHash computes hash values by calculating
the pixel-wise differences between adjacent image pixels. It is effective in
identifying images with minor variations or distortions.

• Wavelet hashing (WHash): WHash utilizes wavelet transforms [39] to
generate hash codes for images. This technique decomposes images into dif-
ferent frequency bands, allowing for the capture of both high-frequency and
low-frequency components in image representations.

• Average hashing (AHash): AHash creates hash codes by computing the
average pixel intensity values of grayscale images. It provides a simple yet
effective method for detecting duplicate images based on their overall visual
similarity.

We decided that PHash is the best algorithm to preprocess our dataset due to
the following factors:

• Robustness to common image transformations: PHash creates a com-
pact hash representation of an image on its perceptual features. This hash
is peculiarly invariant to all common image transformations, such as scaling,
rotation, and small changes in brightness or contrast. Therefore, images with
visual similarity, but after some minor changes, can still lead to similar hash
values and make PHash good for near-duplicate image detection.

• Computational efficiency: Most PHash algorithms are basically fast and,
therefore, applicable in image deduplication tasks on a large scale. The per-
ceptible features of the image are extracted and encoded into a fixed-length
hash code, which enables the comparison between the hashes of other images
using simple distance methods.

• Compact representation: For every image, PHash generates a small binary
hash code, normally consisting of a few bits. This compact form allows for
efficient storage and comparison of image fingerprints, making it practical for
indexing and searching large image datasets.

• Low sensitivity to noise: PHash algorithms have been implemented to
provide robustness to noise and slight variations in the input image. They
deal more with high-level perceptual features than with precise pixel values,
which ensures that image compression artefacts and sensor noise, among other
distortions, have minimal impact.

In general, effectiveness, efficiency, and robustness make PHash a favorite image
deduplication and similarity detection tool in many applications. However, the
performance of the PHash algorithms needs to be tested on concrete cases and
datasets to meet the requirements in terms of accuracy and scalability.

41

5.2.1 Maximum hamming distance threshold

The maximum hamming distance threshold [40] refers to a parameter of image dedu-
plication algorithms and, more precisely, to the ones based on perceptual hashing,
like PHash. In these algorithms, images are transformed into compact hash codes
that describe the image’s visual content compactly. The hamming distance is the
metric for comparing hash codes to identify duplicate and near-duplicate images,
which calculates how similar two hash codes are. The hamming distance threshold
sets up the maximum allowed difference for two hash codes so that the images are
still considered duplicates or near-duplicates. By setting an appropriate threshold
for the maximum hamming distance, users can manage the level of sensitivity de-
sired in the deduplication process. A lower threshold will yield a much stricter crite-
rion for declaring duplicates, thereby possibly reducing the chance of false positives
but also increasing the chance of missing similar images. A higher threshold may de-
tect more matches, including images with slight variations, but it may also increase
the risk of false positives. The optimum maximum hamming distance threshold
is normally a trade-off between precision and recall, dependent on the dataset’s
specific requirements and characteristics. Experimentation and fine-tuning may be
required to find the most suitable threshold for a given application.

We did a comparative evaluation process using different distance threshold values
to find the best value. We created Fig. 14 to show how the number of frames changes
by applying the different algorithms that provide Imagededup at different distance
thresholds for various dishes and initial frames.

Fig. 14 allows us to compare how the number of frames changes for every dish de-
pending on the maximum distance threshold in the process of image deduplication.
From the analysis of these results, we can determine which threshold best bal-
ances removing duplicate images and retains relevant information in the remaining
frames. This helps us determine the best value for the maximum hamming dis-
tance threshold that maximizes the effectiveness of Imagededup for our particular
application context. After a comparative evaluation, we found that the maximum
hamming distance threshold of 15 gave the best results. This threshold value is
balanced, eliminating duplicating images and preserving the necessary information
in the remaining frames. Therefore, based on our analysis, the maximum hamming
distance threshold of 15 is the most suitable choice for Imagededup’s performance
in this dataset.

5.3 Quality metrics

We outline the quality metrics for evaluating our framework’s performance and
effectiveness. Quality metrics are very important for determining the model’s accu-
racy, efficiency, and reliability. Mean Average Precision [41] and recall [42] provide
an evaluation of the FoodMem model’s performance. We focus on these metrics
so that our model is accurate and reliable regarding practical applications for food
segmentation tasks. The metrics help us understand the model’s ability to detect
and segment food items effectively, which would be useful in such applications as

42

Figure 14: Imagededup methods thresholds comparison. The figure consists of three
subfigures, each corresponding to 7, 12 and 15 thresholds respectively. The figures
show the number of frames of each dish once the Imagededup method is applied
with its maximum hamming distance threshold.

43

dietary assessment and culinary automation. In the subsections below, we focus on
the two key metrics that were employed.

5.3.1 Mean Average Precision

Mean average precision (mAP) is a commonly used metric in object detection and
segmentation tasks. It provides a single value summarizing the precision-recall curve
for each class and then averages these values over all classes. Mean average precision
is calculated by first computing each class’s Average Precision (AP), which is the
area under the precision-recall curve. The mAP is then the mean of the AP values
for all classes.

