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Abstract: Light Detection and Ranging systems serve as robust tools for creating three-dimensional
representations of the Earth’s surface. These representations are known as point clouds. Point cloud
scene segmentation is essential in a range of applications aimed at understanding the environment,
such as infrastructure planning and monitoring. However, automating this process can result in
notable challenges due to variable point density across scenes, ambiguous object shapes, and substan-
tial class imbalances. Consequently, manual intervention remains prevalent in point classification,
allowing researchers to address these complexities. In this work, we study the elements contributing
to the automatic semantic segmentation process with deep learning, conducting empirical evalua-
tions on a self-captured dataset by a hybrid airborne laser scanning sensor combined with two nadir
cameras in RGB and near-infrared over a 247 km2 terrain characterized by hilly topography, urban
areas, and dense forest cover. Our findings emphasize the importance of employing appropriate
training and inference strategies to achieve accurate classification of data points across all categories.
The proposed methodology not only facilitates the segmentation of varying size point clouds but also
yields a significant performance improvement compared to preceding methodologies, achieving a
mIoU of 94.24% on our self-captured dataset.

Keywords: point cloud; semantic segmentation; 3D; LiDAR; ALS; computer vision; classification

1. Introduction

Topographic Light Detection and Ranging (LiDAR) systems technology can be used
to create highly detailed three-dimensional (3D) maps. This technology uses pulses of
light to scan the Earth’s surface, capturing a vast amount of data, which are stored as
point clouds. In regional-scale applications, an Airborne Laser Scanning (ALS) platform is
commonly utilized for land cover classification [1], forest inventory [2], or archaeology [3].
This platform involves mounting the LiDAR system on an aircraft, allowing for a broader
coverage area and the ability to capture data from a bird’s-eye view. The main strength
of LiDAR technology, in contrast to other 3D mapping techniques that rely on aerial pho-
togrammetry [4], lies in its principle of active measurement, which allows us to penetrate
small gaps in foliage to reveal objects within and beneath the canopy. As a result, LiDAR
provides accurate data pertaining to the ground, the vertical structure of forests, as well as
the buildings and objects above it, as depicted in Figure 1.

Determining how to segment and classify objects within the 3D data is essential for
proper analysis of the captured surface. There have been remarkable advances in deep
learning techniques for point cloud understanding. The pioneering work for directly pro-
cessing point clouds was PointNet [5], which uses Multi-Layer Perceptrons (MLPs) to learn
per-point features and a symmetric function to obtain a representation of the point cloud. In
a subsequent study, Qi et al. [6] extended the capabilities of PointNet by incorporating local
geometric information through a hierarchical architecture, which resulted in PointNet++.
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Inspired by the mentioned networks, new studies [7–9] focus on augmenting features,
especially local relationships among points. These include PointCNN [10], KPConv [11],
RandLa-Net [12], and Point Transformer [13], all of which demonstrate significantly bet-
ter performance than PointNet++, suggesting that its simplicity may limit its capacity to
effectively learn intricate point cloud representations.

Nevertheless, recent works [14,15] reveal that a significant portion of performance gain
observed in state-of-the-art models is caused by many factors beyond architecture design,
which receive comparatively less attention. These include improved training strategies,
data augmentation and different inference strategies. For instance, employing label smooth-
ing [16] into training procedures enhances the performance of tasks such as point cloud
classification and semantic segmentation on some datasets [14,17]. Furthermore, augmen-
tation techniques such as point resampling and height appending contribute significantly
to improve performance of shape classification [14,18].

Point cloud data can vary significantly in terms of density, size, and attributes influ-
enced by both the acquisition system and the flight plan, which will align with the specific
requirements of the intended application. Hence, a one-fits-all approach is unsuitable for
all scenarios. It is essential to consider the characteristics of the point cloud data. ALS
point cloud data, in particular, pose unique challenges arising from the variability caused
by the flight specifications, such as the flight date and height. The flight date determines
the state of most trees’ foliage, directly impacting the vegetation shape. The flight height,
which also depends on the terrain’s topography, directly influences the point cloud density.
Elevated regions typically have a higher concentration of points because they are closer
to the sensor, while lower areas tend to have fewer points, resulting in a broad spectrum
of density variations within the same category. Additionally, different object categories
exhibit a diverse range of sizes, extending from thin and long power lines to 200-m-tall
wind turbines. This variability in size further contributes to the complexity of automatic
segmenting multiple categories within a point cloud. Existing approaches for point cloud
processing have limitations in terms of the point cloud size they can handle, being confined
to either small point clouds (103 points) [5,6] or large-scale point clouds (106 points) [12].
Therefore, there is a need to explore segmentation techniques that can effectively handle
point clouds of varying sizes.

Figure 1. Labeled LiDAR point cloud of a scene with power lines where each color represents a
different class. The point cloud was obtained by an ALS platform and exhibits a mean density of
27 points per square meter. The precision of LiDAR data is evidenced by their ability to capture the
geometric structure of the scene.

Segmenting objects in forestry scenes serves as the initial step for several tasks, includ-
ing fire risk monitoring, environmental analysis, resource management, and ecosystem
understanding [19–21]. The goal of this work is to propose a methodology for a robust
semantic segmentation of cluttered scenes, with specific emphasis on training and evalua-
tion factors independent of network architecture. We use a self-captured airborne dataset
with manually labeled objects, such as transmission towers, power line facilities and wind
turbines, across diverse terrains, including flat lands, hilly zones, and forestry areas. Each
terrain exhibits unique density distributions and shapes due to different types of vegetation
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and buildings. Therefore, we require a method that not only performs effectively with a
specific data distribution but generalizes well to different surrounding environments.

In this work, we present a set of efficient strategies that, when combined with Point-
Net++, result in a substantial improvement in performance, outperforming state-of-the-art
architectures subsequent to PointNet++, such as KPConv. Our contributions are summa-
rized as follows:

(I) We introduce a pipeline for point classification of outdoor scenes characterized by
varying point cloud sizes. Our experiments demonstrate the effectiveness of this
pipeline on a diverse dataset, with point cloud sizes ranging from 103 to 4× 105 points.

(II) We study the training and inference strategies independent of network architecture
and show that they have a large impact on semantic segmentation performance,
resulting in an increase of +21.7% Intersection over Union (IoU).

(III) We propose a novel inference strategy based on prediction uncertainty, which demon-
strates a performance improvement of +2.9% IoU on minority classes, while also
exhibiting greater efficiency than the voting strategy.

This article is organized as follows: Section 2 provides an overview of the deep
learning processing methods for point clouds, as well as the modern training strategies.
Section 3 describes the proposed methodology for semantic segmentation of point cloud
scenes. The experimental settings, dataset, and evaluation of our method are discussed in
Section 4. Quantitative and qualitative results are presented in Section 5. Finally, Section 6
summarizes the main conclusions derived from this study.

