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Abstract: In this paper, machine learning is used to model the imaginary part of the self-energy
of a neutron-star binary system, which is approximated as infinite neutron matter. The performance
of the model is evaluated by computing physical properties such as the momentum distribution and
the total energy. The results obtained with the model show a high degree of accuracy when compared
to theoretical values.

I. INTRODUCTION

With the recent detection of gravitational waves orig-
inated from the merging of a neutron-star (NS) binary
system [1], the need for accurate modeling of neutron
star matter has increased. NS binaries represent some
of the most extreme environments in the universe, with
temperatures of tens of MeV [2]. NSs are formed from
the remnants of Type II supernovae, caused by the grav-
itational collapse of the core of a star with a mass M >∼
8M⊙. The mass of NSs typically ranges from 0.1M⊙ to
about 3 M⊙, with their radii being approximately 10–15
kilometers [3].

The study of NS binaries is key to a better under-
standing of nuclear matter, as some regions show similar
physical conditions to those observed in atomic nuclei.
This resemblance has led to a growing interest in infi-
nite neutron matter modeling, with the proposal of new,
realistic nucleon-nucleon potentials [4].

Given the complexity of modeling such systems, Arti-
ficial Neural Networks (ANNs) can be a powerful tool.
ANNs are computational models inspired by the neural
networks of the human brain, which use interconnected
hidden nodes (neurons) to learn patterns within data.
Specifically, in this project ANNs are used as a super-
vised machine learning technique, meaning they learn
from labeled data and manage to predict unseen data.
The interest in modelling with ANNs is that they re-
quire significantly less memory than the entire dataset,
since only the parameters of the model need to be stored.
Furthermore, they enable inference instead of a simple
interpolation, due to their ability to learn patterns and
handling high-dimensional data. Inference grants predic-
tions on unseen data points outside the range of train-
ing data, which can lead to interesting extrapolations
for T = 0 MeV when only finite temperature data is
available. These kinds of generalizations are very useful
for real-world applications, where future data may differ
from past data [5].

This document is structured as follows. In section II,
we provide the necessary physical background, followed
by the theoretical computational framework in section
III, where we briefly introduce ANNs. In section IV,
we provide a more in-depth explanation of the model
building process. Finally, section V compares the results

of the physical values obtained with the original dataset
and those obtained with the ANN.

II. THEORETICAL FRAMEWORK

Physical systems of neutron matter at non-zero tem-
peratures, such as binary neutron star systems or neu-
tron stars in the early stages of their evolution, exhibit
complex many-body correlations that complicate their
modeling. An approach to tackle this problem is the
Self-Consistent Green’s Function (SCGF) method [6].
The SCGF formalism is based on Green’s functions or

propagators, which are mathematical objects that rep-
resent the dynamics of particles and their interactions,
and are often depicted using Feynman diagrams. We can
characterize very different systems, like neutron stars and
nuclei, with the same formalism [7]. Besides all these
advantages, perhaps the most important in the context
of astrophysics and infinite neutron matter is that SCGF
methods can be formulated consistently at non-zero tem-
perature [8].
Another key benefit of these propagators is that a num-

ber of observables can be easily derived from them. The
one-body propagator in the energy domain can be ex-
pressed as [9]:

Gk(z) =

∫
dω

2π

Ak(ω)

z − ω
. (1)

In Eq. (1), z is a general complex energy variable. The
spectral function Ak represents the probability of either
adding or removing a particle with momentum k and
energy ω to the infinite system [9]. This probability dis-
tribution is normalized to unity,∫

dω

2π
Ak(ω) = 1. (2)

When this integral is adjusted according to the thermal
population of the hole states, the resulting value repre-
sents the momentum distribution,

nk =

∫
dω

2π
Ak(ω)f(ω), (3)
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where f(ω) is the Fermi-Dirac distribution f(ω) = [1 +
exp[(ω−µ)/T ]]−1, which explicitly depends on the chem-
ical potential µ.

