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Abstract: Dynamical dark energy (DE) is an alternative to a positive cosmological constant
Λ. In this work we model the DE dynamics by means of a quintessence scalar field, considering
a coupling between DE and photons that triggers the cosmological evolution of the fine structure
constant α. We derive the coupled system of differential equations that rules the universe expansion
at the background level and solve it numerically. We also constrain the model with state-of-the-art
cosmological data and obtain strong upper bounds on the parameters that control the DE dynamics
and the coupling with the electromagnetic sector. Finally, we compare the fitting results with
those obtained from ΛCDM and uncoupled quintessence. As original contribution of our work,
we have developed a code that is publicly available in [https://github.com/amunozna/alpha_phi_
CDM_coupling.git].

I. INTRODUCTION

Cosmological observations reveal that the universe is
undergoing accelerating expansion. In the standard cos-
mological model, ΛCDM, this acceleration is explained
using a positive cosmological constant (Λ), which behaves
like a perfect fluid with negative pressure [1]. An alterna-
tive approach is to consider dynamical dark energy (DE)
by introducing, e.g., a time-evolving scalar field ϕ in the
action. Couplings between ϕ and other fields in the the-
ory are possible in principle and could leave an imprint
on cosmological observables. This coupling could induce
time variations in some of nature’s fundamental physi-
cal constants, the detection of which would be a smoking
gun of the existence of dark energy. Consequently, this
could have groundbreaking implications for fundamental
physics.

This work focuses on the coupling between the DE
scalar field and photons, which triggers the cosmic evo-
lution of the fine-structure constant α that controls the
interaction strength between charged particles and light,

α =
e2

4πϵℏc
, (1)

where e is the electric charge of the electron, ℏ the re-
duced Planck constant and µ and ϵ = c2/µ are the per-
meability and permittivity of vacuum, respectively. As
we will show in the following pages, in our model µ and
ϵ pick a dependence on ϕ and, thus, the dynamics of the
scalar field translate into the variation of α. In this work,
we employ background cosmological data, including mea-
surements of the variation of α at different redshifts, to
constrain our model.

The layout of this work is as follows. In section II,
we present the action of our coupled DE model and the
most relevant equations. In section III, we discuss the
methodology used to solve the background equations nu-
merically, as well as the data employed to constrain not
only our model with and without coupling, but also the

ΛCDM, which we treat as a benchmark model. Finally,
in section IV, we discuss the results and present our con-
clusions.

II. THEORETICAL FRAMEWORK

A. Conventions

Metric: We use in this work the Friedmann-Lemâıtre-
Robertson-Walker (FLRW) metric, which takes into ac-
count the symmetries imposed by the cosmological prin-
ciple. The latter essentially states that space-time can be
decomposed into completely homogeneous and isotropic
hypersurfaces of constant cosmic time t, in agreement
with the vast majority of cosmological observations. The
line element reads,

ds2 = a2(η)
[
− c2dη2 + dxidxj δij

]
. (2)

where the scale factor a(η) encapsulates the dynamics of
the universe, dη = dt/a(t) is the conformal time and xi

(i = 1, 2, 3) are the comoving spatial coordinates.
As for the other geometrical quantities, the following

sign conventions have been chosen: Rλ
µνσ = ∂ν Γ

λ
µσ +

Γρ
µσ Γ

λ
ρν − (ν ↔ σ) for the Riemann curvature tensor,

Rµν = Rλ
µλν for the Ricci tensor, and R = gµνRµν for

the Ricci scalar.

Electromagnetic field: We also present the electromag-
netic tensor, which reads,

Fµν = ∇µAν −∇νAµ = ∂µAν − ∂νAµ , (3)

with Aµ = (ϕ/c,Ai) (= gµνAν) the 4-potential, ϕ the

electric potential and A⃗ the vector potential. The re-
lation between the elements of the electromagnetic ten-
sor and the electric and magnetic fields depends on the
observer’s velocity. An observer with four-velocity uµ
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decomposes the electromagnetic tensor into electric and
magnetic parts [2], as follows:

Fµν =
1

c2
(uµEν − uνEµ)−

1

c
ηµνκθu

κBθ , (4)

with the 4-vectors Eµ and Bµ orthogonal to the ob-
server’s 4-velocity uµ, i.e. uµEµ = uµBµ = 0. This
ensures that E and B are three-vectors in the observer’s
rest space. Thus, we have,

Eµ = Fµνu
ν , Bµ =

1

2c
ηµνθαu

νF θα , (5)

with ηµνθα the covariant Levi-Civita tensor, which can be
written in terms of the Levi-Civita symbols as follows,

ηµνθα = −√−g ϵµνθα , ηµνθα =
1√−g

ϵµνθα . (6)

For a comoving observer in a FLRW universe, we can

write, uµ = dxµ

dτ =
(

c
a , 0⃗
)
where τ is the proper time of

the observer. Hence, from Eq. (4) we obtain,

F0i = −a

c
Ei , Fij = a3ϵijkB

k . (7)

Finally, we define the dual electromagnetic field tensor
as ⋆Fµν = 1

2η
µναβFαβ .

