Damage in simulated neural networks: impact of neuronal aggregation
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Abstract: Here, we numerically modelled biologically-realistic neuronal networks. We considered
neurons that connected to one another on a Euclidean space and used the Izhikevich model to
describe their the activity. Inhibitory and excitatory neurons were considered, and were positioned
on the Euclidean space in either a homogeneous or aggregated way. Axons emerging from them
were modelled as random walkers. Once the network was built, targeted and random damage were
applied, and the dynamic response of the network was quantified, measuring the impact of damage
using network analysis. Results show that the simulated networks are most resilient when random
attack is applied and nodes are arranged on an aggregated way. The change in dynamics exhibits a
non-trivial behaviour, as it is heavily dependent not only on the type of damage applied, but also
on the way the network is created and the type of neurons that are deleted.

I. INTRODUCTION

Neuronal networks have come forward as a way to un-
derstand the emergence of collective behaviour from an
ensemble of interconnected neurons in a controlled envi-
ronment. Networks do not only allow us to see how an
ensemble of synaptically interconnected neurons behave
in a dynamic way, but also let us to study the relation-
ship between collective dynamics and the underpinning
network connectivity [1].

Collective behaviour is of main importance for these
kind of systems, and departure from normal behaviour
could be a sign of neurodegeneration. For instance
Parkinson’s disease patients display an elevated syn-
chronous behavior as compared to the ones in the absence
of neurodegeneration [2]. In this context, the brain is a
complex system and understanding the robustness of its
circuitry is of utter importance to tackle such degenera-
tive diseases. Numerical simulations have emerged as a
powerful tool that enables us to explore different network
configurations and disease-related aspects, analyzing how
the dynamics of the networks changes when the connec-
tions are altered, for instance by either deleting neurons
or by altering their connections [3].

The main goal of this project is to unveil how synchro-
nization of a network as a whole changes when damage
is applied to the in silico system, i.e. when we delete
connections of the network. For such purpose, we will
construct networks that follow plausible biological rules,
with two kind of neurons: inhibitory and excitatory. The
first ones prevents synchronized behaviour by reducing
activity in the network, whereas the second promotes
synchronization by fostering the propagation of activ-
ity. We will simulate the dynamics of the network, and
the emergence of synchronization, using the Izhikevich
model, which offers a simple (both mathematically and
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computationally) yet complete model of spiking neurons,
and complement those measures with network analysis.
The latter will help us understand the topology changes
that will be made in the network upon damage.

II. METHODS
A. Biologically realistic neural networks

Neuronal networks can be thought as a set of nodes
and edges, emulating the way in which neurons are dis-
played in in vivo systems, and the connections they form.
The cell body (soma) will be modelled as a mathematical
point, placed on a bidimensional squared area of lateral
size s = 2 mm. We will work with densities of around 250
neurons/mm?, so our systems will be of 1000 neurons.

Depending on how the nodes (neurons) are positioned
on this area, we will consider two kinds of networks: ho-
mogeneous networks or aggregated networks. On the
homogeneous case, they are placed randomly. On the
aggregated case, working with 1000 nodes, we will first
position 10 nodes randomly (will be the number of mod-
ules), and around a circle of 0.2 mm of each one, we will
place sets of 10 nodes randomly. An example of network
construction can be seen on Figs. 1A-B.

For each soma, an axon will grow following a quasi-
straight path. The final length of it, will be given by
a Rayleigh distribution, with an average axonal length
(¢) = 1.1 mm, which will be divided in 100 gm segments.
The first segment of the axon will depart from the node
following a random direction. Each new segment will be
placed immediately after the previous one, and they will
be able to change their orientation with an angle that will
follow a normal distribution, with gy = 0° and oy = 15°.
If one of these axons is expected to leave the defined area,
it will bounce elastically with the wall (Fig. 1A).