AP =
∑
n

(Rn −Rn−1)Pn (5.1)

where Pn and Rn are the precision and recall at the n-th threshold. This implemen-
tation does not use interpolation, unlike calculating the area under the precision-
recall curve with the trapezoidal rule [43], which uses linear interpolation and can
be overly optimistic. Mean average precision comprehensively measures the model’s
precision and recall performance across different classes. A higher mAP indicates
that the model performs well in detecting and segmenting objects accurately.

5.3.2 Recall

Recall, also known as sensitivity or true positive rate, measures the ratio of correctly
predicted positive observations to all observations in the actual class. Recall is
calculated as:

Recall =
TP

TP + FN
(5.2)

where TP is the True Positive; FN is the False Negative. Recall is important for
evaluating the model’s ability to capture all relevant instances of the objectives
being segmented. High recall ensures the model does not miss significant objects
within the images or video frames.

5.4 Baselines

Comparisons with other state-of-the-art models were needed to evaluate our frame-
work’s performance and capabilities effectively. The choices of FoodSAM, DEVA,
and kMean++ were strategic, based on their different characteristics and relevance
to our specific use case in food segmentation. Comparison models have been cho-
sen to reflect their respective strengths in food segmentation, video analysis, and
clustering. These comparisons highlight our framework’s improvements in terms of
segmentation quality, tracking accuracy, and overall performance. Demonstrating
these improvements over such methods can help validate our framework’s efficacy

44

and efficiency for real-world applications. A comparison of our framework with
FoodSAM will help us to understand if our framework is a worthwhile improvement,
offering a faster execution while achieving nearly the same high-quality results as
FoodSAM. The following subsections explain the reasons for each model selection
for comparison.

5.4.1 FoodSAM

• Relevance to food segmentation: FoodSAM is specifically designed for
food semantic segmentation, making it a direct competitor and an appropriate
benchmark for our framework.

• High-quality segmentation: FoodSAM is known for precisely segmenting
food items within images. Comparing our framework to FoodSAM allows us
to assess if FoodMem maintains or improves segmentation quality.

• Single image limitation: FoodSAM is designed for segmenting single im-
ages and takes so much time to segment videos since it processes each frame
individually. While this ensures accurate segmentation, it is time-consuming.

• Efficiency in execution: Comparing our framework to FoodSAM allows us
to determine if our framework is more efficient, offering faster execution times
while achieving similar or nearly identical segmentation results.

5.4.2 DEVA

• Advanced video analysis: DEVA is recognized for its strong performance
in video analysis and object-tracking tasks. This makes it an ideal candidate
for comparing video segmentation and tracking capabilities.

• General-purpose use: DEVA is designed for general use and not specifically
for food items. This broader application scope means it can handle a variety
of objects and scenes.

• Focus on food items: To ensure that DEVA’s performance is relevant to
food segmentation, we utilized its text prompt feature to specify ”food” for
all our dishes during evaluation. This approach helps us measure how well
DEVA can adapt to our specific focus on food.

• Handling complex video frames: DEVA’s ability to handle complex frames
in video provides a challenging benchmark. By comparing with DEVA, we
can demonstrate how well our framework manages segmentation consistency
across frames in a video.

• Linux dependencies: DEVA’s support of Linux-specific dependencies is
needed using Docker in our evaluation process, emphasizing our framework’s
compatibility and efficiency across different environments.

45

5.4.3 kMean++

• Clustering and segmentation: kMean++ is a robust clustering algorithm
often used for segmentation tasks due to its efficiency in initializing centroids
and improving clustering performance.

• Baseline comparison: kMean++ acts as a strong baseline to compare
against traditional clustering methods. This comparison helps illustrate the
advancements our framework offers over simpler, yet effective, segmentation
techniques.

• Efficiency and speed: Evaluating our framework against kMean++ allows
us to showcase improvements in execution speed and segmentation quality,
particularly in large datasets or videos.

5.5 Results and comparison to SOTA

We present and compare the masks generated by FoodSAM, DEVA, kMean++,
and our framework as a qualitative result [44]. We also provide an analysis of the
execution time for each model and evaluate their performance using mean average
precision and recall metrics as a quantitative result [45].

5.5.1 Mask comparison

We display each model’s segmentation masks for the same set of frames. This visual
comparison helps illustrate the differences in segmentation quality and accuracy
between the models. Since our dataset contains around 50 dishes with multiple
frames, we will display the most representative results. After comparing all the
following subsections, we notice that our framework offers the most accurate and
clean segments compared to the other methods. Masks generated by our framework
capture the shape and contour of food well, with less inclusion of unwanted areas
and more precise delineation of edges. The segments are more consistent and closer
to the ground truth.

5.5.1.1 FoodSAM and FoodMem

Figs. 15 and 16 show the comparison between the original images, their ground
truth masks, masks generated by FoodMem and masks generated by FoodSAM.
We applied the Mozaic tool to make the visualizations attractive, as explained in
Sec. 4.7.

46

Image Reference Ours FoodSAM

Figure 15: Comparison between original images, ground truth masks, masks gener-
ated by FoodMem, and masks generated by FoodSAM. The dataset used is Nutri-
tion5k.

Image Reference Ours FoodSAM

Figure 16: Comparison between original images, ground truth masks, masks gen-
erated by FoodMem, and masks generated by FoodSAM. The dataset used is Veg-
etables & Fruits.

