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Abstract

One of the most important tasks in the mobile robot navigation field is the
planning of a collision-free path from a starting point to a target point. This project
introduce the concept of Artificial Potential Field (APF) as a real time global path
planner method and how it is modelled using the Poisson equation. To solve it, a
recently developed numerical technique called Proper Generalized Decomposition
(PGD) is considered, since it makes the resolution of the Poisson equation feasible
for real-time calculations.

To illustrate the properties of those methods, a simulation with a virtual robot
on a virtual world has been produced. The Construct AI, a free online platform,
has enabled us to develop the necessary code for this, based on the Robot Op-
erating System (ROS) framework. This tools are used on the Robotics subject at
Universitat de Barcelona, and that has proved to be very useful, because I had at my
disposal some documentation and repositories that enabled me to avoid having to
do all the settings from scratch.

This work tries to be an accessible introduction to this topics, and it can serve
as a basis for future multiple extensions, as we will comment at the end. The
advantages and the projection of this approach inside the path planning area make
it a candidate for become the future of robot navigation.
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Resum

Una de les tasques més importants en el món de la navegació de robots mò-
bils és la planificació d’un camí lliure de col·lisions des d’un punt inicial fins a
un punt final. En aquest projecte s’introdueix el concepte d’ Artificial Potential
Field (APF) com a un planificador de camins global i com aquest és modelat util-
itzant l’equació de Poisson. Per resoldre-la, s’ha considerat un mètode numèric
desenvolupat recentment anomenat Proper Generalized Decomposition (PGD), doncs
fa que la resolució de l’equació de Poisson sigui factible de calcular a temps real.

Per il·lustrar les propietats d’aquests mètodes, s’ha realitzat una simulació amb
un robot i un món virtual. The Construct AI, una plataforma en línia gratuïta, ens
ha permès desenvolupar el codi necessari per aconseguir-ho. Aquesta és l’eina
que s’utilitza a la classe de robòtica de la Universitat de Barcelona, fet que ha
resultat extremadament útil, doncs he tingut a la meva lliure disposició certa doc-
umentació i repositoris que m’han permès no haver de configurar tot des de zero.

Aquest treball pretén ser una introducció accessible d’aquests tòpics, i pot
servir com a base per a futures extensions del projecte, tal com es comenta al
final. Els avantatges i la projecció d’aquesta nova perspectiva dins del camp de
la planificació de camins la converteixen en una clara candidata per esdevenir el
futur de la navegació de robots.
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Introduction

One of the core challenges in robotics is to plan a path free of collisions from an
initial to a target position without collisions. There are several ways to approach
this problem: sampling-based planners, interval-based planners, potential-field-
based techniques, [10, 12] etc.

In this project, we will focus on the Artificial Potential Field method (APF).
This method was first presented by O. Khatib in 1985 in The International Jour-
nal of Robotics Research [13]. The APF generates an artificial potential field that
guides the trajectory of the robot. The target position originates an attractive force
which makes the mobile robot move towards it and the obstacles generate repul-
sive forces to avoid them. Its computation is fast, making it a very good choice
for real-time applications. However, repulsive fields generally create local minima
and the robot may not reach the goal even if a solution exist. For avoiding that,
harmonic functions [14, 5], have been used to generate artificial potential fields.
Harmonic functions have some valuable properties [2, 22], including the min-max
principle, which prevent the appearance of deadlocks. We will see that applying
some potential flow theory, one can adapt a Poisson equation to have the har-
monic properties while defining a proper source term. In spite of this, there have
not been many attempts of using harmonic functions for path planning, since this
functions cannot be computed in closed form and the the computational burden
of discrete approximations is really high.

But, a short time ago, an original technique called proper generalized decom-
position (PGD) was developed to give an approximation of the solutions of non-
linear convex variational problems [8, 1]. One of the main advantages of this
method is the capability of transform high dimensional problems into a series of
decoupled one-dimensional problems. This allows us to work on high dimen-
sional spaces, being able to compute all the possibles solutions and parameters,
such as the combinations of goals and targets.

The objective of this project is use the PGD algorithm to approximate a solution
of the Poisson equation that will give us a path from a source point to a target
point. To do so, this project is divided into four main goals:

1
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• Understand what is an Artificial potential field, its main problem and how
to avoid it. For doing that, we introduce the concept of Harmonic function,
boundary conditions and the weak formulation of the Poisson equation.

• Explain how does PGD works, and how its separated representation is con-
structed, step by step.

• Relate the PGD methodology with the path planning scope.

• Build the robot application to generate a simulation and test it.

Each goal, is covered by a chapter, and one can also an appendix. The dissertation
is organised as follows:

• Chapter 2: Defines the Artificial Potential Field, as well as the harmonic
functions, which are the solution of the main disadvantage of the APF. Other
important concepts are explained here, such as boundary conditions, poten-
tial flow theory and how that lead to the Poisson equation. In this chapter,
also is defined the weak formulation as well as how they should be con-
structed in order for everything to work properly.

• Chapter 3: Defines the Poisson equation and shows how we can approxi-
mate a solution through the PGD algorithm. It’s described for Dirichlet and
Neumann boundary conditions.

• Chapter 4: Applies the PGD for robot path planning, defining a source term
and computing the PGD-Vademecum. It also shows the approach of this
project, which is slightly different from this one. It also includes the plots of
the numerical results.

• Chapter 5: Defines the framework used for building the robot application, as
well as its Filesystem and Computational Graph. Details the steps followed
for making the robot work as expected and illustrates it.

• Appendix: Contain all the code of the various PGD implementations, so it
can be referenced throughout the work to facilitate understanding.

All the code developed in Chapter 4 and Chapter 5 can be found here1, as well as
the .csv files used for plotting purposes.

1https://github.com/phernama21/tfg

https://github.com/phernama21/tfg


Chapter 1

Path planners: The Artificial
Potential Field

1.1 Artificial potential field

The Artificial Potential Field, first presented by O. Khatib [13], is a method to
navigate the robot from the source to the goal following the flow that defines a
suitable constructed potential field.

Definition 1.1. A gradient system or potential field [17] on an open set Ω ⊂ Rn is a
system of differential equations of the form

q̇ = −∇U(q), q ∈ Ω,

where U : Ω→ R is a C2(Ω) potential function and

∇U =
(

∂U
∂x1

, ..., ∂U
∂xn

)
is the gradient vector field, ∇U : Ω→ Rn, of U.

This approach treats the robot, represented as a point q in the configuration
space (C − space), as a particle under the influence of an artificial potential field
U. In order to make the robot be attracted towards its goal configuration, while
being repulsed from the obstacles, U is constructed as the sum of two elementary
potential functions:

U(q) = Uatt(q) + Urep(q), (1.1)

where Uatt is the attractive potential associated with the goal configuration qgoal

and Urep is the repulsive potential, associated with the C − obstacle region (see
definition in section 1.1.2) . With this conventions, F⃗ (the force generated by this
potential field) is the sum of two vectors:

F⃗att = −∇⃗Uatt and F⃗rep = −∇⃗Urep, (1.2)

3



4 Path planners: The Artificial Potential Field

which are called the attractive and repulsive forces, respectively.

1.1.1 Attractive potential

There exists a lot of ways to model our attractive fields, but we can define the
two most common as follows. Let ρgoal(q) be the Euclidean distance ∥q− qgoal∥,
and ξq, ξc > 0 scaling factors. The subindex q and c here refer to quadratic and
conical cases.

Quadratic potential:

Uatt(q) = 1
2 ρ2

goal(q)ξq

Conical potential:

Uatt(q) = ρgoal(q)ξc

Figure 1.1: Graphical representation
of a 2-dimensional quadratic

potential field

Figure 1.2: Graphical representation
of a 2-dimensional conical potential

field

In the previous expressions, ρgoal(q) is the Euclidean distance ∥q− qgoal∥. The
quadratic potential generates a force F⃗att which converges linearly towards 0 when
the robot’s configuration approaches the goal, but increases indefinitely as ρgoal in-
creases. On the other hand, the conical potential generates a constant amplitude
force F⃗att for configurations far away from the goal. Therefore, a convenient so-
lution is to combine the two profiles: conical away from qgoal and quadratic close
to qgoal . So we define a distance parameter d. The value of distance parameter
depends on the physical characteristics of the robot, since factors such as speed,
braking capacity or ground friction, will led us to chose a larger or smaller value.
Once we choose d depending on the robot features we consider the potential func-
tion

Uatt =


1
2 ρ2

goal(q)ξq if ρ ≤ d,

ρgoal(q)ξc if ρ > d.
(1.3)
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For the sake of the continuity of F⃗att we need the condition 2ξc = ρgoal(d)ξq

The artificial attractive force deriving from Uatt is

F⃗att =


−ξa(q− qgoal) if ρ ≤ d,

− ξb(q−qgoal)

∥q−qgoal∥
if ρ > d.

(1.4)

1.1.2 Repulsive potential

The main idea underlying the definition of the repulsive potential is to create
a potential barrier around the obstacles region which cannot be traversed by the
robot, and is modelled as being inversely proportional to the distance from the
obstacle. Note that while the attractive potential is applied only by the goal, the
repulsive potential is applied by each obstacle. We do name the C− obstacle region
as CO and assume that has been partitioned in convex components COi. Then,
each COi defines a repulsive field.

Even though this methodology naturally fades away, we define the repulsive
potential of each obstacle Urepi with finite support. We choose a scalar value ηCOi >

0 that depends on the condition of the obstacle and the goal point of the robot,
and is usually taken to be less than half of the minimum of the distances between
the obstacles and the shortest length from the destination to the obstacles. The
repulsive potential field is described by;

Urepi =

 1
2 kCOi

(
1

ηi(q)
− 1

ηCOi

)2
if ηi(q) ≤ ηCOi ,

0 if ηi(q) > ηCOi .
(1.5)

Here, kCOi > 0 denotes the constant associated with the repulsive potential and
ηi(q) = minq′∈COi∥q− q′∥. As for the constants ξq, ξc in the attractive potential, the
constant kCOi also depends on the robot features.

The resulting repulsive force is

F⃗repi = −∇Urepi =

 −
kCOi
η2

i (q)

(
1

ηi(q)
− 1

ηCOi

)
∇ηi(q) if ηi(q) ≤ ηCOi ,

0 if ηi(q) > ηCOi .
(1.6)

The cumulative repulsion is the repulsion from all obstacles region COi. It can
be modelled taking the addition from all p obstacles at a distance of ηCOi or less:

Urep =
p

∑
i=1

Urepi and F⃗rep =
p

∑
i=1

F⃗repi . (1.7)

The complete potential field U = Uatt + Urep construction is illustrated in figure
1.3.
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Figure 1.3: (a) The attractive potential without obstacles (b) The repulsive potential representing the
obstacles (c) Combination of the two fields to get the resulting whole potential [6]

1.1.3 Problems with potential fields

The APF seems to be a good choice of the algorithm due to its ability to tackle
obstacles in real-time, lack of a need of a preknown map, ability to work in par-
tially known environments and ability to work in highly dynamic environments.
In addition to its use in robot path planning, it has also been found to have many
other functions in areas such as autonomous vehicles navigation [11], multi-robot
systems [15], surgical robots [23] ...

The major problem with the APF is its lack of completeness, since the robot
can get stuck at a local minima, and even if there exists a path, the algorithm shall
not find it. This happens if there exists a region where the attractive and repulsive
forces cancel each other out, and therefore the resultant force is 0, as we can see
on Figure 1.4.

There exists multiple workarounds for this problem:

• Best-first algorithm

Consists in building a discretized representation of the C-free space, i.e the
C − space excluding the C − obstacle region, using a grid, and associate to
each free cell of the grid a value U0 at its centroid. Next, build a tree T rooted
at qstart start point: at each iteration, select the leaf of T with minimum value
of Ut and add as children its adjacent cells that are not in T. Planning stops
when qs is reached or no further cells can be added to T. At a local minimum,
best-first will fill its basin of attraction until it finds a way out since it will
continue expanding the search space from that point, exploring neighboring
cells to see if there is a path leading to a lower potential value. This algorithm
is resolution complete, which means that it guarantees finding a solution, if
it exists, if the discretization of the search space is fine enough. However, its
complexity is exponential in the dimension of C-free space, hence it is only
applicable in low-dimensional spaces. Furthermore, in environments with
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Figure 1.4: Goal gg and a C-obstacle. Left: the vector field corresponding to an
APF. Right: the level curves of the potential U where can see a local minimum
marked with a red point in the plot

high obstacle density or complex obstacle shapes, the execution time can be
slower.

• Navigation functions

Since path generated by best-first algorithms doesn’t avoid local minima (in-
stead we seek a way to escape from it) we search a different approach: build
navigation functions, i.e potentials without local minima. For example, we
can define the potential as an harmonic function, solution which will be
discussed in depth in section 1.2.1.

• Vortex fields

The idea is to replace the repulsive action (which is the responsible for ap-
pearance of local minima) with an action forcing the robot to go around the
C− obstacle.

For example, if we assume C = R2 we can define the vortex field for COi as

F⃗vort = ±

 ∂Urepi
∂y

− ∂Urepi
∂x


where the the repulsive force generated by the potential field is now given
by the vortex force F⃗vort .The intensity of the field remains the same, only the
direction changes. If COi is convex, as we assumed before, the vortex sense
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(clockwise or counter-clockwise) can be always chosen in such way that the
total field has no local minima. In particular, the vortex sense should be
chosen depending on the entrance point of the robot in the area of influence
of the COi.

1.2 Partial differential equations

Throughout this paper we will explore the workaround that includes building
functions without local minima, also called navigation functions. For doing this,
first we need to introduce the Laplace and Poisson partial differential equation.

1.2.1 Harmonic functions

Equilibrium problems in two-dimensional and higher space, give rise to elliptic
partial differential equations. A prototype is the famous Laplace’s equation:

∆ϕ = ∇2ϕ =
n

∑
i=1

∂2ϕ

∂x2
i
= 0 (1.8)

Remark 1.2. ∆ is the Laplacian operator, also denoted as ∇2.

This equation holds for the steady temperature in an isotropic medium, char-
acterizes gravitational or electrostatic potentials at points of empty space, and
describes the velocity potential of an irrotational, incompressible fluid flow as we
will see. An harmonic function ϕ ∈ C2 on a domain Ω ∈ Rn is a function which
satisfies Laplace’s equation.

Properties of the Harmonic function

The first important property of a harmonic function is the principle of super-
position, which follows from the linearity of the Laplace equation. That is, if ϕ1

and ϕ2 are harmonic, then a linear combination of ϕ1 and ϕ2 is also harmonic and
a solution of Laplace equation .

There are other important properties of harmonic functions we want to remark,
but for explaining them we shall introduce some notation following [2], [22]:

Let Ω be an open bounded subset of Rn. An open ball centered at a of radius
r is defined as B(a, r) = {x ∈ Ω : ∥x − a∥ < r} ; its closure is the closed ball
B(a, r); the unit ball B(0, 1) is denoted by B and its closure is B. A dashed integral

stands for an averaged integral, that is −
ˆ

Ω
f dµ = µ(Ω)−1

ˆ
Ω

f dµ, where µ is a

measure in Rn.
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Proposition 1.3. (Spherical means) Let u ∈ C2(Ω). Then, for x ∈ Ω and r > 0 with
B(x, r) ⊂ Ω, we have

d
dρ
−
ˆ

∂B(x,ρ)
u(y) dHn−1(y) =

ρ

n
−
ˆ

B(x,ρ)
∆u(y) dy, (1.9)

for all ρ ∈ (0, r), where dHn−1(y)1 indicates that the integration is being performed over
the (n− 1) dimensional boundary of B(x, ρ).

Proof. Fix x ∈ Ω and r > 0 such that B(x, r) ⊂ Ω. Then for 0 < ρ < r consider
the spherical means of u over ∂B(x, ρ) ⊂ Ω. Upon translating and rescaling by
introducing y = x− ρξ, we can write

−
ˆ

∂B(x,ρ)
u(y) dHn−1(y) = −

ˆ
∂B(0,1)

u(x + ρξ) dHn−1(ξ).

This is actually the definition of spherical means. Using that we obtain the follow-
ing equality

d
dρ−
ˆ

∂B(x,ρ)
u(x) dHn−1(y) =

d
dρ
−
ˆ

∂B(0,1)
u(x + ρξ) dHn−1(ξ)

Now we apply the chain rule d
dρ u(x) = ⟨∇u(x + ρξ), ξ⟩ and we get

d
dρ−
ˆ

∂B(0,1)
u(x + ρξ) dHn−1(ξ) = −

ˆ
∂B(0,1)

⟨∇u(x + ρξ), ξ⟩ dHn−1(ξ)

By rescaling back y = x + ρξ, it follows

−
ˆ

∂B(0,1)
⟨∇u(x + ρξ), ξ⟩ dHn−1(ξ) = −

ˆ
∂B(x,ρ)

⟨∇u(y),
y− x

ρ
⟩ dHn−1(y)

Observing that ⟨∇u(y), y−x
ρ ⟩ is the directional derivative in the direction ν = y−x

ρ ,
which is the outward-pointing unit normal vector to the surface ∂B(x, ρ),

−
ˆ

∂B(x,ρ)
⟨∇u(y),

y− x
ρ
⟩ dHn−1(y) = −

ˆ
∂B(x,ρ)

∂u
∂ν

(y) dHn−1(y)

Finally, using the divergence theorem, we get the required identity

−
ˆ

∂B(x,ρ)

∂u
∂ν

(y) dHn−1(y) =
ρ

n
−
ˆ

B(x,ρ)
∆u(y) dy

1Hn−1 is the (n− 1) dimensional Hausdorff measure [16]. Note that his measure is the volume
on the previous dimension. As we will work in R2, we are talking about the line integral.
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Proposition 1.4. (The Mean-Value Property) Suppose Ω is connected, u is real valued
and harmonic on Ω. Then

u(x) = −
ˆ

∂B(x,r)
u(y) dy (1.10)

u(x) = −
ˆ

B(x,r)
u(y) dy (1.11)

for ∀x ∈ Ω and r > 0 such that B(x, r) ⊂ Ω.