2. Related Work
2.1. Deep Learning Methods

LiDAR data are characterized by their irregular and unordered distribution, which is a
result of the laser emission technique employed during data collection. The emitted pulses
of light reflect off objects within the beam’s range, resulting in the formation of scattered
data points that lack a regular pattern. Consequently, traditional deep learning methods that
work very well in computer vision, such as Convolution Neural Networks (CNN), cannot
be directly applied to analyze point clouds. To address this, several representations of point
clouds have been explored. The most common include multi-view projections [15,22,23],
voxel grids [24–26], point clouds [5,6,10,11], as well as combinations of them [27,28].

Multi-view methods employ two-dimensional (2D) projections, offering a fast and
efficient approach. However, these methods exhibit limitations in terms of accuracy and
robustness, as they compromise the preservation of spatial information. For this reason,
they are mainly employed for shape classification. In contrast, voxel grids convert irregular
data into a 3D grid, facilitating the application of 3D CNNs. Nevertheless, the use of voxel
grids entails significant computational resources and highly dense point clouds need to be
quantized to match the desired size. For this reason, they are usually restricted to much
lower-resolution point clouds.

Rather than projecting irregular point clouds onto regular grids, point-based networks
directly process point clouds. PointNet [5] was the pioneering work that directly processed
point sets. This approach uses permutation-invariant operators to independently process
individual points, followed by a global aggregation through max-pooling to generate a
point cloud representation. In a subsequent study, PointNet++ [6], the authors extended the
approach by incorporating hierarchical feature learning with PointNet layers, aiming to cap-
ture local geometric structures. Since then, more point-based methods have been proposed,
focusing on the design of local modules to capture 3D geometries with more complex
architectures. The Structural Relational Network [29] leverages MLPs to learn structural
relational features between parts of objects. Some works have proposed extending regular
grid CNN to irregular point clouds. PointCNN [10] introduces an X-transformation to
the input points, enabling the application of a CNN to the representation. RSCNN [30]
proposes a relation-shape convolution operator to encode the geometric relation of points.
Wang et al. [31] propose an EdgeConv operator for dynamic graphs, which facilitates point
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cloud learning by recovering local topology. KPConv [11] introduces a flexible convolution
operator for point clouds that adapts to point density. The Critical Points Layer [32] learns
to reduce the number of points in a point cloud. These methods are primarily developed
and evaluated on small-scale or subsampled point clouds and directly applying them to
large-scale point clouds heavily increases the computation demand.

Recently, several works have tackled the challenge of semantic segmentation for
large-scale point clouds. In SPG [33] the authors suggest a representation of points as a
collection of interconnected shapes using graphs. However, its approach of processing point
clouds as super graphs prior to applying neural networks results in a computationally
intensive method. In contrast, RandLA-Net [12] proposes a local feature aggregation
module to capture geometric features. This approach enhances efficiency by employing
random sampling and shared MLPs. Nevertheless, it is designed to work at a single scale,
causing the duplication of points in smaller point clouds that introduce notable noise.
Considering the success observed in transformers across various domains [34,35], recent
methods leverage attention mechanisms to extract local features. Several 3D Transformer
backbones have been proposed for point cloud segmentation [13,36,37]. Transformers offer
distinct advantages over CNNs; in particular, their ability to model long-term dependencies.
Furthermore, the attention mechanism is permutation-invariant, and the attention map
dynamically adjusts based on input during inference, showcasing greater adaptability
than MLPs with fixed weight matrices. However, transformers can be computationally
expensive, especially for large point clouds. The self-attention mechanism has a quadratic
complexity with respect to the input size, which can be a limiting factor for high-density
point clouds. Additionally, while transformers excel at capturing global context, they might
struggle with capturing fine-grained local information. This could be a drawback for tasks
that heavily rely on detailed local structures. A descriptive summary table is provided in
Table 1 with the principal limitations and characteristics of each method.

Table 1. Descriptive summary table of state-of-the-art methods for point cloud segmentation. The
second column outlines the characteristics of the input data each method is designed to handle. The
third column highlights the methods’ adaptability to varying point cloud sizes. The fourth column
delves into the improved strategies incorporated by each method. Note that not all the strategies are
included in the table, only the most relevant. The last column quantifies the network sizes in terms of
parameters, providing insights into the model’s complexity.

Method Input Data Varying Size
Point Clouds

Applied
Strategies

Net. Size
(Params.)

PointNet++ [6] tiles of
1024–4096 pts. ∼103 pts.

rotation,
translation,

jittering
0.97 M

KPConv [11]
subsampled
spheres of

1–3 m.
103–104 pts.

color dropout,
scaling, flip,

adding (x,y,z)
14.9 M

RandLa-Net [12] entire scene
105–106 pts.

oversampling
small pc.

jittering,
weighted loss 1.24 M

PointTransformer [13] entire scene 103–104 pts.
chromatic jitter,

flip, shift,
color dropout

4.9 M

The aim of this study is to address the limitations of current methods by designing
a methodology capable of processing LiDAR scenes defined by small and large point
clouds while minimizing computational complexity. Our focus is not centered on designing
local modules; rather, we explore all aspects beyond architecture. We believe that the
performance of a method relies heavily on various factors, including data augmentation,
point cloud subsampling approaches, optimization techniques, and inference strategies.
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2.2. Training Strategies

Recent works have highlighted the significant influence of training strategies on neural
network performance for point cloud classification and segmentation. SimpleView [15]
adopts DGCNN [31] training strategies and compares the performance of several methods
for point cloud classification. The findings reveal that auxiliary factors such as different
evaluation schemes, data augmentation strategies, and loss functions, which are indepen-
dent of the model architecture, significantly affect performance. In a systematic study,
PointNeXt [14] quantifies the impact of data augmentation and optimization techniques.
The authors propose a set of training strategies that enhance the performance of PointNet++
for semantic segmentation of the S3DIS indoor dataset [38]. It is noteworthy that none of
these studies address airborne LiDAR data, which pose specific challenges due to their
varying density and scale. Given the absence of a standard training procedure for 3D scene
segmentation, we examine the strategies employed in recent studies.

2.2.1. Sampling Approaches

Modern airborne LiDAR systems produce dense point clouds of up to 50 points per
square meter, representing a significant increase in density compared to existing point
cloud benchmarks. Consequently, a common approach is to down-sample point clouds
before fitting them into the network. In the work describing RandLa-Net [12], the authors
identify random sampling as by far the most suitable component for large-scale point cloud
processing, as it is fast and scales efficiently. During random sampling, arbitrary points are
filtered from the original point cloud. While this approach maintains the distribution of
the original set of points and is computationally efficient, with time complexity of O(1),
it may discard crucial points by chance. Alternative methods that address the limitations
of random sampling include Farthest Point Sampling (FPS), Inverse Density Importance
Sampling (IDIS), Grid Subsampling, and Constrained Sampling (CS). FPS [6] involves
selecting the points that are furthest away from each other in the point cloud, obtaining
good coverage of the entire point set. Hence, it has been used in several works [10,13,39].
However, its computational complexity O(N2) is too heavy for large-scale point clouds
(106 points). IDIS [40] defines the inverse density importance of a point by adding up all
distances between the center point and its neighbors, and then it samples points whose
sum values are smaller. Compared to FPS, IDIS is more efficient (O(N)), but it is also more
sensitive to outliers. Grid Subsampling [11] projects the point cloud into a grid, retaining
only one point per voxel. The density and detail of the resulting point cloud are specified by
the voxel size. Constrained sampling [41] is an efficient technique with low computational
complexity O(1) that selectively removes points based on their heights. Nevertheless,
this method is susceptible to task-specific bias, as the optimal height ranges may differ
across tasks.