47

FoodSAM seems to capture the basic shapes and contours of food objects well,
but sometimes includes non-relevant areas or fails to capture all the fine details.
The masks are consistent compared to other SOTA masks, which are displayed in
the following sections, but sometimes lack edge precision and may not include some
relevant parts of food.

5.5.1.2 DEVA and FoodMem

Figs. 17 and 18 show the comparison between the original images, their ground
truth masks, masks generated by FoodMem and masks generated by DEVA. We
applied Mozaic tool to do the visualizations attractive, as explained in Sec. 4.7.

Image Reference Ours DEVA

Figure 17: Comparison between original images, ground truth masks, masks gener-
ated by FoodMem, and masks generated by DEVA. The dataset used is Nutrition5k.

48

Image Reference Ours DEVA

Figure 18: Comparison between original images, ground truth masks, masks gener-
ated by FoodMem, and masks generated by DEVA. The dataset used is Vegetables
& Fruits.

DEVA shows very coarse segmentation, often including too many irrelevant el-
ements in the mask and failing to capture the shape of the food accurately. The
quality of the masks is inconsistent, sometimes missing large parts of the objects or
including a lot of noise.

5.5.1.3 kMean++ and FoodMem

Figs. 19 and 20 show the comparison between the original images, their ground
truth masks, masks generated by FoodMem and masks generated by kMean++.
We applied Mozaic tool to do the visualizations attractive, as explained in Sec. 4.7.

49

Image Reference Ours kMean++

Figure 19: Comparison between original images, ground truth masks, masks gen-
erated by FoodMem, and masks generated by kMean++. The dataset used is
Nutrition5k.

50

Image Reference Ours KMean++

Figure 20: Comparison between original images, ground truth masks, masks gen-
erated by FoodMem, and masks generated by kMean++. The dataset used is
Vegetables & Fruits.

kMean++ seems to have more variable performance, with some segmentations
being a bit accurate and others being noisy or incorrectly shaped. Compared to
FoodSAM and FoodMem, kMean++ tends to be less accurate and noisier.

5.5.2 Execution times comparison

We compare the execution time of the different models. Understanding the time
each model takes to process video frames is important for evaluating their practical
applicability, especially in real-time applications. Table 3 shows the average execu-
tion time each state-of-the-art method spent executing the videos from our dataset,
as explained in Sec. 3.5.

Table 3: Average execution times of the different models. The models include
FoodSAM, DEVA, kMean++ and our framework. The inference time were recorded
in the format of hours:minutes:seconds.

Dataset Frames range FoodSAM DEVA kMean++ Ours
Nutrition5k 19-65 00:12:34 00:00:40 00:01:07 00:00:25
V&F 172-232 00:44:20 00:02:04 00:05:11 00:00:31

Fig. 21 shows a plot that relates the number of frames to the execution time in
seconds of the dishes contained in our dataset for each state-of-the-art model.

51

Figure 21: Models frame-time relation plot. The plot shows the models’ average
time (in seconds) to execute our dataset. Our framework is near 0 regardless of the
number of frames.

Analyzing Table 3 and Fig. 21, the following conclusion on their performance
over time can be reached:

• FoodSAM: Generally, the FoodSAM execution times are considerably longer
than those of the other methods.

• DEVA: DEVA’s execution times are relatively low compared to FoodSAM.
This suggests that DEVA is efficient in terms of time, although previous anal-
ysis showed that its accuracy might be lower.

• kMean++: kMean++ shows consistent and generally low execution times,
but like DEVA, its segmentation accuracy may not be the best.

• FoodMem: This method shows very low execution times, often less than
a minute, indicating high efficiency in terms of time. This could make it
attractive for applications requiring speed.

FoodSAM provides complete segmentation but at a significantly high time cost.
FoodMem, on the other hand, is highly time-efficient, making it an attractive option
when fast segmentation is required. If we consider the qualitative evaluation and
the execution times, our framework is much more viable than FoodSAM since the
masks become very similar for an incredibly short time.

5.5.3 Quality metrics evaluation comparison

We compare the two metrics explained in Sec. 5.3, mAP, and recall to evaluate
the performance of the models. These two metrics are very important in image

52

recognition and segmentation. We try to find out in detail, through analysis, which
of these models will offer the best performance and consistency for all possible food
segmentation.

Table 4: Comparison of mean average precision (mAP) scores achieved by differ-
ent models on two datasets: Nutrition5k and V&F. The models evaluated include
FoodSAM, DEVA, kMean++, and our framework.

mAP
Dataset FoodSAM DEVA kMean++ Ours
Nutrition5k 0.9192 0.8825 0.4232 0.9098
V&F 0.8914 0.8548 0.4361 0.9499

Fig. 22 shows a plot that relates the mean average precision to the number of
frames of the dishes contained in our dataset for each state-of-the-art model.

Figure 22: Models frame-mAP relation plot. The plot shows the mean average
precision regarding the number of frames. Our framework is near 1.0, which means
it performs well in detecting and segmenting objects accurately.

Table 5: Comparison of recall scores achieved by different models on two datasets:
Nutrition5k and V&F. The models evaluated include FoodSAM, DEVA, kMean++,
and our framework.