Proof. Fix x ∈ Ω and r > 0 such that B(x, r) ⊂ Ω. Since Ω is open, there exists
s > r such that B(x, r) ⊂ B(x, s) ⊂ Ω. Hence, referring to (1.9) and using that u is
harmonic, it follows that for ρ ∈ (0, s),

d
dρ−
ˆ

∂B(x,ρ)
u(y) dHn−1(y) = 0.

Integrating the above with respect to ρ from 0 to r we getˆ r

0

d
dρ
−
ˆ

∂B(x,r)
u(y)dHn−1(y) = 0

By the Fundamental Theorem of Calculus, this expression becomes

−
ˆ

∂B(x,r)
u(y) dHn−1(y)−−

ˆ
∂B(x,0)

u(y) dHn−1(y) = 0

Since B(x, 0) is just the point x, we have

−
ˆ

∂B(x,r)
u(y) dHn−1(y) = u(x)

Starting with 1.10 (with ρ in place of r) and by the definition of the spherical mean,
we can rewrite it as

u(x) = 1
ωn−1ρn−1

ˆ
∂B(x,ρ)

u(y) dHn−1(y)

where ωn−1 is the surface area of the unit (n− 1) sphere. Multiplying both sides
by nωnρn−1 we obtain

nωnρn−1u(x) = nωnρn−1

ωn−1ρn−1

ˆ
∂B(x,ρ)

u(y) dHn−1(y)

by integrating with respect of ρ in interval [0, r] and knowing that nωn = ωn−1

it follows ˆ r

0
nωnρn−1u(x) =

ˆ r

0

ˆ
∂B(x,ρ)

u(y) dHn−1(y)

Recognize that the right part is actually the integral of u(y) over the volume of the
ball B(x, r) so we have
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ωnrnu(x) =
ˆ

B(x,r)
u(y) dHn−1(y)

Dividing both sides by wnrn gives

u(x) = 1
ωnrn

ˆ
B(x,r)

u(y) dHn−1(y) = −
ˆ

B(x,r)
u(y) dy

Proposition 1.5. (The Maximum Principle) Suppose Ω is connected, u is real valued
and harmonic on Ω, and u has a maximum or a minimum in Ω. Then u is constant.

Proof. Suppose u attains a maximum at a ∈ Ω. Choose r > 0 such that B(a, r) ⊂ Ω.
If u were less than u(a) at some point of B(a, r), then the continuity of u would
show that the average of u over B(a, r) is less or equal than u(a), contradicting
(1.10). Therefore u is constant on B(a, r), proving that the set were u attains its
maximum is open in Ω. Because this set is also closed in Ω (again by continuity
of u), it must be all of Ω (by connectivity). Thus u is constant on Ω, as desired. If
u attains a minimum in Ω, we can apply this argument to −u.

The unique properties of harmonic functions make them ideal for constructing
artificial potential fields for obstacle avoidance [9]. These properties ensure that
the potential field does not have local minima, which can cause the robot to get
stuck. By appropriately defining the source term function, as explained in Section
3.3, we can create a field where the goal is the only global minima and no other
critical point is generated when adding obstacles.

1.2.2 Boundary conditions

The different kinds of contour conditions imposed to Laplace’s equation have a
critical importance in the solution of the equation and the quality of the trajectory
that will follow the robot. The following forms of the Dirichlet and Neumann
boundary conditions will be used

• Dirichlet

In Dirichlet’s conditions case, the boundary is maintained at a constant value
higher than the goal point. As the boundary value is fixed, the vector field
is normal to the boundary. The Dirichlet boundary condition is

ϕ|∂Ω = c, c ∈ R.
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One requires to define a proper source term f as described on 3.3, so our
PGD approximation ϕ satisfies c > ϕ(qgoal). This solution tends to have
precision problems, though. Flat regions can develop resulting in very small
(but necessarily nonzero) gradients, requiring higher precision in generating
the solution trajectory.

• Neumann

Neumann’s conditions constrain the normal component of the gradient to be
zero at the boundaries. As there is no normal component of fluid flow, the
condition forces the flow to be tangential to the boundary. The Neumann
boundary condition is

∇ϕ|∂Ω = c, c ∈ R.

In our case we need c = 0 so that any trajectory leave the domain. When
c > 0 the boundary push the trajectories inwards, so it could also be an
option. In Neumann’s conditions case, the descent towards ∂Ω f ree is smooth
and continuous, with a slope not close to zero and, because of that, the
trajectory calculation is more numerically stable than in Dirichlet case.

1.2.3 Potential flow theory

We will approach the path planning problem as a mathematical model describ-
ing the flow of an inviscid incompressible fluid. Assuming a steady irrotational
flow in the three-dimensional Euclidean space (R3), the velocity field V vanishes

∇×V = 0 (1.12)

As a consequence, the velocity is the gradient of a scalar (potential) function ϕ,
V = −∇ϕ. Furthermore, when the fluid is incompressible, the velocity field must
satisfy div V = 0. By joining the two previous expressions, we get

∇2ϕ = 0 (1.13)

so the potential is solution of the Laplace equation, hence ϕ is harmonic inside any
domain Ω ∈ R3. To force the flow to reach the target we choose to pass through a
crucial step. A localized fluid source (or a sink) can be modeled by a Dirac term (δ)
added to the right hand side of (1.13). Assuming a unit amount of fluid injected at
point S during a unit of time and the same unit withdrawn at point T, the velocity
potential is now solution of the Poisson equation:

−∇2ϕ = δS − δT, (1.14)
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where δS means the fluid source and δT the target sink.
This equation must be complemented by appropriate boundary conditions.

The fluid cannot flow through the boundaries, so it must satisfy a condition ex-
pressed by V · n = 0 (n being a normal vector to the boundary Γ). So, on the
boundary Γ, the potential must verify:

−ϕ · n = 0 (1.15)

which amounts to the Neumann boundary condition, which we will see applied
later:

∂ϕ

∂n

∣∣∣
Γ
= 0 (1.16)

1.2.4 Poisson equation: The weak formulation

Given that our approach leads us to solve a particular Poisson equation (1.14),
for now on we will focus on solving this type of PDE’s, starting from some basic
examples and making them more complex.

Let us consider the Poisson problem posed in a domain Ω, an relatively com-
pact subset of Rd, d ≥ 1 supplemented with homogeneous Dirichlet boundary
conditions:

−∆u(x) = f (x), ∀x ∈ Ω

u(x) = 0, ∀x ∈ ∂Ω
(1.17)

with f ∈ C0(Ω), Ω = ∂Ω ∪Ω.

Definition 1.6. A classical solution (or strong solution) of equation (1.17) is a func-
tion u ∈ C2(Ω) that satisfies both conditions.

We may want to relax the pointwise regularity (i.e. continuity) required to
ensure the existence of the classical derivative to the (weaker) existence of the
distributional derivative. The strong formulation requires solutions to be twice
differentiable, and we may search for solutions that do not possess this degree of
smoothness. For example, if we model the source term f with delta Dirac func-
tions (3.3) the solution is typically not twice differentiable. The weak formulation,
which will be defined later, also allows the incorporation of boundary conditions
into the solution process by means of choosing the proper test functions. It is also
very suitable when using numerical methods, like the finite element method, as
can be seen in 2.3.1. The weak formulation can be discretized, leading to a system
of algebraic equations that can be solved numerically with higher stability than
the strong formulation. For this reasons, for now on we will work with the weak
solution.

Let’s consider the Lebesgue space
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Ln(Ω) = {u :
ˆ

Ω
|u(x)|ndx < ∞}

and Ln
loc(Ω) = {ϕ : Rn → R| ϕ ∈ L1(K) for all compact sets K ⊂ Ω}.

Definition 1.7. (Weak derivatives) A function u ∈ L1
loc(R

n) is weakly differentiable
with respect to xi if there exists a function gi ∈ L1

loc(R
n) such thatˆ

Rn
u∂iϕ dx = −

ˆ
Rn

giϕ dx, ∀ϕ ∈ C∞
c (Rn)

where C∞
c (Rn) := {ϕ : Rn → R| ϕ ∈ C∞(Rn), and ϕ has compact support}. The

function gi is called the weak ith-partial derivative of u and is denoted by ∂iu.

Let u ∈ C2(Ω) be a classical solution to (1.17) and let us test the equation
against any smooth function φ ∈ C∞

c (Ω), also called test function.

−
ˆ

Ω
∆u(x)φ(x) dx =

ˆ
Ω

f (x)φ(x) dx (1.18)

Since u ∈ C2(Ω), ∆u is well defined. Integrating by parts, the left hand reads:

−
ˆ

Ω
∆u(x)φ(x) dx = −

ˆ
∂Ω
∇u(x) · nφ(x) ds +

ˆ
Ω
∇u(x)∇φ(x) dx (1.19)

Since φ has compact support in Ω, it vanishes on the boundary ∂Ω, conse-
quently the boundary integral is zero, thus the distributional formulation reads

ˆ
Ω
∇u(x) · ∇φ(x) dx =

ˆ
Ω

f (x)φ(x) dx , ∀φ ∈ C∞
c (Ω) (1.20)

Definition 1.8. (Topological dual space) The topological dual space V ′ of a normed
vector space V is the vector space of continuous linear forms on V equipped with
the norm:

∥ f ∥V ′ = sup
x∈V ,x ̸=0

f (x)
∥x∥V

Consider H and V as normed function spaces yet to be defined, both satisfying
regularity constraints and for H boundary condition constraints.

A weak formulation of (1.17) consists in finding u ∈ H, given f ∈ V ′, such
that ˆ

Ω
∇u · ∇v dx =

ˆ
Ω

f v dx , ∀v ∈ V (1.21)

Any solution of 1.21 is a weak solution of the Dirichlet problem 1.17.
Provided that the weak solution to (1.21) belongs to C2(Ω) then the second

derivatives exist in the classical sense. Consequently the integration by parts can
be performed the other way around and the weak solution is indeed a classical
solution.
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Functional settings

Since (1.21) involves first order derivatives, then we should consider a solution
in Sobolev space

H1(Ω) = {u ∈ L2(Ω) : Du ∈ L2(Ω)},

endowed with the Sobolev norm ∥ · ∥H1 = ⟨·, ·⟩1/2
H1(Ω)

defined from the scalar prod-
uct that gives us a Hilbert structure,

⟨u, v⟩H1(Ω) =

ˆ
Ω

uv dx +

ˆ
Ω
∇u · ∇v dx

Moreover, the solution should satisfy the boundary condition of the strong form
of the PDE problem. The homogeneous Dirichlet condition is embedded in the
function space of the solution: u vanishing on the boundary ∂Ω yields that we
should seek u in H1

0(Ω), the compact support subspace of H1(Ω).

Choice of test space

In order to give sense to the solution in a Hilbert-Sobolev space we need to
choose the test function φ itself in the same kind of space. If we chose φ ∈ H1

0(Ω)

then by definition, we can construct a sequence (φn)n∈N of functions in C∞
c (Ω)

converging in H1
0(Ω) to φ,

∥φn − φ∥H1(Ω) → 0 , as n→ +∞

For the sake of completeness, we note that we can pass to the limit in the
formulation, term by term for any partial derivative:ˆ

Ω
∂iu · ∂i φn →

ˆ
Ω

∂iu · ∂i φ

as ∂i φn → Di φ in L2(Ω) , andˆ
Ω

f φn →
ˆ

Ω
f φ, ∀ f ∈ V

as φn → φ in L2(Ω). Consequently the weak formulation (1.21) is satisfied if
φ ∈ H1

0(Ω).

Choice of solution space

The determination of the function space is guided by two main factors: the
regularity of the solution and the boundary conditions.

Firstly, if u is a classical solution then it belongs to C2(Ω) which implies that
u ∈ L2(Ω) and ∂iu ∈ L2(Ω), thus u ∈ H1

0(Ω).
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Secondly the solution should satisfy the Dirichlet boundary condition on ∂Ω.
This requirement is fulfilled by the following trace theorem:

Lemma 1.9. (Trace Theorem) Let Ω be a bounded open subset of Rd with piecewise C1

boundary, then there exists a linear application γ : H1(Ω) → L2(∂Ω) continuous on
H1(Ω).

From the trace theorem, defining γ(u) = u|∂Ω, we know that Ker(γ) = H1
0(Ω)

and γ(u) = 0, so we can conclude that u ∈ H1
0(Ω) to satisfy the boundary condi-

tions.
With all that, we conclude that H = V = H1

0(Ω) and the weak formulation for
(1.17) search u ∈ H1

0(Ω) satisfying:
ˆ

Ω
∇u · ∇v dx =

ˆ
Ω

f v dx , ∀v ∈ H1
0(Ω), f ∈ V ′. (1.22)

More generally, we can define the problem as finding u satisfying

a(u, v) = L(v) , ∀v ∈ V (1.23)

with a(·, ·) a continuous bilinear form on V ×V and L(·) a continuous linear form
on V .

In our previous case (1.22), the bilinear form corresponds to

a : V ×W → R

(u, v) 7→
ˆ

Ω
∇u · ∇v dx

and the linear form to

L : V → R

v 7→
ˆ

Ω
f v dx

Proposition 1.10. (Continuity) A bilinear form a(·, ·) is continuous on V ×W if there
exists a positive constant real number M such that

a(v, w) ≤ M∥v∥V∥w∥W , ∀(v, w) ∈ V ×W

The continuity of these two forms comes directly from that they are respectively
the inner-product in H1

0(Ω), and the L2 inner-product with f ∈ L2(Ω): Using the
Cauchy-Schwartz inequality in the context of L2 inner product, we get:
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|a(u, v)| =
∣∣∣∣ˆ

Ω
∇u · ∇v dx

∣∣∣∣ ≤ (ˆ
Ω
|∇u|2dx

) 1
2
(ˆ

Ω
|∇v|2dx

) 1
2

We note that for u ∈ H1
0(Ω), the H1 norm is defined as:

∥u∥H1(Ω) =
(
∥u∥2

L2(Ω)
+ ∥∇u∥2

L2(Ω)

) 1
2

Since u vanishes on the boundary, the H1
0(Ω) can be effectively denominated by:

∥u∥H1(Ω) = ∥∇u∥L2(Ω)

Therefore, we have :

|a(u, v)| ≤ ∥∇u∥L2(Ω)∥∇v∥L2(Ω) = ∥u∥H1(Ω)∥v∥H1(Ω)

1.2.5 Well-posedness

In the usual sense, a problem is well-posed if it admits a unique weak solution
which is bounded in the V -norm by the data (forcing term, boundary conditions)
which are independent on the solution. In this particular case of the Poisson
problem the bilinear form a(·, ·) is the natural scalar product in H1

0(Ω), thus it
defines a norm in H1

0(Ω).

Theorem 1.11. (Riesz Representation theorem) For a continuous linear function ϕ on
a Hilbert space H, there exists a unique u ∈ H such that ϕ(v) = ⟨u, v⟩, ∀v ∈ H.
Furthermore, ∥u∥H = ∥ϕ∥H

This result, first announced in [20], ensures directly the existence and unique-
ness of a weak solution as soon as a(·, ·) is a scalar product and L is continuous for
∥ · ∥a. If the bilinear form a(·, ·) is not symmetric then the previous theorem does
not apply. Therefore, we can guarantee that our algorithm will be able to find a
path that goes from the source point to the target point avoiding the boundaries
of our domain and, in this way, the obstacles.



Chapter 2

PGD as a Solution of the Poisson
Equation

To illustrate how does PGD work, we will begin with a simple case study,
which we shall progressively make more complex until the equation to be solved
gives us the APF.

One of the main advantages of this method, and one of the main reasons for
choosing it over another algorithm, is the capability of transform high dimensional
problems into a series of decoupled one-dimensional problems formulated in each
domain Ω. We will see a two dimensional example on this work, but when adding
more complexity factors like obstacles (for example in [7]), this property becomes
very relevant since makes the execution time feasible.

In this chapter, we will follow the structure of the second unit of [3], while
adding some annotations and pseudo-code for making it more detailed and easier
to understand.