Overall, FPS and IDIS are computationally expensive when applied to large-scale
point clouds. Grid subsampling requires the specification of a grid size, and in cluttered
point clouds it can result in the loss of fine details. CS is restricted to a specific task
in which the parameters need to be specified in advance. Random sampling emerges
as a computationally efficient alternative, which is particularly well suited for handling
extensive point cloud datasets. However, it may potentially exclude crucial points when
applied to small point clouds. In this work, we address and mitigate these limitations
through effective strategies to ensure accurate data representation.

2.2.2. Data Augmentation

In the point cloud domain, data augmentation is an important strategy to address the
challenges posed by limited labeled data. It involves transforming and expanding existing
point cloud data to enhance model robustness and mitigating overfitting. PointNet++ pro-
posed a range of data augmentations including random rotation, scaling, translation, and
jittering, across diverse benchmarks [6], which are conventionally used. Recent studies have
introduced modern augmentations, such as random dropping of colors during training [11],
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point resampling [18], and the introduction of noise by randomly modifying a small portion
of points’ coordinates [42]. Advanced augmentation methods like PointMixup [43] generate
new samples through interpolation between examples, while PointWOLF [44] employs
locally weighted transformations to produce smoothly varying non-rigid deformations.

2.2.3. Optimization Techniques

The effectiveness of a neural network is heavily influenced by optimization tech-
niques, including factors such as loss functions, optimizers, learning rate schedulers, and
hyperparameters. The first few works employed CrossEntropy loss, Adam [45] optimizer,
exponential learning rate decay, and uniform hyperparameters. Advancements in machine
learning have led to the exploration of superior optimizers, such as AdamW [46] as an
improvement over Adam, learning-rate schedulers, and more sophisticated loss functions
like CrossEntropy with label smoothing [16].

3. Method

The aim of this study is to develop a method that effectively classifies the points of both
small and large objects in cluttered scenes, ensuring accurate and efficient segmentation in
LiDAR-based applications. In order to define a pipeline for segmenting varying density
point cloud scenes from LiDAR data, we define the methodology depicted in Figure 2. This
involves (I) tile partitioning and heights normalization; (II) training the neural network
with efficient strategies; and (III) Inference through sampling and uncertainty.

Figure 2. Overview of the LiDAR semantic segmentation pipeline: Each LiDAR tile undergoes a
multi-step process, beginning with partitioning into subtiles and normalization of heights. Then, a
supervised point-based neural network is trained using efficient strategies for point cloud segmenta-
tion. During inference, the method employs sampling techniques that consider point classification
uncertainty, resulting in a robust point classification.

3.1. Tile Partitioning and Normalization

In the pre-processing stage of our point cloud segmentation pipeline, we employ
heights normalization and tile partitioning to facilitate the network training. These pre-
processing steps are recommended when possible for effective management of the high-
density ALS point cloud data.

1. Heights Normalization. Given the variability of surface altitude across our dataset,
heights are normalized by subtracting the ground’s elevation (the topographic ground map
is provided by ICGC) to all points, obtaining height above ground. This transformation
ensures that heights are represented as distances above ground level with the intention of
enhancing the model’s comprehension of features related to height.

2. Tile Partitioning. In order to handle the abundance of points in raw ALS tiles, we
implement a tile partitioning process. The dimensions of the subtiles are selected based
on the point cloud density and the size of objects within the dataset. The subtile size
must be large enough to ensure that the objects are adequately represented, but not so
large that the number of points becomes unmanageable. We have established subtiles of
100 × 100 m with a 50 m overlap, considering that our target object sizes range from 30 to
120 m and our mean point density is between 13 and 27 ppm2. This configuration ensures
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that subtiles are manageable in terms of the number of points while effectively capturing
the necessary detail.

3.2. Training the Network with Improved Strategies

We investigate the impact of sampling, data augmentation, and optimization tech-
niques employed in recent neural networks when processing LiDAR data, and we study
the effect of each strategy for semantic segmentation of point cloud scenes.

1. Point Cloud Sampling. The initial choices to be made when processing point cloud
data are the determination of the sampling technique and the point cloud size to be used
in training. These factors are particularly pertinent given the dense nature of point cloud
scenes with numerous points that do not offer valuable information. In accordance with
previous works [6,11], we set the training size to 4096. Regarding the sampling technique,
we limited the study to random sampling due to its speed, minimal computational require-
ments, and straightforward simplicity. We start our study by comparing training with a
fixed set of points, where the model encounters the same set of points throughout the entire
training period, versus resampling during the training process. Resampling allows the
network to see a broader range of point configurations, enhancing its ability to generalize
across diverse scenes. Section 4.2 presents and analyzes the revealed discoveries.

2. Data augmentation. Next, we delve into quantifying the performance improve-
ment associated with each data augmentation technique during training. We conduct
experimentation with a set of augmentations that, according to our assessment, have the
potential to enhance the model’s capacity for generalization. Our initial augmentation
involves incorporating rotation, as suggested by PointNet++. While rotation is commonly
believed to be beneficial, its application has demonstrated a performance drop on the S3DIS
dataset, as documented in [14]. Subsequently, we introduce color dropout, a technique
proposed by KPConv, which involves randomly removing color channels of a point cloud
during training. The purpose of the dropout process is to guide the model to prioritize
spatial coordinates, discouraging it from memorizing color-specific details, which promotes
a better overall performance on unseen data.

3. Optimization Strategies. In optimizing model performance, several key strategies
are explored. Firstly, we analyze the learning-rate decay during training; specifically, we
compare the step decay with the cosine scheduler, which has demonstrated advantages
in recent works [14]. Additionally, we experiment with label smoothing, a technique that
is known to be advantageous for refining classification tasks by introducing controlled
uncertainty into ground truth labels. Furthermore, we incorporate weighted cross-entropy
loss during training by assigning distinct weights to address potential imbalances within
the dataset. This technique ensures that the model places more emphasis on correctly
classifying instances from under-represented classes, contributing to a more equitable
training process. Finally, we replace the conventional Adam optimization algorithm with
AdamW, a widely employed optimization algorithm in modern neural networks [46]. The
study, which is described in detail in Section 4.2, comprehensively analyzes the impacts of
these optimization strategies on each category, dataset, and overall performance.