B. The action and the coupling

We consider the following action,

S =

∫
d4x
√
|g|
(

R

16πG c−3
+ Lm + Lϕ + Lγ↔ϕ

)
(8)

The first term corresponds to the Einstein-Hilbert action,
followed by Lm, which represents the Lagrangian density
of the non-relativistic matter components (dark matter
and baryons). We will assume it can be described as a
perfect fluid stress-energy tensor (SET),

Tm
µν =

(
ρm + pm

) uµuν

c2
+ pm gµν , (9)

where ρm and pm are the matter energy density and pres-
sure, respectively. Actually, non-relativistic matter does
not exert pressure, so pm = 0. On the other hand DE is
modelled as quintessence,

Lϕ = − 1

2c
gµν∂µϕ∂νϕ− V (ϕ) , (10)

This action yields the following SET,

Tϕ
µν = ∇µϕ∇νϕ− gµν

(1
2
gαβ ∇αϕ∇βϕ+ V (ϕ)

)
(11)

with non-zero components

Tϕ
00 = a2

(
ϕ̇2

2c2
+ V (ϕ)

)
= a2ρϕ , (12)

Tϕ
ij = a2

(
ϕ̇2

2c2
− V (ϕ)

)
δij = a2pϕ . (13)

The dots denote derivatives with respect to cosmic time.
We have neglected the spatial derivatives of ϕ to respect
the FLRW symmetries. The dynamics of the scalar field
clearly depend on the shape of the potential. Here we
opt to study the Peebles-Ratra (PR) potential, V (ϕ) =
1
2κϕ

−λ [1]. In the last term of the action (8) we include
the kinetic electromagnetic term and its coupling with ϕ,

Lγ↔ϕ =
−1

4µ0c
G(ϕ)FµνF

µν , (14)

with G(ϕ) = e−τ(ϕ−ϕ0), being τ the coupling parameter
and ϕ0 the current value of the scalar field. Its corre-
sponding SET reads,

T γ↔ϕ
µν =

G(ϕ)
µ0

(
FµαFνβ g

αβ − 1

4
FαβF

αβ gµν

)
. (15)

For τ = 0 we retrieve the usual electromagnetic SET, as
expected. If we define µ(ϕ) = µ0/G(ϕ), Eqs. (14) and
(15) take the same form as in the uncoupled case, but µ
is promoted to a function of ϕ. This dependence allows
us to write the variation of α as follows,

∆α(ϕ)

α0
=

α(ϕ)− α0

α0
= eτ(ϕ−ϕ0) − 1 , (16)

with α0 the current value of α. If λ ̸= 0 and τ ̸= 0, α
becomes a function of the scale factor due to the dynam-
ics of ϕ. The components of Eq. (15) written in terms of
the electric and magnetic fields read,

T γ↔ϕ
00 =

a2

2µ(ϕ)

(
B2 +

E2

c2

)
, T γ↔ϕ

0i =
ϵijkEjBk

µ(ϕ)c
, (17)

T γ↔ϕ
ij =

−1

µ(ϕ)

[
EiEj

c2
+BiBj −

a2

2

(
B2 +

E2

c2

)
δij

]
.

(18)

However, to be consistent with the cosmological princi-
ple, we need to consider spatial averages of the above
quantities to obtain the background expressions. We use
the following relations,

• ⟨Ei⟩ =
〈
Bi

〉
= 0 ,

•
〈
Ei Ej

〉
=
〈
Bi Bj

〉
= 0, for i ̸= j ,

•
〈
E2
〉
= 3

〈
Ei

2
〉
̸= 0 and

〈
B2
〉
= 3

〈
Bi

2
〉
̸= 0 ,

•
〈

E2

c2 −B2
〉
= 0. This implies ⟨FµνF

µν⟩ = 0.