Recall
Dataset FoodSAM DEVA kMean++ Ours
Nutrition5k 0.7752 0.7301 0.6467 0.7708
V&F 0.9441 0.9328 0.9245 0.9469

53

Fig. 23 shows a plot that relates the recall to the number of frames of the dishes
contained in our dataset for each state-of-the-art model.

Figure 23: Models frame-recall relation plot. The plot shows the score regarding
the number of frames. As seen, our framework recall scores are higher than the
other methods. This means our framework better captures all relevant instances of
the segmented objects.

Comparing FoodSAM, DEVA, kMean++, and our framework in terms of mAP
and recall leads to significant conclusions about effectiveness and consistency:

• FoodSAM and FoodMem: These two methods have proven to be the
most robust regarding mAP and recall. FoodMem, in particular, has shown
extremely high mAP and recall values across nearly both datasets, indicat-
ing high average precision and a strong ability to retrieve many relevant in-
stances correctly. FoodSAM closely follows, providing comparable and, in
some cases, superior performance. The consistency of these methods across
different datasets makes them highly reliable options for food segmentation
tasks. We would like to point out that FoodSAM performs better than our
framework in the Nutrition5k dataset. This is because FoodSAM was trained
on datasets where the camera followed a predefined path to capture images,
similar to the setup in the Nutrition5k dataset. On the other hand, our frame-
work performs better in the Vegetables & Fruits dataset, where the camera has
freedom of movement, resulting in less predictable image capture scenarios.

• DEVA: DEVA has also demonstrated solid performance, especially regarding
mAP. Although it generally ranks slightly behind FoodSAM and our frame-
work, it remains a viable option with competitive performance. However,
in some scenes, its recall is lower, suggesting it might not be as effective at
retrieving all relevant instances as the other two leading methods.

54

• kMean++: kMean++ has proven to be the least effective method among
those compared, with significantly lower mAP and recall values across most
datasets. This result suggests that kMean++ struggles to maintain precision
and relevant instance retrieval at levels comparable to FoodSAM, DEVA, and
our framework. Its inconsistent performance makes it a less preferable option
for high-precision and recall applications.

FoodSAM and our framework stand out as the most reliable and effective options
for food segmentation, providing high levels of precision and recall across various
contexts. Now that we have collected all the qualitative and quantitative results, we
can conclude that our framework stands out significantly in terms of performance
and time compared to other methods.

5.6 Implementation settings

In implementing our framework, we configured the system to optimize performance
and ensure smooth execution. Here is an overview of the key implementation set-
tings:

• GPU details: We utilized an NVIDIA GeForce RTX 2080 Ti with 11GB of
VRAM for accelerated processing of deep learning tasks. The powerful GPU
architecture enabled rapid inference and efficient utilization of neural network
models.

• RAM: Our system was equipped with with 32GB of DDR4 RAM, provid-
ing ample memory capacity for data processing, and caching of intermedi-
ate results. The generous RAM allocation ensures the smooth execution of
memory-intensive tasks and minimizes the risk of memory-related bottlenecks.

• Operating system (OS): We operated on Microsoft Windows 11 Home,
taking advantage of its modern features, enhanced security, and intuitive user
interface for seamless software development and experimentation. Windows
11 provided a stable and user-friendly environment for running deep learning
tasks and other computational workloads.

• CPU: The system featured an Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz,
with 8 physical cores and 16 logical processors. This high-performance proces-
sor architecture enabled efficient parallel processing of computational tasks,
contributing to overall system responsiveness and multitasking capabilities.

• Storage: Our system was supplemented with a TOSHIBA External USB
3.0 USB Device with a 1.81TB storage capacity. This external storage so-
lution provided ample space for storing large datasets, model checkpoints,
and experimental results. The high-speed USB 3.0 interface facilitated swift
data transfer rates, ensuring efficient data access and management during the
course of our experiments and development activities.

55

• Software environment: We utilized Python 3.8.19 as the primary pro-
gramming language and deep learning frameworks such as PyTorch. Docker
managed software dependencies and ensured reproducibility across different
computing environments.

• Development tools: JetBrains IntelliJ IDEA acted as our primary inte-
grated development environment (IDE), offering advanced code editing, de-
bugging, and version control features. Git and GitHub were utilized for collab-
orative software development and version management, facilitating seamless
code collaboration and sharing.

We created an optimized environment for developing and running our framework
by configuring these implementation settings, ensuring efficient resource utilization,
and maximizing performance across various computational tasks.

5.7 Ablation study

In this section, we conduct an ablation study to examine the effects of modifying
the masks produced by SETR. In particular, we explore the changes that occur
when increasing masks from 1 to 3, 6, or 9. Our objective is to provide quality
and quantity results for the modifications made. We provide mask comparisons
as a qualitative result, and we also analyze the execution time and evaluate their
performance using mean average precision and recall metrics as a quantitative result.

5.7.1 Mask comparison

We display the segmentation masks produced by our framework with the settings
modification stated in the previous section. This visual comparison helps illustrate
the differences in segmentation quality and accuracy.

