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We explore the relation between the nuclear matrix elements of neutrinoless double-beta (0νββ) decay and
two other processes: double Gamow-Teller (DGT) and double-magnetic-dipole (M1M1) transitions, with focus
on medium-mass to heavy nuclei studied with the proton-neutron quasiparticle random-phase approximation
(pnQRPA) framework. We explore a wide span of isoscalar proton-neutron pairing strengths covering the
typical range of values that describe well β- and two-neutrino ββ-decay data. Our results indicate good linear
correlations between 0νββ and both DGT and M1M1 matrix elements. Together with future measurements of
DGT and M1M1 transitions, these correlations could help constrain the values of the 0νββ-decay nuclear matrix
elements.
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I. INTRODUCTION

Observing neutrinoless double-beta (0νββ) decay, a hy-
pothetical nuclear weak decay in which two neutrons in an
atomic nucleus transform into two protons and only two elec-
trons are emitted—we assume the energetically favored β−β−
mode—would be a clear signal of physics beyond the standard
model of particle physics [1,2]. Unlike any standard-model
process, 0νββ decay changes the number of leptons and of
matter minus antimatter particles by two units. It also necessi-
tates neutrinos to be Majorana particles, in other words their
own antiparticles. The potential to answer these fundamental
physics questions drives extensive searches of 0νββ decay
worldwide [3–14].

The half-life of 0νββ decay—the observable the exper-
iments are after—depends quadratically on nuclear matrix
elements (NMEs) which are currently poorly known [2]. Fur-
thermore, the hadronic two-body currents needed to reproduce
experimental β-decay rates [15–17] can suppress 0νββ-decay
NMEs, too [18,19]. On the other hand, Refs. [20,21] introduce
a new short-range term to the 0νββ-decay NMEs, which leads
to a significant enhancement of the 48Ca NME [22], and the
impact in heavier ββ emitters may be similar [23].

Nuclear structure measurements, such as two-nucleon pro-
cesses, can be a valuable tool to shed light on the values
of 0νββ-decay NMEs [2]. Good examples are nucleon-
pair transfer reactions [24,25] and two-neutrino double-beta
(2νββ) decay, the standard-model-allowed ββ decay in which
two antineutrinos are emitted alongside the electrons. The
latter process has readily been measured in about a dozen
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nuclei [26], and experimental half-lives are typically used
to fix the proton-neutron pairing in many-body calculations
using the proton-neutron quasiparticle random-phase approx-
imation (pnQRPA) framework [27–32]. Very recently, good
correlations have been found between 2νββ- and 0νββ-decay
NMEs [19,33,34]. These correlations allowed the prediction
of 0νββ-decay NMEs with theoretical uncertainties based on
systematic nuclear shell-model (NSM) and pnQRPA calcula-
tions and measured 2νββ-decay half-lives.

Similar studies have also been performed for other two-
nucleon processes not yet measured. Double-charge-exchange
reactions have raised a lot of interest as probes of 0νββ-
decay [35]. These reactions open the possibility to access
double Gamow-Teller (DGT) resonances and transitions to
individual states [36–38]. In fact, a very good linear corre-
lation has been observed in the NSM between 0νββ-decay
and DGT NMEs to the ground state of the final nucleus [39].
The same correlation also holds for NMEs obtained with
energy-density-functional (EDF) theory [40]. Moreover, cal-
culations combining the NSM with variational Monte Carlo
methods to capture additional short-range correlations via the
generalized contact formalism [41], and NMEs obtained with
projected Hartree-Fock-Bogoliubov theory [42] also agree
with the same 0νββ-DGT correlation. Ab initio studies using
variational Monte Carlo, the no-core shell model, the in-
medium generator coordinate method, and the valence-space
in-medium similarity renormalization group (VS-IMSRG) ap-
proaches are also consistent with the linear correlation, which
they find to be somewhat weaker [41,43,44]. NMEs calculated
with the interacting boson model (IBM-2) are also correlated
[45], but with a slope twice the one originally found for the
NSM [46,47]. In contrast, no correlation has been observed
in the pnQRPA framework so far [48,49]. The absence of
correlation has been related to the radial distribution of the
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DGT matrix elements [39] and to the spin-isospin SU(4) sym-
metry [31]. Very recently, in Ref. [49], the lack of correlation
was attributed to the markedly different dependencies on the
particle-hole and isovector particle-particle interactions of the
DGT and 0νββ-decay NMEs.

Another possibility to shed light on 0νββ-decay NMEs is
to study second-order electromagnetic transitions, which are
connected to ββ-decays through isospin symmetry [50,51].
Recently, the relation between 0νββ- and double-gamma
(γ γ ) decays has been studied in the NSM framework [52]. To
favor the comparison, the authors calculated double magnetic-
dipole (M1M1) decays in final ββ nuclei, in particular from
an initial state which is the double isobaric analog of the initial
ββ nuclei to the final ground state of the nucleus. Reference
[52] found a good linear correlation between 0νββ-decay and
γ γ -decay NMEs, with some dependence on the mass of the
nuclei involved.

In this work, we investigate correlations between 0νββ de-
cay, DGT and M1M1 transitions using the spherical pnQRPA
framework performing systematic calculations with different
proton-neutron pairing strengths like in Ref. [19]. The study
comprises nine ββ-decay triplets, corresponding to the decays
of 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 124Sn, 128Te, 130Te, and
136Xe. We include the effect of two-body weak currents [18]
and the short-range contribution [20,21] into our 0νββ-decay
NMEs.