The cancellation of the Lorentz invariant ⟨FµνF
µν⟩ in the

presence of a non-zero coupling is ensured if the average
amplitude of electric and magnetic fields are the same.
We will show that this is actually the case in Sec. IID. In
view of these arguments, the SET reduces to a diagonal
tensor with the following non-zero components:

T γ↔ϕ
00 =

a2
〈
E2
〉

µ(ϕ)c2
, T γ↔ϕ

ij =
a2δij
3µ(ϕ)

〈
E2
〉

c2
. (19)
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Now, we can compare this result with the general form
of the energy-momentum tensor of a perfect fluid, i.e.
Eq. (9), finding that at the background level radiation
behaves as a perfect fluid with energy density ργ↔ϕ =
⟨E2⟩
µ(ϕ)c2 and a constant equation of state (EoS) parameter

wγ↔ϕ =
pγ↔ϕ

ργ↔ϕ
= 1

3 .

C. Friedmann, pressure and conservation equations

In this section we find the equations that govern the
dynamics of the universe and the energy densities of the
various species. Firstly, we extremize Eq. (8) with re-
spect to gµν to obtain the Einstein field equations,

Gµν =
8πG

c4
(
Tm + Tϕ + T γ↔ϕ

)
µν

. (20)

Given the symmetries of a FLRW universe, we only are
left with two independent equations, the Friedmann and
pressure equations, respectively,

H2 =
8πG

3c2
(ρm + ρϕ + ργ↔ϕ) , (21)

−2Ḣ − 3H2 =
8πG

c2
(pm + pϕ + pγ↔ϕ) . (22)

From the zeroth component of the Bianchi identity
∇µG

µν = 0, and the independence of the matter term
from the rest of contributions of the right-hand side of
Eq. (20), we obtain the matter conservation equation,

ρ̇m + 3Hρm = 0 . (23)

Hence, ρm ∼ a−3. If we extremize the action with re-
spect to ϕ, instead, we obtain the modified Klein-Gordon
equation,

□ϕ− ∂V (ϕ)

∂ϕ
=

1

4µ0

∂G(ϕ)
∂ϕ

FµνFµν . (24)

We can expand the d’Alembert operator from the last
expression and rewrite it as

ϕ̈+ 3Hϕ̇+ c2
∂V (ϕ)

∂ϕ
= − c2

4µ0

∂G(ϕ)
∂ϕ

FµνFµν . (25)

Using Eq. (21), (22) and (25) we get,

ρ̇γ↔ϕ + 4Hργ↔ϕ =
c2

4µ0

∂G(ϕ)
∂ϕ

FµνFµν , (26)

which corresponds to the conservation equation for pho-
tons. As pointed out in the previous section, the right-
hand side of Eqs. (25) and (26) vanish, see also Sec.
IID. Therefore the scalar field evolves as in the standard
Peebles-Ratra model and radiation gets diluted following
the usual law ρr ∼ a−4, since we are considering massless
neutrinos. The contribution of the latter does not appear
explicitly in Eq. (8).

D. Modified Maxwell Equations

If we extremize our action with respect to the photon
field Aµ we find the modified inhomogeneous Maxwell
equations, ∇µ (G(ϕ)Fµν) = 0 , which encapsulate the
Gauss and Ampères laws,

∇⃗ · E⃗ = 0 , (27)

−1

G(ϕ)
∂G(ϕ)
∂η

E⃗

c2
=

3H
c2

E⃗ +

(
1

c2
∂E⃗

∂η
− ∇⃗ × B⃗

)
, (28)

where H ≡ aH. Comparing Eq. (28) with the equation
found in Minkowski we find two extra terms: the one
in the left-hand side, which is proportional to the deriva-
tive of G with respect to the conformal time; and the first
term in the right-hand side. Both are actually propor-
tional to H, since ∂/∂η = aH∂/∂a. The last two terms
of Eq. (28), instead, are proportional to the frequency
of light, which is much larger than H. This allows us
to neglect the aforementioned extra terms and recover
the Minkowskian equation. The homogeneous Maxwell
equations can be obtained from the geometrical condition
∇[µFνσ] = 0, where [...] stands for the antisymmetrisa-
tion of indices, which can be expressed in terms of the
dual electromagnetic field tensor as ∇µ

⋆Fµν = 0. Sim-
ilarly, the modifications in the homogeneous equations
vanish at the background level. They can be combined
with Eqs. (27)-(28) to get the standard propagation equa-
tion of electromagnetic waves, with a constant c. Hence,
we find that the amplitude of the electric and magnetic
fields is the same and, therefore, ⟨FµνF

µν⟩ = 0.