3.3. Inference Strategies

Conventionally, the standard inference procedure involves feeding all points into the
model to obtain predictions. Given the variable density across LiDAR point clouds, we
hypothesize that the size of the point cloud may impact the obtained predictions. In this
section, we contrast the conventional approach with different inference strategies: feeding
a batch of random samplings and utilizing a voting approach, and we propose a novel strat-
egy that uses point predictions uncertainty to make predictions. The practical implications
of each inference strategy are comprehensively explored in the subsequent sections.
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3.3.1. Batch of Random Samplings

During the inference process, each point cloud is reshaped into a batch of n sampled
point clouds. n is determined by dividing the total number of points in the input point
cloud by p, which represents the desired number of points per sample. We experiment with
different values of p; specifically, 8 K and 16 K. Since the point cloud size may not align
perfectly with multiples of p, partially filled point clouds are supplemented with duplicated
points. This batch of samples is then fed into the network to generate predictions. Our
intuition is that maintaining a point cloud size similar to the training data (4096 points)
would result in improved performance. There is a potential risk of object points being
dispersed across batches and incorrectly predicted, as exemplified in Figure 3, which can be
mitigated through the use of voting mechanisms. Nevertheless, as detailed in Section 4.3,
adopting inference on random samplings instead of feeding all points not only reduces the
inference time but also contributes to an overall enhancement in performance.

(a) Ground truth (b) Predictions for sample #1 (c) Predictions for sample #2

Figure 3. Full ground truth point cloud with 59,694 points and predictions for two different random
samples of 8000 points. Green points represent the surrounding category, and purple points represent
towers. Predictions vary due to different sampled points. In (b), some points are misclassified as
vegetation, while (c) accurately classifies both categories.

3.3.2. Voting

The voting technique combines multiple predictions of the same point to achieve a
more robust and accurate classification. The final label is determined by the prediction that
occurs most frequently through majority voting. This technique is beneficial in scenarios
where some points may be uncertain for the model, and combining predictions from
different contexts helps mitigate errors. However, this comes at the cost of increasing the
inference time, whose duration is directly proportional to the number of votes employed.
Determining the optimal number of votes remains unclear, and our objective is to explore
and determine the most effective value. In Section 4.3 we quantify the increase in IoU as
well as the computation time corresponding to the number of votes.

3.3.3. Uncertainty-Based Sampling

Certain points exhibit higher prediction uncertainty compared to others. We believe
that points with greater uncertainty should undergo the voting process, whereas points
that are already highly certain might not benefit from voting. To leverage this distinction,
we propose obtaining two predictions for each point using two different randomly sampled
point clouds. Then, we compare both predictions, and if they are identical then we move
on to the next sample. However, if there is entropy in the obtained predictions, we
employ the uncertainty-based sampling technique. Entropy measures the uncertainty in
a distribution and it is defined in Equation (1), where P(xi) is the probability of the i-th
possible prediction of x.

H(X) = −
n

∑
i=1

P(xi) log P(xi) (1)
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Our goal is to obtain more robust predictions for uncertain points. Applying K-Nearest
Neighbors (KNN) sampling using uncertain points as query points would be an option, but
it alters the data distribution by creating point clouds with a sphere shape. To address this,
we employ an exponential probability distribution on squared distances between uncertain
points and all other points, each point defined by x and y coordinates, which results in a
smooth KNN sampling, defined as follows:

Pij = exp
(
−β ·

∥∥qi − pj
∥∥2

)
(2)

here, qi is the i-th query point, represented as a vector in R2, pj is the j-th reference point,
represented as a vector in R2, and β is a scaling factor that controls the rate at which the
probability decays with distance.

The resampling process aims to select uncertain points and their neighbors with
higher probability, while distant points still have a chance of being included with a lower
probability. The process is showcased in Figure 4, with uncertain points highlighted
in red. The number of sampled point clouds used is a parameter that can be adjusted.
As the number increases, the results become more robust, at the cost of higher GPU
memory requirements.

Figure 4. Inference process illustrated from left to right, utilizing uncertainty-based sampling. (a) The
complete labeled point cloud is initially presented. (b) The point cloud is transformed into 8000-point
samples. (c) Predictions from all samples are obtained and merged. (d) Examination for uncertain
points is conducted, identifying points with different predictions marked in red. (e) The point cloud
is resampled using uncertainty-based sampling. (f) Final predictions.
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4. Experiments

We evaluate our methodology by applying it to our collected dataset to determine its
accuracy, efficiency and computational cost. We begin by describing the dataset used in our
experiments, as well as the considered parameters. We then elaborate on the experimental
design and provide a thorough analysis of the obtained results in which we study the
effects of each strategy with an ablation study.

4.1. Experimental Settings

This section involves a description of the experimental setup, including the datasets
used, training and test splits, evaluation procedure, and the implementation details used
for all experiments.

4.1.1. Dataset

The study area is composed of three different areas of Catalonia, Spain: Alt Empordà,
Ribera del Ter, and Terra Alta, as depicted in Figure 5. The surface area, point density, and
date of flight of each region are outlined in Table 2.

Figure 5. Scanned areas of Catalonia. Alt Empordà (I), Ribera del Ter (II), and Terra Alta (III). The
reference system of the indicated coordinates is ETRS89 and it is projected in UTM zone 31N.

Table 2. Mapped areas.

(I) Alt Empordà (II) Ribera Ter (III) Terra Alta

Mean density of last and only returns 10 pts/m2 8 pts/m2 11 pts/m2

Mean density of points 13 pts/m2 16 pts/m2 27 pts/m2

Area 67 km2 60 km2 120 km2

Date of flight April 2021 July 2021 May 2021

The experimental dataset was collected by a Terrain Mapper 2, which combines a
LiDAR sensor with two nadir cameras in RGB and NIR (Near-InfraRed), provided by
the ICGC (Cartographic and Geological Institute of Catalonia). The system scans in a
circular pattern, obtaining a constant oblique FOV (Field Of View) of 40º with even point
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distribution. Areas I and III (Alt Empordà and Terra Alta) belong to the third Catalan
LiDAR coverage (LIDARCAT3) and were flown at a maximum AGL (Above-Ground Level)
of 2100 m with a minimum sidelap of 20 percent. The pulse rate is nearly 2 million Hz.
Overlapping points are filtered during the classification process to achieve a homogeneous
density of 10 pts/m² at average terrain height. Area II (Ribera del Ter) was flown at a
maximum AGL of 2150 m with a minimum sidelap of 60 per cent. The pulse rate is about
700,000 Hz. It was planned to obtain a minimum point density of 4 pts/m² in a single
strip and a homogeneous density of 8 pts/m² using the overlapping points. The cameras
maximum GSD (Ground Sample Distance) is approximately 11 cm in all areas. The system
produces points in the Euclidean space with a lateral placement accuracy of 5–25 cm and
vertical placement accuracy of 9–20 cm.