2.1 The Poisson equation

Consider the solution of the Poisson equation

∆u(x, y) = f (x, y), u, f ∈ H1
0(Ω) (2.1)

in a two-dimensional rectangular domain Ω = Ωx ×Ωy = (0, L) × (0, H), with
homogeneous Dirichlet boundary conditions for the unknown field u(x, y), i.e

u(x, y)
∣∣∣∣
∂Ω

= 0. Furthermore, we assume that the source term f is constant over

the domain Ω.
We can write (2.1) in a weak formulation. For all suitable test functions u∗ ∈

H1
0(Ω), its weighted residual form reads

18
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ˆ
Ωx×Ωy

u∗ · (∆u(x, y)− f ) dx · dy = 0 (2.2)

Now, our main goal is to obtain a Proper Generalized Decomposition [1] ap-
proximate solution to (2.1) in the separated form

u(x, y) =
N

∑
i=1

Xi(x) ·Yi(y) (2.3)

We will do it iterating over three basis steps: enrichment, alternating direction
and stopping criterion. Just below we have a pseudo-code that will help us to
understand how this PGD works, from a high level perspective. Throughout the
detailed explanation, we will also refer to the actual code used on each process.
The whole code can be found on the appendix of this work (A).

1 public static void main(String[] args) {
2 //Declare your empty solution
3 std::vector<std::vector<double>> solution = createMatrix();
4 //Loop until convergence of the solution
5 while(!solutionConverges(solution)){
6 //Add another iteration step (n) to the enrichment process
7 Y0

n = randomVector()
8 X1

n = computeAlternating(Y0
n)

9 //Compute the alternating direction scheme
10 while(!stoppingCriterionEnrichmentProcess()){
11 Yi

n = computeAlternating(Xi−1
n )

12 Xi
n = computeAlternating(Yi

n)
13 }

14 solution += X f inal
n · Y f inal

n
15 }
16 }

2.2 Progressive Construction of the Separated Representa-
tion

At each enrichment step n (n ≥ 1), we have already computed the n− 1 first
terms of the PGD approximation (2.3):

un−1(x, y) =
n−1

∑
i=1

Xi(x) ·Yi(y) (2.4)
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We want to compute the next pair of terms Xn(x), Yn(y) to obtain the enriched
PGD solution

un(x, y) = un−1(x, y) + Xn(x) ·Yn(y) =
n−1

∑
i=1

Xi(x) ·Yi(y) + Xn(x) ·Yn(y) (2.5)

For computing those terms, that are unknown at the current step n, an iterative
scheme is used. The iterative scheme that fits our model more closely is the al-
ternating direction strategy, detailed in section 2.2.2. We will use the index p to
denote a particular iteration of the alternating scheme. This scheme consists in
computing Xp

n(x) from Yp−1
n (y), and then Yp

n (y) from Xp
n(x). An arbitrary initial

guess Y0
n is specified so start the iterative process and proceed until reaching a

fixed point within a desired tolerance ϵ.

∥Xp
n(x) ·Yp

n (y)− Xp−1
n (x) ·Yp−1

n (y)∥
∥Xp−1

n (x) ·Yp−1
n (y)∥

< ϵ (2.6)

where ∥ · ∥ is a suitable norm. We can see the implementation in A.1.
In a particular enrichment step n, the PGD approximation un,p obtained at

iteration p reads as

un,p(x, y) = un−1(x, y) + Xp
n(x) ·Yp

n (y) (2.7)

When the fixed point is good enough we end this iterative process with the
assignments Xn(x)←− Xp

n(x) and Yn(x)←− Yp
n (x).

The enrichment process itself stops when an appropriate measure of error ϵ(n)
becomes small becomes small enough. Several stopping criteria are suitable, but
as we shall argument later, in our particular case this choice will not matter at all,
since the robot itself will already generate an error of a higher order than a bad
choice of the norm.

2.2.1 Stopping Criterion for the Enrichment Process

A first stopping criterion is associated with the relative weight of the newly
computed term within the PGD expansion. Thus, ϵ(n) is usually given by

ϵ(n) =
∥Xn(x) ·Yn(y)∥
∥un(x, y)∥ =

∥Xn(x) ·Yn(y)∥
∥∑n

i=1 Xi(x) ·Yi(y)∥
(2.8)

This criterion involves the computation of n + 1 M-dimensional vector products
and, despite is not has a high computational cost, we can avoid it by with a similar
but less expensive criterion. Keep in mind that depending on the chosen norm,
the computational cost can be increased. For instance, for the L2-norm we have
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∥Xn(x) ·Yn(y)∥2 =

(ˆ
Ωx×Ωy

(Xn(x))2 · (Yn(x))2 dx · dy

)1/2

=

(ˆ
Ωx

(Xn(x))2 dx
)1/2

·
(ˆ

Ωy

(Yn(x))2 dy

)1/2

(2.9)

we can see that using this norm involves 2+ n · (n + 1) one-dimensional integrals.
An alternative is

ϵ(n) =
∥Xn(x) ·Yn(y)∥
∥X1(x) ·Y1(y)∥

. (2.10)

This criterion involves way less operations and the level of the error precision we
need is not particularly high. Since the final goal is to work with a robot, and it
has precision error by itself, it is not so important to be very accurate. Hence, the
chosen stopping criterion is 2.10, see implementation in lines [87-94] of A.1.

2.2.2 Alternating Direction Strategy

An alternating direction strategy is a computational technique usually used to
solve partial differential equations (PDEs) and optimization problems [19, 18]. The
basic idea is to break a complex problem into simpler sub-problems that can be
solved more easily by alternating between different directions or dimensions. On
this example, we will break down a two-dimensional problem searching at each
step the solution for a single one-dimensional direction (alternating between the
x− direction and the y− direction). The workflow is as follows:

Y0
n −→ X1

n −→ Y1
n −→ X2

n −→ Y2
n −→ ... −→ Xp

n −→ Yp
n

where Yi
n and X j

n denote the i− th and j− th iteration of the alternating direction
strategy on the n − th step of the enrichment process. The whole alternating
direction iterative process can be found between the lines [257-282] of A.1.

Each iteration of the alternating direction scheme consists in the following two
steps:

1. Calculating Xp
n(x) from Yp−1

n (y). In this case, the approximation reads

un,p =
n−1

∑
i=1

Xi(x) ·Yi(y) + Xp
n(x) ·Yp−1

n (y) (2.11)

where all functions are known except Xp
n(x). The most intuitive choice for

the weight function u∗ in the weighted residual formulation (2.2) is

u∗ = X∗n(x) ·Yp−1
n (y) (2.12)
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which amounts to select the Galerkin weighted residual form of the Poisson
equation. Injecting (2.11) and (2.12) into (2.2), we obtain

ˆ
Ωx×Ωy

X∗n ·Y
p−1
n ·

(
∂2Xp

n

∂x2 ·Y
p−1
n + Xp

n ·
∂2Yp−1

n

∂y2

)
dx · dy

= −
ˆ

Ωx×Ωy

X∗n ·Y
p−1
n ·

n−1

∑
i=1

(
∂2Xi

∂x2 ·Yi + Xi ·
∂2Yi

∂y2

)
dx · dy

+

ˆ
Ωx×Ωy

X∗n ·Y
p−1
n · f dx · dy

(2.13)

Note that all functions depending on y are already known, so we can com-
pute the following one-dimensional integrals over Ωy:

αx =
´

Ωy

(
Yp−1

n (y)
)2

dy

βx =
´

Ωy
Yp−1

n (y) · ∂2Yp−1
n

∂y2 dy

γx
i =

´
Ωy

Yp−1
n (y) ·Yi(y) dy

δx
i =

´
Ωy

Yp−1
n (y) · ∂2Yi

∂y2 dy

ξx =
´

Ωy
Yp−1

n (y) · f dy

(2.14)

Then, the previous equation (2.12) becomes
ˆ

Ωx

X∗ ·
(

αx · ∂2Xp
n

∂x2 + βx · Xp
n

)
dx

= −
ˆ

Ωx

X∗n ·
n−1

∑
i=1

(
γx

i ·
∂2Xi

∂x2 + δx
i · Xi

)
+

ˆ
Ωx

X∗ · ξx dx
(2.15)

This is the weighted residual form of a one-dimensional problem defined
over Ωx. We will use the finite element method to obtain the function Xp

n we
are looking for. In this particular example, that is two-dimensional, we will
return to the corresponding strong formulation

αx · ∂2Xp
n

∂x2 + βx · Xp
n = −

n−1

∑
i=1

(
γx

i ·
∂2Xi

∂x2 + δx
i · Xi

)
+ ξx (2.16)

Then the operator ∂2Xp
n

∂x2 is discretized along a one-dimensional mesh, lead-
ing for a linear system of equations.We can solve it numerically by means of
the Householder QR decomposition [21]. For the Householder QR decom-
position implementation, a C++ library named Eigen (https://gitlab.com/
libeigen/eigen) is used. The code can be found on lines [188-228] of A.1.

https://gitlab.com/libeigen/eigen
https://gitlab.com/libeigen/eigen
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2. Calculating Yp
n (y) from Xp

n(x). In fact, the procedure is completely analog
from what we have just done. Indeed, we simply exchange the roles played
by all relevant functions of x and y.

Now, the approximation reads as

un,p =
n−1

∑
i=1

Xi(x) ·Yi(y) + Xp
n(x) ·Yp

n (y) (2.17)

where the function sought is Yp
n (y).

The Galerkin formulation (2.2) is obtained with the switched choice

u∗(x, y) = Xp
n(x) ·Y∗n (y) (2.18)

Then, by introducing (2.15) and (2.15) into (2.2), we get
ˆ

Ωx×Ωy

Xp
n ·Y∗n ·

(
∂2Xp

n

∂x2 ·Y
p
n + Xp

n ·
∂2Yp

n

∂y2

)
dx · dy

= −
ˆ

Ωx×Ωy

Xp
n ·Y∗n ·

n−1

∑
i=1

(
∂2Xi

∂x2 ·Yi + Xi ·
∂2Yi

∂y2

)
dx · dy

+

ˆ
Ωx×Ωy

Xp
n ·Y∗n · f dx · dy

(2.19)

This time all function of x are known, so we can compute the integrals over
Ωx to obtain 

αy =
´

Ωx

(
Xp

n(x)
)2 dx

βy =
´

Ωx
Xp

n(x) · ∂2Xp
n(x)

∂x2 dx

γ
y
i =

´
Ωx

Xp
n(x) · Xi(x) dx

δ
y
i =

´
Ωx

Xp
n(x) · ∂2Xi

∂x2 dx

ξy =
´

Ωx
Xp

n(x) · f dx

(2.20)

Then by replacing on (2.18) we obtain
ˆ

Ωy

Y∗ ·
(

αy · ∂2Yp
n

∂y2 + βy ·Yp
n

)
dy

= −
ˆ

Ωy

Y∗n ·
n−1

∑
i=1

(
γ

y
i ·

∂2Yi

∂y2 + δ
y
i ·Yi

)
+

ˆ
Ωy

Y∗n · ξy dy

(2.21)

As before, we have thus obtained the weighted residual form of an ellip-
tic problem defined over Ωy whose solution is the function Yp

n (y). We can
transform this expression into the strong formulation

αy · ∂2Yp
n

∂y2 + βy ·Yp
n = −

n−1

∑
i=1

(
γ

y
i ·

∂2Yi

∂y2 + δ
y
i ·Yi

)
+ ξy, (2.22)
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and we integrate by reducing it to a linear system after discretizing ∂2Yp
n

∂y2 on
discrete mesh and using Householder QR decomposition again.

We have thus completed iteration p at enrichment step n. We must realize
that the original two-dimensional Poisson equation defined over Ω = Ωx ×
Ωy has been transformed thanks to PGD into a series of decoupled one-
dimensional problems formulated in each Ωi.

2.3 Taking into Account Neumann Boundary Conditions

Previously, the only conditions we specified were Dirichlet boundary condi-
tions. We will divide the domain boundary and force a flux or Neumann condi-
tion along each part of the domain boundary, and then unify those fluxes using
the principle of superposition explained at section 1.2.1 :

u(x = 0, y) = 0

u(x = L, y) = 0

u(x, y = 0) = 0
∂u
∂u |x,y=H = q

(2.23)

The objective is to integrate by parts the weighted residual form (2.2) and imple-
ment the flux condition as a so-called natural boundary condition:

−
ˆ

Ωx×Ωy

∇u∗ · ∇u dx · dy =

ˆ
Ωx×Ωy

u∗ · f dx · dy−
ˆ

Ωx

u∗(x, y = H) · q dx

(2.24)
or more explicitly:

ˆ
Ωx×Ωy

(
∂u∗

∂x
· ∂u∗

∂x
+

∂u∗

∂y
· ∂u∗

∂y

)
dx · dy

= −
ˆ

Ωx×Ωy

u∗ · f dx · dy +

ˆ
Ωx

u∗(x, y = H) · q dx
(2.25)

This is the starting point from which a PGD solution can be sought in the separated
form

u(x, y) =
N

∑
i=1

Xi(x) ·Yi(y) (2.26)

The PGD solution procedure then readily follows as described in the first case of
study. The modified alternating direction can be found between the lines [269-294]
of A.2. At enrichment step n, one iteration p of the alternating direction strategy
amounts to the following computations:
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1. Calculating Xp
n(x) from Yp−1

n (y). At this stage, the PGD approximation is
given by

un,p =
n−1

∑
i=1

Xi(x) ·Yi(y) + Xp
n(x) ·Yp−1

n (y) (2.27)

where Xp
n is the unknown function.

Using Galerkin’s method, we select the following weight function

u∗(x, y) = X∗n(x) ·Yp−1
n (y) (2.28)

Inserting (2.27) and (2.28) into (2.25), we obtain

ˆ
Ωx×Ωy

∂X∗n
∂x
· ∂Xp

n

∂x
·
(

Yp−1
n

)2
+ X∗n · X

p
n ·
(

∂Yp−1
n

∂y

)2
 dx · dy

= −
ˆ

Ωx×Ωy

n−1

∑
i=1

(
∂X∗n
∂x
· ∂Xi

∂x
·Yp−1

n ·Yi + X∗n · Xi ·
∂Yp−1

n

∂y
· ∂Yi

∂y

)
dx · dy

−
ˆ

Ωx×Ωy

X∗n ·Y
p−1
n · f dx · dy +

ˆ
Ωx

X∗n ·Y
p−1
n (x, y = H) · q dx

(2.29)

In the above expression, all functions of the coordinate y are known, and we
can evaluate the corresponding one-dimensional integrals:

αx =
´

Ωy

(
Yp−1

n (y)
)2

dy

βx =
´

Ωy

(
∂Yp−1

n (y)
∂y

)2

dy

γx
i =

´
Ωy

Yp−1
n (y) ·Yi(y) dy

δx
i =

´
Ωy

∂Yp−1
n (y)
∂y · ∂Yi(y)

∂y dy

ξx =
´

Ωy
Yp−1

n (y) · f dy

µx = Yp−1
n (y = H) · q

(2.30)

As before, we thus obtain the weighted residual form of an elliptic problem
for XP

n (x) defined over Ωx:
ˆ

Ωx

(
∂X∗n
∂x
· ∂Xp

n

∂x
· αx + X∗n · X

p
n · βx

)
dx =

−
ˆ

Ωx

n−1

∑
i=1

(
∂X∗n
∂x
· ∂Xi

∂x
· γx

i + X∗n · Xi · δx
i

)
dx

−
ˆ

Ωx

X∗n · ξx dx +

ˆ
Ωx

X∗n · µx dx

(2.31)
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The finite element method, which will be explained below, can then be used
to discretize this one dimensional problem, with the remaining Dirichlet
condition Xp

n(x = 0) = Xp
n(x = L) = 0.

2. Calculating Yp
n (y) from Xp

n(x). Here again, the second step of iteration p
simply mirrors the first one with an exchange of role between x and y coor-
dinates.

The current PGD approximation reads

un,p =
n−1

∑
i=1

Xi(x) ·Yi(y) + Xp
n(x) ·Yp

n (y) (2.32)

where Yp
n (y) is the only unknown function.

Selecting the Galerkin method,

u∗(x, y) = Xp
n(x) ·Y∗n (y) (2.33)

we introduce (2.32) and (2.33) into (2.25) to obtain

ˆ
Ωx×Ωy

((
∂Xp

n

∂x

)2

·Y∗n ·Y
p
n + (Xp

n)
2 · ∂Y∗n

∂y
· ∂Yp

n

∂y

)
dx · dy =

−
ˆ

Ωx×Ωy

n−1

∑
i=1

(
∂Xp

n

∂x
· ∂Xi

∂x
·Y∗n ·Yi + Xp

n · Xi ·
∂Y∗n
∂y
· ∂Yi

∂y

)
dx · dy

−
ˆ

Ωx×Ωy

Xp
n ·Y∗n · f dx · dy +

ˆ
Ωx

Xp
n ·Y∗n (x, y = H) · q dx

(2.34)

Now, all functions of x are known, and we can compute the integrals



αy =
´

Ωx

(
Xp

n(x)
)2 dx

βy =
´

Ωx

(
∂Xp

n(x)
∂x

)2
dy

γ
y
i =

´
Ωx

Xp
n(x) · Xi(x) dx

δ
y
i =

´
Ωx

∂Xp
n(x)
∂x · ∂Xi(x)

∂x dx

ξy =
´

Ωx
Xp

n(x) · f dx

µy =
´

Ωx
XP

n (x) · q dx

(2.35)

We thus obtain the weighted residual form of an elliptic problem for Yp
n (y)
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defined over Ωy:

ˆ
Ωy

(
∂Y∗n
∂y
· ∂Yp

n

∂y
· αy + Y∗n ·Y

p
n · βy

)
dy

= −
ˆ

Ωy

n−1

∑
i=1

(
∂Y∗n
∂y
· ∂Yi

∂y
· γy

i + Y∗n ·Yi · δ
y
i

)
dy

−
ˆ

Ωy

Y∗n · ξy dy + Y∗n (y = H) · µy

(2.36)

Here again, we can use the finite element method to discretize this one-
dimensional problem, with the remaining Dirichlet conditions Yp

n (y = 0) = 0

2.3.1 The Finite Element Method

The Finite Element Method (FEM) is a numerical technique used for finding
approximate solutions to boundary value problems for partial differential equa-
tions [24].