II. NUCLEAR TRANSITIONS

A. Neutrinoless double-beta decay

Assuming that light Majorana-neutrino exchange is the
dominant 0νββ-decay mechanism, we can write the half-life
of the decay as

[
t0ν
1/2

]−1 = G0νg4
A

∣∣M0ν
L + M0ν

S

∣∣2
(

mββ

me

)2

, (1)

where G0ν is a phase-space factor for the final-state leptons
[53], M0ν

L and M0ν
S are the long- and short-range components

of the 0νββ NME, respectively, and gA = 1.27 is the axial
coupling constant. The term mββ = ∑

j=light (Ue j )2mj charac-
terizes the lepton-number violation through the two additional
physical Majorana phases. U is the neutrino mixing matrix
and mj , me the neutrino and electron masses, respectively. The
standard long-range NME can be decomposed as

M0ν
L = M0ν

GT − M0ν
F + M0ν

T , (2)

where M0ν
GT, M0ν

F , and M0ν
T are the Gamow-Teller, Fermi, and

tensor parts.
In the pnQRPA framework, the matrix elements M0ν

K ,
K = F, GT, T, are computed without resorting to the closure
approximation:

M0ν
K =

∑
Jπ k1k2J

∑
pp′nn′

(−1) jn+ jp′ +J+J Ĵ
{

jp jn J
jn′ jp′ J

}

× (pp′ : J ||HK (r, Ek ) f 2
SRC(r)OKτ−

1 τ−
2 ||nn′ : J )

× (0+
f ||[c†

p′ c̃n′ ]J ||Jπ
k1

)
〈
Jπ

k1

∣∣Jπ
k2

〉
(Jπ

k2
||[c†

pc̃n]J ||0+
i ), (3)

where Ĵ = √
2J + 1 and r = |r1 − r2| is the distance be-

tween the neutrons (n, n′) which decay into protons (p, p′).
Nucleons populate single-particle orbitals with total angular
momentum jn, jp, and the isospin operator τ− brings neutrons
into protons. k1 (k2) labels the different pnQRPA solutions for
a given total angular-momentum-parity Jπ based on the final
(initial) nucleus of the decay, and Ek is their average energy.

For the long-range NME, the operators OK are the Fermi,
Gamow-Teller, and tensor operators OF = 1, OGT = σ1 · σ2,
and OT = 3[(σ1 · r̂12)(σ2 · r̂12)] − σ1 · σ2. The neutrino po-
tential HK is defined as

HK (r, Ek ) = 2R

πg2
A

∫ ∞

0

phK (p2) jλ(pr)d p

p + Ek − (Ei + E f )/2
, (4)

where Ei, E f denote the energies of the initial and final nuclei,
the function fSRC takes into account short-range correlations
and jλ is the spherical Bessel function with λ = 0 for K =
F, GT and λ = 2 for K = T. The radius R = 1.2A1/3, where A
is the nuclear mass number, is introduced to make the NMEs
dimensionless. The h functions contain the weak couplings
and depend on the momentum transfer p. The dominant GT
term reads

hGT = g2
A(p2) − gA(p2)gP(p2)p2

3mN
+ g2

P(p2)p4

12m2
N

+ g2
M(p2)p2

6m2
N

.

(5)

The axial and magnetic couplings gA(p2) and gM(p2) include
the usual dipole form factor with axial-vector [54] and vector
[55] masses, correspondingly. The pseudoscalar coupling is
gP(p2) = 2mNgA(p2)(p2 + m2

π )−1, with mN and mπ the nu-
cleon and pion masses. The other h terms have similar forms
and are given in Ref. [56].

For the short-range NME, in the pnQRPA we sum over
intermediate states in Eq. (3) with the operator OS = OF and
the neutrino potential

HS (r) = 2R

πg2
A

∫
j0(pr)hS(p2)p2d p, (6)

where hS(p2) = 2gNN
ν e−p2/(2�2 ) with Gaussian regulator scale

� and coupling gNN
ν taken from the charge-independence-

breaking terms of different Hamiltonians as in Ref. [23].
This assumes that the two relevant couplings entering
charge-independence breaking are equal, a relatively good
approximation supported by quantum chromodynamics calcu-
lations using dispersion relations [57,58] and large number of
colors [59]. More definitive gNN

ν determinations obtained with
lattice quantum chromodynamics techniques are in progress
[60,61].

In addition, we approximate chiral-effective-field-theory
two-body weak currents (2BCs) as effective one-body op-
erators via normal ordering with respect to a spin-isospin
symmetric Fermi gas reference state [18,62–64]. This leads
to the replacement

gA(p2, 2b) → gA(p2) + δa(p2), (7)

gP(p2, 2b) → gP(p2) − 2mN

p2
δP

a (p2), (8)
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with two-body functions δa(p2), δP
a (p2) dependent on the

Fermi-gas density ρ and chiral-effective-field-theory low-
energy couplings. We take the same values for these as in
Ref. [64]. As for β decay, normal-ordered currents approxi-
mate well the full two-body results [16].

The one-body transition densities between the initial (final)
0+ ground state and a given Jπ

k state in the intermediate odd-
odd nucleus are obtained from

(Jπ
k2
||[c†

pc̃n]J ||0+
i ) = Ĵ

[
upvnX Jπ k2

pn + vpunY
Jπ k2
pn

]
,

(0+
f ||[c†

p′ c̃n′ ]J ||Jπ
k1

) = Ĵ
[
v̄p′ ūn′ X̄ Jπ k1

p′n′ + ūp′ v̄n′Y Jπ k1
p′n′

]
, (9)

where v (v̄) and u (ū) are the BCS occupation and vacancy
amplitudes of the initial (final) even-even nucleus. The X (X̄ )
and Y (Ȳ ) are the forward- and backward-going amplitudes
emerging from the pnQRPA calculation based on the initial
(final) nucleus. The overlap between the two sets of Jπ states
〈Jπ

k1
|Jπ

k2
〉 can be written as

〈
Jπ

k1

∣∣Jπ
k2

〉 =
∑

pn

[
X

Jπ
k1

pn X̄
Jπ

k2
pn − Y

Jπ
k1

pn Ȳ
Jπ

k2
pn

]
. (10)

B. Two-neutrino double-beta decay

The 2νββ-decay half-life can be written in the form[
t2ν
1/2

]−1 = g4
AG2ν |M2ν |2, (11)

where G2ν is the phase-space factor [53]. Note that, instead
of gA, an effective coupling geff

A = qgA is often introduced,
where q is a quenching factor needed to reproduce measured
2νββ rates. Here we use the bare gA value with q = 1 unless
otherwise specified. M2ν is the 2νββ-decay NME:

M2ν = M2ν
GT + M2ν

F , (12)

with Gamow-Teller and Fermi parts. Because isospin is a good
quantum number in nuclei, the 2νββ-decay Fermi matrix
element should approximately vanish. Thus, in the pnQRPA
calculations we force M2ν

F ≈ 0 in order to restore isospin
symmetry [30]. The remaining NME is calculated as