Photogrammetric images and LiDAR point clouds are generated using Leica HxMap
3.3 software. This process mainly involves a data quality check, strip orientation, radio-
metric adjustment of images, LIDAR bundle block adjustment, noise filtering, and color
assignment from the images to the point clouds. Then, Terrasolid 021.001 software is em-
ployed to classify both ground and overlapping points, with the latter being subsequently
removed from the dataset. The overlapping points are only classified in areas I and III,
since in area II, these points are used to achieve a consistent density of 8 pts/m2. Terrasolid
is also used to calculate the height of each point above ground. The resulting average point
density for the last and only returns varies from 8 to 11 pts/m2. Each point is defined
by several attributes; the most significant ones are xyz coordinates, class, intensity, height
above ground, RGB, and NIR.

The landscape of each area differs significantly. Alt Empordà is characterized by hilly
terrain and dense forests, while Ribera del Ter features riparian vegetation. Terra Alta,
being the largest scanned area, presents flat fields with wind farms as well as mountainous
zones with electrical facilities. These areas contain power lines, transmission towers, wind
turbines, vegetation, and different types of buildings and infrastructures.

Objects are manually labeled into their respective categories using Terrassolid software.
Initially, some wind turbines and high voltage towers and lines are identified from the ICGC
topographic base 1:5000. To ensure accurate classification, sections are created and point
clouds are visualized from various profiles. Transmission lines are traced and classified
accordingly. Finally, other transmission towers, lines, and wind turbines are added to
the classification by examining the surrounding points, coloring them by height above
ground and visualizing profiles and isometric views. The remaining points, which include
vegetation, buildings and various infrastructures, are assigned to the same category named
“surrounding environment”.

This dataset poses significant challenges due to incomplete objects, considerable
variation in shapes and densities within categories, and a high class imbalance. The
number of points pertaining to each class is presented in Table 3. Examples of categories
are showcased in Figure 6.

Table 3. Number of points per category and its relative percentage.

Tower Power
Lines

Wind
Turbine Ground Surrounding Total

Points 369.26 K 583.35 K 45.91 K 1.34 B 1.68 B 3.02 B
% 0.012 0.018 0.001 44.535 55.434 100%
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Figure 6. A variety of 100 × 100 m subtile instances displaying different classes within the dataset.
This selection provides a glimpse into the rich diversity of object sizes and shapes present in
the dataset.

4.1.2. Training Setup

Initially, each dataset is split into training and test sets, comprising a total of 242 tiles
for training and 29 tiles for testing. Given the extensive size of each tile (1 × 1 km), all tiles
are divided into subtiles measuring 100 × 100 m, with 50 m of overlap for training and
20 m for testing. Table 4 presents the number of tiles and subtiles per dataset. Subsequently,
ground filtering is performed. Eliminating normalized ground points (z ≈ 0) to reduce
the overall number of points is a common practice in ALS data processing [4], as ground
points often provide minimal valuable information compared to object points for semantic
segmentation. Specifically, we filter ground points out when the size of the tile exceeds the
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defined number of input points to the network; otherwise, they are retained. This approach
ensures that tiles with an excessive ground presence are effectively managed, contributing
to a more efficient representation of the objects within the point cloud. Simultaneously,
isolated objects on flat ground are preserved, along with their contextual information.

The distribution of points per subtile is illustrated in Figure 7b, revealing variability in
the density of points across samples in the dataset. The majority of samples have less than
50,000 points; however, we encounter point clouds with up to 400,000 points. Examples of
subtiles are showcased in Figure 6.

Table 4. Number of tiles (1 × 1 Km) and subtiles (100 × 100 m) per dataset.

(I) Alt Empordà (II) Ribera Ter (III) Terra Alta

Total num. of tiles 67 84 120
Num. of training tiles 59 72 110
Num. of testing tiles 8 12 10

Num. training subtiles 15,923 17,612 41,193
Num. testing subtiles 1088 1335 1484

(a) (b)
Figure 7. Descriptive histograms depicting the distributions of classes in (a) and the number of points
in (b) within 100 × 100 m overlapping subtiles.

As detailed in the dataset Section 4.1.1, points are characterized by eight attributes:
coordinates (x, y, z), intensity (I), three color channels (R, G, B), and NIR. In addition
to these attributes, we incorporate the Normalized Difference Vegetation Index (NDVI),
which is used in remote sensing [47] to indicate whether or not the target being observed
contains live green vegetation, as depicted in Figure 8. NDVI is obtained from Red (R) and
NIR channels, as shown in Equation (3):

NDVI =
NIR − R
NIR + R

(3)

(a) RGB visualization (b) NDVI visualization

Figure 8. The same point cloud is visualized through: (a) RGB representation, and (b) NDVI
colorization. In the latter (b), points are only colorized if they surpass the threshold of 0.2.
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Coordinates are normalized in the range [−1, 1] and features are normalized in the
range of [0, 1]. Per-point labels are used for supervised training and validation.

4.1.3. Out-of-Domain Data

To evaluate the robustness and generalization capacity of our model, we test how
effectively our model extrapolates its learned patterns to an unfamiliar terrain. The data
consist of four tiles of 1 × 1 km (Figure 9) from a different geographical location to the
training dataset, characterized by distinct landscape features, such as a different vegetation
distribution and structural elements. The surface area and mean point density are outlined
in Table 5.

Table 5. Out-of-domain data properties.

OOD Area Properties

Mean density of last returns 10 pts/m2

Mean density of points 15 pts/m2

Area 4 km2

Date of flight July 2021

Figure 9. Isometric view of the out-of-domain data, comprising four tiles of LiDAR data.

4.1.4. Evaluation Procedure

During the training process, no feedback from the test set is utilized, ensuring the
model’s independence from the evaluation data. For evaluation metrics, we use the mean
Intersection over Union (mIoU), which is calculated as follows:

mIoU =
1
C

C

∑
i=1

TPi
TPi + FPi + FNi

(4)

where C corresponds to the total number of classes and the subscript i identifies each
individual class. TP denotes the number of true positives, where the model correctly
identifies a point as belonging to an object. FP is the number of false positives, occurring
when the model identifies a point as part of an object when it actually belongs to the
background. Similarly, FN is the number of false negatives, indicating instances where the
model fails to recognize a point as part of an object when it truly is.

mIoU is particularly suitable for imbalanced datasets, as it considers the intersection
of predicted and ground truth masks relative to the union for each of the classes. We
calculate IoU across classes (per-class IoU), across datasets (dataset mIoU), and using
all test points (global mIoU). This evaluation approach allows us to compare the model’s
performance across classes and datasets, each of which is characterized by unique attributes
and challenges. We evaluate our method across all classes except for the ground class,
which is filtered from the point cloud before being fed into the network, as explained in
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Section 4.1.1. To compute the global mIoU, we use test points from all classes and datasets.
The number of points for each dataset is summarized in following Table 6.

