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Abstract: In General Relativity, the no-hair theorem states that the exterior geometry of a
black hole is completely determined by its mass, M , charge, Q, and angular momentum, L. In this
work, we first revisit the black hole uniqueness theorems within the Einstein-Maxwell theory, which
establish the uniqueness of the Reissner-Nordström metric. We then consider the presence of a probe
scalar field in the gravitational theory, located in the vicinity of a black hole. Our goal is to evaluate
the validity of the no-hair theorem in this scenario. We establish that all interacting non-singular
field solutions must be trivial, provided their squared mass is positive, m2> 0. Subsequently, we
find a non-trivial solution in Anti-de Sitter spacetime (where fields with m2< 0 are allowed), which
depends on a parameter determined by the field. Thus, we conclude that black hole solutions with
scalar hair, which depend on parameters other than M , Q, and L, may exist in this spacetime.

I. INTRODUCTION

Within the theoretical framework of General Relativity
(GR), a black hole (BH) is a region of spacetime causally
disconnected from infinity. Its boundary, known as the
event horizon, constitutes a surface from which no ob-
ject can return. In recent years, direct observations have
confirmed their existence, which is universally accepted
among the scientific community. [1].

Nowadays, BHs are regarded as key objects for un-
derstanding the inner workings of gravity. Indeed, their
strong gravitational regime makes them perfect labora-
tories to test GR and explore the validity of potential
alternative theories of gravity. Therefore, a deeper un-
derstanding of their behaviour in such extended theories
might prove useful not only in gravitational physics itself
but also in other areas such as cosmology and high-energy
physics, including quantum gravity theories [2, 3].

In the years following Einstein’s formulation of GR,
several exact metric solutions for BH backgrounds were
found. In 1916 Schwarzschild found a spherically sym-
metric vacuum solution for a BH of mass M [4], which
was then generalised by Reissner and Nordström (RN
metric) to include the electromagnetic (EM) field created
by a charge Q [5]. These solutions provided fundamental
insight into the behaviour of BHs, but it was not until
Birkhoff’s theorem in 1923 that a profound understand-
ing of BH’s uniqueness emerged [6]. The theorem demon-
strated that any spherically symmetric solution to the
vacuum field equations must be static and asymptotically
flat, establishing the uniqueness of the Schwarzschild so-
lution. Analogously, the uniqueness of the RN metric in
the presence of an EM field has also been demonstrated.

In 1963, Kerr found a metric solution for a rotating
uncharged BH with angular momentum L [7], which was
generalised in 1965 by Newman to also include the EM
field [8], thus establishing the Kerr-Newman (KN) metric
as the most general solution for BHs. This led to the
foundation of the no-hair theorem (rather, the no-hair
conjecture), which states that the exterior geometry of all
BHs is fully characterized by three parameters − M,Q
and L − the ones appearing in the KN metric [9].

Considering the broad implications of the theorem, its
validity plays a pivotal role in the characterization of
BHs in alternative gravity theories. Recent discoveries
have challenged it in the context of scalar-tensor gravity
theories, the simplest extensions of GR, which include
the presence of a scalar field [10, 11]. The aim of this
work is to evaluate the validity of the no-hair theorem
when considering the presence of a probe scalar field in
the gravitational theory.
In the following sections, the black hole uniqueness the-

orems are revisited. Subsequently, we study which condi-
tions this field must satisfy to be non-trivial, which would
imply its dependence on some other parameter, following
[10]. The results show a physically acceptable solution in
Anti-de Sitter (AdS) spacetime. This is a solution of
Einstein’s equations with a negative cosmological con-
stant, in which BH solutions can be embedded. Due to
its negative curvature, AdS allows for scalar fields which
might violate the conditions of the theorem. Finally, the
behaviour of this solution is evaluated numerically.

II. THE UNIQUENESS THEOREM REVISITED

In this section, we present a proof of Birkhoff’s theo-
rem following the steps outlined in [12]. Afterwards, we
explore its generalisation to include an EM field.