Let’s consider the x− direction problem of finding Xp
n in a discrete one-dimensional

mesh of M uniformly distributed elements where h is the distance between the
mesh nodes (the y − direction problem is analog). Starting from the weighted
residual form of the elliptic problem (2.31), we aim to describe Xp

n as a linear
combination of a discrete basis {ϕ1, ..., ϕM} of our one-dimensional function space
H1

0(Ωx). We will define ϕi to be the hat functions given as follows:

ϕi(x) =


x−xi−1

h , xi−1 ≤ x < xi
xi+1−x

h , xi ≤ x < xi+1

0, otherwise
(2.37)

Hence, we get Xp
n = ∑M

i=1 ϕixi. By inserting it into (2.31) the left side of the
equation becomes

ˆ
Ωx

∂X∗n
∂x
·
(

M

∑
i=1

ϕ′i xi

)
· αx + X∗n ·

(
M

∑
i=1

ϕixi

)
· βx dx, (2.38)

that can be rewritten as

M

∑
i=1

(
αx
ˆ

Ωx

ϕ′i ·
∂X∗n
∂x

dx · xi

)
+

M

∑
i=1

(
βx
ˆ

Ωx

X∗n · ϕi dx · xi

)
(2.39)

As the only requirement for the test functions is that it have to belong to H1
0 , we
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can take X∗n as the basis functions ϕi and get M equations
M

∑
i=1

(
αx
ˆ

Ωx

ϕ′i · ϕ′1 dx · xi

)
+

M

∑
i=1

(
βx
ˆ

Ωx

ϕ1 · ϕi dx · xi

)
M

∑
i=1

(
αx
ˆ

Ωx

ϕ′i · ϕ′2 dx · xi

)
+

M

∑
i=1

(
βx
ˆ

Ωx

ϕ2 · ϕi dx · xi

)
...

M

∑
i=1

(
αx
ˆ

Ωx

ϕ′i · ϕ′M dx · xi

)
+

M

∑
i=1

(
βx
ˆ

Ωx

ϕM · ϕi dx · xi

)
(2.40)

As ˆ
Ωx

ϕ′j · ϕ′i dx =


2
h , if j = i
− 1

h , if j = i± 1
0, otherwise

(2.41)

and ˆ
Ωx

ϕj · ϕi dx =

{
h, if j = i
0, otherwise

(2.42)

we can write (2.40) in the matrix form:

A =



2
h αx + hβx − 1

h αx 0 0 · · · 0
− 1

h αx 2
h αx + hβx − 1

h αx 0 · · · 0
...

...
. . . . . .

...
...

0 · · · 0 − 1
h αx 2

h αx + hβx − 1
h αx

0 · · · 0 0 − 1
h αx 2

h αx + hβx

 (2.43)

Of the elements on the right-hand side of the equation (2.31), the only one
affected by the FEM is the one containing the summation.We want to get rid of
the ∂X∗n

∂x terms, as we don’t know how to compute it against ∂Xi
∂x and Xi. First, we

extract the summation out of the integral as follows

−
n−1

∑
i=1

ˆ
Ωx

(
∂X∗n
∂x
· ∂Xi

∂x
· γx

i + X∗n · Xi · δx
i

)
dx =

−
n−1

∑
i=1

(ˆ
Ωx

∂X∗n
∂x
· ∂Xi

∂x
· γx

i dx +

ˆ
Ωx

X∗n · Xi · δx
i dx

)
,

and, integrating by parts the left integral with u = ∂Xi
∂x and ∂v = ∂X∗n

∂x , we obtain

−
n−1

∑
i=1

(
γx

i · X∗n ·
∂Xi

∂x
− γx

i

ˆ
Ωx

X∗n ·
∂2Xi

∂x
dx + δ

ˆ
Ωx

X∗n · Xi

)
. (2.44)

Now we are facing again a linear equation system that can be solved as before,
with the Householder QR decomposition. The code of all this FEM method can
be found between the lines [194-228] on A.2.



Chapter 3

Applying PGD for Robot Path
Planning

The preceding section has presented a simple example application of the res-
olution of the Poisson equation using PGD where a two dimensional space is
decomposed in X and Y. (Chinesta et al., 2013; Chinesta et al., 2014) demon-
strate that parameters in a model can be set as additional coordinates when using
the PGD approach. In this chapter, a path planning technique is presented where
these additional parameters are all the possible combination of the start and target
position, and are included in the source term of the Poisson equation (2.1)

3.1 Definition of the Source Term

Until now, we assumed the source term f was constant. Now, we will consider
it as a non uniform source term f (ΩX, ΩS, ΩT) , where ΩX = Ωx × Ωy, ΩS =

Ωsx ×Ωsy and ΩT = Ωtx ×Ωty . The start and target points S and T are defined
by means of Gaussian models with mean and a variance. In these models, s =

(sx, sy) and t = (tx, ty) are the mean values located in specific points X = (x, y)
in each separated space ΩS, ΩT and r is its variance. Gaussian models are used
instead of Delta Dirac models because they provide much better results in a PGD-
Vademecum than Delta Dirac model, as explained at [4]. In order to define the
source term, we must construct this two matrices first:

29
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f (X, S) =

 f (x1, s1) · · · f (x1, sN)
...

. . .
...

f (xN , s1) · · · f (xN , sN)



g(X, T) =

 f (x1, t1) · · · f (x1, tN)
...

. . .
...

f (xN , t1) · · · f (xN , tN)


(3.1)

One can find the creation of the f (X, S) and g(X; T) matrices between the lines
[417-452] of A.3 Applying the Single Value Decomposition (SVD) method to these
matrices, the result is the decomposition of the source term in the form:

f (X, S) =
F

∑
j=1

αS
j · FS

j (X) · GS
j (S)

g(X, T) =
F

∑
j=1

αT
j · FT

j (X) · GT
j (T)

(3.2)

Thus, the Poisson equation to be solved is of the form:

∆u(x, y) = f (X, S) + g(X, T) (3.3)

3.2 Computation of the PGD-Vademecum

For all suitable test functions u∗, we can write the weak form 2.2 as

ˆ
ΩX,S,T

u∗ · (∆u− f ) dΩX,S,T = 0 (3.4)

where f = f (X, S) + g(X, T). Now, the equation 2.2 reads as

ˆ
ΩX,S,T

∇u∗ ·∇u dΩX,S,T =

ˆ
ΩX,S,T

u∗ · f dΩX,S,T−
ˆ

ΩX,S,T

u∗(x, y = Γ) · q dΩX,S,T

(3.5)
where the solution will take the form

u(X, S, T) =
N

∑
i=1

Ri(X) ·Wi(S) · Ki(T) (3.6)
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We shall follow then the same steps seen on the previous, building an enriched
solution

un−1(X, S, T) =
n−1

∑
i=1

Ri(X) ·Wi(S) · Ki(T) (3.7)

where each enrichment step is given by

un = un−1 + R(X) ·W(S) · K(T) (3.8)

One of the main advantages of PGD is the capability of decompose a high
dimensional problem into a combination of rank one functions

R(X) ·W(S) · K(T) = R1(x) · R2(y) ·W1(sx) ·W2(sy) · K1(tx) · K2(ty) (3.9)

The test functions u∗ live then in the linear space of functions

R(X) ·W(S) · K∗(T) + R(X) ·W∗(S) · K(T) + R∗(X) ·W(S) · K(T)

where K∗(T) is orthogonal to K(T), W∗(S) is orthogonal to W(S) and R∗(X) is
orthogonal to R(X). On [4] an alternating direction algorithm is used to construct
the separated representation.

3.3 Our own approach

Setting two additional coordinates for computing the PGD for all possible com-
binations for the start and target positions brings us a lot of value when working
on dynamic environments. But since dynamic environments are not really the
goal of this project (could be a nice extension though), and it highly increases the
complexity of the algorithm, we will modify this implementation to get our own
approach. In fact, we won’t need all possible combinations, we only aim to get
the path from one single goal to one single target. So, instead of adding two coor-
dinates, we will simply consider the source term as a known non-uniform source
h(x, y). Actually, that means to get the appropriate combination of columns from
3.1. Indeed, for a sought source and target points, si and tj, we will compute
h(x, y) = f (X, S)|si − g(X, S)|tj , where f (X, S)|si denotes the i− th column of the
matrix f (X, S), corresponding to the source term s1. Same applies to g(X, S)|tj for
the target point tj.

Our goal is to obtain a separated representation of h in the form

h(x, y) =
F
∑
j=1

Hx
k (x) · Hy

j (y). (3.10)
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There are several methods to achieve that, but since PGD is one of the main
topics of this work, I find it appropriate to use it also for calculating a separated
form approximation of h. In this case, no derivatives are envolved on the algebraic
problem of finding u(x, y):

u(x, y) = h(x, y), (x, y) ∈ Ω = Ωx ×Ωy. (3.11)

The corresponding weighted residual form reads
ˆ

Ωx×Ωy

u ∗ ·(u(x, y)− h(x, y)) dx · dy = 0, ∀u∗ ∈ H1
0(Ω). (3.12)

As is now customary, we shall build an enriched solution as in (2.4) and solve
each iteration by means of the alternating direction scheme. First, we compute Xp

n

using u∗ = X∗n ·Y
p−1
n by solving

ˆ
Ωx×Ωy

X∗n ·Y
p−1
n · (Xp

n ·Y
p−1
n − h(x, y)) dx · dy = 0, (3.13)

and then compute Yp
n using u∗ = Y∗n · X

p
n ,

ˆ
Ωx×Ωy

Xp
n ·Y∗n · (Xp

n ·Y
p
n − h(x, y)) dx · dy = 0. (3.14)

The strong forms of (3.13) and (3.14) thus yield

Xp
n =

´
Ωy

Yp−1
n · h dy

´
Ωy
(Yp−1

n )2 dy
, (3.15)

and

Yp
n =

´
Ωx

Xp
n · h dx´

Ωx
(Xp

n)2 dx
. (3.16)

Now we must translate it into the discrete analog forms of (3.15) and (3.16). As
the points of the mesh are uniformly distributed in both domains Ωx and Ωy, via
numerical integration we have

Xp
n =

H(X, Y)T ·Yp−1
n

(Yp−1
n )T ·Yp−1

n
, (3.17)

and

Yp
n =

H(X, Y) · Xp
n

(Xp
n)T · Xp

n
, (3.18)

respectively, where H(X, Y) is the matrix form of h(x, y). The separated form
computation of h can be found between the lines [506-512] of A.3.
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Once we have (3.10), following the next notation,

ϵx
j =

ˆ
Ωy

Yp−1
n (y) · Hy

j (y) dy, (3.19)

it is easy to note that (2.15) has became

ˆ
Ωx

X∗n ·
(

αx · ∂2Xp
n

∂x2 + βx · Xp
n

)
dx

= −
ˆ

Ωx

X∗n ·
n−1

∑
i=1

(
γx

i ·
∂2Xi

∂x2 + δx
i · Xi

)
+

ˆ
Ωx

X∗n ·
(
F
∑
j=1

ξx
j · Hx

j (x)

)
dx.

(3.20)

Similarly, with the definition

ϵ
y
j =

ˆ
Ωx

Xp
n(x) · Hx

j (x) dx. (3.21)

the equation (2.21) becomes

ˆ
Ωy

Y∗n ·
(

αy · ∂2Yp
n

∂y2 + βy ·Yp
n

)
dy

= −
ˆ

Ωy

Y∗n ·
n−1

∑
i=1

(
γ

y
i ·

∂2Yi

∂y2 + δ
y
i ·Yi

)
+

ˆ
Ωy

Y∗n ·
(
F
∑
j=1

ξ
y
j · H

y
j (y)

)
dy.

(3.22)

We can transform this expressions into the strong formulation and resolve it
via discretization and Householder QR decomposition as we did previously. The
implementation of all this process can be found between the lines [212-246] of A.3.

3.4 Numerical results

3.4.1 Basic example

We will start with a basic example of Poisson equation (1.17) of which we
know the analytical form. This example was mainly to ensure the PGD algorithm
worked correctly. We considered a two-dimensional rectangular domain Ω =

Ωx ×Ωy = (0, 2)× (0, 1). The source term f is constant set to f = 1. The exact
solution for u(x, y) is:

uex(x, y) = ∑
m≥1

m odd

∑
n≥1

n odd

64
π4nm(4n2 + m2)

sin
(mπx

2

)
sin(nπy). (3.23)

The solution is represented with an M × M grid, where M = 101. The error
tolerance is ϵ = 10−6 and the maximum iteration for the enrichment step and
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alternating direction scheme are maxn = 20, maxp = 30, respectively. The full
code can be found in [A.1]. In Fig 3.1 we show the PGD approximation of the
solution of the problem. In Fig 3.2 the error between our PGD approximated
solution and the analytical solution 3.23 is shown.

Figure 3.1: Reconstructed PGD solution
of (2.1) with f = 1

Figure 3.2: Absolute difference between
the PGD approximation and the analyt-
ical solution 3.23
(computing for 1 ≤ m, n ≤ 101)

3.4.2 Computing navigation path

Once we get our PGD algorithm working, the next step is to use it for finding
a path between two points. We will use the same values as before for the variables
M, maxn and maxp. Now, we also have to consider the maximum iteration for
the enrichment step of the PGD computation for the separated form of the source
term f , max f = 20. We considered a two-dimensional rectangular domain Ω =

Ωx ×Ωy = (0, 7) × (0, 5). On the section A.3 of the appendix, we can see how
the function f is computed using a Gaussian model. Then a separated version
is estimated via PGD. The Figure 3.3 shows the result of this estimated version
for a source point Sp = (2, 1), a target point Tp = (5, 4) and a variance r = 1.2.
The Figure 3.5, on the other hand, shows the solution u(x, y) by applying the
just computed f to the Poisson equation. The Figure 3.6 shows the vector field
corresponding to the solution u.

As we can see, the source and target points seems a bit displaced. This is
due to the Dirichlet boundary condition. Since the flux is forced to disappear on
the boundary, the minimum and maximum of the fields are slightly modified. To
avoid that, we can modify the variance r value to make the Gaussian distribution
more concentrated on the desired points. On the Figure 3.7 we will use a variance
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Figure 3.3: Separated form estimation of source term function f for source point Sp = (2, 1) and a
target point Tp = (5, 4)

r = 0.1 and we can clearly see the difference, and check that now the source and
target points keep the desired values. On Figure 3.8 the resulting vector field is
plotted.

Finally, we compute the interpolated path using the Euler integration method
of the ode q̇ = −∇U(q) where U is the obtained PGD approximation for the
potential. This method approximates the solution by taking small steps along the
direction of the gradient. We can see the code in lines [530-563] and the results
on the Figure 3.4. Note that Euler method has a local error O(h2) but, as we will
explain later in 4.3.3, the step size h in the integration process has to be small
enough so the default global navigation system of the ROS package we use don’t
interfere in the robot path.

Figure 3.4: Interpolated path from source point Sp = (2, 1), target point Tp = (5, 4)



36 Applying PGD for Robot Path Planning

Figure 3.5: PGD estimation of the solution
u(x, y) for source point Sp = (2, 1), target
point Tp = (5, 4) and variance r = 1.2

Figure 3.6: Vector field given by
the PGD approximation u(x, y) for
source point Sp = (2, 1), target point
Tp = (5, 4) and variance r = 1.2

Figure 3.7: PGD approximation of the solu-
tion u(x, y) for source point Sp = (2, 1), tar-
get point Tp = (5, 4) and variance r = 0.1

Figure 3.8: Vector field given by the
PGD approximation of u(x, y) for
source point Sp = (2, 1), target point
Tp = (5, 4) and variance r = 0.1



Chapter 4

Building a robot application

Once we already have the path the robot should take, the last step is to give
that information to the robot itself. I’ve decided to use the Robot Operating System
(ROS) tool, since it’s the framework used in the Robotics subject at Universitat de
Barcelona, whereby I have at my disposal some repositories and nodes that will
help me not to do all the settings from scratch. Moreover, in the event of wanting
to continue this work in the future, I can even transfer everything I have done so
far to the physical plane, since I also have physical and functional robots at my
disposal.

The virtual environment used for developing the ROS application is provided
by The Construct AI1, a free online platform designed to create and simulate
robotic applications. One of its advantages is that it runs entirely in the cloud,
eliminating the need for installing and configuring ROS and associated tools on
your local machine and thus saving us a lot of time. It also has an integrated IDE
that includes tools for writing and testing code, visualizing robot movements, and
debugging applications.

4.1 Robot Operating System (ROS)

Robot Operating System2 (ROS) is a flexible open source framework for creat-
ing robot software. It provides different tools, libraries and conventions to simplify
the task of setting up and creating a complex and robust robot behaviours.