M2ν
GT =

∑
k1,k2

(
0+

f

∣∣∣∣∑
a

τ−
a σa

∣∣∣∣1+
k1

)〈
1+

k1

∣∣1+
k2

〉
× (

1+
k2

∣∣∣∣ ∑
b

τ−
b σb

∣∣∣∣0+
i

)/
Dk, (13)

where Dk = [Ek − (Ei + E f )/2]/me. The overlap 〈1+
k1
|1+

k2
〉 is

defined in Eq. (10). In the pnQRPA, one-body matrix elements
for an operator O with rank L, like those in Eq. (13) where
OL = σ, can be obtained from the general formulas

(
Jπ

k2

∣∣∣∣∑
a

τ−
a OL,a

∣∣∣∣0+
i

) = δLJ
1

L̂

∑
pn

(p||OL||n)

× (
Jπ

k2

∣∣∣∣[c†
pc̃n

]
J

∣∣∣∣0+
i

)
, (14)

(
0+

f

∣∣∣∣∑
a

τ−
a OL,a

∣∣∣∣Jπ
k1

) = δLJ
1

L̂

∑
p′n′

(p′||OL||n′)

× (
0+

f

∣∣∣∣[c†
p′ c̃n′

]
J

∣∣∣∣Jπ
k1

)
. (15)

For completeness, the (vanishing) Fermi part of the 2νββ-
decay NME is given by

M2ν
F =

(
gV

gA

)2 ∑
k1,k2

(
0+

f

∣∣∣∣ ∑
a

τ−
a

∣∣∣∣0+
k1

)〈
0+

k1

∣∣0+
k2

〉
× (

0+
k2

∣∣∣∣∑
b

τ−
b

∣∣∣∣0+
i

)/
Dk, (16)

with the vector coupling gV = 1.0 and Dk depending now
on the energies of the intermediate 0+ states. The one-body
NMEs can again be obtained from Eqs. (14) and (15) with
OL = 1.

C. Beta decay and electron capture

The log f t value for a β decay or an electron capture (EC)
can be written as [65]

log f t = log( f0t1/2[s]) = log

(
κ

BF + BGT

)
, (17)

where κ = 2π2h̄7 ln 2/(m2
eG2

F ) ≈ 6289 s [66] and BF and BGT

are Fermi and Gamow-Teller reduced transition probabilities:

BF = g2
V

2Ji + 1
|MF|2, (18)

BGT = g2
A

2Ji + 1
|MGT|2, (19)

where Ji is the angular momentum of the initial state and the
nuclear matrix elements are defined as

MF = (
J

π f

f

∣∣∣∣∑
a

τ−
a

∣∣∣∣Jπi
i

)
, (20)

MGT = (
J

π f

f

∣∣∣∣∑
a

τ−
a σa

∣∣∣∣Jπi
i

)
, (21)

where πi = π f , since the allowed F and GT transitions are
parity-conserving. All transitions considered in the present
work involve a nucleus 0+ ground state. In that case, the
required one-body matrix elements are given by Eqs. (14) and
(15).

D. Double Gamow-Teller transitions

We define the DGT NME as

MDGT = −(0+
f ||

∑
a,b

[σaτ
−
a ⊗ σbτ

−
b ]0||0+

i ), (22)

that is proportional to the 2νββ-decay NME between the
same states calculated in the closure approximation [67]:

MDGT = 1√
3

M2ν
GTcl, (23)

M2ν
GTcl = (0+

f ||
∑
a,b

τ−
a τ−

b σa · σb||0+
i ). (24)

Note that, in contrast with the definition in Ref. [39], here we
can have positive or negative MDGT values.
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In the pnQRPA framework, the closure 2νββ-decay NME
is obtained as [31]

M2ν
GTcl =

∑
k1,k2

(
0+

f

∣∣∣∣ ∑
a

τ−
a σa

∣∣∣∣1+
k1

)〈
1+

k1

∣∣1+
k2

〉
× (

1+
k2

∣∣∣∣∑
b

τ−
b σb

∣∣∣∣0+
i

)
. (25)

Combining Eqs. (23) and (25) we arrive at the expression for
the DGT matrix element:

MDGT = 1√
3

∑
k1,k2

(
0+

f

∣∣∣∣∑
a

τ−
a σa

∣∣∣∣1+
k1

)〈
1+

k1

∣∣1+
k2

〉
× (

1+
k2

∣∣∣∣∑
b

τ−
b σb

∣∣∣∣0+
i

)
. (26)

Likewise, the Fermi NME in the closure approximation is
calculated as

M2ν
Fcl =

(
gV

gA

)2 ∑
k1,k2

(
0+

f

∣∣∣∣∑
a

τ−
a

∣∣∣∣0+
k1

)〈
0+

k1

∣∣0+
k2

〉
× (

0+
k2

∣∣∣∣∑
b

τ−
b

∣∣∣∣0+
i

)
. (27)

E. Double-magnetic-dipole gamma decay

The magnetic dipole (M1) operator is defined as

M1 = μN

√
3

4π

A∑
a=1

(
gl

i�i + gs
isi

)
, (28)

where μN is the nuclear magneton, and the neutron and pro-
ton spin and orbital g factors are gn

s = −3.826, gp
s = 5.586,

gn
l = 0, and gp

l = 1 (note that using effective g factors does not
affect much the correlation with 0νββ-decay NMEs in NSM
calculations [52]). Furthermore, s = 1

2σ is the spin operator
and � the orbital-angular-momentum operator. For the most
probable case of two photons emitted with the same energy,
the NME for double-magnetic dipole (M1M1) transition can
be written as [52]

Mγ γ (M1M1) =
∑

k

(0+
f ||M1||1+

k )(1+
k ||M1||0+

i )

Ek − (Ei + E f )/2
. (29)

We study the γ γ − M1M1 transition from the double-
isobaric-analog state (DIAS) of the ground state of a ββ

emitter to the ground state of the final nucleus of a ββ-decay
triplet. This DGT transition can be related to the ground-state-
to-ground-state ββ decay, since in both cases the isospin of
the initial and final states are related by Ti = Tf + 2. More-
over, for the same operator both processes share a common
reduced matrix element in isospin space, with nonreduced ma-
trix elements related by a factor α = 1

2

√
(2 + Tf )(3 + 2Tf ),

given by the Wigner-Eckart theorem [68]. Even though the
operators are different, Ref. [52] finds a good correlation
between M1M1 transitions from the DIAS (multiplied by α)
and 0νββ-decay NMEs.

