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Abstract: A colloidal ice is a system of interacting paramagnetic colloids which are arranged
along a lithographic lattice of double wells such that the lattice geometry competes with the pair
interactions and the system generates geometric frustration. In this work, I have used numerical
simulations to study this system arranged along a square lattice, where particles are confined in
double-well gravitational traps. The double wells are filled each with one particle, and under an
external magnetic field the particles can pass the central hill of the traps but never escape from
them. The applied field induces repulsive magnetic dipolar interactions and the system try to reach
a low energy state. To analyze this state, I have varied the field amplitude, the cut-off distance of
the magnetic dipolar interactions and the thermodynamic temperature. Of all of these parameters, I
found that both the cut-off distance and the temperature do not influence significantly the evolution
of the system towards the low energy states, here measured in terms of the fraction of vertices. In
contrast, the field strength allow to reach the system ground state faster.

I. INTRODUCTION

In physics, the concept of frustration appears when
a system is not able to satisfy competing interactions
among its components. In other words, the local interac-
tion energies of the elements of the system can’t be min-
imized simultaneously due to geometrical constraints [3].
A simple widespread example of geometrical frustration
is a configuration of three Ising spins set in the vertices of
a triangle such that they all want to be oriented antifer-
romagnetically. Due to the geometric restriction imposed
by the lattice, this configuration cannot be achieved so
two of the spins will arrange ferromagnetically generat-
ing a frustrated bond, and consequently the energy of the
system will not be able to be minimized [2].

Delving further into the topic, one of the most inter-
esting examples of geometric frustration is the water ice,
where each atom of oxygen is surrounded by four atoms
of hydrogen forming a tetrahedral configuration. In this
geometry, the low energy configuration is obtained when
two of the hydrogen atoms are close to the central oxygen
atom while the remaining two are close to the neighbor
oxygen atoms. In this configuration, the atoms fulfill
the ‘ice rules’ [3], which are a prescription for the mini-
mization of the absolute value of the topological charge q
associated to each vertex. This charge can be defined as
the difference between the number of spins pointing to-
wards the vertex center and the number of spin pointing
out: q = 2n − z, where z is the coordination number of
the lattice and n is the number of spins pointing inward
[3]. In particular, for a square lattice, z = 4, this rules
state that in each vertex, in order to minimize the energy
of the interaction, two spins point inward and two spins
point outward, so |q| = 0.

The system I have studied is a microscopic artificial
spin ice that consists of an ensemble of interacting col-
loidal particles restricted in a 2-dimensional square lat-
tice of gravitational traps (which is a plane projection of

the 3-dimensional tetrahedron lattice). These traps are
filled at one-to-one filling ratio by paramagnetic colloidal
particles with adjustable interactions. The double-well
traps are characterized by an elliptical shape and have a
low central hill, so that confined particles have the same
probability to stay in one of the two potential wells due
to thermal fluctuations. With this configuration, we can
associate to each trap an Ising-like spin which points from
the free end to the well occupied by the particle, as it is
shown in FIG. 1.

FIG. 1: Left :A square lattice with double-well traps, each of
them containing a colloidal particle randomly placed in one of the
two states, where the spins associated to each double well are rep-
resented as a blue arrow and point toward the end of the trap
occupied by the particles. Right : cross-section of a gravitational
trap with the central hill potential. Image reproduced from Ref.[2].

The paramagnetic colloids, when subjected to an exter-
nal field, acquire a dipole moment and interact through
repulsive dipolar forces. Thus, at a vertex four particle
will try to repel each other in order to minimize the sys-
tem energy. In this situation, the four pseudo-spins asso-
ciated with the particle position point outward. However,
when the particles are placed within a lattice it is not pos-
sible to minimize the energy of all the vertex’s because
there is a competition between the isotropic repulsive in-
teraction of the particles and the geometric structure.
As shown in FIG. 2, for a square lattice, there are six-
teen possible vertex configurations that we can organize
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in four types depending on the associated value of the
topological charge q. Although the spin interactions are
not equivalent in type I and type II vertices, they obey
the ice rule, where two spins point to the center of the
vertex and two point out (|q| = 0). In type III we have
three spins in and one out, and also one in and three out
(|q| = 2). Finally, in the configurations of type IV we
can find all spins pointing toward the vertex center or
out (|q| = 4).