A. Birkhoff’s theorem proof

Let M be a spherically symmetric manifold with met-
ric gµν satisfying Einstein’s vacuum field equations,

Rµν = 0, (1)

where Rµν are the components of the Ricci tensor. Since
the metric must respect the symmetry, in spherical co-
ordinates (t, r, θ, φ), its components can only depend on
the temporal and radial coordinates, t and r. Therefore,
the most general form the metric can take is

ds2 = −e2α(t,r)dt2 + e2β(t,r)dr2 + r2dΩ2, (2)
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where dΩ2 = dθ2+sin2 θdφ2 is the induced metric on the
unit 2-sphere. The symmetry would allow a cross term
dtdr, but it could always be eliminated with a suitable
coordinate change. Under these conditions, Birkhoff’s
theorem states that (2) must be the Schwarzschild metric,
i.e., e2α = e−2β = 1− 2GM

r , where M is the BH’s mass.
We can directly compute all Christoffel symbols for (2).

Using them, we can then compute all non-vanishing inde-
pendent Ricci tensor components, which are (denoting α̇
and α′ the temporal and radial derivatives, respectively)

Rtt = β̈ + β̇2 − α̇β̇ + e2(α−β)

[
α′′ + (α′)

2 − α′β′ +
2

r
α′
]

Rrr = α′β′ − α′′ − (α′)
2
+

2

r
β′ + e2(β−α)

[
β̈ + β̇2 − α̇β̇

]
Rθθ = e−2β [r (β′ − α′)− 1] + 1

Rtr =
2

r
β̇ (3)

From Rtr = 0, we obtain ∂tβ = 0, implying β =
β(r). Combining Rtt = 0 and Rrr = 0, we have
0 = e2(β−α)Rtt + Rrr = 2

r (∂rα + ∂rβ), which leads to
α(t, r) = −β(r) + C(t). We can set C(t) = 0 through a
redefinition of the temporal coordinate, dτ ≡ e−C(t)dt,
as −e2β(r)e2C(t)dt2 = e−2β(r)dτ2. By relabeling τ 7→ t,
we find α(t, r) = α(r) = −β(r). Finally, using Rθθ = 0
we can solve for α(r):

e2α(2r∂rα+ 1) = 1 ⇔ e2α = 1− K

r
, (4)

where K is a constant. In the Newtonian limit, gtt =
−
(
1− 2GM

r

)
, hence we identify K ≡ 2GM . Therefore,

ds2 =−
(
1− 2GM

r

)
dt2+

+

(
1− 2GM

r

)−1

dr2 + r2dΩ2,

(5)

which is the Schwarzschild metric.

B. Birkhoff theorem’s generalisation

Let’s now consider the presence of an EM field in M
with a vector potential Aµ, described by the Faraday
tensor, Fµν = ∂µAν − ∂νAµ. The field implies a non-
vanishing energy-momentum tensor,

Tµν = FµδF
δ

ν − 1

4
gµνFρσF

ρσ. (6)

Therefore, M satisfies both Einstein’s field equations,

Rµν = 8πG

(
Tµν − 1

2
Tgµν

)
, (7)

where T is the trace of Tµν , and Maxwell’s equations,

∇µF
νµ = Jν = 0; ∂[µFνµ] = 0. (8)

Under these conditions, the ansatz (2) and the Ricci ten-
sor components (3) are still valid. We aim to show that
(2) generalises to the RN metric, i.e., e2α = e−2β =