Over its advantages, we can emphasize the modularity and reusability, which
will be discussed in the next subsection, and also the communication structure,
that enables seamless interaction between different software component in the
robot system.

1https://www.theconstruct.ai/
2https://ros.org/
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4.2 How does ROS work?

Actually, ROS is more than a development framework. We can refer to ROS as a
meta-operating system, since it offers not only tools and libraries but even OS-like
functions, such as hardware abstraction, package management, and a developer
toolchain. Like a real operating system, ROS files are organized on the hard disk
in a particular manner. On this section, we will summarize the two main levels of
concept ROS has: the Filesystem and the Computational Graph.

4.2.1 ROS Filesystem Level

Similar to an operating system, ROS files are also organized on the hard disk
in a particular fashion. In this level, we can see how these files are organized on
the disk. The figure 4.1 shows how ROS files and folder are organized on the disk:

Figure 4.1: Graph representing the ROS file system hierarchy

Here are the explanations for each block in the filesystem:

• Packages:

The ROS packages are the most basic unit of the ROS software. They contain
libraries, executables, scripts, configuration files and other resources needed
to perform an specific task. Packages are the atomic build item and release
item in the ROS software. A typical structure of an ROS package is shown
in figure 4.2.
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Figure 4.2: Typical structure of a ROS package

• Metapackages:

One or more related packages which can be loosely grouped together. In
principle, metapackages are virtual packages that don’t contain any source
code or typical files usually found in packages. . Most commonly metapack-
ages are used as a backwards compatible place holder for converted rosbuild
Stacks.

• Package manifest:

Provide metadata about a package, including its name, version, description,
license information, dependencies, and other meta information like exported
packages.

• Repositories:

A collection of packages which share a common Version Control System
(VCS). Packages which share a VCS share the same version and can be re-
leased together using the catkin3 release automation tool bloom4. Catkin is
the official build system for ROS and it simplifies the process of building
ROS packages by managing dependencies and helping with complex build
configurations. On the other hand, bloom is a release automation tool used
to prepare ROS packages for release into the ROS ecosystem as a Debian
packages.

3https://wiki.ros.org/catkin
4https://wiki.ros.org/bloom

https://wiki.ros.org/catkin
https://wiki.ros.org/bloom
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• Message types:

Message descriptions, stored in my_package/msg/MyMessageType.msg, de-
fine the data structures for messages sent in ROS.

• Services types:

Service descriptions, stored in my_package/srv/MyServiceType.srv, define the
request and response data structures for services in ROS.

4.2.2 ROS Computation Graph Level

The Computation Graph is the peer-to-peer network of ROS processes that
are processing data together. This network uses a number of process called ROS
nodes. Each concept in the graph is contributed to this graph in different ways.
The figure 4.3 exemplifies how the nodes communicate.

Figure 4.3: Workflow of ROS main communication processes: Topics and Services

• Nodes: Nodes are processes that perform computation. ROS is designed to
be modular at a fine-grained scale; a robot control system usually comprises
many nodes. Each node is an an individual programs or processes that
performs computations, handles data, and communicates with other nodes.
A ROS node is written with the use of a ROS client library, such as roscpp
or rospy.
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Using nodes can make the system fault tolerant. Even if a node crashes, an
entire robot system can still work. Nodes also reduce the complexity and
increase debugability.

• Master: The ROS Master provides name registration and lookup to the rest
of the nodes. Nodes will not be able to find each other, exchange messages,
or invoke services without a ROS Master.

• Parameter Server: The parameter server allows you to keep the data to be
stored in a central location. All nodes can access and modify these values.
Parameter server is a part of ROS Master.

• Messages: ROS nodes communicate with each other by publishing messages
to a topic. Messages are simply a data structure containing the typed field,
which can hold a set of data and that can be sent to another node. There
are standard primitive types (integer, floating point, Boolean, and so on) and
these are supported by ROS messages. We can also build our own message
types using these standard types.

Nodes can also exchange information using service calls. Services are also
messages, the service message definitions are defined inside the srv file.

• Topics: Messages are routed via a transport system with publish / subscribe
semantics. A node sends out a message by publishing it to a given topic. The
topic is a name that is used to identify the content of the message. A node
that is interested in a certain kind of data will subscribe to the appropriate
topic. There may be multiple concurrent publishers and subscribers for a
single topic, and a single node may publish and/or subscribe to multiple
topics. In general, publishers and subscribers are not aware of each others’
existence. The idea is to decouple the production of information from its
consumption. The communication using topics are unidirectional, if we want
to implement request/response such as communication, we have to switch
to ROS services.

• Services: In some robot applications, a publish/subscribe model will not be
enough if it needs a request/response interaction. The publish/subscribe
model is a kind of one-way transport system and when we work with a
distributed system, we might need a request/response kind of interaction.

Request / reply is done via services, which are defined by a pair of message
structures: one for the request and one for the reply. A providing node offers
a service under a name and a client uses the service by sending the request
message and awaiting the reply.
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• Bags: Bags are a format for saving and playing back ROS message data. Bags
are an important mechanism for storing data, such as sensor data, which
can be difficult to collect but is necessary for developing and testing robot
algorithms. Bags are very useful features when we work with complex robot
mechanisms.

4.3 ROS Navigation stack

There are many packages and stacks some of which are used in this project for
simulation, kinematic designs and so on, such as Gazevo or RViz. However, we
will focus on the navigation stack because is the module which will be directly
affected by our previous work of computing the path.

4.3.1 A general view

The Navigation Stack is fairly simple on a conceptual level. It takes in informa-
tion from odometry and sensor streams and outputs velocity commands to send
to a mobile base. Use of the Navigation Stack on an arbitrary robot, however, is
a bit more complicated. From a higher point of view, Robot Navigation can be
broken down into the following interrelated subproblems, as we can see on the
figure 4.4. Each item has his own functionality:

Figure 4.4: The navigation stack

• Localization: The robot needs to know where it is.

• Mapping: The robot should be able to build a virtual representation of its
environment.

• Path Planning: The robot needs to be able to plan a route.
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• Motion Control: The robot has to able to follow a planned route correctly.

4.3.2 Path planning

Depending on the previous knowledge of the environment, path planning can
be either online or offline, although sometimes these methods are called static or
dynamic planning. In any case, the distinction being made refers to whether the
entire path is calculated before the motion begins, with a previously existing map
of the environment, or incrementally, during motion using recent sensor informa-
tion. The path planner created in this projects is an offline path planning, but as it
can be extended to compute offline all the possible configurations of the environ-
ment, it can also work as an online planner, with the advantage that you do not
need to recalculate the path.

Path planning can also be classified into holonomic path planning and non-
holonomic path planning, depending on if kinemetic constraints are considered
or not. If the generated path also considers constraints on velocity and accelera-
tion, the term kinodynamic path planning is used.

Also, based on the decomposition method of the environment used, path plan-
ning algorithms can be classified into deterministic planners and probabilistic
planners. Figure 4.5 exemplifies the path planning classification through a graph.

Figure 4.5: Types of path planning classified according to environment knowledge, constraints con-
sidered and environment decomposition.

With the many different types of algorithms that exist, there are also many
pros and cons to each solution.

But why restrict yourself to using just one path planning method? For instance,
both offline and online planning capabilities are very important. Using an existing
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map to find the shortest path to a goal is just as valuable as being able to react to
unexpected obstacles in that path.

A common way of satisfying the requirements of a robust autonomous navi-
gation system is to use a two-level planning architecture.

In such systems, a global path planner is paired with a local path planner and
both work in a complementary manner.

The global path planner is concerned with long range planning and uses the
available map information, which can be slow, but is key to finding the most
efficient path to a distant goal. It is not concerned with the robot’s dynamics or
how to avoid unexpected obstacles, which are left to the local path planner.

In this way, each planner deals with only one set of concerns: finding a
traversable path to a distant goal, and following that path while reacting to un-
foreseen situations like the appearance of obstacles.

ROS already provides a local and global navigation using the move_base node5.
This node links together a global and local path planner via the interfaces of the
nav_core node6, the nav_core::BaseGlobalPlanner and nav_core::BaseLocalPlanner.

On this project, we are going to focus not on replacing the current global path
planning but to supply this navigation node a list of destination goals with a step
size small enough so the path we computed previously does not get influenced by
this interfaces.

A possible future continuation for this project can be swapping this planner
already designed by our PGD-computed path planner, so given a goal point the
navigation stack gets the path the robot should follow from our PGD algorithm,
instead of getting a list of waypoints.

4.3.3 Inside our navigation system

We will follow the same order as in the figure 4.4. So, for the localization and
mapping we are using SLAM (Simultaneous Localization and Mapping). SLAM is
a technique used in robotics to explore and map an unknown environment while
estimating the pose of the robot itself. As it moves all around, it will be acquiring
structured information of the surroundings by processing the raw data coming
from its sensors. It already exists a SLAM package (https://wiki.ros.org/slam_
gmapping) so we will only have to modify his configurable parameters in order to
improve it’s performance.

But, to be able to generate the virtual map, first we need to create the world.
In robotics research, always before working with a real robot, we simulate the
robot behaviour in a virtual environment close to the real one. Gazebo is an open

5https://wiki.ros.org/move_base
6https://wiki.ros.org/nav_core

https://wiki.ros.org/slam_gmapping
https://wiki.ros.org/slam_gmapping
https://wiki.ros.org/move_base
https://wiki.ros.org/nav_core
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source 3D robotics simulator that includes an ODE physics engine and OpenGL
rendering, and supports code integration for closed-loop control in robot drives.
Gazebo has a "Building editor" tool where we can easily generate and save our
world. When a model is created with "Building Editor", this path is saved in
gazebo environment and you can use it in the future. In this way, you can construct
your world adding different models created previously. Figure 4.6 shows the
interface Gazebo provides to create and export a custom world.

Figure 4.6: Gazebo building editor tool interface.

Once we’ve created the world we have to spawn the robot into the just designed
virtual world. This robot was already designed with the exact same features as the
real robot to which we have access. The robot virtual model has been generated
with a tool named RVIZ and we can spawn it via .launch files. Figure 4.7 shows
the robot spawned on the 3D virtual world visualisation using RVIZ. When the
robot bring up has been properly carried out, we use the slam_gmapping node
(http://wiki.ros.org/gmapping and the teleoperation package (https://wiki.
ros.org/teleop_twist_keyboard) in order to move the robot around the world
while mapping all the environment. Once the map is finished, it is saved in local
directory.

After finished the mapping we want to make the robot go from one initial point
to another. To achieve this, the robot needs to know which is its POSE within
the map. The AMCL7 (Adaptive Monte Carlo Localization) package provides the
amcl node, which uses the MCL system in order to track the localization of a robot

7http://wiki.ros.org/amcl

http://wiki.ros.org/gmapping
https://wiki.ros.org/teleop_twist_keyboard
https://wiki.ros.org/teleop_twist_keyboard
http://wiki.ros.org/amcl
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Figure 4.7: RVIz interface where the world and the robot is rendered and visualized.

Figure 4.8: Visualization of the virtual map generated by the slam_gmapping package..
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moving in a 2D space. This node subscribes to the data of the laser, the laser-based
map, and the transformations of the robot, and publishes its estimated position in
the map. This AMCL node is also highly customizable and we can configure many
parameters in order to improve its performance. First, we set up an initial pose
by using the 2D Pose Estimate tool (which published that pose to the /initialpose
topic). The message type is ”PoseWithCovarianceStamped”

1 def init_pose():
2 rospy.init_node('pub_initpose_node', anonymous=True)
3 pub = rospy.Publisher('/initialpose', PoseWithCovarianceStamped,

queue_size=10)
4 #Define whatever initial pose you want, for example (4,3)
5 initial_pose = create_initpose(4, 3, radians(180))
6 rate = rospy.Rate(1) # 1hz has to be low value
7 pub.publish(initial_pose)
8 rate.sleep()

For sending a goal, we use the move_base ROS Node which itself uses Sim-
pleActionServer, with a single navigation goal. To communicate with this node,
the SimpleActionClient interface is used. The message type goal of the pose is
“geometry_msgs/PoseStamped”. The move_base node tries to achieve a desired pose
by combining a global and a local motion planners, as explained in 4.3.2. Since we
need to send not a single goal but a sequence of goals which outline the final path,
we will use a .yaml file to define the waypoints. We have to specify the waypoints
as pose in (x,y,w) values and create a new create_pose_stamped(position_x, posi-
tion_y, rotation_z) function. The "waypoints.yaml" file will shall take the following
form:

1 #waypoint.yaml file
2 goal1: {"x": -0.5, "y": 0.8, "w": 90}
3 goal2: {"x": -0.5, "y": -0.5, "w": 180}
4 goal3: {"x": -0.5, "y": -1.3, "w": 180}
5

6 ...

And load this file as a parameters in our .launch file to use it in our navigation
function:

1 def movebase_client():
2 client = actionlib.SimpleActionClient('move_base',MoveBaseAction)
3 client.wait_for_server()
4 waypoints = []
5 with open(rospy.get_param("~waypoints_file")) as file:
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6 waypoints_data = yaml.load(file, Loader=yaml.FullLoader)
7 # Process loaded waypoints
8 for goal_data in waypoints_data.values():
9 goal_pose = create_pose_stamped(goal_data['x'],

goal_data['y'], radians(goal_data['w']))
10 waypoints.append(goal_pose)
11 #we send a goal for each waypoint
12 for wp in waypoints:
13 max_attempts = 3
14 for attempt in range(max_attempts):
15 client.send_goal(wp)
16 wait = client.wait_for_result(rospy.Duration(100))
17 if wait:
18 rospy.loginfo("Goal execution done!")
19 break # Goal reached successfully, exit loop
20 else:
21 rospy.logwarn("Failed to reach goal, retrying...")

In this way, the robot will follow the desired path as we are sending the tra-
jectory points with a small spacing, not letting the global path planner already
integrated on the move_base node to compute a different flow. On Figure 4.9 we
can see how the different nodes communicate with each other. The map_server
node provides the virtual map to the move_base which ,in turn, interact with the
move_base_waypoints node sending the status position and retrieving back the
next goal. It also sends the velocity to the real world environment (gazebo) and
fetch the localisation information from the amcl node, as we explained before.

Figure 4.9: ROS computation graph that shows the topics, nodes, and packages used in our project.
It is generated via rqt_graph(https://wiki.ros.org/rqt_graph)

https://wiki.ros.org/rqt_graph


Project Planning

Effective project planning is crucial for the successful execution and completion
of any project. It involves defining the project objectives and determining the
timeline required. Figure 4.10 is a Gantt chart that reflects the temporal planning
throughout the project. There are some nuances that I would like to highlight. As
we can see, it has been a priority to separate and parallelise the tasks related to the
PGD and the ROS parts. Also, we can clearly see that the implementation of the
PGD algorithm has been divided into three part that have been developed linearly:
the Dirichlet, the Neumann and the Path Planner. Finally, it may surprise that the
investigation of the navigation stack has been realised so late. This is because I
wanted to assist to the Robotic class related to this topic, and the agenda for this
course was defined this way.
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Month
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Investigation
Artificial Potential Field
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Boundary Conditions
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PGD Algorithm
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Harmonic functions
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Navigation stack

Abstract
Introduction & conclusion

Figure 4.10: Gantt Chart. Reflects the temporal planning followed throughout the
project making



Conclusion

This project was inspired by an article of MDPI journal [7],which quickly
caught my attention as it dealt with two subjects that I had not been able to
study throughout my university degree as I mentioned on the abstract. That is
why the first objective was to be able to create a model able to find a free-collision
path for dynamic environments. It quickly realised that accomplish this while
being detailed, formal and rigorous, would take more time than I had available,
since a lot of new complex concepts involving different areas have never studied
at an advanced level such as physics were introduced. Despite that, restrict the
initial conditions to only source and target points, has turned out to be equally
interesting and enriching.

In addition to the initial theoretical investigation of the topic, the practical side
illustrate the potential of this method for real life applications. Actually, it has
been used in multiples areas [11, 15, 23].

The main contributions lie on giving a mathematical foundation to the existing
papers about the APF, the application of harmonic function to robotics and the use
of PGD for solving Poisson equation [3, 8, 14], which were written from a more
engineering perspective. The other fundamental contribution is to illustrate it by
means of the building a robot application with the same framework and same
robot model as the used in Universitat de Barcelona, thus providing an opportunity
to continue with this work. It is the author’s opinion that this project merges in a
very successful way both worlds: mathematics and computer science.

As mentioned on the abstract, this work provides the perfect basis for future
extensions in both areas. As for the mathematically oriented part, an interesting
future continuation would be integrate dynamic objects to the Poisson equation,
as originally intended. On the other hand, as the robotic virtual model of the
robot application has been modelled with the same features as the physical ones
we have on Universitat de Barcelona, translating all this work to the physical realm
by leaving the simulation environment and test it on a real environment can be a
good experiment.
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Appendix

A PGD Code

In this appendix one can find the code used for computing the u(x, y) function
by applying the PGD algorithm, as well as the vector field associated and the
interpolated path between the source and target points.

A.1 Dirichlet condition

This is the basic example of computing the Poisson equation (2.1) with a con-
stant source term f and considering only Dirichlet boundary conditions.