Table 6. Number of points per class in the test set.

Ground Tower Power Lines Wind
Turbine Surrounding

(I) Alt Emp. 1214.4 K 4.5 K 0 0 19.9 M
(II) Veg. Rib. 619.4 K 5.2 K 7.6 K 0 53.2 M
(III) Terra Alta 479.4 K 20.0 K 26.7 K 8.2 K 36.9 M

Total points 2,313,351 29,816 34,413 8194 110,207,798

We do not use overall accuracy because it can be misleading in the context of imbal-
anced datasets, as it computes the ratio of correctly classified samples to the total number
of samples without distinguishing between different classes.

We benchmark our approach against KPConv [11], which is the state of the art on
the Dayton Annotated Laser Earth Scan (DALES) dataset [48] for semantic segmentation.
DALES is an aerial LiDAR dataset spanning 10 square kilometers of an area characterized
by urban, rural, and commercial scenes. We trained KPConv using the recommended
parameters provided by the authors.

4.1.5. Implementation Details

The experimental program is built using the PyTorch deep learning framework,
version 1.8, utilizing CUDA 11.7. For optimization, we employ the Adam optimizer and set
the initial learning rate to 0.01, with a cosine decay scheduler, unless otherwise specified.
Models are trained for 100 epochs with early stopping on the validation loss. The loss
used in all networks is the cross-entropy [49]. As for the batch size, it is set to 64. Batch
normalization layers are used to normalize the output of each linear layer. Dropout is
used to regularize the network. The system used for the experiments has the following
configuration: (i) CPU: Intel Xeon Silver 4210, (ii) RAM: 128GB, (iii) GPU: NVIDIA RTX
A6000-48 GB, and (iv) OS: Ubuntu 20.04.

4.2. Experimental Insights of Training Strategies

Tables 7 and 8 present a detailed analysis of the effectiveness of the proposed training
strategies for each category across all datasets, as well as for each dataset when consid-
ering all categories. We use PointNet++ as the backbone architecture, with the baseline
comprising PointNet++ trained with step decay, Adam optimizer, and no augmentations
during training.

To assess the efficacy of each training strategy, we measure per-class IoU, the overall
mIoU across all test points, and dataset mIoU . Referring to Table 7, it is noteworthy that
point cloud resampling is the most effective strategy, significantly boosting the global mIoU
by 31.8%. This significant improvement is partially explained by the performance increase
in the wind turbine class, which initially goes undetected, and then attains a remarkable
IoU of 96.54% after this strategy is implemented. This can be attributed to the limited
number of wind turbine instances in the dataset, and resampling facilitates the model’s
ability to generalize the characteristic patterns associated with them.

Cosine decay, color dropout, and weighted loss contribute positively to the global
mIoU, resulting in increments around 1% mIoU, showcasing their beneficial influence on
overall performance. While rotation has a modest effect on global mIoU, it notably enhances
IoU on the Alt Empordà dataset by 3.66%, which is the dataset with fewer samples. We
chose to incorporate rotation into our training strategies with the expectation that it will
effectively augment less common samples.

Additionally, strategies such as label smoothing and AdamW optimization demon-
strate different behavior over specific categories and dataset regions, as illustrated in Table 7.
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For instance, label smoothing exhibits positive effects on wind turbines (+2.5%) while de-
creasing IoU in tower and power lines categories. AdamW optimization improves mIoU
over Alt Empordà dataset but results in less accurate predictions for the other regions
with different characteristics. The surrounding category remains unaffected by any of the
employed training strategies.

We conclude that data augmentation techniques such as rotation, resampling, and
color dropout are advantageous, as they contribute to the model’s generalization ability.
Using cosine decay results in a notable 1.7% increase in the global mIoU. Nevertheless, the
benefits of label smoothing and AdamW are not clear in our dataset, leading us to abstain
from their utilization. Finally, given the pronounced imbalance in our datasets, we observe
that employing weighted loss improves IoU on all minority categories. In summary, the
effectiveness of each training strategy depends on the specific characteristics of the dataset.
Therefore, we adopt the strategies that improve the performance on our test set.

Table 7. Additive study of sequentially applying training strategies for semantic segmentation. The
metric used is IoU (%) per category across datasets and the backbone architecture is PointNet++.
Global mIoU (%) is mIoU using all test points. ∆ is the increment of the performance from the
best obtained result after adding a strategy. Baseline without any specific strategy yields initial IoU
percentages; subsequent strategies showcase their impact.

Training Strategies Tower Power
Lines

Wind
Turbine Surround. Global

mIoU ∆

Baseline 56.77 77.23 0.0 99.98 58.50
Cosine decay 57.82 83.15 0.0 99.99 60.24 +1.7
Rotation 58.62 82.74 0.0 99.99 60.34 +0.1
Resampling 77.85 94.09 96.54 99.99 92.12 +31.8
Label smoothing 77.65 93.37 99.09 99.99 92.52 +0.4
AdamW 77.74 93.66 91.60 99.99 90.75 −2.1
Color dropout 78.57 93.76 95.76 99.99 92.02 +1.27
Weighted loss 79.31 94.85 97.97 99.99 93.03 +1.01

Table 8. Additive study of sequentially applying training strategies for semantic segmentation. The
metric used is mIoU (%) per dataset using PointNet++ as backbone architecture.

Training Strategies (I) Alt Empordà (II) Ribera de Ter (III) Terra Alta
Baseline 70.98 72.02 60.61
Cosine decay 76.13 73.83 62.24
Rotation 79.79 73.11 62.15
Resampling 84.56 85.55 94.14
Label smoothing 83.69 84.10 94.43
AdamW 88.76 83.41 92.25
Color dropout 88.01 84.41 93.56
Weighted loss 87.74 86.45 94.41

4.3. Experimental Insights of Inference Strategies

To explore the effectiveness of inference strategies, we first compare the performance
and inference time between feeding all points into the network against feeding a batch
of sampled point clouds, and the results of this comparison are analyzed in Section 4.3.1.
Then, in Section 4.3.2, we use the best inference strategy to evaluate the mIoU increase by
varying the numbers of votes. Finally, in Section 4.3.3, we analyze the experiments and
results obtained with our proposed uncertainty-based inference strategy.
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4.3.1. Feeding All Points vs. Feeding Sampled Point Clouds

Table 9 presents the results obtained by the top-performing model using two different
inference strategies. We compare the effectiveness between feeding the network with full
point clouds and feeding batches of sampled point clouds, with sample sizes of 8 K and
16 K points. mIoU is obtained for each dataset: Alt Empordà, Ribera de Ter, and Terra Alta.
Our findings indicate that optimal performance is achieved when utilizing sampled point
clouds comprising 8 K points, as opposed to providing all points.

Table 9. mIoU (%) results of different inference strategies implemented on the optimal trained
network, which employs PointNet++ as a backbone. The best results are marked in bold.