1 − 2GM
r + 4πGQ2

r , where Q is the BH’s charge. In the
process, we will also solve for the EM field.
Under spherical symmetry, Aµ can only depend on

t and r, so the most general form it can take is
Aµ = (φ(t, r), ψ(t, r), 0, 0). Using a Gauge transforma-

tion λ(t, r) = −
∫
ψ(t, r)dr we can work with Ãµ =

Aµ + ∂µλ(t, r) = (φ̃(t, r), 0, 0, 0) (an then we relabel

Ãµ 7→ Aµ). Since A⃗ = 0, there are no magnetic fields.
Thus, the only non-vanishing components of the Faraday
tensor are Ftr = −Frt = Er(t, r), where Er is the radial

component of the electric field, E⃗ . Expanding the radial
component of the first equation in (8) all Christoffel sym-
bols vanish, yielding ∂tF

tr = 0, implying F tr = F tr(r).
Performing a similar procedure with the temporal com-
ponent we obtain

0 = ∂rF
tr +

2

r
F tr ⇔ F tr(r) =

Q̃

r2
; Q̃ = ct. (9)

Since F tr = gttgrrFtr = −e−2(α+β)Er ≡ −Λ(t, r)Er, we
will proceed with F tr, and later determine Λ. Since Tµν is
traceless (7) reduces to Rµν = 8πGTµν . The independent
components of Tµν are (denoting FtrF

tr ≡ F 2)

Ttt = −1

2
e2αF 2 Trr =

1

2
e2βF 2 Tθθ = −1

2
r2F 2, (10)

and all others vanish. From Rtr = 8πGTtr = 0 we again
have ∂tβ = 0, implying β = β(r). Combining the equa-
tions for Rtt and Rrr we have

Ttt
e2α

+
Trr
e2β

= 0 ⇔ 2

r
e−2β(∂rα+ ∂rβ) = 0 (11)

which leads to α(t, r) = −β(r) +C(t). Introducing dτ =
e−C(t)dt and relabeling τ 7→ t we obtain α(r, t) = α(r) =
−β(r), which also implies Λ = 1 ⇒ F tr = −Er(r). By

Gauss’ theorem Er(r) = Q/r2, so we can write Q̃ = −Q,
which solves the EM field. Finally, using Rθθ = 8πGTθθ
we can solve for α(r), obtaining

e2α(r) = 1− K

r
+

4πGQ2

r2
, (12)

where K is a constant. Since for Q = 0 we must find (5),
we identify K = 2GM . Finally, (2) takes the form

ds2 =−
(
1− 2GM

r
+

4πGQ2

r2

)
dt2+

+

(
1− 2GM

r
+

4πGQ2

r2

)−1

dr2 + r2dΩ2,

(13)

which is the RN metric. A more thorough discussion can
be found in [13].
Considering these results, it becomes apparent that

every spherically symmetric solution arising from the
Einstein-Maxwell equations must necessarily correspond
to the RN metric. Hence, the RN metric emerges as a
unique solution under these conditions.
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III. SCALAR FIELDS ON A BLACK HOLE
BACKGROUND: NO-HAIR THEOREM

The KN metric represents the most general solution
for BHs. Besides the BH’s mass, M , and charge, Q,
it also incorporates its angular momentum, L. The no-
hair theorem embodies the idea that BHs background
solutions depend solely on these three parameters.

In this section, we include a scalar field in the grav-
itational theory. We aim to determine whether in this
situation BH solutions with scalar hair exist, meaning
if we can find a solution that incorporates a non-trivial
scalar field. In this scenario, BHs would be characterized
not only by M , Q and L but also by additional parame-
ters, determined by the field.

Let M be a manifold with metric gµν and ϕ = ϕ(x) a
scalar field with potential U(ϕ). We will consider ϕ to be
a probe field, meaning its contribution to Tµν is negligible
due to its weak interaction. Therefore, M satisfies (1),
and the field satisfies

∇µ∇µϕ = U ′(ϕ). (14)

We assume ϕ to be non-singular everywhere and constant
when approaching infinity, with value ϕ0. These condi-
tions avoid some physically unacceptable solutions. Fur-
thermore, considering the symmetries involved, we make
the following assumptions on the metric gµν . Firstly, we
will consider it to be stationary, implying the existence
of a Killing vector field ξ, which is timelike at infinity.
As ϕ is a probe field, a Hawking theorem in [9] ensures
its axisymmetry, i.e., the existence of another Killing
vector, ζ, with closed orbits. Additionally, we assume
the metric to be asymptotically flat, that is, approach-
ing ηµν = (−1, 1, 1, 1) at infinity. Finally, we assume
the field to respect the symmetries of the metric, i.e.,
Lξϕ = ξµ∇µϕ = 0 and Lζϕ = ζµ∇µϕ = 0.