1 #include <iostream>
2 #include <fstream>
3 #include <vector>
4 #include <algorithm>
5 #include <Eigen/Dense>
6 #include <random>
7

8 //Settings
9 using Vector = std::vector<double>;

10 using Matrix = std::vector<Vector>;
11

12

13

14 //CONSTANTS
15 const int M = 101, max_p = 30, max_n = 20; //Mesh points
16 const double epsilon = 1e-6; //Error tolerance
17 const Vector f (M,1); // f function
18 int N = -1; //current iteration of the solution
19 const int a_y = 0, b_y = 1, a_x = 0, b_x = 2; //Domain
20

21 // Create and initialize the matrix with zeros
22 Matrix createMatrix(int m, int n) {
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23 Matrix matrix(m, Vector(n, 0.0));
24 return matrix;
25 }
26

27 // Print the given matrix
28 void printMatrix(const Matrix& matrix, const std::string& name) {
29 std::cout << "Matrix: " << name << std::endl;
30 for (const auto& row : matrix) {
31 for (double value : row) {
32 std::cout << value << " ";
33 }
34 std::cout << std::endl;
35 }
36 }
37

38 // Print the given vector
39 void printVector(const Vector& myVector, const std::string& name) {
40 std::cout << "Vector: " << name << std::endl;
41 for (const auto& element : myVector) {
42 std::cout << element << " ";
43 }
44 std::cout << std::endl;
45 }
46

47 // Compute the outer product of two vectors
48 Matrix outerProduct(const Vector& vector1, const Vector& vector2) {
49 // Get the sizes of the vectors
50 size_t size1 = vector1.size();
51 size_t size2 = vector2.size();
52

53 // Create an MxM matrix filled with zeros
54 Matrix resultMatrix(size1, Vector(size2, 0));
55

56 // Compute the outer product
57 for (size_t i = 0; i < size1; ++i) {
58 for (size_t j = 0; j < size2; ++j) {
59 resultMatrix[i][j] = vector1[i] * vector2[j];
60 }
61 }
62

63 return resultMatrix;
64 }
65

66 // Compute the 1-norm of the given matrix
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67 double computeNorm(const Matrix& matrix) {
68 // Get the dimensions of the matrix
69 size_t rows = matrix.size();
70 size_t cols = matrix[0].size();
71

72 // Initialize the 1-norm to a negative value
73 double norm = -1.0;
74

75 // Iterate over columns and calculate the absolute column sum
76 for (size_t j = 0; j < cols; ++j) {
77 double columnSum = 0.0;
78 for (size_t i = 0; i < rows; ++i) {
79 columnSum += std::abs(matrix[i][j]);
80 }
81 // Update the 1-norm if the current column sum is larger
82 norm = std::max(norm, columnSum);
83 }
84 return norm;
85 }
86

87 // Check if the solution has converged based on a tolerance criterion
88 bool checkSolutionConvergence(const Matrix& X, const Matrix& Y) {
89 if (N == -1) return false;
90 Matrix m1 = outerProduct(X[N], Y[N]);
91 Matrix m2 = outerProduct(X[0], Y[0]);
92

93 return (computeNorm(m1) / computeNorm(m2)) < epsilon;
94 }
95

96 // Compute the integral of a function
97 double computeIntegral(const Vector& function, int a, int b) {
98 double h = static_cast<double>(b - a) / (2.0 * (M - 1));
99 double integral = 0.0;

100 for (int i = 0; i < M; ++i) {
101 if (i == 0 || i == M - 1) {
102 integral += function[i];
103 } else {
104 integral += 2 * function[i];
105 }
106 }
107 return integral * h;
108 }
109

110 // Compute the derivative of a function
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111 Vector computeDerivative(const Vector& function, int a, int b) {
112 Vector der(M, 0.0);
113 double h = static_cast<double>(b - a) / (M - 1);
114 for (int i = 0; i < M; ++i) {
115 if (i == 0) {
116 der[i] = (function[i] - 2 * function[i + 1] + function[i +

2]) / (h * h);
117 } else if (i == M - 1) {
118 der[i] = (function[i - 1] - 2 * function[i] + function[i +

1]) / (h * h);
119 } else {
120 der[i] = (function[i - 2] - 2 * function[i - 1] +

function[i]) / (h * h);
121 }
122 }
123 return der;
124 }
125

126 // Compute the product of two vectors element-wise
127 Vector vectorProduct(const Vector& v1, const Vector& v2) {
128 Vector product(M, 0.0);
129 for (int i = 0; i < M; ++i) {
130 product[i] = v1[i] * v2[i];
131 }
132 return product;
133 }
134

135 // Compute the product of a scalar and a vector
136 Vector scalarProduct(double scalar, const Vector& v1) {
137 Vector product(M, 0.0);
138 for (int i = 0; i < M; ++i) {
139 product[i] = v1[i] * scalar;
140 }
141 return product;
142 }
143

144 // Compute the sum of two vectors
145 Vector vectorSum(const Vector& v1, const Vector& v2) {
146 Vector sum(M, 0.0);
147 for (int i = 0; i < M; ++i) {
148 sum[i] = v1[i] + v2[i];
149 }
150 return sum;
151 }
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152

153 // Compute the difference between two matrices
154 Matrix matrixSub(const Matrix& m1, const Matrix& m2) {
155 Matrix sub = createMatrix(M, M);
156 for (int i = 0; i < M; ++i) {
157 for (int j = 0; j < M; ++j) {
158 sub[i][j] = m1[i][j] - m2[i][j];
159 }
160 }
161 return sub;
162 }
163

164 // Compute the sum of two matrices
165 Matrix matrixSum(const Matrix& m1, const Matrix& m2) {
166 Matrix sum = createMatrix(M, M);
167 for (int i = 0; i < M; ++i) {
168 for (int j = 0; j < M; ++j) {
169 sum[i][j] = m1[i][j] + m2[i][j];
170 }
171 }
172 return sum;
173 }
174

175 //Compute the sum used in the EDO
176 Vector computeSum(const Matrix& m1, const Matrix& m2, const Vector

&previous, int a1, int b1,int a2, int b2){
177 double gamma, delta;
178 Vector suma (M, 0.0f);
179 for (int i = 0; i < N; ++i){
180 gamma = computeIntegral(vectorProduct(previous, m1[i]), a1, b1);
181 delta = computeIntegral(vectorProduct(previous,

computeDerivative(m1[i],a1,b1)), a1, b1);
182 suma = vectorSum(suma ,vectorSum(scalarProduct(gamma,

computeDerivative(m2[i],a2,b2)) , scalarProduct(delta,
m2[i])));

183 }
184 return suma;
185 }
186

187 //Solve the system of equations using the given parameters
188 Vector solveSystem(double alpha, double beta, double xi, const Vector

&summation,int a, int c ){
189 Eigen::MatrixXd A(M,M);
190 A.setZero();
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191 double h = (c-a)/(double)(M-1);
192 Eigen::VectorXd b(M);
193 b.setConstant(xi);
194 for (int i = 0; i < M ; ++i){
195 if(i==0 or i == M-1){
196 b(i) = 0.0f;
197 }else{
198 b(i) -= summation[i];
199 }
200 for (int j = 0; j < M ; ++j){
201 if(i==j){
202 if(i == 0 or i == M-1 ){
203 A(i,j) = 1.0f;
204 }else{
205 A(i,j) = -2*alpha/(h*h) + beta;
206 }
207 }
208 else if((i == j-1 or i == j+1) and i != 0 and i!=M-1 ){
209 if (j!=0 and j != M-1){
210 A(i,j) = alpha/(h*h);
211 }
212 }
213 }
214 }
215 Eigen::VectorXd x = A.colPivHouseholderQr().solve(b);
216 Vector solution(x.data(), x.data() + x.size());
217

218 return solution;
219

220 }
221

222 //Solve the one-dimensional EDO for each alternating direction step
223 Vector computeEDO(Vector &previous, const Matrix& m1,const Matrix& m2,

int a1, int b1, int a2, int b2){
224 Vector squared_previous;
225 std::transform(previous.begin(), previous.end(),

std::back_inserter(squared_previous),
226 [](double x) { return x * x; });
227 double alpha = computeIntegral(squared_previous, a1,b1);
228 double beta = computeIntegral(vectorProduct(previous,

computeDerivative(previous,a1,b1)),a1,b1);
229 double xi = computeIntegral(vectorProduct(previous, f), a1 , b1);
230 Vector summation = computeSum(m1, m2, previous, a1 , b1, a2, b2);
231
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232 return solveSystem(alpha, beta, xi, summation, a2,b2);
233

234 }
235

236 //Check the error of the alternating direction iteration step
237 bool checkTolerance(const Vector &current_X, const Vector &current_Y,

const Vector &previous_X, const Vector &previous_Y){
238 double numerator = computeNorm(matrixSub(outerProduct(current_X,

current_Y) , outerProduct(previous_X,previous_Y)));
239 double denominator = computeNorm(outerProduct(previous_X,

previous_Y));
240 return (numerator/denominator) < epsilon;
241 }
242

243 //Generate a random vector to start the alternatingdirection process
244 Vector generateRandomVector(int m, double minVal, double maxVal) {
245 std::random_device rd;
246 std::mt19937 gen(rd());
247 std::uniform_real_distribution<double> dis(minVal, maxVal);
248

249 Vector randomVector;
250 for (int i = 0; i < m; ++i) {
251 double randomValue = dis(gen);
252 randomVector.push_back(randomValue);
253 }
254 return randomVector;
255 }
256

257 //Compute the alternating direction method
258 void alternatingDirection(Matrix& X, Matrix& Y,int iteration) {
259 Vector previous_Y (M, 1.0f);
260 previous_Y[0] = 0.0f;
261 previous_Y[M-1] = 0.0f;
262 Vector current_Y(M, 0.0f);
263 Vector previous_X(M, 0.0f);
264 Vector current_X(M, 0.0f);
265 current_X = computeEDO(previous_Y, Y, X,a_y, b_y, a_x , b_x);
266 current_Y = computeEDO(current_X, X , Y , a_x , b_x,a_y, b_y);
267 previous_X = current_X;
268 int p = 1;
269

270 while(!checkTolerance(current_X, current_Y, previous_X, previous_Y)
and p < max_p ){

271 previous_Y = current_Y;
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272 previous_X = current_X;
273 current_X = computeEDO(previous_Y, Y, X,a_y, b_y, a_x , b_x);
274 current_Y = computeEDO(current_X, X , Y , a_x , b_x,a_y, b_y);
275 p+=1;
276

277 }
278

279 X[N] = current_X;
280 Y[N] = current_Y;
281

282 }
283

284 //Export matrix for plotting purposes
285 void exportMatrixToCSV(const Matrix& matrix, const std::string&

filename) {
286 std::ofstream outFile(filename);
287 double h_x = (b_x - a_x) / (double)(M-1);
288 double h_y = (b_y - a_y) / (double)(M-1);
289 if (!outFile.is_open()) {
290 std::cerr << "Error: Unable to open file " << filename <<

std::endl;
291 return;
292 }
293

294 for (size_t j = 0; j < matrix[0].size(); ++j) {
295 for (size_t i = 0; i < matrix.size(); ++i) {
296 outFile << a_x + i*h_x << " " << a_y + j*h_y << " " <<

matrix[i][j]<< "\n";
297 }
298 }
299 outFile.close();
300 }
301

302 //Compute the gradient fields generated by the solution u(x,y)
303 std::tuple<Matrix, Matrix> computeGradient(const Matrix& function){
304 int rows = function.size();
305 int cols = function[0].size();
306 Matrix gradient_x = createMatrix(rows,cols);
307 Matrix gradient_y = createMatrix(rows,cols);
308

309 // Compute the gradient using central differences
310 for (int i = 1; i < rows - 1; ++i) {
311 for (int j = 1; j < cols - 1; ++j) {
312 // Compute partial derivatives with respect to x and y
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313 double df_dx = (function[i][j + 1] - function[i][j - 1]) /
2.0; // Central difference for x

314 double df_dy = (function[i + 1][j] - function[i - 1][j]) /
2.0; // Central difference for y

315

316 // Assign the derivatives to gradient matrices
317 gradient_x[i][j] = df_dx;
318 gradient_y[i][j] = df_dy;
319 }
320 }
321 return {gradient_x, gradient_y};
322 }
323

324 //Plot the vector field for graphic examples
325 void plotVectorField(const Matrix& matrix){
326 std::tuple<Matrix, Matrix> fields = computeGradient(matrix);
327 }
328

329 int main() {
330 Matrix solution = createMatrix(M, M);
331 Matrix X = createMatrix(max_n, M);
332 Matrix Y = createMatrix(max_n, M);
333

334 //Loop until convergence
335 while(N < (max_n - 1) && !checkSolutionConvergence(X,Y)){
336 N+=1;
337 alternatingDirection(X,Y, N);
338

339 }
340

341 //COMPUTE SOLUTION
342 for (int i = 0; i < N; ++i){
343 solution = matrixSub(solution, outerProduct(X[i],Y[i]));
344 }
345 //Plot vector fields
346 plotVectorField(solution);
347 return 0;
348 }
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A.2 Neumann condition

This subsection is the continuation of A.1, but adding Neumann boundary
condition to the Dirichlet previous ones. On this example, we are still considering
a constant source term f .

1 #include <iostream>
2 #include <fstream>
3 #include <vector>
4 #include <algorithm>
5 #include <Eigen/Dense>
6 #include <random>
7

8 //Settings
9 using Vector = std::vector<double>;

10 using Matrix = std::vector<Vector>;
11

12 // CONSTANTS
13 const int M = 101, max_p = 30, max_n = 20; // Mesh points
14 const double epsilon = 1e-6; // Error tolerance
15 const double q = 3;
16 const Vector f (M,0); // f function
17

18 // Global variables
19 int N = -1; // Current iteration of the solution
20 const int a_y = 0, b_y = 1, a_x = 0, b_x = 1;
21

22 // Create and initialize the matrix with zeros
23 Matrix createMatrix(int m, int n) {
24 Matrix matrix(m, Vector(n, 0.0));
25 return matrix;
26 }
27

28 // Print the given matrix
29 void printMatrix(const Matrix& matrix, const std::string& name) {
30 std::cout << "Matrix: " << name << std::endl;
31 for (const auto& row : matrix) {
32 for (double value : row) {
33 std::cout << value << " ";
34 }
35 std::cout << std::endl;
36 }
37 }
38

39 // Print the given vector
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40 void printVector(const Vector& myVector, const std::string& name) {
41 std::cout << "Vector: " << name << std::endl;
42 for (const auto& element : myVector) {
43 std::cout << element << " ";
44 }
45 std::cout << std::endl;
46 }
47

48 // Compute the outer product of two vectors
49 Matrix outerProduct(const Vector& vector1, const Vector& vector2) {
50 // Get the sizes of the vectors
51 size_t size1 = vector1.size();
52 size_t size2 = vector2.size();
53

54 // Create an MxM matrix filled with zeros
55 Matrix resultMatrix(size1, Vector(size2, 0));
56

57 // Compute the outer product
58 for (size_t i = 0; i < size1; ++i) {
59 for (size_t j = 0; j < size2; ++j) {
60 resultMatrix[i][j] = vector1[i] * vector2[j];
61 }
62 }
63

64 return resultMatrix;
65 }
66

67 // Compute the 1-norm of the given matrix
68 double computeNorm(const Matrix& matrix) {
69 // Get the dimensions of the matrix
70 size_t rows = matrix.size();
71 size_t cols = matrix[0].size();
72

73 // Initialize the 1-norm to a negative value
74 double norm = -1.0;
75

76 // Iterate over columns and calculate the absolute column sum
77 for (size_t j = 0; j < cols; ++j) {
78 double columnSum = 0.0;
79 for (size_t i = 0; i < rows; ++i) {
80 columnSum += std::abs(matrix[i][j]);
81 }
82 // Update the 1-norm if the current column sum is larger
83 norm = std::max(norm, columnSum);
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84 }
85 return norm;
86 }
87

88 // Check if the solution has converged based on a tolerance criterion
89 bool checkSolutionConvergence(const Matrix& X, const Matrix& Y) {
90 if (N == -1) return false;
91 Matrix m1 = outerProduct(X[N], Y[N]);
92 Matrix m2 = outerProduct(X[0], Y[0]);
93

94 return (computeNorm(m1) / computeNorm(m2)) < epsilon;
95 }
96

97 // Compute the integral of a function
98 double computeIntegral(const Vector& function, int a, int b) {
99 double h = static_cast<double>(b - a) / (2.0 * (M - 1));

100 double integral = 0.0;
101 for (int i = 0; i < M; ++i) {
102 if (i == 0 || i == M - 1) {
103 integral += function[i];
104 } else {
105 integral += 2 * function[i];
106 }
107 }
108 return integral * h;
109 }
110

111 // Compute the derivative of a function
112 Vector computeDerivative(const Vector& function, int a, int b) {
113 Vector der(M, 0.0);
114 double h = static_cast<double>(b - a) / (M - 1);
115 for (int i = 0; i < M; ++i) {
116 if (i == 0) {
117 der[i] = (function[i] - 2 * function[i + 1] + function[i +

2]) / (h * h);
118 } else if (i == M - 1) {
119 der[i] = (function[i - 1] - 2 * function[i] + function[i +