By normalizing the momentum distribution and con-
sidering the neutron’s spin degeneracy ν = 2, we can
determine the system’s density:

ρ = ν

∫
d3k

(2π)3
nk. (4)

The SCGF formalism provides us with access to the
description of the macroscopic properties of the system.
Within this method, the total energy per particle can be
obtained by

E
A

=
ν

ρ

∫
d3k

(2π)3

∫
dω

2π

1

2

{
ℏ2k2

2m
+ ω

}
Ak(ω)f(ω)−

1

2
⟨Ŵ ⟩,

(5)
where ℏ is the reduced Planck constant, m is the mass
and A represents the number of particles (in our case, m
is the neutron mass and A is the number of nucleons).
The key concept in this paper is the self-energy Σk,

which is directly related to the spectral function:

Ak(ω) =
−2 ImΣk(ω)[

ω − k2

2m − ReΣk(ω)
]2

+ [ImΣk(ω)]
2
. (6)

Σk is a complex function that accounts for the effects
of the surrounding medium on a single particle in the
system. Calculating Σk is challenging because it in-
volves summing over an infinite number of complex dia-
grams that represent different interactions. In the SCFG
method, the ladder approximation is used to include the
subset that contributes the most to Σk [7]. The imagi-
nary part is relatively easy to obtain because it involves
integrals over energy and momentum that are easily eval-
uated [9]. In SCGF approaches, ReΣk(ω) is often ob-
tained from ImΣk(ω) through the dispersion relation [9]:

ReΣk(ω) = Σ∞
k − P

∫
dω′

π

ImΣk (ω
′)

ω − ω′ , (7)

where P denotes the principal value of the integral, and
Σ∞

k is the Hartree-Fock (HF) self-energy. This is an ef-
fective one-body interaction that considers the average
of the two-nucleon ⟨V̂ ⟩ (three-nucleon ⟨Ŵ ⟩) interactions
over the Fermi sea of one (two) particle. It does not
depend on energy, but it does in momentum, and it is
defined as

Σ∞
k = ν

∫
d3k1
(2π)3

⟨kk1|V̂ |kk1⟩Ank1 (8)

+
ν

2

∫
d3k1
(2π)3

∫
d3k2
(2π)3

⟨kk1k2|Ŵ |kk1k2⟩Ank1nk2 .

All these physical properties will be calculated here us-
ing data obtained both from SCGF simulations [8]. The
difference with respect to the outputs of the ANN model
quantify the accuracy of the latter.

III. ARTIFICIAL NEURAL NETWORKS

The computational tool used in this project is an
ANN. An ANN is a model that approximates an unde-
termined function Φ, with Φ(xi) = yi, given a dataset
D = {(x1,y1), (x2,y2), ..., (xN ,yN )}. Mathematically,
Φ is a function that maps input vectors xi ∈ Rn to out-
put vectors yi ∈ Rm through a series of affine transfor-
mations followed by non-linear activation functions [10].
The basic units are the hidden nodes (neurons), where
these non-linear transformations are done. The simplest
ANN, with one input and one output, can be expressed
as:

Φ(x) =

Nhid∑
i=1

W
(2)
i σ

(
W

(1)
i x+B

(1)
i

)
+B

(2)
i , (9)

whereNhid is the number of hidden nodes. MatricesW
(1)
i

and W
(2)
i , and vectors B

(1)
i and B

(2)
i , are the weights and

biases associated to the connections of the node i in the
input layer (1) and the output layer (2), respectively.
These are the parameters we need to find and store as
our model. The dimensions of the matrices are (N j+1

hid ,

N j
hid), which depend on the number of nodes of the actual

layer j and the following layer j+1, and the vectors have
N j+1

hid length. σ corresponds to the non-linear, continuous
and non-decreasing function applied to the output of the

affine function W
(1)
i x+Bi.

To find the optimal parameters, we construct a loss
function, which characterizes the deviation of our pre-
diction from the target, and minimize it using gradient
descent-based methods. These methods use the gradients
of the loss function with respect to the parameters of the
ANN (weights Wi and biases Bi). This is done in order
to find the direction of steepest descent and how much
each parameter is contributing to the error in predicting
the output [10].
To calculate these gradients we use a backpropagation

algorithm, which at its core, is the chain rule for partial
differentiation. These gradients are then used to update
the weights and biases, iteratively refining the network’s
predictions. [10]
The training process described above is performed on

a subset of the dataset called the training set, which is
used to learn the patterns in the data. The remaining
data, where we only evaluate the model’s performance,
is referred to as the validation set. The reason of this
separation of the dataset is that we need to ensure that
the model generalizes well to unseen data, instead of just
memorizing the training data.

IV. LEARNING IMΣk

The aim of this project is to build a model using an
ANN trained on a dataset containing the imaginary part
of the self-energy of an infinite neutronic system (ImΣk)
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with fixed density ρ = 0.16 fm−3 at non-zero tempera-
tures. The model will use three input vectors: tempera-
ture, momentum and energy.