In this situation, we argue that the only possibility
for ϕ is to be constant. The argument as outlined in
[10] begins by considering a volume V enclosed by the
BH’s horizon, H, a timelike 3-surface at infinity, S∞, a
partial hypersurface for J̄ +(I−)∩J̄−(I+), S1 (a slice of
spacetime for some fixed time t1) and the hypersurface
obtained by shifting each point of S1 by a unit parameter
distance along the integral curves of ξµ, S2 (a slice of
spacetime for t2). The surfaces are shown in Fig. 1.

FIG. 1: Enclosed region V with two spatial dimensions suppressed.

Firstly, we will consider a non-interacting scalar field,
for which U(ϕ) = 0. We examine the following integral,

I =

∫
V
d4x

√
−g∇µϕ∇µϕ, (15)

where g is the determinant of the metric. Using the
chain rule we can rewrite (15) as

I =

∫
V
d4x∇µ(

√
−gϕ∇µϕ)−

∫
V
d4x

√
−gϕ∇µ∇µϕ. (16)

The second term vanishes by (14). For the first term,
since ϕ is non-singular everywhere, we can use Stokes’
theorem to rewrite it as

I =

∫
∂V

dx3
√
|h|ϕnµ∇µϕ, (17)

where h is the determinant of the induced metric in ∂V
and nµ its normal vector. Since ∂V = H∪ S∞ ∪ S1 ∪ S2

we can separate (17) into each surface’s contribution. On
one hand, for a stationary asymptotically flat spacetime,
H must be a Killing horizon for some Killing vector, nor-
mal to H. This can be expressed as a linear combination
of ξµ and ζµ, i.e., nµ∇µϕ = C1ξ

µ∇µϕ + C2ζ
µ∇µϕ, for

some constants C1 and C2 (see [14]), which vanishes. On
the other hand, since ϕ = ϕ0 in S∞, its contribution
will also vanish. Finally, since the normal vectors for
S1 and S2 verify kµS1

= −kµS2
, their contributions will

cancel out. Thus, we conclude that I = 0. The term
gµν∇µϕ∇νϕ = ||∇µϕ||2 ≥ 0 in (15) cannot be null ev-
erywhere, since ξµ∇µϕ = ζµ∇µϕ = 0 and neither ξµ nor
ζµ are null everywhere. It also cannot be timelike any-
where, since neither ξµ nor ζµ are spacelike anywhere.
Therefore, (15) can only vanish if ϕ = ϕ0 everywhere.
Since the field is trivial, the theory reduces back to GR,
as predicted by the no-hair theorem. Considering this,
we aim to generalise this argument for interacting fields.
Let ϕ have a potential U(ϕ) ̸= 0, assuming U ′(ϕ) = 0

at infinity. If we multiply (14) by U ′(ϕ) and integrate
over V we get∫

V
d4x

√
−gU ′(ϕ)∇µ∇µϕ =

∫
V
d4x

√
−gU ′2(ϕ). (18)

Using the chain rule we can rewrite (18) as∫
V
d4x

√
−g[U ′′(ϕ)∇µ∇µϕ+ U ′2(ϕ)] =

= ∇µ

∫
V
d4x

√
−gU ′(ϕ)∇µϕ.