III. METHODOLOGY AND DATA

In the following lines we describe how to solve the sys-
tem of coupled background cosmological equations in or-
der to obtain ϕ(a), H(a) and α(a). In general, Eq. (25)
requires a numerical solution. Thus, it is convenient to
rewrite it in terms of dimensionless variables. Using the
convention ′ ≡ ∂/∂a,

ϕ̄′′ +

(
4

a
+

H̄ ′

H̄

)
ϕ̄′ − λκ̄

2(aH̄)2
ϕ̄−(λ+1) = 0 , (29)

with κ̄ = κς−2ℏ3+ 1
2λM−4−λ

pl c−5− 3
2λ, Mpl the Planck

mass and H̄ = H/ς, expressed in terms of ς =
1Km/s/Mpc. The latter also enables us to write the cur-
rent value of the Hubble parameter asH0 = 100hς, where
h is the reduced Hubble parameter. To solve Eq. (29)
with a finite step method we need an initial condition for
the scalar field and its time derivative.
For λ > 0 the PR potential fulfils the “tracker condi-

tion” Γ = V V,ϕϕ/(V,ϕ)
2 > 1 and the solution of Eq. (29)

possesses the property of having an attractor-like be-
haviour, which means that a substantial family of func-
tions overlap in the same trajectory. This mechanism
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FIG. 1: Equation of state parameter of ϕ, wϕ, as a function
of a, obtained using the best-fit values from Table I. The
plateaus in the radiation- and matter-dominated epochs are
clearly visible (see Sec. III).

channels numerous initial conditions toward a shared fi-
nal state, and we will make use of this fact. At a ≈ 10−6

the Universe is deep in the radiation-dominated epoch.
Power-law solutions of the form ϕ(a) = A tp are promis-
ing candidates during this period, where Eq. (21) sim-
plifies considerably as we can take into account only the
relativistic species. Considering this scenario in Eq. (29)
we obtain the initial condition,

ϕ̄(a) =

[
λ(λ+ 2)2 κ̄

8 · 104(λ+ 6)ωr

] 1
λ+2

a
4

λ+2 , (30)

with Ωr = 8πG
3H2 ρ

0
r and ωr = Ωrh

2 the density and reduced

density parameters, respectively, and ρ0r the present value
of the radiation energy density. wr is fixed by the temper-
ature of the cosmic microwave background (CMB) and
the number of relativistic neutrino species.

Now that we have the initial condition, we need to
compute the value of H̄(a, ϕ, ϕ′) and H̄ ′(a, ϕ, ϕ′) at each
scale parameter step to be able to evaluate Eq. (29).
From a convenient rephrasing of the Friedmann equation,
we get,

H̄2 =
κ̄ϕ̄−λ(a) + 1.2 · 105

(
ωma−3 + ωra

−4
)

12− a2ϕ̄′(a)2
, (31)

and using also the equations of conservation of each com-
ponent, we obtain:

H̄ ′ =
−3

2aH̄

(
(aH̄ϕ̄′)2

6
+ 104

(
ωma−3 +

4

3
ωra

−4
))

(32)

For further details see [3]. We choose the Runge-Kutta
4 finite step method to solve this system of equations.

The equations displayed above are parameterised in
terms of wm, λ and κ̄, and obtain H0 as a derived pa-
rameter. We use a complete data set to constrain our
model: (i) Supernovae (SNIa) apparent magnitudes m,
whose theoretical value can be computed as follows,

mth(z) = M + 25 + 5 log10 (DL(z)) , (33)
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FIG. 2: Cosmological variation of α as a function of the red-
shift z, see Eq. (16). The solid line corresponds to the theo-
retical curve calculated with the best-fit parameters, and the
dashed lines represent those calculated with the ±1σ confi-
dence level values of τ . We also show the constraints em-
ployed in our fitting analysis.

where DL(z) = (1 + z) c
∫ z

0
dz′

H(z′) is the luminosity dis-

tance. M is the absolute magnitude of SNIa and is
treated as a nuisance parameter; (ii) data on baryonic
acoustic oscillations (BAO) and the Hubble parameter
at different redshifts, which include a set of angular dis-
tances and values of H(z); (iii) a CMB distance prior on
the angular diameter distance to the last scattering sur-
face; (iv) data on ∆α/α from distant quasar absorption
line spectra over the redshift range 1.1 < z < 2.3, galac-
tic and extragalactic measurements for 5.8 < z < 6.4,
and bounds from CMB and from Big Bang Nucleosyn-
thesis (BBN). Finally, the also use the ratio of varia-
tion of α at the present measured with atomic clocks,
|α̇/α| < 4.2 · 10−15yr−1. This final dataset will allow us
to constrain the values of the coupling τ , cf. Eq. (16).
To constrain the models under study we use Bayesian

statistics, which is based on the Bayes’ Theorem,

P (A|B) =
P (B|A)P (A)