Inference Strategies (I) Alt Empordà (II) Ribera de Ter (III) Terra Alta
All points 51.6 37.9 46.0
Samples of 8 K pts. 87.9 85.8 94.7
Samples of 16 K pts. 87.1 85.7 93.6

To gain insights into these results, we examine the confusion matrices presented in
Figure 10, which compare predictions from feeding both full point clouds and 8000-point
sampled clouds across all datasets. We notice a significant reduction in confusion among
instances of vertical objects, such as wind turbines, transmission towers, and vegetation,
when utilizing 8000-point samples compared to feeding the full point cloud. Specifically,
misclassifications in which towers and wind turbines are predicted as surrounding elements
are mitigated by 17.1% and 9.4%, respectively. We see that the percentage of correctly de-
tected lines is diminished as some of lines points are detected as towers due to the proximity
between botch classes; however, lines decrease by 0.3% and tower prediction improves
by 44.2%. Upon closer examination of specific errors (refer to Figure 11), it becomes clear
that inaccuracies arise from the misprediction of dense objects. This could be attributed
to the elevated point cloud density associated with vegetation. We conclude that utilizing
8000-point samples in inference successfully reduces confusion across all categories.

(a) Feeding all points. (b) Feeding samples of 8 K points.

Figure 10. Comparison of normalized confusion matrices obtained by performing inference on all
points against 8000-point samplings across the three regions.
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(a) Points of wind turbine confused with surrounding class.

(b) Surrounding points close to transmission tower are confused with transmission tower.

(c) Surrounding points underneath transmission lines are confused with transmission lines.

Figure 11. Left: Ground truth|Right: Predictions. Errors arise when all points are fed into the network,
causing confusion between objects and surrounding, especially in areas with high point density.

4.3.2. Inference on Sampled Point Clouds with Voting

Figures 12 and 13 illustrate the impact of varying the number of votes during point
cloud segmentation on the resulting IoU. We can see that the influence of the voting strategy
is more pronounced in the initial votes and gradually diminishes with additional votes.

When focusing on the tower category (Figure 13), which is present in all utilized
datasets, we see a considerable variability of IoU across datasets. This disparity may be
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attributed to the higher density and increased object detail in the Terra Alta dataset, which
makes shapes more easily distinguishable compared to other datasets. In addition, the
datasets exhibiting lower IoU experience greater benefit from the voting strategy.

Figure 12. mIoU (%) and cumulative mIoU gain per number of votes for each dataset. The “votes”
axis represents the number of votes considered, ranging from 1 to 13. The mIoU value signifies
the mean Intersection over Union across all classes for each dataset, while the cumulative mIoU ∆
indicates the incremental increase in mIoU per dataset with the addition of votes.

Figure 13. IoU tower (%) and cumulative IoU tower gain ∆ per number of votes for each dataset.

4.3.3. Inference with Uncertainty-Based Sampling

We present a quantitative comparison of results obtained from voting against uncertainty-
based sampling, focusing on mIoU per dataset, global mIoU, and execution time detailed in
Table 10. The evaluation is conducted using sampled point clouds consisting of 8000 points.
The voting strategy with 13 votes achieves the highest score on global mIoU (94.3%).
However, this comes at a significant cost in terms of time, requiring 455 min for complete
inference. In contrast, uncertainty-based sampling offers competitive mIoU scores with
ten times lower inference time. Hence, if inference time is a priority, uncertainty-based
sampling emerges as the optimal choice.

Table 10. Quantitative comparison of mIoU (%) and execution time (minutes) obtained by different
amount of votes versus using uncertainty-based sampling. All models are tested with sampled point
clouds of 8 K points.

Infer. Strategy (I) Alt Emp. (II) Rib. Ter (III) T. Alta Global
mIoU Time (min)

Smpl. 1v 87.9 85.8 94.7 93.2 36
Smpl. 13v 90.2 88.0 95.6 94.3 455
Smpl. uncertain. 89.9 88.1 95.4 94.2 42
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5. Results

In this section, we show the semantic segmentation results using the best training and
inference strategies.

5.1. Quantitative Results

The IoU results across categories are presented in Table 11, comparing KPConv [11]
against PointNet ++ [6] trained with improved training strategies and employing different
inference methods specified by column "Inference Strategy". When all points are fed
into PN++, the results are adversely affected by high-density objects, as discussed in the
Section 4. Performance significantly improves when 8000-point sampled clouds are used.
Additionally, as discussed in earlier sections, increasing the number of votes further raises
IoU at the expense of longer inference times. To achieve the best balance of performance
and practical inference time, PN++ with uncertainty-based sampling proves to be the
optimal approach.

Table 11. Comparison of IoU (%) per category and global mIoU (%) between KPConv and PN++
using different inference strategies.

Network Inference
Strategy Tower Power

Lines
Wind

Turbine Surround. Global
mIoU

KPConv spheres 41.33 74.76 74.76 99.41 72.56
PN++ all points 11.86 1.14 70.09 97.07 45.04

PN++ 8 K
samples 79.74 95.31 97.92 99.99 93.24

PN++ uncertain. 82.66 95.97 98.33 99.99 94.24

Table 12 presents per-class IoU for each dataset using PN++ with uncertainty-based
inference strategy. The class tower exhibits the lowest IoU, which can be attributed to the
high variability in shapes and densities within this class. In contrast, the wind turbine class,
which has far fewer points in the training and testing data, achieves a high IoU of 98.33 %,
possibly due to its characteristic shape and size, making it easily distinguishable from other
elements. Regarding mIoU across datasets, there are significant variations, with Ribera de
Ter achieving the lowest score (88.13%) and Terra Alta attaining the highest (95.43%).

By looking at the normalized confusion matrices of Figure 14, we see that for the Alt
Empordà dataset, some of the tower points are misclassified as vegetation, possibly due to
the lower density of this dataset. Additionally there are no false positives of lines and wind
turbines. For the Ribera de Ter dataset, which contains a lot of vegetation and lines with
gaps resulting from the noise filtering process, we see confusion between towers, power
lines, and vegetation. As expected, the Terra Alta dataset, which provides more detailed
data, yields the best results.

Table 12. IoU scores (%) per category using uncertainty-based inference strategy and computation
time in minutes per squared kilometer.

Dataset Tower Power
Lines

Wind
Turbine Surrounding mIoU Time

(min/km2)
(I) Alt Empordà 79.89 - - 99.99 89.94 1.39
(II) Ribera de Ter 74.41 89.98 - 99.99 88.13 1.47
(III) Terra Alta 85.71 97.72 98.33 99.99 95.43 1.63
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Figure 14. Normalized confusion matrices using PN++ with uncertainty-based inference for each test
dataset and across all test points.