(19)

Using Stokes’ theorem and the same decomposition
again, the right-hand side vanishes. If U ′′(ϕ(x)) ≥ 0 ∀x ∈
M, the left-hand side is always positive and, by the same
arguments, it can only vanish if ϕ = ϕ0. By performing
a Taylor expansion of ϕ(x) around the potential minima
p ∈ M, we identify U ′′(ϕ(p)) ≡ m2 as the squared mass
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of the field, so it would be reasonable to assume U ′′ is
positive. Therefore, the scalar field is again trivial.

It turns out that in AdS spacetime scalar fields with
m2 < 0 are acceptable as long as m2 is not too negative,
as we will see in the last section. Since we have not made
any assumptions regarding the presence of a cosmological
constant in the metric, we can consider this argument in
AdS. In the following section, we explore the possibility
of the existence of a non-trivial solution in this spacetime.

IV. SCALAR FIELD SOLUTIONS IN ANTI-DE
SITTER SPACETIME

Under the aforementioned conditions, the most general
form the metric can take is

ds2 = f(r)dt2 + f−1(r)dr2 + r2dΩ2, (20)

where f(r) tends to 0 as we approach the event horizon,
rH ; f(r → rH) → 0. In particular, in AdS spacetime,

f(r) = 1 + r2

L2 − 2M
r , where M is the BH’s mass and

L is the AdS curvature radius. Let’s consider ϕ under
the same conditions as before. We choose a harmonic
potential, U(ϕ) = 1

2m
2ϕ2, since it is the simplest one to

include m2. Thus, ϕ satisfies the Klein-Gordon equation,

∇µ∇µϕ = m2ϕ⇔ 1√
|g|
∂r(

√
|g|grr∂rϕ) = m2ϕ. (21)

Considering the symmetries involved, we will adopt the
ansatz ϕ = ϕ(r). Using

√
|g| = r2 sin2 θ and the change

ϕ(r) = u(r)/r, we can rewrite (21) as

f(r)
d2u

dr2
+ f ′(r)

du

dr
− f ′(r)

r
u = m2u. (22)

If we change r for a tortoise coordinate given by dr̂
dr =

f−1(r), we can further rewrite (22) as

d2û

dr̂2
−
(
m2 +

f ′(r)

r

)
f(r)û = 0, (23)

where û ≡ u[r̂(r)]. We shall now examine the asymptotic
behaviour of its solution as r → rH and r → ∞, the
critical points of AdS spacetime. For r → rH , f(r) → 0,
so we can solve for û in (23) directly, obtaining

û(r̂) = A+Br̂ ⇔ ϕ(r) =
A

r
+
B

r
r̂(r), (24)

for some constants A and B. Since r̂ diverges for r → rH ,

we must set B = 0. For r → ∞, f(r) → r2

L2 , implying

r̂ = −L2

r . Thus, we can approximate (23) as

d2û

dr̂2
=

1

r̂2
(2 +m2L2)û. (25)

By considering the ansatz û(r̂) = ρr̂δ; ρ, δ = ct., we find
a second order equation for δ resulting in the solution

û(r̂) = Ãr̂δ+ + B̃r̂δ− ; δ± =
1±

√
9 + 4m2L2

2
, (26)

for some constants Ã and B̃. Switching back we obtain

ϕ(r) = Ārλ− + B̄rλ+ ; λ± =
−3±

√
9 + 4m2L2

2
, (27)

for some other constants Ā and B̄. On one hand, if
m2 > 0, rλ+ diverges and we would have to set B̄ = 0.
Since rλ− → 0 as r → ∞ the solution would asymptot-
ically tend to 0. Therefore, since we can only fix two
boundary conditions, we cannot ensure the solution does
not diverge. Hence, the only well-behaved solution that
tends to zero at infinity is ϕ(r) = 0, implying that the
scalar field is trivial, as predicted in the previous section.