DIAS are not well described in the QRPA formalism be-
cause it does not conserve isospin symmetry. Alternatively,
we obtain αMγ γ by its isospin-rotated equivalent, calculating

the M1M1 decays as charge-changing transitions between the
different isotopes (quite like 2νββ decay) in the pnQRPA
formalism as

αMγ γ (M1M1) = μ2
N

3

4π

∑
k1,k2

〈
1+

k1

∣∣1+
k2

〉
Ek − (Ei + E f )/2

× (
0+

f

∣∣∣∣∑
a

τ−
a

(
gT =1

l �a + gT =1
s sa

)∣∣∣∣1+
k1

)
× (

1+
k2

∣∣∣∣∑
b

τ−
b

(
gT =1

l �b + gT =1
s sb

)∣∣∣∣0+
i

)
,

(30)

where gT =1
l = 1

2 (gl
n − gl

p) and gT =1
s = 1

2 (gs
n − gs

p) are the
isovector (T = 1) angular-momentum and spin g factors. The
one-body NMEs can be obtained from Eqs. (14) and (15) by
substituting OL = gT =1

l � + gT =1
s s. Our calculation therefore

neglects the possible mixing of different isospin components
in the initial DIAS state, a common limitation with the NSM
study [52].

III. pn QUASIPARTICLE RANDOM-PHASE
APPROXIMATION

We use the spherical proton-neutron QRPA in large no-core
single-particle bases comprising 18 orbitals for A = 76, 82
systems, 25 orbitals for A = 96, 100 systems, and 26 orbitals
for A = 116,124,128,130, and 136 systems. The same orbitals
are used for both protons and neutrons. These bases span all
the orbits from the n = 0 oscillator major shell up to at least
two oscillator major shells above the respective Fermi level
for protons and neutrons. Single-particle energies are obtained
by solving the radial Schrödinger equation for a Coulomb-
corrected Woods-Saxon potential optimized for nuclei close
to β stability [69]. The resulting proton and neutron single-
particle energies of the orbitals close to the Fermi surfaces
have been slightly modified in order to better reproduce the
low-lying spectra of the neighboring odd-mass nuclei. The
single-particle bases correspond to those used in previous
0νββ-decay and ordinary-muon-capture studies [70,71], apart
from the A = 124 system not included in these works.

The quasiparticle spectra, needed in the pnQRPA diagonal-
ization, are obtained by solving the BCS equations for protons
and neutrons, separately. We use the two-body interaction
derived from the Bonn-A one-boson exchange potential [73]
and fine-tune it by adjusting the proton and neutron pairing pa-
rameters to the phenomenological pairing gaps extracted from
proton and neutron separation energies. The resulting pairing
gaps and pairing strengths are tabulated in Refs. [70,71] ex-
cept for the A = 124 system where

g(p)
pair = 0.858, g(n)

pair = 0.836 for 124Sn,

g(p)
pair = 0.824, g(n)

pair = 0.812 for 124Te . (31)

The residual Hamiltonian for the pnQRPA calculation con-
tains two adjustable factors: the particle-hole parameter gph

scaling the particle-hole channel, and the particle-particle pa-
rameter gpp scaling the particle-particle channel. We fix gph

to reproduce the centroid of the Gamow-Teller giant reso-

044316-4



CORRELATIONS BETWEEN NEUTRINOLESS … PHYSICAL REVIEW C 107, 044316 (2023)

TABLE I. Values of gT =1
pp adjusted so that the nonclosure (sec-

ond column) or closure (third column) Fermi 2νββ-decay NME
vanishes, and values of gT =0

pp adjusted to reproduce the measured
2νββ-decay half-life [26] with 1.0 � geff

A � 1.27 (fourth column)
or so that the closure Gamow-Teller NME vanishes (fifth column).
Values in brackets indicate that adjusting to the measured half-life is
not possible (see text).

Nucleus gT =1
pp gT =0

pp

M2ν
F = 0 M2ν

Fcl = 0 M2ν
GT = M2ν

expt M2ν
GTcl = 0

76Ge 0.96 0.96 0.83–0.85 0.83
82Se 0.95 0.95 0.82–0.83 0.81
96Zr 0.92 0.91 (0.83) 0.83
100Mo 0.91 0.91 0.87–0.89 0.80
116Cd 0.82 0.82 0.82–0.85 0.87
124Sn 0.85 0.83 (0.75) 0.71
128Te 0.87 0.87 0.75–0.76 0.72
130Te 0.86 0.85 0.73–0.74 0.70
136Xe 0.86 0.85 0.67–0.69 0.68

nance in calculations for the 1+ channel. The particle-particle
parameter is known to have a strong influence on nuclear
operators driven by the nuclear spin [29,70,74] and requires
a closer look.

Traditionally, gpp has been adjusted to 2νββ-decay data,
whenever possible. This method has later been replaced by
the so-called partial isospin-restoration scheme [30], where
gpp is divided into isoscalar (T = 0) and isovector (T = 1)
parts, which scale the T = 0 and T = 1 particle-particle chan-
nels of the pnQRPA matrix, accordingly. The T = 1 part,
gT =1

pp , is adjusted so that the Fermi part of the 2νββ-decay
NME vanishes, restoring isospin symmetry. The remaining
isoscalar part, gT =0

pp , is then independently fixed to reproduce
the experimental 2νββ-decay half-life for a given value of the
effective axial-vector coupling geff

A . More recently, Ref. [31]
has proposed to restore the spin-isospin SU(4) symmetry by
forcing M2ν

GTcl ≈ 0 by adjusting the value of gT =0
pp , and to fix

gT =1
pp so that M2ν

Fcl ≈ 0.
Table I presents the gpp values we obtained from the

different adjustment methods. For the cases where the 2νββ-
decay half-life has not been measured (124Sn) or cannot be
reproduced by our pnQRPA setup (96Zr), we give a value
at a safe distance (≈0.01) before the 2νββ NME becomes
unstable [29,74,75]. Not in all cases the same value of gT =1

pp

gives both M2ν
F ≈ 0 and M2ν

Fcl ≈ 0—most notably for 124Sn
the two values differ by 0.02. The differences are due to the

energy denominator in the nonclosure NME, which mitigates
high-energy contributions. For gT =0

pp the variation between the
two different adjustment methods can be even more signifi-
cant (e.g., for 100Mo and 130Te). This is again partly because
the energy denominator in M2ν

GT, but mainly due to the fact
that restoring SU(4) does not reproduce exactly 2νββ-decay
half-lives [31].