1]) / (h * h);
120 } else {
121 der[i] = (function[i - 2] - 2 * function[i - 1] +

function[i]) / (h * h);
122 }
123 }
124 return der;
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125 }
126

127 // Compute the product of two vectors element-wise
128 Vector vectorProduct(const Vector& v1, const Vector& v2) {
129 Vector product(M, 0.0);
130 for (int i = 0; i < M; ++i) {
131 product[i] = v1[i] * v2[i];
132 }
133 return product;
134 }
135

136 // Compute the product of a scalar and a vector
137 Vector scalarProduct(double scalar, const Vector& v1) {
138 Vector product(M, 0.0);
139 for (int i = 0; i < M; ++i) {
140 product[i] = v1[i] * scalar;
141 }
142 return product;
143 }
144

145 // Compute the sum of two vectors
146 Vector vectorSum(const Vector& v1, const Vector& v2) {
147 Vector sum(M, 0.0);
148 for (int i = 0; i < M; ++i) {
149 sum[i] = v1[i] + v2[i];
150 }
151 return sum;
152 }
153

154 // Compute the difference between two matrices
155 Matrix matrixSub(const Matrix& m1, const Matrix& m2) {
156 Matrix sub = createMatrix(M, M);
157 for (int i = 0; i < M; ++i) {
158 for (int j = 0; j < M; ++j) {
159 sub[i][j] = m1[i][j] - m2[i][j];
160 }
161 }
162 return sub;
163 }
164

165 // Compute the sum of two matrices
166 Matrix matrixSum(const Matrix& m1, const Matrix& m2) {
167 Matrix sum = createMatrix(M, M);
168 for (int i = 0; i < M; ++i) {
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169 for (int j = 0; j < M; ++j) {
170 sum[i][j] = m1[i][j] + m2[i][j];
171 }
172 }
173 return sum;
174 }
175

176 // Compute the sum used as an EDO parameter
177 Vector computeSum(const Matrix& m1, const Matrix& m2, const Vector&

previous,const Vector& previous_derivative , int a1, int b1, int
a2, int b2) {

178 double gamma, delta;
179 Vector test_derivative(M, -(b2-a2)/static_cast<double>(M-1));
180 Vector suma(M, 0.0);
181 Vector integralVector(M, 0.0);
182 for (int i = 0; i < N; ++i) {
183 gamma = computeIntegral(vectorProduct(previous, m1[i]), a1, b1);
184 delta = computeIntegral(vectorProduct(previous_derivative,

computeDerivative(m1[i], a1, b1)), a1, b1);
185

186 std::fill(integralVector.begin(),
integralVector.end(),computeIntegral(computeDerivative(computeDerivative(m2[i],a2,b2),a2,b2),a2,b2
));

187 suma = vectorSum(suma, vectorSum(scalarProduct(gamma,
computeDerivative(m2[i], a2, b2)), scalarProduct(-gamma,
integralVector)));

188 std::fill(integralVector.begin(),
integralVector.end(),computeIntegral(scalarProduct(delta,
m2[i]),a2,b2 ));

189 suma = vectorSum(suma, integralVector);
190 }
191 return suma;
192 }
193

194 // Solve the system of equations using the given parameters
195 Vector solveSystem(double alpha, double beta, double xi, Vector&

summation, int a, int c) {
196 Eigen::MatrixXd A(M, M);
197 Vector xiVector(M, xi);
198 A.setZero();
199 double h = (c - a) / static_cast<double>(M - 1);
200 Eigen::Map<Eigen::VectorXd> b(summation.data(), M);
201 for (int i = 0; i < M; ++i) {
202 if (i == 0 || i == M - 1) {
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203 b(i) = 0.0;
204 } else {
205 b(i) -= computeIntegral(xiVector,a,c);
206 }
207

208 for (int j = 0; j < M; ++j) {
209 if (i == j) {
210 if (i == 0 || i == M - 1) {
211 A(i, j) = 1.0;
212 } else {
213 A(i, j) = 2 * alpha / h + beta * h;
214 }
215 } else if ((i == j - 1 || i == j + 1) && i != 0 && i != M -

1) {
216 if (j != 0 && j != M - 1) {
217 A(i, j) = -1.0f * alpha / h;
218 }
219 }
220 }
221 }
222

223 Eigen::VectorXd x = A.colPivHouseholderQr().solve(b);
224

225 Vector solution(x.data(), x.data() + x.size());
226

227 return solution;
228 }
229

230 // Compute the EDO (Ordinary Differential Equation) for each
alternating direction step

231 Vector computeEDO(Vector& previous, const Matrix& m1, const Matrix& m2,
int a1, int b1, int a2, int b2) {

232 Vector squared_previous;
233 Vector previous_derivative = computeDerivative(previous,a1,b1);
234 Vector squared_previous_derivative;
235 std::transform(previous.begin(), previous.end(),

std::back_inserter(squared_previous),
236 [](double x) { return x * x; });
237 std::transform(previous_derivative.begin(),

previous_derivative.end(),
std::back_inserter(squared_previous_derivative),

238 [](double x) { return x * x; });
239 double alpha = computeIntegral(squared_previous, a1, b1);
240 double beta = computeIntegral(squared_previous_derivative, a1, b1);
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241 double xi = computeIntegral(vectorProduct(previous, f), a1, b1);
242 double mu = previous[M-1] * q;
243 Vector summation = computeSum(m1, m2, previous,previous_derivative,

a1, b1, a2, b2);
244

245 return solveSystem(alpha, beta, xi, summation, a2, b2);
246 }
247

248 // Check if the tolerance criterion is met
249 bool checkTolerance(const Vector& current_X, const Vector& current_Y,

const Vector& previous_X, const Vector& previous_Y) {
250 double numerator = computeNorm(matrixSub(outerProduct(current_X,

current_Y), outerProduct(previous_X, previous_Y)));
251 double denominator = computeNorm(outerProduct(previous_X,

previous_Y));
252 return (numerator / denominator) < epsilon;
253 }
254

255 // Generate a random vector to start the alternatingdirection process
256 Vector generateRandomVector(int m, double minVal, double maxVal) {
257 std::random_device rd;
258 std::mt19937 gen(rd());
259 std::uniform_real_distribution<double> dis(minVal, maxVal);
260

261 Vector randomVector;
262 for (int i = 0; i < m; ++i) {
263 double randomValue = dis(gen);
264 randomVector.push_back(randomValue);
265 }
266 return randomVector;
267 }
268

269 // Alternating Direction Method to solve the system
270 void alternatingDirection(Matrix& X, Matrix& Y, int iteration) {
271 Vector previous_Y(M, 1.0);
272 previous_Y[0] = 0.0;
273 previous_Y[M - 1] = 0.0;
274 Vector current_Y(M, 0.0);
275 Vector previous_X(M, 0.0);
276 Vector current_X(M, 0.0);
277 current_X = computeEDO(previous_Y, Y, X, a_y, b_y, a_x, b_x);
278 current_Y = computeEDO(current_X, X, Y, a_x, b_x, a_y, b_y);
279 previous_X = current_X;
280 int p = 1;
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281

282 while (!checkTolerance(current_X, current_Y, previous_X,
previous_Y) && p < max_p) {

283 previous_Y = current_Y;
284 previous_X = current_X;
285 current_X = computeEDO(previous_Y, Y, X, a_y, b_y, a_x, b_x);
286 current_Y = computeEDO(current_X, X, Y, a_x, b_x, a_y, b_y);
287 p += 1;
288 }
289 X[N] = current_X;
290 for (int i = 0; i < M; ++i) {
291 X[N] = current_X;
292 Y[N] = current_Y;
293 }
294 }
295 // Export the matrix to a CSV file
296 void exportMatrixToCSV(const Matrix& matrix, const std::string&

filename) {
297 std::ofstream outFile(filename);
298 if (!outFile.is_open()) {
299 std::cerr << "Error: Unable to open file " << filename <<

std::endl;
300 return;
301 }
302

303 for (size_t j = 0; j < matrix[0].size(); ++j) {
304 for (size_t i = 0; i < matrix.size(); ++i) {
305 if (i == matrix.size() - 1) {
306 outFile << matrix[i][j] << "\n";
307 } else {
308 outFile << matrix[i][j] << ",";
309 }
310 }
311 }
312

313 outFile.close();
314 }
315

316 // Compute the gradient fields of the solution u(x,y)
317 std::tuple<Matrix, Matrix> computeGradient(const Matrix& function) {
318 int rows = function.size();
319 int cols = function[0].size();
320 Matrix gradient_x = createMatrix(rows, cols);
321 Matrix gradient_y = createMatrix(rows, cols);
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322

323 // Compute the gradient using central differences
324 for (int i = 1; i < rows - 1; ++i) {
325 for (int j = 1; j < cols - 1; ++j) {
326 // Compute partial derivatives with respect to x and y
327 double df_dx = (function[i][j + 1] - function[i][j - 1]) /

2.0; // Central difference for x
328 double df_dy = (function[i + 1][j] - function[i - 1][j]) /

2.0; // Central difference for y
329

330 // Assign the derivatives to gradient matrices
331 gradient_x[i][j] = df_dx;
332 gradient_y[i][j] = df_dy;
333 }
334 }
335 return { gradient_x, gradient_y };
336 }
337

338 // Main function
339 int main() {
340 Matrix solution = createMatrix(M, M);
341 Matrix X = createMatrix(max_n, M);
342 Matrix Y = createMatrix(max_n, M);
343

344 // Loop until convergence
345 while (N < (max_n - 1) && !checkSolutionConvergence(X, Y)) {
346 N += 1;
347 alternatingDirection(X, Y, N);
348 }
349

350 // COMPUTE SOLUTION
351 for (int i = 0; i < N; ++i) {
352 solution = matrixSum(solution, outerProduct(X[i], Y[i]));
353 }
354

355 return 0;
356 }
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A.3 Path Planner

On this final subsection we are computing the path between the source point
and the target point. To achieve that, we first model a non-constant source term
f by means of Gaussian models. Then, we obtain the separated representation of
f applying again the PGD strategy. Later we get the u(x, y) function as explained
in 3.3. To conclude, we compute the vector field associated to u and trace the path
by interpolating a streamline. The last step is to export this just created path to an
.yaml file so we can pass it as a parameter to our robot.

1 #include <iostream>
2 #include <fstream>
3 #include <vector>
4 #include <algorithm>
5 #include <Eigen/Dense>
6 #include <random>
7

8 //SETTINGS
9 using Vector = std::vector<double>;

10 using Matrix = std::vector<Vector>;
11 struct Point {
12 double x;
13 double y;
14 };
15

16 //CONSTANTS
17 const int M = 101, max_p = 30, max_n = 20,max_f=50; //Mesh points
18 const double epsilon = 1e-6; //Error tolerance
19 const double variance = 0.1; //Variance r of the Gaussian model
20 Point source, target; //Source and target points
21 int N = -1, F=-1; //current iteration of the solution
22 const int a_y = 0, b_y = 5, a_x = 0, b_x = 7; //Domain
23

24 //Create and initialise the matrix with zeros
25 Matrix createMatrix(int m, int n) {
26 Matrix matrix(m, Vector(n, 0.0f));
27 return matrix;
28 }
29

30 //Print the given matrix
31 void printMatrix(const Matrix& matrix,const std::string &name ) {
32 std::cout << "Matrix: " << name << std::endl;
33 for (const auto& row : matrix) {
34 for (double value : row) {
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35 std::cout << value << " ";
36 }
37 std::cout << std::endl;
38 }
39 }
40

41 //Print the given vector
42 void printVector(Vector &myVector,const std::string &name){
43 std::cout << "Vector: "<< name << std::endl;
44 for (const auto &element : myVector) {
45 std::cout << element << " ";
46 }
47

48 std::cout << std::endl;
49 }
50

51 //Compute the outer product of two vectors
52 Matrix outerProduct(const Vector& vector1, const Vector& vector2) {
53 // Get the sizes of the vectors
54 size_t size1 = vector1.size();
55 size_t size2 = vector2.size();
56

57 // Create an MxM matrix filled with zeros
58 Matrix resultMatrix(size1, Vector(size2, 0));
59

60 // Compute the outer product
61 for (int i = 0; i < M; ++i) {
62 for (int j = 0; j < M; ++j) {
63 resultMatrix[i][j] = vector1[i] * vector2[j];
64 }
65 }
66 return resultMatrix;
67 }
68

69 //Compute the 1-norm of the given matrix
70 double computeNorm(const Matrix& matrix) {
71 // Get the dimensions of the matrix
72 size_t rows = matrix.size();
73 size_t cols = matrix[0].size();
74

75 // Initialize the 1-norm to a negative value
76 double norm = -1.0f;
77

78 // Iterate over columns and calculate the absolute column sum
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79 for (int j = 0; j < M; ++j) {
80 double columnSum = 0.0f;
81 for (int i = 0; i < M; ++i) {
82 columnSum += std::abs(matrix[i][j]);
83 }
84 // Update the 1-norm if the current column sum is larger
85 norm = std::max(norm, columnSum);
86 }
87 return norm;
88 }
89

90 //Check if the solution has converged based on the stopping criterion
91 bool checkSolutionConvergence(const Matrix& X, const Matrix& Y) {
92 if(N==-1)return false;
93 Matrix m1 = outerProduct(X[N],Y[N]);
94 Matrix m2 = outerProduct(X[0],Y[0]);
95

96 return (computeNorm(m1) / computeNorm(m2)) < epsilon;
97 }
98

99 //Compute the discrete integral of a function
100 double computeIntegral(const Vector &function, int a, int b) {
101 double h = static_cast<float>(b - a) / (double)(2.0f *(M-1));
102 double integral = 0.0f;
103 for (int i = 0; i < M; ++i){
104 if (i == 0 or i == M-1){
105 integral += function[i];
106 }else{
107 integral += 2 * function[i];
108 }
109

110 }
111 return integral * h;
112 }
113

114 //Compute the derivative of a function
115 Vector computeDerivative(const Vector &function, int a, int b){
116 Vector der(M, 0.0f);
117 double h = static_cast<float>(b - a)/(M-1);
118 for (int i = 0; i < M; ++i){
119 if ( i == 0 ){
120 der[i] = (function[i] - 2*function[i + 1] + function[i + 2]

) / (h*h);
121 }else if(i == M-1){
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122 der[i] = (function[i-1] - 2*function[i] + function[i + 1] )
/ (h*h);

123 }else{
124 der[i] = (function[i-2] - 2*function[i-1] + function[i] ) /

(h*h);
125 }
126 }
127 return der;
128 }
129

130 //Compute the product of two vectors element-wise
131 Vector vectorProduct(const Vector &v1,const Vector &v2 ) {
132 Vector product(M, 0.0f);
133 for (int i = 0; i < M; ++i){
134 product[i] = v1[i] * v2[i];
135

136 }
137 return product;
138 }
139

140 //Compute the scalar product of two vectors
141 double scalarVectorProduct(const Vector& v1, const Vector& v2) {
142 double result;
143 for (int i = 0; i < M; ++i) {
144 result += v1[i] * v2[i];
145 }
146 return result;
147 }
148

149 //Compute the product of an scalar and a vector
150 Vector scalarProduct(double scalar,const Vector &v1) {
151 Vector product(M, 0.0f);
152 for (int i = 0; i < M; ++i){
153 product[i] = v1[i] * scalar;
154

155 }
156 return product;
157 }
158

159 //Compute the sum of two vectors
160 Vector vectorSum(const Vector &v1,const Vector &v2) {
161 Vector sum(M, 0.0f);
162 for (int i = 0; i < M; ++i){
163 sum[i] = v1[i] + v2[i];
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164

165 }
166 return sum;
167 }
168

169 //Compute the difference between two vectors
170 Vector vectorSub(const Vector& v1, const Vector& v2) {
171 Vector sum(M, 0.0);
172 for (int i = 0; i < M; ++i) {
173 sum[i] = v1[i] - v2[i];
174 }
175 return sum;
176 }
177

178 //Compute the difference between two matrices
179 Matrix matrixSub(const Matrix& m1,const Matrix& m2) {
180 Matrix sub = createMatrix(M,M);
181 for (int i = 0; i < M; ++i){
182 for(int j = 0; j < M; ++j){
183 sub[i][j] = m1[i][j] - m2[i][j];
184 }
185 }
186 return sub;
187 }
188

189 //Compute the sum of two matrices
190 Matrix matrixSum(const Matrix& m1,const Matrix& m2) {
191 Matrix sum = createMatrix(M,M);
192 for (int i = 0; i < M; ++i){
193 for(int j = 0; j < M; ++j){
194 sum[i][j] = m1[i][j] + m2[i][j];
195 }
196 }
197 return sum;
198 }
199

200 //Compute the sum element of the EDO
201 Vector computeSum(const Matrix& m1, const Matrix& m2, const Vector

&previous, int a1, int b1,int a2, int b2){
202 double gamma, delta;
203 Vector suma (M, 0.0f);
204 for (int i = 0; i < N; ++i){
205 gamma = computeIntegral(vectorProduct(previous, m1[i]), a1, b1);
206 delta = computeIntegral(vectorProduct(previous,
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computeDerivative(m1[i],a1,b1)), a1, b1);
207 suma = vectorSum(suma ,vectorSum(scalarProduct(gamma,

computeDerivative(m2[i],a2,b2)) , scalarProduct(delta,
m2[i])));