FIG. 2: Representation of the sixteen possible configurations of a
vertex organized in four classes depending on their energy. We can
note types I and II obey the ice rule (two spins in, two out). Image
reproduced from Ref.[1].

To tune the pair interactions, the particles used in this
system are magnetizable, and under an applied mag-
netic field B, they acquire an induced dipole moment
m = V χB/µ0 pointing along the field direction [4]. Here
V is the particle volume, χ is the magnetic volume sus-
ceptibility and µ0 is the permeability of the medium.
Consequently, if we apply an external magnetic field in
the system, two particles (i, j) with induced moments
mi,j and at positions ri,j will interact through magnetic
dipole forces and with an interaction potential [4] given
by

U = −µ0

4π

(mi · rij)(mj · rij)
|rij |5

− (mi ·mj)

|rij |3
(1)

This potential is maximally repulsive for dipole mo-
ments perpendicular to their separation distance, rij , so
if we apply a magnetic field perpendicularly to our lat-
tice (B = Bẑ), we will get an isotropic repulsive potential

U = µ0m
2

4πr3ij
for equally induced moments, m = mi = mj ,

given that all particles are confined to the x,y-plane [2].
This repulsive potential forces the particles to maximize
their distance, and in the range of values of the applied
magnetic field that we are using in our study, particles
are able to cross the central hill but never escape from
the gravitational trap.

Then, the objective of this work is to study the evolu-
tion of a colloidal ice system with an initial random dis-
tribution of the particles in the traps, for different values
of applied magnetic field, temperature and cut-off dis-
tance of dipolar interactions. To do so, we will measure
the topological charge q at each vertex and see if the
system follows the ice rule; or in other words, how the
system reaches the ground state (where vertex’s have a
zero topological charge).

II. SIMULATION METHODS

We are performing numerical simulations using the
”icenumerics” package [4] based on a modified version of
LAAMPS to be able to run Brownian dynamics. Under
these conditions, particles are assumed to be immersed
in a high Reynolds number fluid, so a drag force propor-
tional to the velocity is included in the equation of mo-
tion and the inertial term can be neglected as it is much
smaller. Particles are also subjected to unpredictable
random forces from the fluid, given by a Langevin term
ξ, such that ⟨ξ⟩ = 0 and ⟨ξ(t)ξ(t′)⟩ = 2ηkBTδ(t − t′),
where η is the viscosity, kB is the Boltzmann constant,
T is the temperature and δ is the Dirac delta function.
The equation of motion of a particle i can be written as:

η
dri
dt

= F tot
i + ξ (2)

In a colloidal ice, the force term has two contributions:
the trapping force (F T ), due to the gravitational confine-
ment within the double wells, and the interaction force
(FM ), F tot = F T +FM . The first can be described as:

F T = −kr⊥ê⊥ + ê∥

{
k(|r∥| − d/2)sign(r∥) : r∥ < d/2
h(1− 4r2∥/d

2) : r∥ > d/2

(3)
where r∥ is the component parallel to the direction of
the trap, and r⊥ is the perpendicular component, ê⊥ is
the unit vector in the direction of the trap, ê∥ is a vector
pointing away from the line that joins both stable points,
k is the trap stiffness, d is the distance between centers
and h is the stiffness of the central hill [4], shown in FIG.
3. On the other hand, the interaction force is given by:

FM
i =

∑
j

3µ0m
2

2π|rij |4
rij (4)

where m is the induced magnetic moment, µ0 is the per-
meability of the medium and rij is the vector that goes
from the particle i to the particle j [2].

A. Simulation parameters

We are simulating a square lattice of 50 × 50 parti-
cles with closed boundary conditions, and a separation
distance of 30µm between the centers of the traps. The
particles are defined with a radius of 5.15µm, suscepti-
bility of χ = 0.0576, a diffusion constant of 0.125µm2s−1

and a density of ρ = 1000kgm−3. Also, the traps are
defined with a stiffness k = 6 · 10−4pNnm−1, a stiffness
of the central hill h = 80pN ·nm and a distance between
centers of d = 10µm. Then, to have enough statisti-
cal samples, we have run five separate simulations with
unique initial particle positions for each value of the ap-
plied field, temperature and cut-off distance in order to
minimize the errors. The reference values of the vari-
ables are B = 15mT , T = 300K and Ξ = 200µm, and
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the simulations are executed for a total time of 500s with
a ramp for the applied field during 250s until it reaches
the maximum value.