Next we will build our networks. We will set up a
dendritic tree as a disk around each neuron with diameter
Ry, which will follow a normal distribution with pg =
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FIG. 1: Methods. (A) 100 cell bodies with their corre-
sponding axon in the bidimensional squared area. A zoom of
the upper-right side of the plot is displayed to showcase how
the axons interact elastically with the walls. (B) Example of
a homogeneous network and aggregate network for 100 neu-
rons. (C) Raster plot showing the spiking of 1000 neurons
using the Izhikevich model. Below it, the corresponding PA
for a 15 ms time window, with the local maxima circled and
the mean of those values as a horizontal line.

0.3 mm and o4 = 0.04 mm. If an axon from the i-th
neuron crosses the dendritic tree of the j-th neuron, there
will be a 10% chance of forming a directed connection
from i — j. Connections will be stored in an adjacency
matrix A = {A;;}, where A;; = 1 if there is a directed
connection ¢ — j, and zero otherwise. All the parameters
described and used for building the network have been
extracted from Ref. [5]. Fig. 1B illustrate final networks.
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B. Izhikevich model, Population Activity (PA) and
inhibitory and excitatory neurons

The Izhikevich model [4] consist of a two-dimensional
system of ordinary differential equations. Depending on
four parameters, it successfully reproduces the spiking
of individual neurons and bursting behaviour of neural
networks of known types of cortical neurons.

%20.04v2+5v+140—u+17 (1)
du

— — 2

7 a(bv — u), (2)

with an after-spike reset given by:

. v cC

> )
1fv_30mV,then{u<_u+d. (3)
The variable v represents the membrane potential of the
neuron and w is a membrane recovery variable. I rep-
resents synaptic currents, allowing the transmission of
activity in the network. The other 4 parameters are:

e a: time scale of the recovery variable u.

e b: sensitivity of the recovery variable u to the sub-
threshold fluctuations of the membrane potential.

e c: after-spike reset variable of v.
e d: after-spike reset of the recovery variable w.

Initially we will set the potential of all neurons to the
one they would have at rest (—65 mV). At each time step,
the algorithm will work as follows: we will first introduce
a thalamic input through the variable I; if the membrane
potential of the i-th neuron is larger than 30 mV, the
model will consider it has spiked, according to Eq. 3,
and their variables will reset. The ones that have spiked
will add a contribution on the membrane potential of the
the ones which they are connected (through T), favouring
that they spike as well. The original Izhikevich code in
Matlab can be found in Ref. [4].

Raster plots will be a representation of the neurons
that have spiked at a certain time ¢ (Fig. 1C, top), allow-
ing us to have an idea about the synchronization of the
system through the concept Population Activity (PA) [1]
(Fig. 1C, bottom). Inside a time window, of 15 ms in
our case, we will count the number of neurons that have
spiked, and this will be divided by the total number of
neurons (1000 neurons in our simulations). High PA val-
ues will indicate that a large number of neurons have
spiked at the same time window, whereas low PA val-
ues will mean that the number of neurons participating
in collective events are very few. We will run the sim-
ulation for 2000 ms and quantify the synchrony of the
network as the mean of local maxima of PA.

To enrich the system, and motivated by the anatomy of
mammalian cortex, two types of neurons will be consid-
ered: excitatory and inhibitory. The former will favour
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the transmission of synaptic signals between neurons, and
the latter will difficult this transmission. Their relation-
ship will be 4:1, so in our system, there will be 200 in-
hibitory neurons and 800 excitatory neurons. No distinc-
tion will be made regarding their position to the network.
This will be implemented through the addition of posi-
tive or negative weights (for excitatory and inhibitory
neurons, respectively) to the already refereed adjacency
matrix, which will affect the I variable and therefore the
membrane potentials of the neurons, and with differences
on the variables {a, b, ¢, d}.