Our dataset is obtained by using SCGF simulations
with N3LO interaction [4], and consists of about 3 million
data points. The importance of using an ANN lies in its
ability to model the system with far less information,
thereby reducing computational complexity.

The architecture of our best-performing model is rep-
resented in Fig. 1. This figure illustrates a 4-layer ANN
with 22 hidden nodes in the first two layers and 20 hid-
den nodes in the last two layers. This model was chosen
for its low loss and superior results calculating the phys-
ical properties discussed in section II compared to others
with different configurations. An interesting observation
during the training process was that deeper models (i.e.,
those with more layers) outperformed shallower models
with one or two layers but a large number of nodes.

As for the activation function used in the hidden nodes
(blue circles in Fig. 1), Leaky ReLU [11] was chosen for
its usual good performance in ANNs. This non-linear
function has small, positive gradient for negative inputs,
and leaves positive inputs unchanged.

We used the Smooth L1 loss function [12], which com-
bines the benefits of L1 (absolute error) and L2 (squared
error) losses, making it less sensitive to outliers and pro-
viding smoother optimization. As for the optimizer, the
best one by far was Rprop [13], which implements re-
silient backpropagation algorithm. This stands out for
its efficiency in training ANNs with large datasets, and
its ability to dynamically adjust learning rates for indi-
vidual parameters.

The dataset has been split up in the training set, with
80% of the data and a final loss of 0.004, and the valida-
tion set with the 20% left. There are no signs of overfit-
ting (i.e., the ANN is not memorizing the data) because
both subsets converge simultaneously to the same loss.

Regarding ReΣk, an approach similar to that employed
in ImΣk was initially attempted. However, we did not ob-
tain satisfactory results. Therefore, we have followed the
conventional way of obtaining ReΣk in SCGF methods,
using the dispersion relation, Eq. (7).

The computations are carried out using the Python
library PyTorch, which integrates the implementation of
all operations related to ANNs [14].

V. RESULTS

In the top panels of Fig. 2, the values of ImΣk ob-
tained with the ANN are displayed. These are shown for
three different temperatures to highlight the differences
between the data and the ANN predictions, as well as for
three fixed momenta. These values are near the Fermi
momentum, which is of particular interest due to the sig-
nificant physical phenomena that occur at this point [8].
As expected for ImΣk, it is negative across the entire
energy domain and exhibits a peak at low momentum,
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FIG. 1: Representation of the architecture of our ANN. The
input layer, represented by purple circles, takes three input
features: temperature (T), momentum (k), and energy (ω).
In blue, we have neurons, where the non-linear transforma-
tions are done. Finally, the output layer is pictured in yellow.

with its maximum value approaching zero as the tem-
perature decreases. ImΣk is related to the lifetime of
particles within the system, so its size gives an idea of
how rapidly particles transition into other states.
These values of ImΣk have been used to obtain ReΣk

through the dispersion relation in Eq (7). ReΣk is shown
in the bottom panels of Fig. 2, also around the Fermi
momentum and at different temperatures. ReΣk is re-
lated to the energy shift of a particle due to interactions
within the system, so it is relevant to determine physical
properties like the effective mass.
In Fig. 2 we notice that the ANN tends to work bet-

ter at negative ω, specifically below εF (i.e., the energy
at T = 0 MeV where ImΣk is zero). To quantify the
differences between the discrepancies in the two regions
of the energy ω domain, the relative errors in those are
displayed in Table I.

TABLE I: Differences between the relative error in ω > εF
and in ω < εF at high and low temperatures.

Energy ω (MeV) -200 200
T (MeV) 4 20 4 20

ImΣk relative error (%) 0.48 1.93 1.45 1.16
ReΣk relative error (%) 0.38 1.28 7.54 10.07

The lines in ReΣk are slightly oscillating at high en-
ergies, and this is probably related to the higher relative
error in that region. This could be attributed to the
computational expense of the integral we need to carry
out, and a possibly insufficiently dense grid used for the
calculation.
In order to give a physical meaning to the quality of

the ANN, some microscopic quantities described in Sec-
tion II have been computed. In this section, we compare
these values obtained with SCGF methods and the ones
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FIG. 2: Imaginary (top panels) and real (bottom panels) components of the self-energy of an infinite neutron-matter system
at different fixed momenta k = 0 (left), k = kF = 331.41 MeV (center) and k = 2kF = 662.82 MeV (right). The symbols
represent the data points obtained with the SCGF simulation, and the lines correspond to the results obtained by the ANN.

obtained with the predictions made by the ANN. The
chemical potential µ and the three-body HF term Σ∞

k ,
which are variables we need to calculate these quanti-
ties, are the same in both approaches and are the ones
obtained with the SCGF simulation.