III. RESULTS

A. Defect lines and ground state

If we suddenly apply a strong magnetic field to the
initial random distribution of particles, the system will
not reach immediately the ground state. Instead, the
strong dipolar interactions between the particles rapidly
force to minimize the interaction energy at a vertex, and
the system can easily be trapped in a metastable state
[2]. Consequently, the lattice will organise in regions that
follow the ice rule and that are separated by domain walls
in the form of defect lines. Once the defect lines are
created they remain practically frozen in place since it is
very energetically demanding to remove them as all the
spins of an entire region would have to flip [2].

In the simulation we want to avoid the presence of the
defect lines, so to reach the ground state of the system we
will apply a slow ramp in the magnetic field amplitude
which begins from 0 mT , it reaches the target value in a
certain time interval and then the field remains constant
until the end of the simulation (FIG. 3). In this way,
the interactions between the particles will be weaker at
the beginning, being easier for them to rearrange due
to small thermal fluctuations in order to minimize their
interaction energy and avoid metastable states, reaching
the true ground state.

FIG. 3: Left :Time dependent magnetic moment, which is pro-
portional to the applied magnetic field B. We can see two ramped
fields corresponding to those applied in the simulations of FIG. 4
(blue) and FIG. 5 (orange). Right : Representation of a colloidal
particle inside the trap defined in Eq.(3). Image reproduced from
Ref.[5].

As shown in FIG. 4, we find that avoiding the forma-
tion of defect lines was not simple, since steep slopes in
the field ramp can still induce the formation of the grain
boundaries. To reach a true ground state, where all ver-
tices of the lattice follow the two-in two-out ice rules, we
had to run a simulation with a total time of 4000s and
a ramped field of duration 3000s with a maximum am-
plitude of 15mT (FIG. 5). Moreover, one can observe
in FIG. 4 and FIG. 5 that in the borders of the lattices
the topological charges of the vertices are different to
zero due to the fact that at the boundaries each vertex
has only three spins around them and the coordination

FIG. 4: Map of the topological charges associated to the lattice
vertices. Blue dots represent a negative charge while red dots rep-
resent a positive charge. The total time in this simulation was
3000s and we applied a ramped field for 2000s up to 15mT. In the
first map it’s easy to see the random distribution of the topological
charge while in the next frames we see the emergence of diverse
regions separated by defect lines until the two very distinguished
regions are formed in the last frame.

FIG. 5: Images showing the evolution of a colloidal ice where all
defects disappear because the applied field ramp is larger. The last
frame illustrates a perfect ground state where each vertex of the
lattice follows the ice rule.

number changes. We choose to carry out the analysis on
z = 4, ignoring z = 3 vertices in the future sections.
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B. Magnetic field

The dipole-dipole interaction of the particles strongly
depends on the applied magnetic field B, as it is shown in
Eq. (1), so it is convenient to analyze the behaviour of the
system when we modify this parameter. For this reason,
we will study the evolution of the system for three dif-
ferent values of the applied magnetic field: 5mT , 15mT
and 25mT . In particular, to explore the behavior of the
colloidal ice, we have measured the time evolution of the
average population of the different topological charges.
Thus, the system will reach the ground state when the
population of q = 0 is near to 1, while if the fraction of
vertices with |q| = 2 and |q| = 4 have a non-zero value,
this will imply the presence of defects in the lattice.

FIG. 6: Time evolution of the population of the topological charges
for the three different values of the applied magnetic field; circles
indicate the results for a maximum field of 25mT, squares for 15mT
and crosses for 5mT. We can note that for lower field strengths the
response is delayed to longer times.

In FIG. 6 I show the fraction of vertices versus time
obtained from numerical simulations at the three field
amplitudes. All simulations start with similar initial ran-
dom conditions. These conditions are chosen such that
there are 6 configurations that have q = 0, with a proba-
bility of 6/16 = 0.375, 4 configurations that have q = −2,
with probability 4/16 = 0.25 (the same for q = +2) and 1
configuration for q = −4, with probability 1/16 = 0.0625
(same case for q = +4). For short time scales, in all
cases the charge populations remain constant as the in-
teractions are too weak to modify the positions of the
particles. Due to this, we can suppose that there is a
threshold applied field for which the interactions begin
to be strong enough to induce particle switching within
the double wells and thus change the orientation of the
associated pseudo-spins. We can estimate this threshold
field to be of the order Bth = 2.1 ± 0.3mT. It is also
clear that the smaller the maximum field of the simula-
tion, the longer it will take to reach this threshold field.
Also, for stronger fields, the system reaches its equilib-
rium state faster. In all cases, we find that increasing
the interaction strength induce a corresponding growth
of the ice rule vertices, q = 0, which dominate over the
other charges. Indeed vertices with q = ±4 quickly go to
0 while q = ±2 populations remain in a minimal percent-