Alternatively we can adjust gT =0
pp to measured single-β

decays or ECs [74,76–79]. Table II lists experimental log f t
values for a set of β− and EC Gamow-Teller transitions
together with the corresponding NMEs and adjusted gT =0

pp
values. We vary the effective value of the axial coupling
1.0 � geff

A � 1.27. Note that the β− and EC NMEs behave
in opposite ways as function of gpp: while β−-decay NMEs
decrease, EC ones increase with higher values of gT =0

pp [29,74].
Thus, reproducing β-decay (EC) data requires large (small)
gT =0

pp values, see Table II.
It is noteworthy that in all the above-mentioned adjustment

methods gT =0
pp and geff

A are strongly correlated. Ideally, the
same choice of parameter set (geff

A , gT =0
pp ) would reproduce

all three observables. However, the values presented in Ta-
bles I and II suggest that this is not the case; the values of
gT =0

pp needed to reproduce 2νββ-decay data normally fail to
reproduce β− or EC data and vice versa. This shortcoming of
the pnQRPA framework has already been pointed out in pre-
vious analyses, which indicate that reproducing both EC and
β-decay log f t values and ββ-decay half-lives with a given
gpp parameter typically requires different effective gA values
for β and ββ decays [75,80]. Alternatively, to simultaneously
reproduce all three observables often requires small gpp and
effective gA values [29].

To take this uncertainty into account, in the present study
we consider the conservative range 0.6 � gT =0

pp � 0.8 (except
for 124Sn since gT =0

pp = 0.8 is beyond the pnQRPA break-
down [29,65,74,75]) and use the bare value gA = 1.27. For
the isovector part gT =1

pp we use the value that restores isospin
symmetry: M2ν

F = 0 (column two in Table I). In addition, we
include the results obtained with gpp adjusted via the partial
isospin-restoration scheme (columns two and four in Table I),
the most common way to adjust gT =0

pp in recent 0νββ-decay
studies [30,81].

IV. CORRELATION BETWEEN DOUBLE
GAMOW-TELLER AND 0νββ-DECAY

NUCLEAR MATRIX ELEMENTS

First, we study the relation between 0νββ decay and DGT
transitions. Figure 1 shows DGT NMEs against 0νββ-decay

TABLE II. Measured log f t values for Gamow-Teller transitions involving nuclei in ββ triplets together with the corresponding NME
(geff

A MGT) and adjusted gT =0
pp values. The ranges come from variation of the axial-vector coupling 1.0 � geff

A � 1.27.

A Decay Type log f texpt [72] geff
A MGT gT =0

pp

82 Rb(1+
gs ) → Kr(0+

gs ) EC 4.576 0.708 0.38–0.46
100 Tc(1+

1 ) → Mo(0+
gs ) EC 4.3 0.972 0.50–0.63

100 Tc(1+
1 ) → Ru(0+

gs ) β− 4.598 0.690 0.88–0.89
128 I(1+

1 ) → Xe(0+
gs ) β− 6.061 0.128 0.73–0.75

044316-5



LOTTA JOKINIEMI AND JAVIER MENÉNDEZ PHYSICAL REVIEW C 107, 044316 (2023)

FIG. 1. 0νββ-decay NMEs (scaled by A−1/6) vs double Gamow-
Teller NMEs, obtained with different many-body methods (see text).
The QRPA results include NMEs obtained in the present work (solid
diamonds) and those of Ref. [48] (open diamonds). Only the former
are used for the linear fit (solid blue line) and 68% and 95% CL
prediction bands (dashed and dotted blue lines, respectively).

NMEs. To be consistent with earlier calculations performed
in the NSM [39] (black crosses), EDF [40] (green triangles),
IBM-2 [46] (brown squares), and VS-IMSRG [43,44] (red
circles), we do not include the contributions from 2BCs or
the short-range operator to the 0νββ-decay NMEs. All results
cover only isospin-changing transitions. We compensate the
mass-dependence of the 0νββ-decay NMEs, coming on the
one hand from R in Eq. (4) and on the other hand from
the two-body operators evaluated in the harmonic-oscillator
basis, with a scaling factor A−1/6 as in Ref. [47]. Note
that in the VS-IMSRG, however, a better correlation is ob-
served when scaling the 0νββ-decay NMEs by a factor
A−1/3 [43,44], because this method does not depend on the
harmonic-oscillator basis. The results obtained in the present
work (solid blue diamonds) cover pnQRPA calculations with
0.6 � gT =0

pp � 0.8 as well as results obtained by adjusting
gT =0

pp to measured 2νββ-decay half-lives. Figure 1 also in-
cludes the pnQRPA NMEs calculated in Ref. [48] (open blue
diamonds) with gpp’s adjusted to observed 2νββ decays (these
are not used in the fit), which correspond to the “QRPA”
NMEs shown in Fig. 4 of Ref. [39]—however here we do
not take their absolute value. These results differ from our
NMEs obtained with gpp adjusted to 2νββ decay because of
the different two-body interaction, single-particle basis and
values of the gph, gT =1

pp parameters used.
Figure 1 shows a good linear correlation between the

pnQRPA 0νββ-decay and DGT NMEs (solid blue line)

MDGT = −1.295 + 0.645A−1/6M0ν
L (1b), (32)

with 68% and 95% confidence-level (CL) prediction bands
shown in Fig. 1 as the shaded regions between dashed and

FIG. 2. 0νββ-decay NMEs (scaled by A−1/6) vs double Gamow-
Teller NMEs, obtained with different gT =0

pp values. 0νββ-decay
NMEs include two-body currents and the short-range NME. Black
diamonds correspond to gT =0

pp values adjusted to measured 2νββ

decays with gA = 1.27. Blue lines show the best linear fit (solid) and
68% and 95% CL prediction bands (dashed and dotted).

dotted lines, respectively. The best linear fit has a slope sim-
ilar to that observed in the other approaches but is shifted
to the right compared with them. Also, the pnQRPA re-
sults are more spread than in other many-body methods—the
correlation coefficient is r = 0.85. While Fig. 1 corre-
sponds to gA = 1.27, similar correlations for effective NMEs
M ′0ν = (geff

A /gA)2M0ν (geff
A ) can be obtained approximately by

multiplying M0ν by (geff
A /gA)2.