On the other hand, if m2 < 0, both rλ− and rλ+ are
well-behaved, and no boundary conditions need to be im-
posed in this regard. Therefore, a non-constant solution
might exist. However, we must ensure −9/(4L2) < m2

as otherwise ϕ(r) will be unstable [15]. Hence, a non-
trivial solution may exist if −9/(4L2) < m2 < 0, which
constitutes the Breitenlohner-Freedman stability condi-
tion [15]. In the following section, we aim to identify its
behaviour by solving the equation numerically.

V. NUMERICAL SOLUTION

In this final section, our goal is to derive a numerical
solution for (21), which can be rewritten as

ϕ′′ +
rf ′(r) + 2f(r)

rf(r)
ϕ′ − m2

f(r)
ϕ = 0. (28)

We have employed a Range-Kutta 4 method, regarding
L, rH and m2 as parameters. To initiate the algorithm,
since f(r) goes to 0 at r = rH , the Frobenius method has
been used to approximate the field’s value near r → rH .
Indeed, considering f(rH) = 0, f(r) can be rewritten as
f(r) = (1− rH

r )h(r) for a known function h(r). Substitut-
ing into (28), using a Laurent series we can approximate

ϕ(r) = ϕ0 + ϕ1(r − rH) +
1

2
ϕ2(r − rH)2 +O(3) (29)

where ϕ0 is a free parameter and ϕ1, ϕ2 are known coeffi-
cients depending on rH , L,m

2 and ϕ0. For simplicity, we
fix L = 1 and work in L units. As ϕ(r) is proportional
to ϕ0, we also fix ϕ0 = 1. By changing rε 7→ rH(1 + ε)
we obtained the initial values (using ε = 10−3).
As shown in Fig. 2, we identify three different be-
haviours: (I) for 0 < m2, ϕ(r) is an always increas-
ing function approaching infinity as r → ∞. (II) for
−9/4 < m2 < 0 we find a non-singular decreasing func-
tion approaching 0 as r → ∞. (III) for m2 < −9/4 we
find a solution with oscillations at r → rH . Therefore, as
expected, the only physically valid range is (II). In our
analysis, we find ϕ(r) to be well-behaved and monoton-
ically decreasing for all values of m2 within this range.
An example of each behaviour is shown in Fig. 3.
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FIG. 2: ϕ(r) for an m2 falling within each range for rH = 1.

FIG. 3: ϕ(r) solutions for squared masses falling within range (II)
for rH = 0.2L and rH = 2L. The dashed lines represent ϕ′. The
convergence of both ϕ and ϕ′ is faster for greater |m2|.

VI. CONCLUSIONS

In this work, we evaluated the validity of Birkhoff’s
theorem and the no-hair theorem for BHs, in different

contexts. Firstly, we reproduced a proof of Birkhoff’s the-
orem and its generalisation to include EM fields. These
arguments led us to establish the uniqueness of the RN
metric within the Einstein-Maxwell theory.
Subsequently, we considered the presence of a probe

scalar field in the gravitational theory. In this context,
we proved the no-hair theorem for fields with positive
squared mass, m2 > 0. Indeed, we found that all non-
singular scalar fields are trivial, meaning BH solutions
for these fields only depend on the BH’s massM , charge,
Q, and angular momentum, L, as stated by the no-hair
theorem. We then found a non-trivial solution in AdS
spacetime, where scalar fields with m2 < 0 are accept-
able. Finally, we calculated this solution numerically,
finding it dependent on a parameter determined by the
field. Therefore, we conclude that black holes in AdS
spacetime within this extended theory may depend on
parameters other than M , Q, and L.
This study is limited to ϕ being a probe field, but it

is possible to find the exact solution, meaning that the
effect of the scalar field on the metric is considered [16].
In particular, for a non-interacting field, the solution is
known as the Fisher-Janis-Newman-Winicour spacetime
[17]. This solution is relevant, as the scalar field becomes
singular at the event horizon, provided it is not null, and
generalises the arguments outlined in this work.
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