Image Reference 1 mask 3 masks 6 masks 9 masks

Figure 24: Comparison between original images, ground truth masks, 1 mask gen-
erated by SETR, 3 masks generated by SETR, 6 masks generated by SETR, and 9
masks generated by SETR. The dataset used is Nutrition5k.

56

Image Reference 1 mask 3 masks 6 masks 9 masks

Figure 25: Comparison between original images, ground truth masks, 1 mask gen-
erated by SETR, 3 masks generated by SETR, 6 masks generated by SETR, and 9
masks generated by SETR. The dataset used is Vegetables & Fruits.

By comparing the masks generated by FoodMem with different settings (1 mask,
3 masks, 6 masks, and 9 masks generated by SETR) from Figs. 24 and 25, we got
the following conclusion: As the number of masks generated by SETR increased,
more segmentation errors appeared. This is mainly because the process tends to
drag SETR’s initial segmentation errors, compounding inaccuracies as the number
of masks increases. The segmentation was more consistent and less prone to errors
with fewer masks. In other words, using fewer masks resulted in more reliable and
generalized segmentation.

5.7.2 Execution times comparison

In this section, we will compare the execution times of the modified settings of our
framework. Understanding the time each set takes to process video frames is impor-
tant for evaluating their practical applicability, especially in real-time applications.
Table 6 shows the average execution time each setting modification spent executing
the videos from our dataset, as explained in Sec. 3.5.

Table 6: Average execution times of our framework’s different settings. The settings
include 1 mask, 3 masks, 6 masks and 9 masks. The inference time were recorded
in the format of hours:minutes:seconds.

Dataset Frames range 1 mask 3 masks 6 masks 9 masks
Nutrition5k 19-65 00:00:25 00:00:35 00:00:50 00:01:05
V&F 172-232 00:00:31 00:00:39 00:00:45 00:00:56

Fig. 26 shows a plot that relates the number of frames to the execution time in
seconds of the dishes contained in our dataset for each state-of-the-art model.

57

Figure 26: FoodMem’s different settings frame-time relation plot. The plot shows
the average time (in seconds) the model took to execute our dataset with different
number of masks. As seen, 1 mask is nearer to 0 than the other settings.

As seen in Table 6 and Fig. 26, for both datasets, the execution time increases as
the number of masks increases from 1 to 9. This pattern indicates that generating
and processing more masks require more computational resources and time. Also,
the increase in execution time is roughly proportional to the increase in the masks.

5.7.3 Quality metrics evaluation comparison

In this section, we compare the metrics explained in Sec. 5.3, mean average precision
and recall, to evaluate the performance of the FoodMem’s different settings. These
two metrics are very important in image recognition and segmentation. We try
to find out in detail, through analysis, which of these models will offer the best
performance and consistency for all possible food segmentations.

Table 7: Comparison of mean average precision (mAP) scores achieved by different
FoodMem settings on two datasets: Nutrition5k and V&F. The settings include 1
mask, 3 masks, 6 masks, and 9 masks.

mAP
Dataset 1 mask 3 masks 6 masks 9 masks
Nutrition5k 0.9098 0.9025 0.9005 0.9082
V&F 0.9499 0.9027 0.9124 0.9050

Fig. 27 shows a plot that relates the mean average precision to the number of
frames of the dishes contained in our dataset for each FoodMem’s setting.

58

Figure 27: FoodMem’s settings frame-mAP relation plot. The plot shows the mean
average precision regarding the number of frames. As seen, 1 mask has higher values,
which means it performs well in detecting and segmenting objects accurately.

Table 8: Comparison of recall scores achieved by different FoodMem’s settings on
two datasets: Nutrition5k and V&F. The settings include 1 mask, 3 masks, 6 masks
and 9 masks.

Recall
Dataset 1 mask 3 masks 6 masks 9 masks
Nutrition5k 0.7708 0.7688 0.7663 0.7690
V&F 0.9469 0.9419 0.9438 0.9430

Fig. 28 shows a plot that relates the recall to the number of frames of the dishes
contained in our dataset for each FoodMem’s setting.

59

Figure 28: FoodMem’s different settings frame-recall relation plot. The plot shows
the recall regarding the number of frames. As seen, 1 mask has higher values, which
means it better captures all relevant instances of the objects being segmented.

Comparing our framework’s different settings in terms of mAP and recall leads
to significant conclusions:

• Generating 1 mask is optimal for both mAP and recall, providing the best
balance of precision and ability to recover relevant instances.

• Introducing more masks generally leads to a decline in both mAP and recall,
likely due to the introduction of segmentation errors.

For optimal performance, considering the quality and quantitative results, gen-
erating 1 mask leads to the best segmentation results, as it does not independently
drag SETR’s errors at segmenting frames.

5.8 Limitations

This section outlines the possible limitations of our framework, helping to con-
textualize the findings and guide further research. Here is an explanation of the
limitations:

• Hardware and software dependencies: The performance of our frame-
work can be influenced by hardware specifications (e.g., GPU, CPU) and
software dependencies (e.g., library versions).

• Inherited SETR’s training data limitation: SETR has been trained on
the FoodSeg103 dataset, which comprises 7118 images depicting 730 distinct

60

dishes. While this dataset provides a wide variety of food images for train-
ing, it may not encompass the full spectrum of possible dishes encountered
in real-world scenarios. Consequently, our framework’s performance may be
limited when presented with food items or variations not adequately repre-
sented in the training data. This could lead to instances where certain foods
are not segmented accurately or where objects resembling food are incorrectly
classified as food items.