In Fig. (3) the occupation or momentum distribution
near the Fermi momentum is displayed. As shown in
Eq. (3), this is the result of normalizing the product
of the spectral function and the Fermi-Dirac distribu-
tion, the latter being a step function at zero tempera-
ture. Therefore, nk ranges from 0 to 1, representing the
probability or fractional occupancy of particles in differ-
ent states. Consistently with statistical mechanics, at
lower temperatures, nk is higher at low momenta, and
as the temperature increases we have a broader distribu-
tion. This reflects an increment in the thermal energy,
allowing particles to occupy higher momentum states.

The discrepancy between the ANN predictions (rep-
resented by lines) and the data points (represented by
circles) is more pronounced at low momenta but shows
an almost perfect match at high momenta. This might
occur because the ANN struggles to capture the subtle
interactions that occur at low momenta, or it may be due
to an insufficient number of data points in this region.

The performance of the ANN in Fig. 3 is also slightly
inferior at low temperatures. This is to be expected,
given that nk is calculated by integrating Ak, which at
low temperatures tends to a Dirac delta function. The
integration of a delta function, or a very thin function,
can present a significant computational challenge.

An effective way to evaluate the quality of the ANN is
normalizing Ak and nk, since the expected result of the
integral is known (shown in Eqs. (2) and (4)). These nor-
malizations are displayed in Table II. This demonstrates
the accuracy of the results and how its quality slightly
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FIG. 3: Momentum distribution nk at different temperatures.
The symbols represent the data points obtained with the
SCGF simulation, and the lines correspond to the results ob-
tained with the ANN.

TABLE II: Average normalization values of occupation nk

and the spectral function Ak at different temperatures. The
theoretical values are compared to the results obtained with
the SCGF simulations and with the ANN.

Normalization nk Ak

T (MeV) 4 12 20 4 12 20

Theoretical 0.1600 0.1600 0.1600 1.0000 1.0000 1.0000
SCGF 0.1611 0.1599 0.1599 1.0000 0.9999 0.9999
ANN 0.1635 0.1627 0.1618 0.9953 0.9942 0.9928

varies with temperature: in nk, it diminishes at lower
temperatures, while in Ak it improves. As mentioned
early, the reduction of accuracy in the results for nk at
low temperatures could be due to numerical reasons, as
evidenced by the less precise normalization at T = 4 MeV
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FIG. 4: Total energy per particle as a function of tempera-
ture. The symbols represent the data points obtained with
the SCGF simulation, and the lines correspond to the results
obtained with the ANN.

within the SCGF formalism.
The total energy per particle of the system at each

temperature is also compared in Fig. 4. It has been
computed using Eq. (5). As expected, the total energy
shows a strong dependence on temperature, mainly due
to the kinetic contribution. The results obtained with
the ANN closely match the data points, indicated by
blue circles. However, there is a decrease in accuracy
as the temperature increases: the relative error of the
model at T = 4 MeV is 0.34% and at T = 20 MeV it
is 2.40%. This decline in accuracy may be due to the
dependence of the energy per particle on Ak, which
aligns more closely with the data at lower temperatures.

VI. CONCLUSIONS

We have successfully reproduced the imaginary com-
ponent of the self-energy for an infinite neutron system
as a function of energy and momentum at non-zero tem-

peratures using an ANN. We have then derived the real
component of the self-energy and validated the model by
computing some relevant physical properties. Key cal-
culations of these properties made with the ANN, such
as the normalization of the momentum distribution and
the spectral function, show relative errors of 0.56% and
1.86%, respectively, compared to the dataset obtained
from the SCGF simulation.

Our approach effectively reduced a dataset of 3 mil-
lion points to a model with approximately 1.500 pa-
rameters, significantly decreasing the amount of storage
needed. This reduction not only improves computational
efficiency but also enables inference instead of interpola-
tion. Another advantage of the ANN is that it learns
patterns within the data and generally provides a better
extrapolation compared to traditional methods. Future
outlook would include exploring what the ANN predicts
at T = 0 MeV.

Additional future work could involve further fine-
tuning of the model. Adding more layers to the ANN
could significantly improve its performance, as we ob-
served it was a very important factor in the fine-tuning
process.

This work opens the door to applying astrophysical
simulations without relying on millions of data points.
By using ANNs, we can achieve high-accuracy results at
a much lower computational cost, which can lead to more
efficient and accessible modeling of complex phenomena.
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