The difference between the pnQRPA correlation and the
one common to other many-body methods can be partly
explained by the different role of the 1+ multipoles in the
0νββ-decay NME. For instance, in the NSM 1+ states ac-
count for ≈10%–30% of the total NME [82–85]. In contrast,
in the pnQRPA the 1+ contribution is normally below 10% of
the total NME, and depending on the value of gpp the relative
sign of the 1+ contribution and the total NME can be different
[81,86]. Ignoring other multipoles, and comparing just the
contribution of 1+ states to the NMEs, we observe a very clear
correlation (see Fig. 11 in Appendix A). Also, the correlation
observed in the present study, based on the spherical pnQRPA,
may change if nuclear deformation is taken into account in the
deformed QRPA, which predicts generally smaller NMEs for
0νββ decay [87,88]. Thus, the correlation could potentially
move towards the one observed in other models.

Figure 2 shows the relation between 0νββ-decay and DGT
NMEs when we add 2BCs and the short-range term into
the 0νββ-decay NMEs. The results correspond to the central
values of the NMEs considering the range coming from the
uncertainty of the 2BCs and the coupling of the contact term
[19]. To study the correlation more closely, Fig. 2 separates
the results obtained with different values of gT =0

pp . For 0.6 �

044316-6



CORRELATIONS BETWEEN NEUTRINOLESS … PHYSICAL REVIEW C 107, 044316 (2023)

FIG. 3. Double Gamow-Teller (upper panel) and 0νββ-decay
(lower panel) NMEs for different values of gT =0

pp as a function of the
excitation energy of the intermediate states. In the lower panels, the
dashed lines show the contribution from 1+ states.

gT =0
pp � 0.8, we observe a linear correlation

MDGT = −1.336 + 0.613A−1/6
[
M0ν

L (1b + 2b) + M0ν
S

]
,

(33)

very similar to the one obtained without 2BCs and the short-
range NME, because these two effects largely cancel each
other [19]. Nonetheless the correlation coefficient of the fit
is worsened to r = 0.67. This reduction is more marked than
in the corresponding correlation between 0νββ- and 2νββ-
decay NMEs, which changes from r = 0.84 to r = 0.80 [19].

The relatively small correlation coefficients are related to
the small DGT NMEs, especially for gT =0

pp fixed to mea-
sured 2νββ data. Figure 2 shows that these DGT NMEs are
typically close to zero or negative, preventing any visible
correlation between NMEs. The upper panel of Fig. 3 inves-
tigates this further by showing the running sum of the DGT
NME for 76Ge and 100Mo. These very small NMEs (black
lines) result from a strong cancellation in the contributions
of low- and high-energy intermediate states. The cancellation
is much milder for the red and blue lines, which show the
running sums obtained with gT =0

pp values 0.03 units below and
above, chosen to stay below the pnQRPA breakdown. In these
two cases, MDGT varies by ≈0.2 in both nuclei. Even though
the energy distributions in these two nuclei look quite differ-
ent, there are strong negative cancellations at around 10–15
MeV in both cases, a phenomenon observed in all studied
nuclei and also noticed previously [31,48]. These negative
contributions in the case of 76Ge consist mainly of transitions
2n0 f7/2 → 2p0 f7/2 and n0g9/2n0g7/2 → p0g9/2 p0g7/2. There
are especially large negative contributions for 100Mo calcu-
lated with gT =0

pp = 0.89 adjusted to t2ν
1/2, see the trend in Fig. 3

FIG. 4. Radial distributions of M0ν
L (1b) (upper panel) and MDGT

(lower panel) in 82Se for different gT =0
pp values.

for increasing gT =0
pp values. In fact, the corresponding NMEs

lie below the prediction bands in Figs. 1 and 2, worsening the
correlation coefficient.

Figure 3 also highlights that decreasing the value of gT =0
pp

mitigates the cancellations observed at the 10–15 MeV region
and slightly increases the low-energy contribution. This com-
mon feature for all studied nuclei improves the correlations.
The lower panel of Fig. 3 shows the running sums for M0ν

obtained with the same values of gT =0
pp . Dashed lines indicate

the contribution coming from transitions through 1+ interme-
diate states and solid lines the total NME. M0ν is much less
dependent on the value of gT =0

pp than MDGT, while the behavior
of the 1+ contribution, constituting a minor fraction of the
total NME, behaves quite like MDGT in the upper panel.

The origin of the correlation between M0ν and MDGT was
first attributed to the relative dominance of short-distance
physics in both processes [39], which would lead to a cor-
relation between the two NMEs since they share the same
spin-isospin structure [89,90]. We investigate this by calcu-
lating the radial NME distributions C0ν (r) and CDGT(r) which
satisfy

M0ν
L (1b) =

∫ ∞

0
C0ν (r)dr, (34)

MDGT =
∫ ∞

0
CDGT(r)dr, (35)

and are defined as

C0ν (r) = C0ν
GT(r) − C0ν

F (r) + C0ν
T (r), (36)

C0ν
K (r)=

∑
k,ab

(0+
f ||OK

abτ
−
a τ−

b HK (rab) f 2
SRC(rab)δ(r − rab)||0+

i ),

(37)
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FIG. 5. 0νββ-decay NME (scaled by A−1/6) vs γ γ -M1M1
NME, comparing present QRPA results to NSM ones from Ref. [52].
Blue lines show the best linear fit (solid) and 68% and 95% CL
prediction bands (dashed and dotted) for the QRPA results.

and

CDGT(r) = 1√
3

∑
k,ab

(0+
f ||σa · σbτ

−
a τ−

b δ(r − rab)||0+
i ). (38)

Figure 4 shows the radial distributions of the 0νββ-decay
(without the short-range NME or 2BCs) and DGT NMEs in
82Se. The results correspond to gT =1

pp adjusted so that M2ν
F = 0

(see Table I) and different gT =0
pp values. For gT =0

pp = 0.81, we
have MDGT ≈ 0: the positive short-range contribution gets
canceled by the negative long-distance tail. These cancella-
tions due to long-range contributions have also been shown to
deteriorate the linear correlation between NMEs in ab initio
calculations [43]. For smaller gT =0

pp values, however, Fig. 4
shows that the short-range bump slightly increases, while the
negative tail gets notably less prominent, so that short-range
contributions are dominant as in the 0νββ-decay distributions
computed with the same values of gT =0

pp . A linear correlation
can then be expected in these cases. The C0ν distribution is
much less dependent on gT =0

pp due to the minor role of the 1+
multipole. We note that even though the DGT NME involves
only intermediate 1+ states, the radial distribution gets con-
tributions from all intermediate multipoles due to δ(r − rab)
in the definition of CDGT. However, when integrated over r,
contributions coming from multipoles other than 1+ vanish
[48].