• Inherited limitations from XMem++: Our framework builds upon the
model XMem++, inheriting its strengths and limitations. XMem++ itself
may have constraints related to its algorithmic design, computational require-
ments, or performance characteristics. For example, limitations in memory
usage or processing speed could impact the scalability or efficiency of our
framework when applied to large datasets or high-resolution videos.

• Lighting sensitivity and shadows: Our framework’s performance can be
influenced by lighting conditions, particularly when the video is not correctly
illuminated or too dark. Insufficient lighting may reduce visibility and contrast
between food items and their backgrounds, affecting the algorithm’s ability to
detect and segment food objects accurately. As a result, our framework may
not detect all food items or produce optimal segmentation results in low-light
environments.

• File format requirement : Our framework currently requires video frames
to be in JPG format and masks to be in PNG format. This limitation restricts
the flexibility of input data and may necessitate preprocessing steps to convert
files into the required formats.

61

6 Conclusions and future work

6.1 Conclusions

We summarize the study’s key findings and results regarding our framework’s per-
formance and capabilities and provide a brief overview of the main takeaways and
implications of the research. We highlight the successful integration of SETR and
XMem++ to create our framework, emphasizing its effectiveness in achieving video
semantic segmentation. Through the synergy of both models, our framework shows
robust performance in accurately segmenting food items across multiple datasets.
We discuss our framework’s segmentation performance, emphasizing its accuracy,
efficiency, and flexibility. We highlight its ability to efficiently process video streams
while producing accurate segmentation results, making it suitable for real-world ap-
plications requiring food recognition and analysis. We acknowledge the limitations
of our framework, such as its sensitivity to low-light conditions and potential chal-
lenges with recognizing less common food items. By addressing these limitations,
we aim to provide a balanced assessment of our framework’s capabilities and areas
for improvement.

6.2 Future work

We identify some future research and development work that can enhance our frame-
work’s capabilities and address its limitations. This section helps us look ahead at
what future investigations and improvements to our framework need.

• Dataset expansion: We propose expanding the training dataset to include
a more diverse range of food items, thereby improving our framework’s ability
to accurately segment a wider variety of foods.

• Enhanced low-light detection: We suggest implementing robust low-light
detection mechanisms to improve our framework’s performance in challenging
lighting conditions.

• Adaptive scene memory: We recommend enhancing XMem++’s scene
memory capabilities to adapt to changing visual contexts, thereby improving
segmentation accuracy.

• Expansion of features: Incorporating additional features such as volume
estimation, calorie estimation, and panoptic segmentation can enhance our
framework’s utility and provide more comprehensive insights into food com-
position and nutritional content. These additional functionalities can extend
our framework’s applicability in dietary assessment, health monitoring, and
culinary analysis.

• Exploration of additional evaluation metrics: Introducing more evalu-
ation metrics beyond mAP and recall can provide a finer assessment of our

62

framework’s performance. Metrics such as intersection over union (IoU), F1
score, and precision can offer insights into segmentation accuracy, boundary
delineation, and overall model robustness. By incorporating a diverse set of
evaluation metrics, we can better understand our framework’s strengths and
areas for improvement.

• Support for diverse image extensions: Enhancing our framework’s com-
patibility by supporting a wider range of image extensions for video frames
and masks can improve its usability and simplify data preparation processes.
By accommodating formats such as JPG, JPEG, PNG, TIFF, and others, our
framework can cater to address data sources and workflows.

By addressing these areas of future work, we aim to further enhance our frame-
work’s performance, versatility, and applicability in real-world scenarios, ultimately
advancing the field of semantic food segmentation in video streams.

63

7 Appendix

This section serves to provide supplementary information on our framework. Sec. 7.1
offers more images about state-of-the-art models mask comparisons; Sec. 7.2 shows
a collection of images expanding the ablation study results.

7.1 Supplementary validation material

We present additional material that supplements the main images discussed in
Sec. 5.5.1.

7.1.1 FoodSAM and FoodMem

Figs. 29 and 30 show the comparison between the original images, their ground
truth masks, masks generated by FoodMem and masks generated by FoodSAM.
We applied the Mozaic tool to make the visualizations attractive, as explained in
Sec. 4.7.

64

Image Reference Ours FoodSAM

Figure 29: Comparison between original images, ground truth masks, masks gener-
ated by FoodMem, and masks generated by FoodSAM. The dataset used is Nutri-
tion5k.

65

Image Reference Ours FoodSAM

Figure 30: Comparison between original images, ground truth masks, masks gen-
erated by FoodMem, and masks generated by FoodSAM. The dataset used is Veg-
etables & Fruits.

7.1.2 DEVA and FoodMem

Figs. 31 and 32 show the comparison between the original images, their ground
truth masks, masks generated by FoodMem and masks generated by DEVA. We ap-
plied the Mozaic tool to make the visualizations attractive, as explained in Sec. 4.7.

66

Image Reference Ours DEVA

Figure 31: Comparison between original images, ground truth masks, masks gener-
ated by FoodMem, and masks generated by DEVA. The dataset used is Nutrition5k.