5.2. Qualitative Results

Figure 15 illustrates the ground truth and prediction for a LiDAR tile example from
Terra Alta dataset, where each color represents a different class. The tower, wind turbine
and surrounding classes are accurately classified. While most power lines are correctly
identified, there are some points misclassified as towers. However, no false-positive points
are detected within the vegetation.

In Figure 16, we observe an example of a scene in RGB along with the corresponding
predicted point cloud. Despite the absence of visible lines between towers and their
small size compared to high-voltage towers, the model has successfully detected them,
showcasing its robustness across a diverse range of scenarios.

Next, we illustrate the failure cases identified in our method. Figure 17 showcases
the model’s limitation in accurately distinguishing between towers and power lines for
the given instance, resulting in some tower points being misclassified as power lines. This
misclassification can be attributed to the structural similarities and spatial proximity of
towers and power lines, which can confuse the model. Such a limitation should be taken
into account, particularly if the final task requires precise delineation of power lines.
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(a) Ground truth

(b) Prediction

Figure 15. Ground truth and predicted labels for a scene from Terra Alta dataset. Different colors
identify different classes.

(a) RGB scene

(b) Prediction

Figure 16. Point cloud scene from Ribera de Ter dataset, colorized by RGB, along with its correspond-
ing semantic segmentation predictions. Towers classified by the model are highlighted and marked
with a red circle for easy identification.
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Figure 17. Ground truth (left) and model predictions (right), illustrating the challenge in distin-
guishing between towers and power lines due to shared structural characteristics and close spatial
proximity. Note that the cables are not straight because z is normalized to height above ground.

We identify false positives of towers, as shown in Figure 18, which can occur due to
objects with similar attributes to towers, such as comparable height, shape, or reflective
properties. For example, vertical structures like poles might be incorrectly identified
as towers.

Figure 18. Detection of a false positive resembling a pole within the tower class.

Finally, Figure 19 presents an instance of a transmission tower that has not been
fully classified. Upon deeper inspection, we determine that this is caused by high NDVI
values on misclassified points. The issue arises from the fact that towers and lines are
not fully captured in the photogrammetric images, which is attributed to the size of the
elements to be detected and the GSD obtained in the aerial survey, as well as potential
occlusions and shadows from other objects. Consequently, during the process of assigning
color information from the photogrammetric images to the corresponding LiDAR points,
values from the surrounding vegetation may be mistakenly assigned to the location of the
object. To provide visual clarity, Figure 20 showcases a point cloud colorized by NDVI. The
central structure in the point cloud contains a tower with low NDVI values, as expected for
non-vegetative structures. Surrounding the tower are points colored in shades of green,
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indicating the presence of vegetation. Nevertheless, the cross-arms of the transmission
tower also show high NDVI values, likely due to the color assignment process.

Figure 19. Illustration of a transmission tower that remains incompletely classified due to high NDVI
values on misclassified points.

Figure 20. Visualization of a point cloud colorized by NDVI, highlighting points that exceed the
threshold of 0.2 in green. The transmission tower surrounded by vegetation exhibits low NDVI
values, which are consistent with non-vegetative structures, contrasted with elevated NDVI values
on the tower’s cross-arms, likely due to the color assignment process.

5.3. Results on Out-of-Domain Data

This section presents quantitative and qualitative results obtained from an OOD area
that was not part of the training dataset. This area includes towers and power lines and
is surrounded by vegetation and buildings. The IoU for each class is shown in Table 13.
The tower category achieves an IoU of 89.48%, indicating robust classification accuracy in
vegetated environments. Similarly, the power lines exhibit outstanding performance with
an IoU of 97.55%, demonstrating the effectiveness of our approach in accurately delineating
fine structures against diverse backgrounds. In addition, Figure 21 illustrates the predicted
labels of a scene containing a transmission line. Despite some gaps in the transmission line
and close vegetation around the tower, both the tower and cables are accurately classified.
The ground class is predicted but is not included in the evaluation.
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Table 13. Iou scores (%) per category obtained using the uncertainty-based inference strategy on
OOD data, along with the computation time in minutes per square kilometer.

Tower Power Lines Wind
Turbine Surrounding mIoU Time

(min/km2)
89.48 97.55 - 95.96 94.33 2.13

(a) (b)

Figure 21. Longitudinal (a) and transversal (b) profiles of a point cloud with a power line from OOD
data, displaying predicted labels with different colors.

6. Conclusions

Our study advances the field of semantic segmentation for ALS data, presenting two
key scientific contributions to address the complexities of outdoor environments character-
ized by imbalanced data distributions. Our first contribution focuses on refining training
and inference strategies to boost the performance of point classification networks like Point-
Net++. The study involves several experiments conducted on a 247 km2 manually labeled
airborne LiDAR dataset, which is characterized by both densely forested and urban environ-
ments with distinct labeled objects. Our findings indicate that utilizing improved training
techniques and feeding sampled point clouds into the network significantly outperforms
the common approach of processing entire point clouds. This approach not only reduces
the computational load but also mitigates confusion between closely located objects.

Our second contribution introduces an uncertainty-based inference strategy to enhance
network robustness, particularly for objects in cluttered environments. This approach has
been rigorously tested across three distinct geographical sites, each with unique attributes,
improving the IoU for minority classes up to +2.9%. The obtained mean IoU across
datasets is 94.24%, with specific scores of 82.66% IoU for transmission towers, 95.97% IoU
for power lines, and 98.33% IoU for wind turbines. Additionally, the robustness of the
model is validated on out-of-domain data, maintaining a high mean IoU of 94.33% despite
varying conditions.

Overall, these advancements result in significant improvements both quantitatively
and qualitatively in the segmentation of ALS data, suggesting valuable applications in
areas such as infrastructure monitoring and urban planning. The presented strategies
could be applied to other architectures, offering potential advancements in classification
methodologies for real-world scenarios.

The source code in PyTorch as well as the trained models are available at https://
github.com/marionacaros/Strategies-for-Point-Classification-in-LiDAR-Scenes (accessed on
12 June 2024).

https://github.com/marionacaros/Strategies-for-Point-Classification-in-LiDAR-Scenes
https://github.com/marionacaros/Strategies-for-Point-Classification-in-LiDAR-Scenes
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2D Two-dimensional.
3D Three-dimensional.
ALS Airborne Laser Scanning.
CNN Convolution Neural Network.
CS Constrained Sampling.
DALES Dayton Annotated LiDAR Earth Scan.
FN False Negatives.
FP False Positives.
FPS Farthest Point Sampling.
GSD Ground Sample Distance.
ICGC Cartographic and Geological Institute of Catalonia.
IDIS Inverse Density Importance Sampling.
IoU Intersection Over Union.
KNN K-Nearest Neighbors.
LiDAR Light Detection and Ranging.
mIoU mean Intersection Over Union.
MLP Multi-Layer Perceptron.
NIR Near InfraRed.
NDVI Normalized Difference Vegetation Index.
OOD Out-of-Domain.
OA Overall Accuracy.
RGB Red Green Blue.
TP True Positives.
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