V. CORRELATION BETWEEN γγ AND 0νββ DECAY
NUCLEAR MATRIX ELEMENTS

Figure 5 shows the relation between γ γ -M1M1 and long-
range 0νββ-decay NMEs in the same manner as in Fig. 1.
Again, we observe a good linear correlation when including
results for different values of gT =0

pp . The best fit is given by

A1/6αMγ γ = −1.265 + 0.557M0ν
L (1b), (39)

FIG. 6. 0νββ-decay NMEs (scaled by A−1/6) vs γ γ -M1M1
NMEs, obtained with different gT =0

pp values. 0νββ-decay NMEs in-
clude two-body currents and the short-range term. Black diamonds
correspond to gT =0

pp values adjusted to measured 2νββ decays with
gA = 1.27. Blue lines show the best linear fit (solid) and 68% and
95% CL prediction bands (dashed and dotted).

with correlation factor r = 0.88. Hence, in the pnQRPA
framework the correlation between γ γ and 0νββ-decay
NMEs is better than the one between DGT and 0νββ-decay
NMEs, contrary to the NSM (see Refs. [39] and [52]). This is
because in the case of M1M1 transitions the energy denom-
inator in Eq. (30) prevents the strong cancellations between
low- and high-energy intermediate-state contributions that
can occur in DGT transitions. In fact, the correlation is also
slightly stronger than the one observed between pnQRPA
0νββ- and 2νββ-decay NMEs [19].

Figure 5 also compares the correlation found in the present
work with the one found in the NSM [52]. While both many-
body methods indicate a correlation between the NMEs, each
framework finds a different one: the slope of the linear fit in
the pnQRPA is about half the one observed in the NSM. Also,
the pnQRPA best fit is shifted to the right, however not as
prominently as in Fig. 1. Again, this could be due to the differ-
ent role of 1+ and other multipoles in both methods and might
change if deformation would be included into the pnQRPA
calculations. If only the 1+ contribution to the pnQRPA
0νββ-decay NMEs is included, the situation resembles that
of the DGT transitions and 1+ 0νββ-decay multipoles, the
pnQRPA correlation lying on the left side from the NSM one
(see Fig. 12 in Appendix A). However, the correlation is much
weaker in this case due to the orbital angular momentum op-
erator and the energy denominator involved in the γ γ -M1M1
NMEs.

Figure 6 shows the correlation after adding 2BCs and the
short-range term into the 0νββ-decay NMEs. We find the best
fit

A1/6αMγ γ = −0.732 + 0.583
[
M0ν

L (1b + 2b) + M0ν
S

]
, (40)
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FIG. 7. γ γ -M1M1 NME (tot) decomposed into spin (ss), orbital
(ll), and interference (ls) terms, for different gT =0

pp values.

with correlation coefficient r = 0.80, which is notably
stronger than the corresponding one between 0νββ-decay
and DGT NMEs. This is likely so because of the absence of
cancellations in the γ γ -M1M1 NME running sums due to the
energy denominator.

To further study the γ γ -M1M1 NMEs, we decompose
them into spin, orbital, and interference parts as [52]

Mγ γ = Mγ γ
ss + Mγ γ

ll + Mγ γ

ls . (41)

Figure 7 shows the three contributions for all studied nuclei
for gT =0

pp = 0.6, gT =0
pp = 0.7 and gT =0

pp = 0.8. The spin part
dominates in the lighter nuclei with A < 124, but the orbital
part becomes dominant in heavier nuclei with A � 124. Fur-
thermore, Fig. 7 highlights that the orbital part is indeed much
less sensitive to the value of gT =0

pp than the parts containing
the spin operator. Except in heavier nuclei with large values
of gT =0

pp , the spin and orbital parts carry the same sign. This
explains why the correlation is present even in cases where
the orbital part is dominant. The interference term, in turn,
often carries the opposite sign of the leading contributions to
the total NME. If this part would be excluded, the correlation
between M1M1 and 0νββ-decay NMEs would improve.

Figure 8 shows the different parts of the γ γ -M1M1 NMEs
in Eq. (41) for 76Ge and 100Mo as a function of the ex-
citation energy of the intermediate states of the transition,
for gT =0

pp values adjusted to measured 2νββ data. Figure 8

FIG. 8. Spin (ss), orbital (ll), and interference (ls) parts of
γ γ -M1M1 NMEs as a function of the excitation energy of the
intermediate states, with gT =0

pp adjusted to 2νββ-decay data.

illustrates that, for these nuclei, the spin part drives the
overall behavior of the total NME, but the orbital and in-
terference terms are important for the final NME value. The
orbital part gets contribution mainly from a few 1+ states
at Eexc ≈ 10 MeV for 76Ge and Eexc ≈ 15 MeV for 100Mo.
In the case of 76Ge, these contributions consist mainly of
transitions 2n0 f5/2 → 2p0 f5/2 and 2n0g9/2 → 2p0g9/2, and
in the case of 100Mo of transitions 2n0h11/2 → 2p0h11/2 and
n0g9/2n0g7/2 → p0g9/2 p0g7/2. The spin term is more evenly
distributed at excitation energies Eexc ≈ 5–15 MeV. This
behavior of the pnQRPA γ γ -M1M1 NMEs is somewhat dif-
ferent to the running sum in NSM calculations, which for
these nuclear masses are typically dominated by one or few in-
termediate states at Eexc � 10 MeV [52]. The higher energies
relevant for the γ γ -M1M1 NMEs explain the smaller slope
of the pnQRPA correlation with respect to the NSM one in
Fig. 5, driven by the energy denominator in Eq. (29).