67

Image Reference Ours DEVA

Figure 32: Comparison between original images, ground truth masks, masks gener-
ated by FoodMem, and masks generated by DEVA. The dataset used is Vegetables
& Fruits.

7.1.3 kMean++ and FoodMem

Figs. 33 and 34 show the comparison between the original images, their ground
truth masks, masks generated by FoodMem and masks generated by kMean++.
We applied the Mozaic tool to make the visualizations attractive, as explained in
Sec. 4.7.

68

Image Reference Ours kMean++

Figure 33: Comparison between original images, ground truth masks, masks gen-
erated by FoodMem, and masks generated by kMean++. The dataset used is
Nutrition5k.

Image Reference Ours KMean++

Figure 34: Comparison between original images, ground truth masks, masks gen-
erated by FoodMem, and masks generated by kMean++. The dataset used is
Vegetables & Fruits.

69

7.2 Supplementary ablation study material

This section presents additional material that supplements the main images dis-
cussed in Sec. 5.7.1.

Image Reference 1 mask 3 masks 6 masks 9 masks

Figure 35: Comparison between original images, ground truth masks, 1 mask gen-
erated by SETR, 3 masks generated by SETR, 6 masks generated by SETR, and 9
masks generated by SETR. The dataset used is Nutrition5k.

Image Reference 1 mask 3 masks 6 masks 9 masks

Figure 36: Comparison between original images, ground truth masks, 1 mask gen-
erated by SETR, 3 masks generated by SETR, 6 masks generated by SETR, and 9
masks generated by SETR. The dataset used is Vegetables & Fruits.

70

References

[1] S. Aslan, G. Ciocca, D. Mazzini, and R. Schettini, “Benchmarking algorithms
for food localization and semantic segmentation,” International Journal of Ma-
chine Learning and Cybernetics, vol. 11, no. 12, pp. 2827–2847, 2020.

[2] X. Lan, J. Lyu, H. Jiang, K. Dong, Z. Niu, Y. Zhang, and J. Xue, “Foodsam:
Any food segmentation,” IEEE Transactions on Multimedia, pp. 1–14, 2023.

[3] H. K. Cheng, S. W. Oh, B. Price, A. Schwing, and J.-Y. Lee, “Tracking any-
thing with decoupled video segmentation,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), October 2023, pp.
1316–1326.

[4] Y. A. Sari and A. Gofuku, “Measuring food volume from rgb-depth image with
point cloud conversion method using geometrical approach and robust ellipsoid
fitting algorithm,” Journal of Food Engineering, vol. 358, p. 111656, 2023.

[5] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2,”
https://github.com/facebookresearch/detectron2, 2019.

[6] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao,
S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dollar, and R. Girshick, “Segment
anything,” in Proceedings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), October 2023, pp. 4015–4026.

[7] W. Zhang, Y. Zhou, Y. Wang, R. Wang, and H. Yang, “Automatic crack
detection and segmentation of masonry structure based on yolov9-seg and edge
detection,” Available at SSRN 4812249, 2024.

[8] J. T. Barron, B. Mildenhall, D. Verbin, P. P. Srinivasan, and P. Hedman,
“Mip-nerf 360: Unbounded anti-aliased neural radiance fields,” CVPR, 2022.

[9] N. R. Pal and S. K. Pal, “A review on image segmentation techniques,” Pattern
recognition, vol. 26, no. 9, pp. 1277–1294, 1993.

[10] S. Zheng, J. Lu, H. Zhao, X. Zhu, Z. Luo, Y. Wang, Y. Fu, J. Feng, T. Xi-
ang, P. H. Torr et al., “Rethinking semantic segmentation from a sequence-
to-sequence perspective with transformers,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2021, pp. 6881–6890.

[11] Q. Thames, A. Karpur, W. Norris, F. Xia, L. Panait, T. Weyand, and J. Sim,
“Nutrition5k: Towards automatic nutritional understanding of generic food,”
in Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, 2021, pp. 8903–8911.

[12] J. Steinbrener, V. Dimitrievska, F. Pittino, F. Starmans, R. Waldner,
J. Holzbauer, and T. Arnold, “Learning metric volume estimation of fruits
and vegetables from short monocular video sequences,” Heliyon, vol. 9, no. 4,
2023.

71

[13] R. Yao, G. Lin, S. Xia, J. Zhao, and Y. Zhou, “Video object segmentation and
tracking: A survey,” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 11, no. 4, pp. 1–47, 2020.

[14] K. Han, Y. Wang, H. Chen, X. Chen, J. Guo, Z. Liu, Y. Tang, A. Xiao, C. Xu,
Y. Xu et al., “A survey on vision transformer,” IEEE transactions on pattern
analysis and machine intelligence, vol. 45, no. 1, pp. 87–110, 2022.

[15] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry,
A. Askell, P. Mishkin, J. Clark et al., “Learning transferable visual models
from natural language supervision,” in International conference on machine
learning. PMLR, 2021, pp. 8748–8763.

[16] Meta, “Sam model design,” https://segment-anything.com/, accessed: 2024-
06-03.

[17] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense
object detection,” in Proceedings of the IEEE international conference on com-
puter vision, 2017, pp. 2980–2988.