age. From this we can deduce the presence of defect lines
of charge q = ±2. As expected, by raising the maximum
applied field value, we find that the system reaches faster
the GS. In contrast, for B = 5mT the q = ±2 topological
charges do not disappear totally, sign that the system is
in a metastable state with the presence of domain walls.

C. Interaction length

I have explored next the effect of varying the cut-off
distance of the dipolar interactions between the particles
on the time evolution of the topological charge popula-
tions. To do this, I have limited the interaction length
Ξ to three different values: 35µm (nearest neighbors),
200µm and 500µm, which is the maximum length due to
the size of the lattice.

While one could expect that changing the range of
the interaction potential could affect the way the sys-
tem reaches the ground state, the results shown in FIG.
7 demonstrate the opposite. The system manifests prac-
tically the same behavior for the three cut-off distance.
This can be explained by the shape of the isotropic poten-
tial in Eq. (1), which depends on the distance between
particles in an algebraic way 1/r3. Thus, the nearest-
neighbor interactions dominate and considering long-cut-
off distances, i.e. next nearest-neighbor etc.. do not have
an important effect on the dynamics of the system. In
fact, we can conclude that particles mainly only interact
with their nearest neighbors.

D. Thermal fluctuations

In the equation of motion (Eq. (2)) the colloidal parti-
cles are subjected to thermal fluctuations, so we want to
analyze the effect of temperature on the behavior of the
system. To do so, we will modify the temperature of the
system and study the time evolution of the populations
of topological charges for three values: 273K (freezing
point of the water), 300K (approximately the room tem-
perature) and 353K (near the boiling point of the water).

The results in FIG. 8 manifest that the system is unaf-
fected to changes in the temperature and this means that
the thermal fluctuations are not strong enough to allow
the particles to switch within the double wells. Possibly,
to see the effect of these fluctuations we would need to
reduce the size of the particles or either use a smaller hill
in the traps.

IV. CONCLUSIONS

In this work I have used numerical simulations to in-
vestigate a geometrically frustrated colloidal ice, where
particles were confined along a square lattice of double
wells, and I have studied how their interactions affect
the dynamics of the system and its possible equilibrium
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FIG. 7: Time evolution of the population of the topological charge for the three values of the cut-off distance (35µm, 200µm and 500µm
respectively). In the different simulations we can prove that the system reaches the ground state because the population of charge q = 0
tends to 1 while the others tend to 0.

FIG. 8: Time evolution of the population of the topological charges for the three values of the thermodynamic temperature (273K, 300K
and 353K respectively).

states. First of all, I have seen the formation of defects
in the lattice when we suddenly applied an intense mag-
netic field, and for that reason it was necessary to apply
a time dependent field with a soft slope in order to avoid
metastable states and reach the ground state of the sys-
tem. Since the colloidal particles used can be magnetized
via application of a magnetic field and interact due to the
dipole-dipole forces, I have analyzed the behavior of the
system for different values of the applied field. I have
found that stronger the field applied, less time will take
for the system to reach its ground state. In contrast,
for low intensities of the magnetic field, the system takes
significantly more time to reach the equilibrium and it
does it with a higher number of defects. Secondly, I have
evaluated the range of these dipole interactions and I
found that it decays very fast due to the nature of the
interactions potential (U ∝ 1/r3). This shows that the
colloid particles in our system are mainly influenced at

the nearest neighbor level. It should be noted that the
number of interactions may increase if we reduce the dis-
tance between traps because particles would be closer to
each others.

Finally, I explored the effect of thermal fluctuations to
see whether they are relevant to the dynamics of the sys-
tem. Thus, I performed simulations for different values of
the temperature and I discovered that the system evolves
in the same way for all of them, indicating that thermal
fluctuations are insignificant as they are too weak to al-
low the particles to overcome the central hill of the traps.
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