To better understand the origin of the correlation between
γ γ and 0νββ-decay NMEs, we decompose the numerator
M̂γ γ of the γ γ -M1M1 NMEs—without the energy denom-
inator in Eq. (14)—in terms of the two-body nucleon total
angular momenta J of the decaying nucleons by utilizing
Eq. (3) with the M1 · M1 operator. It is worth noting that
while M1M1 transitions only run through 1+ intermediate
states, all Jπ multipoles contribute to the J decomposition—
however, Jπ 
= 1+ contributions vanish when summed over
J . Figure 9 shows the decomposition for 76Ge and 128Te.
The qualitative behavior is similar to the corresponding NSM
decomposition in Fig. 4 of Ref. [52]: the γ γ -M1M1 NME
is clearly driven by J = 0 pairs, while the higher-momenta
pairs reduce the total value of the NME. Thus the decom-
position resembles that of the 0νββ-decay NMEs [86,91].
Furthermore, the spin part is clearly dominating the leading
J = 0 contribution to M̂γ γ . Nonetheless, since the orbital part
only gets mildly canceled by the J 
= 0 pairs, the total values
of the spin and orbital parts can be comparable, see Fig. 7.

Finally, to gain deeper understanding on the gpp-
dependence of the γ γ -M1M1 NME, Fig. 10 shows the J
decomposition of the numerator of the γ γ -M1M1 NME
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FIG. 9. Decomposition of the numerator of the γ γ -M1M1
NMEs in terms of the two-nucleon total angular momenta J , ob-
tained for gT =0

pp = 0.7.

in 76Ge obtained with different values of gT =0
pp . Figure 10

indicates that increasing the value of gT =0
pp increments the

(negative) contribution of J 
= 0 pairs hence decreasing the
total value of the NME. Figure 7 shows that the gT =0

pp depen-
dence of M̂γ γ is mostly coming from the spin part.

VI. CONCLUSIONS

Linear correlations between 0νββ decays and standard-
model-allowed two-nucleon transfer reactions have previ-
ously been found in the literature: between 0νββ and
DGT transitions in the nuclear shell model, energy-density-
functional theory [39], the interacting boson model [45,46],
and in different ab initio frameworks [41,43,44]; also between
0νββ and M1M1 in the nuclear shell model [52]. On the con-
trary, no correlation has been found in the pnQRPA approach
[31,49].

In the present study, we perform systematic calculations on
DGT and M1M1 transitions and 0νββ decays to further study
the relations between these processes in the pnQRPA. When
exploring a wide range of proton-neutron pairing strength
values, covering the typical range of values that describe
well ββ- and β-decay data, we find good linear correlations
between 0νββ decays and both DGT and M1M1 transitions.
Our findings are in contrast with previous pnQRPA studies,
performed with fixed proton-neutron pairing strengths, which
did not find any apparent correlation between 0νββ-decay
and DGT NMEs. The discrepancy with previous studies can
be explained by cancellations in the running sums of the
DGT NMEs occurring in the vicinity of the fixed pairing
strengths studied in these works. In fact, the results of some
previous pnQRPA calculations [48] fall inside our prediction
bands obtained by exploring a wide range of proton-neutron
pairing strengths. We also note that in Ref. [49], no corre-
lation was found by varying the particle-hole and isovector
particle-particle pairing strengths for spherical QRPA calcula-
tions based on Skyrme functionals. However, that work does
not explore variations in the isoscalar particle-particle pairing
channel in this context.

FIG. 10. Decomposition of the numerator of the γ γ -M1M1
NME in terms of the two-nucleon angular momenta J for calcu-
lations using different gT =0

pp values.

The pnQRPA correlations found in this work differ from
the correlations found using different nuclear-theory frame-
works, even though in the correlation with DGT transitions the
slopes of the best-fit functions are comparable. This difference
might be related to the different contributions of intermediate
states to 0νββ-decay NMEs in the pnQRPA or to the lack
of deformation in our pnQRPA calculations. We also find
good linear correlations when including two-body currents
and the short-range 0νββ-decay NME. However, when doing
so the correlation between DGT transitions and 0νββ decays
is weakened. For M1M1 transitions we find that NMEs dom-
inated by the orbital angular-momentum part of the operator
show also a good correlation with 0νββ-decay NMEs. Com-
pared with the NSM, the pnQRPA correlation has a smaller
slope because the intermediate states contributing to M1M1
transitions have typically higher energies. In sum, our findings
suggest that if DGT and M1M1 transitions are measured,
their relations with 0νββ decay could help to constrain the
uncertain values of 0νββ-decay NMEs.
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FIG. 11. Same as Fig. 1, but the QRPA results include only the
contribution M0ν (1+) instead of the total M0ν .

APPENDIX: CORRELATIONS BETWEEN M0ν(1+)
AND MDGT AND Mγγ

Figures 11 and 12 show the relation between DGT and
γ γ -M1M1 NMEs and long-range 0νββ-decay NMEs but
only taking into account the contribution from 1+ interme-
diate states. Figure 11 also shows the correlations between the
total M0ν

L (1b), containing all possible multipole contributions,
obtained with other nuclear many-body methods. Figure 11
reveals that the correlation taking into account only the 1+
contribution in the QRPA becomes significantly stronger than
the one taking into account all other multipoles as well, see
Fig. 1. This is expected because DGT NMEs only receive

FIG. 12. Same as Fig. 5, but the QRPA results consider only the
contribution M0ν (1+) instead of the total M0ν .

contributions from 1+ intermediate states. Furthermore, the
correlation best fit shifts closer to the results obtained with
other nuclear models, even though with a steeper slope. In
contrast, Fig. 12 shows that in the case of M1M1 decays the
correlation does not become remarkably better as we take
only the 1+ contributions into account. This is partly due
to the energy denominator in the γ γ -M1M1 NMEs, which
introduces some sensitivity on the excitation energies of the
1+ states, absent in 0νββ-decay NMEs because of its very
large momentum transfer p ∼ 100 MeV. In addition, the cor-
relation does not improve because γ γ -M1M1 NMEs involve a
different operator than DGT or 0νββ ones, namely the orbital
angular momentum.
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