C. Application of damage

We will measure the change of synchrony, i.e. the mean
of the local maxima values of PA, when damage is ap-
plied. Deletion of nodes and connections will be applied
considering three main actions:

e Highest degree damage: at each step, the deleted
node will be the one with the highest number of
edges (the sum of both in-degree, edges that go to
that node from another, and out-degree, edges that
go from that node to another).

e Betweenness centrality damage: at each step, the
deleted node will be the one that has the highest
betweenness centrality. This parameter gives us an
idea of how central a node is in the network, mea-
suring the proportion of shortest paths between all
node pairs in the network that pass through it [6].

e Random damage: nodes will be deleted randomly,
without taking into account any topological trait.

The simulations will be run as follows: we will apply
each type of damage individually, deleting one node at
each step, and computing the PA until no nodes are left.
These measures will help us understanding how resilient
the network is to different damage types.

D. Network topological measures

To further analyse how the different types of damage
affect the network, at each step we will compute different
topological properties through network analysis [6]:

e Giant component (GC): defined as the number of
nodes that the highest sub-graph contains divided
by the total number of nodes minus the number
of deleted ones (in this way we will be able to see
more clearly when the network fragments). It can
range between 0 (when there are no edges left) and
1 (when there is a path that links all the nodes).

e Global efficiency: can be understood as how effi-
cient the information is transmitted on the network
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through the shortest path.

1 1

Geff = N(N— 1) o I'j, (4)

with IV the total number of nodes and d;; the short-
est path between the i-th and j-th node. It ranges
from 0 (isolated neurons) to 1 (complete graph).

e Modularity: density of links inside communities as
compared to links between communities:

Q=53 [As - o). @)

(2]

with m = Zij A;j, Aij being our adjacency matrix,
ki=>" j A;;j and ¢; the community of node i. The
communities of the network will be computed us-
ing the Louvain algorithm [7], which maximizes the
coefficient (). Technically @ ranges from —1 to 1,
but as we are using a method that maximizes @) to
find communities, it will only take positive values.

For simplicity, we will only use a directed network to
compute Gery. For the other two coefficients, we will
use an undirected version, where every directed connec-
tion will be transformed to an undirected one. All these
measures will use an unweighted version of the adjacency
matrix (without making a distinction between inhibitory
and excitatory neurons), as we are only interested in the
topology of the network itself.

III. RESULTS AND DISCUSSION

A. Damage on homogeneous networks

For a a homogeneous network, the changes in PA and
topological measures for different types of damage are
shown in Fig. 2. We can see that, as expected, PA de-
creases with the different types of damage, but the de-
crease itself depends on the type of damage.

The most resilient scenario, i.e. the one that keeps the
highest PA when nodes are deleted, is the random one.
When we apply this kind damage there is no specific tar-
get, so it is understandable that the synchrony of the net-
work smoothly decreases. Considering the targeted dam-
ages, the network is more resilient for the highest degree
scenario when damage is mild, but when we have deleted
around 30% of the nodes, there is a change in behaviour.
This can be understood by looking at the changes in Q.
Betweenness centrality damage is more aggressive at the
early stages, because it deletes the nodes that are more
central to the network, i.e. the nodes in which the most
of the shortest paths between all node pairs have to pass
through. This is the reason it has the highest increase
and decrease in () and Gy, respectively, as it quickly di-
vides the network into different communities. Once this
is done, the network appears more resilient.
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FIG. 2: Damage on a homogeneous network. (A)
Change in PA as a function of the percentage of the nodes
deleted for the three different damage types. An example
graph is also shown, highlighting the nodes to be deleted for
each damage type. (B) Change in GC, Q and Gess on the
network as a function of the percentage of the nodes deleted
for the three different damage types. The lines represent the
mean and the shaded area the standard deviation of 10 net-
work realizations.

Highest degree damage, however, has a constant de-
crease in PA, such as the one we have seen for random
damage, but at a much higher rate. This is because this
damage will solely be based on the number of edges the
nodes have, not the role they play on the network as a
whole (so we can expect the behaviour to be similar as
the one when random damage is applied). @ increases,
because it is indeed a targeted damage, and GC' decreases
the earliest out of the three types of damage because of
the intrinsic nature of this damage.