P (B)
, (34)

for any two events A and B. We can identify A as
our model and B as the data. The likelihood quantifies
the probability of the data given a model, L = P (B|A).
P (A) is our prior and quantifies the information we have
about A before the employment of the new data. The
quantity we are interested in is the so-called posterior
distribution P (A|B), the probability of having the model
given the data, and P (B) is just a normalization fac-
tor. We can evaluate the likelihood given some set of
values of our parameters as L = N exp(−χ2/2), with

χ2 = (x⃗B − x⃗A)
T
C−1 (x⃗B − x⃗A). x⃗B is the vector of

data, C its corresponding covariance matrix, and x⃗A the
theoretical predictions of the model. We want to under-
score that we are not interested in obtaining the nor-
malization factor N , only the shape of the distribution;
therefore, the factors N and P (B) are not important in
this calculation.
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H̄0 ωm κ̄ · 10−4 λ τ · 106 M χ2
min/dof

ΛCDM 68.8+0.7
−0.6 (68.8) 0.142+0.004

−0.004 (0.141) - - - −19.39+0.02
−0.02 (−19.39) 1579.35/1746

ϕCDM 68.4+0.7
−0.8 (68.6) 0.141+0.002

−0.002 (0.142) 3.71+0.26
−0.28 (3.89) < 0.099 (0.007) - −19.40+0.02

−0.02 (−19.39) 1579.31/1745

αϕCDM 68.4+0.7
−0.7 (68.5) 0.141+0.001

−0.001 (0.141) 3.71+0.28
−0.29 (3.83) < 0.110 (0.012) 0.0+5.0

−5.7 (0.9) −19.39+0.02
−0.02 (−19.39) 1578.97/1744

TABLE I: Fitting results for the ΛCDM as well as the uncoupled and coupled ϕCDM. We display the mean values and 1σ
uncertainties together with the best-fit values (between brackets) of the various parameters.
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FIG. 3: Likelihood contour plots of the parameters of ΛCDM
and ϕCDM with and without the coupling with α.

With this setting, we use the Metropolis-Hastings al-
gorithm to explore efficiently the parameter space. It
essentially consists of choosing an arbitrary value for our
parameter set and evaluating the posterior P (A|B), then
proposing a movement in the parameter space and cal-
culating the new value P (A|B)′. If the ratio between
them, P (A|B)′/P (A|B), is larger than a uniformly gener-
ated random value between 0 and 1, the step is accepted;
otherwise, it is not. The process is repeated until accu-
mulating enough steps in the Monte Carlo Markov chain,
leading to the convergence of the distribution of the pa-
rameters. Analysing this chain we extract the mean and
best-fit values, and their associated uncertainties. For
the priors, we choose for all the parameters wide enough
uniform distributions that do not affect the shape of the
posterior.

IV. DISCUSSION AND CONCLUSIONS

Our results are presented in Table I and Fig. (3). The
employed data only allows us to find an upper bound on
λ and τ , showing no significant preference for dynamical
dark energy nor the evolution of α. The slight imbal-
ance towards negative values of the coupling is induced
mostly by the BBN constraint on α, see Fig. (2). Weaker
constraints on τ for small values of λ is also depicted
in Fig. (3) since in this limit the model reduces to non-
dynamical DE, so the variation of α goes to zero for any
value of τ , see Eq. (16). The constraints on the param-
eters shared by the three models are compatible in all
cases, but they are looser in ϕCDM due to the higher
dimensionality of its parameter space.

The discrepancy between the values obtained for H0

from measurements of the CMB and nearby redshifts is
known as Hubble tension. It has been discussed in the
past the fact that quintessence scalar fields do not help
to alleviate this tension, but exacerbate it even further.
This resonates well with Fig. (3), in which we show the
existing anti-correlation between the Hubble parameter
and λ. The distribution of H0 shifts to smaller values in
the ϕCDM model.

Although the results of this study do not provide evi-
dence supporting new physics, they also do not preclude
it. An extended study involving CMB anisotropies and
structure formation data could be performed in the fu-
ture in order to go beyond the background level.
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