208 }
209 return suma;
210 }
211

212 //Solve the system of equations using the given parameters
213 Vector solveSystem(double alpha, double beta, const Vector& xi, const

Vector &summation,int a, int c ){
214 Eigen::MatrixXd A(M,M);
215 A.setZero();
216 double h = (c-a)/(double)(M-1);
217 Eigen::VectorXd b(M);
218 b.setConstant(0);
219 for (int i = 0; i < M ; ++i){
220 if(i==0 or i == M-1){
221 b(i) = 0.0f;
222 }else{
223 b(i) += xi[i] - summation[i];
224 }
225 for (int j = 0; j < M ; ++j){
226 if(i==j){
227 if(i == 0 or i == M-1 ){
228 A(i,j) = 1.0f;
229 }else{
230 A(i,j) = -2*alpha/(h*h) + beta;
231 }
232 }
233 else if((i == j-1 or i == j+1) and i != 0 and i!=M-1 ){
234 if (j!=0 and j != M-1){
235 A(i,j) = alpha/(h*h);
236 }
237 }
238 }
239 }
240 Eigen::VectorXd x = A.colPivHouseholderQr().solve(b);
241

242 Vector solution(x.data(), x.data() + x.size());
243

244 return solution;
245

246 }
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247

248 //Solve the one-dimensional EDO for each alternating direction step
249 Vector computeEDO(Vector &previous, const Matrix& m1,const Matrix& m2,
250 const Matrix& function1,const Matrix&

function2, int a1, int b1, int a2, int
b2){

251 Vector squared_previous;
252 std::transform(previous.begin(), previous.end(),

std::back_inserter(squared_previous),
253 [](double x) { return x * x; });
254 double alpha = computeIntegral(squared_previous, a1,b1);
255 double beta = computeIntegral(vectorProduct(previous,

computeDerivative(previous,a1,b1)),a1,b1);
256 Vector vectorXi(M, 0.0);
257 for(int i = 0; i < F; ++i){
258 vectorXi = vectorSum(vectorXi,

scalarProduct(computeIntegral(vectorProduct(previous,
function2[i]),a1,b1),function1[i]));

259 }
260 Vector summation = computeSum(m1, m2, previous, a1 , b1, a2, b2);
261

262 return solveSystem(alpha, beta, vectorXi, summation, a2,b2);
263

264

265 }
266

267 //Check the error of the alternating direction step
268 bool checkTolerance(const Vector &current_X, const Vector &current_Y,

const Vector &previous_X, const Vector &previous_Y){
269 double numerator = computeNorm(matrixSub(outerProduct(current_X,

current_Y) , outerProduct(previous_X,previous_Y)));
270 double denominator = computeNorm(outerProduct(previous_X,

previous_Y));
271 return (numerator/denominator) < epsilon;
272 }
273

274 //Generate a random vector to start the alternating direction process
275 Vector generateRandomVector(int m, double minVal, double maxVal) {
276 std::random_device rd;
277 std::mt19937 gen(rd());
278 std::uniform_real_distribution<double> dis(minVal, maxVal);
279

280 Vector randomVector;
281 for (int i = 0; i < m; ++i) {
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282 double randomValue = dis(gen);
283 randomVector.push_back(randomValue);
284 }
285 return randomVector;
286 }
287

288 //Execute the alternating direction process
289 void alternatingDirection(Matrix& X, Matrix& Y,
290 Matrix& f_x,Matrix& f_y,int iteration) {
291 Vector previous_Y = generateRandomVector(M,-3,3);
292 previous_Y[0] = 0.0f;
293 previous_Y[M-1] = 0.0f;
294 Vector current_Y(M, 0.0f);
295 Vector previous_X(M, 0.0f);
296 Vector current_X(M, 0.0f);
297 current_X = computeEDO(previous_Y, Y, X,f_x,f_y, a_y, b_y, a_x,

b_x);
298 current_Y = computeEDO(current_X, X, Y,f_y,f_x, a_x, b_x, a_y, b_y);
299 previous_X = current_X;
300 int p = 1;
301

302 while(!checkTolerance(current_X, current_Y, previous_X, previous_Y)
and p < max_p ){

303 previous_Y = current_Y;
304 previous_X = current_X;
305 current_X = computeEDO(previous_Y, Y, X,f_x,f_y, a_y, b_y, a_x,

b_x);
306 current_Y = computeEDO(current_X, X, Y,f_y,f_x, a_x, b_x, a_y,

b_y);
307 p+=1;
308

309 }
310 X[N] = current_X;
311 Y[N] = current_Y;
312 }
313

314 //Compute product between a matrix and a vector
315 Vector productMatrixVector(Matrix& matrix,Vector& vector, bool

transposed){
316 Vector result(M, 0.0);
317 for (int i = 0; i < M; ++i) {
318 for (int j = 0; j < M; ++j) {
319 if (transposed){
320 result[i] += matrix[j][i] * vector[j];
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321 }else{
322 result[i] += matrix[i][j] * vector[j];
323 }
324 }
325 }
326 return result;
327 }
328

329 //Compute the adittion of the previous computed steps of the
alternating direction strategy

330 Vector sumPrevious( Matrix& previousMatrixA,Matrix&
previousMatrixB,Vector& previousVector ){

331 Vector result(M, 0.0);
332 for(int i = 0; i < F; ++i){
333 result = vectorSum(result,

scalarProduct(scalarVectorProduct(previousVector,previousMatrixB[i]),
previousMatrixA[i]));

334 }
335 return result;
336 }
337

338 //ompute the alternating direction matrices for the source term f
339 void alternatingDirectionSourceTerm(Matrix& function,Matrix& X, Matrix&

Y, int iteration){
340 Vector previous_Y(M, 1.0);
341 previous_Y[0] = 0.0;
342 previous_Y[M - 1] = 0.0;
343 Vector current_Y(M, 0.0);
344 Vector previous_X(M, 0.0);
345 Vector current_X(M, 0.0);
346 current_X = scalarProduct(1.0 /

scalarVectorProduct(previous_Y,previous_Y), vectorSub(
productMatrixVector(function,
previous_Y,false),sumPrevious(X,Y,previous_Y)));

347 current_Y = scalarProduct(1.0 /
scalarVectorProduct(current_X,current_X),

348 vectorSub(productMatrixVector(function,current_X,true),sumPrevious(Y,X,current_X)));
349 previous_X = current_X;
350 int p = 1;
351 while (!checkTolerance(current_X, current_Y, previous_X,

previous_Y) && p < max_p) {
352 previous_Y = current_Y;
353 previous_X = current_X;
354 current_X = scalarProduct(1.0 /
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scalarVectorProduct(previous_Y,previous_Y), vectorSub(
productMatrixVector(function,
previous_Y,false),sumPrevious(X,Y,previous_Y) ));

355 current_Y = scalarProduct(1.0 /
scalarVectorProduct(current_X,current_X),vectorSub(productMatrixVector(

356 function, current_X,true),
357 sumPrevious(Y,X,current_X)));
358 p += 1;
359 }
360 X[F] = current_X;
361 Y[F] = current_Y;
362

363 }
364

365 //Gaussian Model for a particular point, a mean and a variance
366 double gaussian2D(double x, double y, double mean_x, double mean_y) {
367 double exponent = -((x - mean_x) * (x - mean_x) / (2 * variance *

variance) +
368 (y - mean_y) * (y - mean_y) / (2 * variance *

variance));
369

370 return exp(exponent) / (2 * M_PI * variance * variance);
371 }
372

373 //Compute an specific ource term modelled by the Gaussian distribution
374 void computeUniqueF(Matrix& matrix){
375 double h_x = (b_x - a_x) / (double)(M-1);
376 double h_y = (b_y - a_y) / (double)(M-1);
377 std::cout << "Enter X-component of the Source: \n";
378 std::cin >> source.x;
379

380 std::cout << "Enter Y component of the Source: \n";
381 std::cin >> source.y;
382 std::cout << "\n\nYou entered: (" << source.x << "," << source.y<<

")" << std::endl;
383 // Ask the user to input values
384 std::cout << "Enter X component of the Target: \n";
385 std::cin >> target.x;
386

387 std::cout << "Enter Y component of the Target: \n";
388 std::cin >> target.y;
389

390 std::cout << "\n\nYou entered: (" << target.x << "," << target.y<<
")" << std::endl;
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391 for(int i = 0; i < M; ++i){
392 for (int j = 0; j < M; ++j) {
393 matrix[i][j] = gaussian2D(a_x + i*h_x,a_y +

j*h_y,source.x,source.y) -
394 gaussian2D(a_x + i*h_x,a_y + j*h_y,target.x,target.y);
395 }
396 }
397 }
398

399 //Compute the source term for all possible combinations of source terms
400 void computeF(Matrix& matrix) {
401 int x,y,s1,s2;
402 double h_x = (b_x - a_x) / (double)(M-1);
403 double h_y = (b_y - a_y) / (double)(M-1);
404 for (int i = 0; i < M*M; ++i) {
405 for (int j = 0; j < M*M; ++j) {
406 x = j / M;
407 y = j % M;
408

409 s1 = i / M;
410 s2 = i % M;
411

412 matrix[i][j] = gaussian2D(a_x + x*h_x,a_y + y*h_y, a_x +
s1*h_x,a_y + s2*h_y );

413 }
414 }
415 }
416

417 //Compute the two matrices F and G of all possible goals and target
combinations

418 void computeFlow(Matrix& function) {
419 Matrix F = createMatrix(M*M, M*M);
420 Matrix G = createMatrix(M*M, M*M);
421

422 // Ask the user to input values
423 std::cout << "Enter X component of the Source: \n";
424 std::cin >> source.x;
425

426 std::cout << "Enter Y component of the Source: \n";
427 std::cin >> source.y;
428 std::cout << "\n\nYou entered: " << source.x << " and " << source.y

<< std::endl;
429 // Ask the user to input values
430 std::cout << "Enter X component of the Target: \n";
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431 std::cin >> target.x;
432

433 std::cout << "Enter Y component of the Target: \n";
434 std::cin >> target.y;
435

436 std::cout << "\n\nYou entered: " << target.x << " and " << target.y
<< std::endl;

437 computeF(F);
438 computeF(G);
439

440 int s_position = source.x * M + source.y;
441 int t_position = target.x * M + target.y;
442 int x,y;
443

444 // Loop over the matrix
445 double h_x = (b_x - a_x) / (double)(M-1);
446 double h_y = (b_y - a_y) / (double)(M-1);
447 for (int i = 0; i < M*M; ++i){
448 x = i / M;
449 y = i % M;
450 function[x][y] = F[s_position][i] - G[t_position][i];
451 }
452 }
453

454 //Export a given matrix to .csv
455 void exportMatrixToCSV(const Matrix& matrix, const std::string&

filename) {
456 std::ofstream outFile(filename);
457 double h_x = (b_x - a_x) / (double)(M-1);
458 double h_y = (b_y - a_y) / (double)(M-1);
459 if (!outFile.is_open()) {
460 std::cerr << "Error: Unable to open file " << filename <<

std::endl;
461 return;
462 }
463

464 // Transpose the matrix while writing to the file
465 for (size_t j = 0; j < matrix[0].size(); ++j) {
466 for (size_t i = 0; i < matrix.size(); ++i) {
467 outFile << (a_x + i*h_x) << " " << (a_y + j*h_y) << " " <<

matrix[i][j]/10 <<"\n";
468 }
469 outFile <<"\n";
470 }
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471

472 outFile.close();
473 }
474

475 //Compute the gradient fields generated by the solution u(x,y)
476 std::pair<Matrix, Matrix> computeGradient(const Matrix& function){
477 double h_x = (b_x - a_x) / (double)(M-1);
478 double h_y = (b_y - a_y) / (double)(M-1);
479 Matrix gradient_x = createMatrix(M,M);
480 Matrix gradient_y = createMatrix(M,M);
481

482 // Compute the gradient using central differences
483 for (int i = 1; i < M-1; ++i) {
484 for (int j = 1; j < M-1; ++j) {
485 // Compute partial derivatives with respect to x and y
486 double df_dx = (function[i - 1][j] - function[i + 1][j]) /

(2.0*h_x); // Central difference for x
487 double df_dy = (function[i][j - 1] -function[i][j + 1] ) /

(2.0*h_y); // Central difference for y
488

489 // Assign the derivatives to gradient matrices
490 gradient_x[i][j] = df_dx;
491 gradient_y[i][j] = df_dy;
492 double norm = std::sqrt(df_dx * df_dx + df_dy * df_dy);
493 }
494 }
495 return std::make_pair(gradient_x, gradient_y);
496 }
497

498 //Unify the separated form of the source term for testing purposes
499 void unifyFunction(Matrix& function,Matrix& f_x,Matrix& f_y){
500 for (int i = 0; i < F ; ++i){
501 function = matrixSum(function, outerProduct(f_x[i], f_y[i]));
502 }
503

504 }
505

506 //Get the separated form of the non-constant source term
507 void separateF(Matrix& function,Matrix& f_x, Matrix& f_y ){
508 while (F < (max_f - 1) && !checkSolutionConvergence(f_x, f_y)) {
509 F += 1;
510 alternatingDirectionSourceTerm(function,f_x, f_y, F);
511 }
512 }
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513

514 //Calculate the distance of two 2-D points
515 double calculateDistance(const Point& P1, const Point& P2) {
516 return std::sqrt((P2.x - P1.x) * (P2.x - P1.x) + (P2.y - P1.y) *

(P2.y - P1.y));
517 }
518

519 //Get the first point of the path
520 Point findPointAtDistance(const Point& P1, const Point& P2, double h) {
521 double distance = calculateDistance(P1, P2);
522 double unitVectorX = (P2.x - P1.x) / distance;
523 double unitVectorY = (P2.y - P1.y) / distance;
524 Point P3;
525 P3.x = P1.x + h * unitVectorX;
526 P3.y = P1.y + h * unitVectorY;
527 return P3;
528 }
529

530 //Interpolate the path
531 std::vector<Point> interpolatePath(const Matrix& gradient_x, const

Matrix& gradient_y, Point start, double step_size, int num_steps) {
532 std::vector<Point> path;
533 path.push_back({source.x,source.y});
534 path.push_back(start);
535

536 double x = start.x;
537 double y = start.y;
538 double h_x = (b_x - a_x) / (double)(M-1);
539 double h_y = (b_y - a_y) / (double)(M-1);
540

541 for (int step = 0; step < num_steps; ++step) {
542 int i = static_cast<int>(x / h_x);
543 int j = static_cast<int>(y / h_y);
544

545 if (i < 0 || i >= M || j < 0 || j >= M) {
546 break; // Out of bounds
547 }
548

549 double dx = gradient_x[i][j];
550 double dy = gradient_y[i][j];
551

552 x += step_size * dx;
553 y += step_size * dy;
554
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555 path.push_back({x, y});
556 if (std::sqrt((x - target.x) * (x - target.x) + (y - target.y) *

(y - target.y)) < step_size) {
557 path.push_back({target.x, target.y});
558 break;
559 }
560 }
561

562 return path;
563 }
564

565 //Export the path to an .yml file
566 void exportPath(std::vector<Point> path) {
567 std::ofstream outFile("waypoints.yaml");
568 if (!outFile.is_open()) {
569 std::cerr << "Error: Unable to open file " << "vectorfield" <<

std::endl;
570 //return;
571 }
572 for (size_t i = 0; i < path.size(); ++i) {
573 outFile <<"goal"<< i <<": {\"x\":"<< path[i].x << ", \"y\": " <<

path[i].y << ", \"w\": 90}"<< "\n";
574

575 }
576 outFile.close();
577

578 }
579

580 //Plot vector field for graphic examples
581 void plotVectorField(const Matrix& matrix){
582 std::pair<Matrix, Matrix> fields = computeGradient(matrix);
583 // Define the step size and the first point
584 double stepSize = 0.5;
585 Point firstPoint = findPointAtDistance(source,target,stepSize);
586

587 int maxIterations = 300;
588 std::vector<Point> path = interpolatePath(fields.first,

fields.second, firstPoint, stepSize, maxIterations);
589 //Export our computed path to .yaml file to work with ROS
590 exportPath(path);
591

592 }
593

594 int main() {



A PGD Code 85

595

596 Matrix function = createMatrix(M, M);
597 Matrix new_function = createMatrix(M, M);
598 computeUniqueF(function);
599 Matrix f_x = createMatrix(M,M);
600 Matrix f_y = createMatrix(M,M);
601 separateF(function,f_x,f_y);
602 //Test the new function is the one we desire
603 unifyFunction(new_function, f_x, f_y);
604 Matrix solution = createMatrix(M, M);
605 Matrix X = createMatrix(max_n, M);
606 Matrix Y = createMatrix(max_n, M);
607

608 // Loop until convergence
609 while (N < (max_n - 1) && !checkSolutionConvergence(X, Y)) {
610 N += 1;
611 alternatingDirection(X, Y,f_x,f_y, N);
612 }
613

614 // COMPUTE SOLUTION
615 for (int i = 0; i < N; ++i) {
616 solution = matrixSub(solution, outerProduct(X[i], Y[i]));
617 }
618 //Plot vector field and export path
619 plotVectorField(solution);
620

621 return 0;
622 }
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