B. Damage on aggregated networks

The results for aggregated networks are shown in
Fig. 3. These types of networks are more resilient to dam-
age, as we have to delete a higher percentage of nodes to
effectively remove the collective behaviour (PA).

Random damage and targeted attack on the highest
degree behave similarly as before, both in the change in
PA and in the measures of the topology, except that now
the network is more resilient. However, betweenness cen-
trality damage is much more destructive at the beggining.
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FIG. 3: Damage on an aggregated network. (A) Change
in PA as a function of the percentage of the nodes deleted
for the three different damage types. Illustrative raster plots
at two different steps are also shown to highlight what the
variation in PA implies. (B) Change in GC, @ and Geyy as a
function of the percentage of the nodes deleted for the three
different damage types. The lines represent the mean and the
shaded area the standard deviation of 10 network realizations.

Because of how the network was created, the nodes are
more distributed into modules, so after a few steps, this
type of damage creates communities that are not con-
nected between them. This can be captured thought the
G, which already decreases when only a few nodes have
been deleted.

We note that this behaviour cannot be seen when high-
est degree damage is applied, as high degree nodes do
not necessarily coincide with those exhibiting highest be-
tweenness centrality (more central).

C. Change on the length of inhibitory axons

To understand how collective behaviour is affected
by other simulation variables, we can focus on the role
played by excitatory (e) and inhibitory (¢) neurons. For
this, we will only consider homogeneous networks.

For such purpose we can lengthen, (¢); = 3 - (¢)., or
shorten, (¢); = (¢)./3, the extension of the inhibitory
axons and compute the change in PA only for damage on
the highest degree. Results are shown in Fig. 4.

We can see that, depending on the relation between
the length of the inhibitory and excitatory axons, the
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FIG. 4: Highest degree damage on a homogeneous net-
work for different relations between axonal lengths
of inhibitory and excitatory neurons. (A) Change in
PA, with log-y scale, as highest degree damage is applied
for different relations between the inhibitory and excitatory
axon length. Inset: a sketch of the inhibitory cell body for
()i =3-(f)c and (¢); = ()./3. (B) Change in the percentage
of remaining inhibitory and excitatory neurons as damage is
applied for the three cases. The lines represent the mean and
the shaded area the standard deviation of 10 network realiza-
tions.

behaviour of PA is different: if we lengthen the inhibitory
axons, the network is not only more resilient to damage,
but even increases PA as nodes are deleted, whereas if
we shorten the inhibitory axons, PA is lost earlier.

To understand this behaviour, we can look at Fig. 4B,
which represents the percentage of remaining neurons of
each type as a function of the percentage of the nodes
that have been deleted, bearing in mind the role that

excitatory (favours transmission) and inhibitory (oppose
transmission) neurons play. If we lengthen the axons of
the inhibitory neurons, we are favouring the number of
connections they can form, as their axon could cross the
interaction circle of more neurons. Therefore, as we are
applying damage on the node that has the highest degree,
we would first be deleting the inhibitory neurons of the
network. So, in this case, as we are first deleting neurons
that difficult transmissions, we are favouring the collec-
tive events, even though we are deleting connections. On
the contrary, if we shorten the axons of the inhibitory
neurons, less connections would be able to form, and the
neurons that would be deleted first are the excitatory.
On a normal case, there would be no distinction.

IV. CONCLUSIONS

We showed that, by exploring different parameters re-
garding the topology of a neuronal network, one can ra-
tionalize why is there a difference in the change of Popula-
tion Activity, a measure of the synchrony of the network,
when nodes of the network are deleted by the different
types of damage. However, there is not a direct relation-
ship between dynamics and topology of the network.

Variations on the collective behaviour when damage is
applied not only depend on the type of damage we are
applying, i.e. the order in which we delete the nodes, but
also on the way we have built our network (homogeneous
or aggregated) and the type of node we are deleting (in-
hibitory or excitatory), making it almost impossible to
predict the curves presented.
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