[18] S. Gould, T. Gao, and D. Koller, “Region-based segmentation and object de-
tection,” Advances in neural information processing systems, vol. 22, 2009.

[19] A. Kirillov, K. He, R. Girshick, C. Rother, and P. Dollár, “Panoptic segmen-
tation,” in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2019, pp. 9404–9413.

[20] H. K. Cheng and A. G. Schwing, “Xmem: Long-term video object segmen-
tation with an atkinson-shiffrin memory model,” in European Conference on
Computer Vision. Springer, 2022, pp. 640–658.

[21] K. J. Malmberg, J. G. Raaijmakers, and R. M. Shiffrin, “50 years of research
sparked by atkinson and shiffrin (1968),” Memory & cognition, vol. 47, pp.
561–574, 2019.

[22] M. Bekuzarov, A. Bermudez, J.-Y. Lee, and H. Li, “Xmem++: Production-
level video segmentation from few annotated frames,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2023, pp. 635–644.

[23] D. Steinley, “K-means clustering: a half-century synthesis,” British Journal of
Mathematical and Statistical Psychology, vol. 59, no. 1, pp. 1–34, 2006.

[24] GCVCG, “Geometric computer vision and computational graphics
group at university of barcelona,” GitHub, 2022. [Online]. Available:
https://github.com/GCVCG

[25] X. Wu, X. Fu, Y. Liu, E.-P. Lim, S. C. Hoi, and Q. Sun, “A large-scale bench-
mark for food image segmentation,” in Proceedings of the 29th ACM interna-
tional conference on multimedia, 2021, pp. 506–515.

72

[26] L. Bottou, “Stochastic gradient descent tricks,” in Neural Networks: Tricks of
the Trade: Second Edition. Springer, 2012, pp. 421–436.

[27] P. Mishra and K. Sarawadekar, “Polynomial learning rate policy with warm
restart for deep neural network,” in TENCON 2019-2019 IEEE Region 10
Conference (TENCON). IEEE, 2019, pp. 2087–2092.

[28] T. Jain, C. Lennan, Z. John, and D. Tran, “Imagededup,”
https://github.com/idealo/imagededup, 2019.

[29] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman, “Labelme: a
database and web-based tool for image annotation,” International journal of
computer vision, vol. 77, pp. 157–173, 2008.

[30] United States Department of Agriculture, “Myplate food groups, sub-
groups, and sample foods table,” Flickr, 2017. [Online]. Available:
https://www.flickr.com/photos/usdagov/36623517294

[31] G. Bradski, A. Kaehler et al., “Opencv,” Dr. Dobb’s journal of software tools,
vol. 3, no. 2, 2000.

[32] T. E. Oliphant et al., Guide to numpy. Trelgol Publishing USA, 2006, vol. 1.

[33] S. Imambi, K. B. Prakash, and G. Kanagachidambaresan, “Pytorch,” Program-
ming with TensorFlow: Solution for Edge Computing Applications, pp. 87–104,
2021.

[34] R. Fox, Linux with operating system concepts. Chapman and Hall/CRC, 2021.

[35] C. Anderson, “Docker [software engineering],” Ieee Software, vol. 32, no. 3, pp.
102–c3, 2015.

[36] B. Hobbs and Y. Petit, “Agile methods on large projects in large organiza-
tions,” Project Management Journal, vol. 48, no. 3, pp. 3–19, 2017.

[37] E. S. Hidalgo, “Adapting the scrum framework for agile project management in
science: case study of a distributed research initiative,” Heliyon, vol. 5, no. 3,
2019.

[38] M. O. Ahmad, D. Dennehy, K. Conboy, and M. Oivo, “Kanban in software
engineering: A systematic mapping study,” Journal of Systems and Software,
vol. 137, pp. 96–113, 2018.

[39] S. P. Singh and G. Bhatnagar, “A robust image hashing based on discrete
wavelet transform,” in 2017 IEEE International Conference on Signal and Im-
age Processing Applications (ICSIPA). IEEE, 2017, pp. 440–444.

[40] A. Bookstein, V. A. Kulyukin, and T. Raita, “Generalized hamming distance,”
Information Retrieval, vol. 5, pp. 353–375, 2002.

73

[41] R. Padilla, S. L. Netto, and E. A. Da Silva, “A survey on performance metrics
for object-detection algorithms,” in 2020 international conference on systems,
signals and image processing (IWSSIP). IEEE, 2020, pp. 237–242.

[42] K. Oksuz, B. C. Cam, E. Akbas, and S. Kalkan, “Localization recall precision
(lrp): A new performance metric for object detection,” in Proceedings of the
European conference on computer vision (ECCV), 2018, pp. 504–519.

[43] L. N. Trefethen and J. Weideman, “The exponentially convergent trapezoidal
rule,” SIAM review, vol. 56, no. 3, pp. 385–458, 2014.

[44] K. Seers, “Qualitative data analysis,” Evidence-based nursing, vol. 15, no. 1,
pp. 2–2, 2012.

[45] J. Lau, J. P. Ioannidis, and C. H. Schmid, “Quantitative synthesis in systematic
reviews,” Annals of internal medicine, vol. 127, no. 9, pp. 820–826, 1997.

74

