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1  |  INTRODUC TION

In the last few decades, global climate change, and ocean warming in 
particular, has been recognized as one of the most important threats 

to marine biodiversity (Halpern et al., 2015). Coral communities 
have been severely affected by a dramatic increase in the frequency 
and intensity of mass mortality events linked to increased global 
temperatures and marine heatwaves (e.g., Baird & Marshall, 2002; 
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Abstract
The frequency and severity of marine heatwaves causing mass mortality events in 
tropical and temperate coral species increases every year, with serious consequences 
on the stability and resilience of coral populations. Although recovery and persistence 
of coral populations after stress events is closely related to adult fitness, as well as 
larval survival and settlement, much remains unknown about the effects of thermal 
stress on early life- history stages of temperate coral species. In the present study, 
the reproductive phenology and the effect of increased water temperature (+4°C 
and +6°C above ambient, 20°C) on larval survival and settlement was evaluated for 
two of the most representative Mediterranean octocoral species (Eunicella singularis 
and Corallium rubrum). Our study shows that reproductive behavior is more variable 
than previously reported and breeding period occurs over a longer period in both 
species. Thermal stress did not affect the survival of symbiotic E. singularis larvae 
but drastically reduced the survival of the non- symbiotic C. rubrum larvae. Results 
on larval biomass and caloric consumption suggest that higher mortality rates of C. 
rubrum exposed to increased temperature were not related to depletion of endog-
enous energy in larvae. The results also show that settlement rates of E. singularis did 
not change in response to elevated temperature after 20 days of exposure, but larvae 
may settle fast and close to their native population at 26°C (+6°C). Although previous 
experimental studies found that adult colonies of both octocoral species are mostly 
resistant to thermal stress, our results on early life- history stages suggest that the 
persistence and inter- connectivity of local populations may be severely compromised 
under continued trends in ocean warming.
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Garrabou et al., 2022; Hughes et al., 2017). This increase in the 
frequency and intensity of mass mortality events is ubiquitous and 
has been observed in tropical, subtropical, temperate and polar 
seas (e.g., Barnes & Souster, 2011; Garrabou et al., 2019; Kemp 
et al., 2011). Moreover, ocean warming has also induced an earlier 
arrival of spring conditions affecting numerous marine ecosystems 
and biological processes (Loeb et al., 1997; Parmesan, 2006; Walther 
et al., 2002). An earlier arrival of spring conditions can significantly 
affect coral reproductive phenology and, consequently, the success 
of future populations (IPCC, 2007; Shefy et al., 2018; Shlesinger & 
Loya, 2019). Since many corals play a structural role increasing the di-
versity of marine ecosystems (Dayton et al., 1974; Jones et al., 1994; 
Thrush & Dayton, 2002), changes in their reproductive processes 
could also have the potential to result in a drastic loss of biodiversity 
at both the community and ecosystem levels.

Ocean warming is predicted to increase under the expected 1– 
5°C rise in mean global seawater temperature by 2100 (IPCC, 2022). 
However, the distribution of excess heat will not be uniform across 
all the oceans. The Mediterranean Sea is recognized as a “hotspot” 
for ocean warming, ranking among the fastest- warming ocean re-
gions in the world (Garrabou et al., 2022; Marbà et al., 2015). The 
sea surface temperature of the Mediterranean shows a nearly 
continuous warming trend at a rate of 0.41°C per decade, which 
is three to six times higher than the warming rate of oceans glob-
ally (Cramer et al., 2018; Garrabou et al., 2021; Pisano et al., 2020). 
To our knowledge, despite this fast warming, consequences on 
coral reproductive phenology have never been studied before in 
the Mediterranean Sea. In addition, increases in the frequency and 
intensity of extreme heatwaves in the Mediterranean Sea have 
also been detected through field observations and are expected 
to continue in future projections (Adloff et al., 2015; Darmaraki 
et al., 2019), inducing mass mortality events primarily on benthic 
invertebrate taxa (e.g., Cerrano et al., 2000; Garrabou et al., 2009; 
Pérez et al., 2000). About 50% of all recorded mass mortality 
events in the Mediterranean Sea have occurred in Cnidarians, 
principally octocorals (Garrabou et al., 2019), which are the most 
conspicuous ecosystem engineering species in the rocky bottoms 
of the Mediterranean Sea (Ballesteros, 2006). Field and experi-
mental studies have evaluated the immediate and delayed impacts 
of temperature increases on adult octocoral colonies (e.g., Coma 
et al., 2006; Ezzat et al., 2013; Gómez- Gras et al., 2019; Linares 
et al., 2005), including sublethal impacts on their reproduction ef-
fort (Arizmendi- Mejía et al., 2015; Linares, Coma, & Zabala, 2008). 
To date, however, only one study has examined the effects of ther-
mal stress on embryonic and larval stages of a Mediterranean oc-
tocoral, Paramuricea clavata (Kipson et al., 2012), overlooking the 
possible effects on settlement rates.

Studies on temperature effects on coral larvae have increased 
markedly in the last few years. However, most of these studies have 
focused on hexacoral tropical species, whereas octocoral species 
have been largely neglected. Although octocoral species are pres-
ent across large depth ranges and in all oceans worldwide, the ef-
fects of thermal stress on their early life- history stages have been 

studied in only two tropical, one temperate, and one deep- sea 
species (Conaco & Cabaitan, 2020; Da- Anoy et al., 2020; Kipson 
et al., 2012; Liberman et al., 2021; Rakka et al., 2021). These stud-
ies suggest that octocoral larvae have tolerance to thermal stress. 
Larvae of the deep- sea octocoral Dentomuricea aff. Meteor exposed 
to high temperature (+2°C) had similar survival as larvae at ambi-
ent temperature (Rakka et al., 2021). Larvae from two tropical and 
one temperate octocoral species showed tolerance to temperature 
conditions expected by 2100 (+3°C; Conaco & Cabaitan, 2020; Da- 
Anoy et al., 2020; Kipson et al., 2012; Liberman et al., 2021). In these 
studies, larval survival was only affected by thermal stress under 
high larval densities (Conaco & Cabaitan, 2020) or after a prolonged 
exposure (27 days; Kipson et al., 2012). However, this limited knowl-
edge makes difficult to project how octocoral larvae will perform 
in the future under thermal stress, and more research is needed to 
include more species with different life- history traits (e.g., thermal 
tolerance in symbiotic and brooded octocoral larvae has never been 
examined).

The aim of this study is to provide new knowledge on the re-
productive phenology and larval thermotolerance in two of the 
most representative octocoral species in the Mediterranean Sea, 
by answering the following questions: (1) How long is their breed-
ing period? (2) How variable is the amount of larvae released during 
the breeding period? (3) How are larval survival and settlement af-
fected by thermal stress? (4) How does thermal stress affect the 
metabolic balance of larvae in terms of biomass and energy con-
sumption? To answer these questions, we monitored the breed-
ing period of octocorals Eunicella singularis and Corallium rubrum, 
and used an experimental approach to examine the larvae per-
formance at 20°C (control), 24°C (a temperature observed during 
Mediterranean heatwaves in the last few years) and 26°C (a tem-
perature expected to occur during Mediterranean heatwaves in the 
near future).

2  |  MATERIAL S AND METHODS

2.1  |  Target species

In the Mediterranean Sea, E. singularis (Esper, 1794) and C. rubrum 
(Linnaeus, 1758; Figure 1a,b) are two of the most representative 
octocorals in coastal areas (Ballesteros, 2006). Both species are 
long- lived, slow- growing, and endemic to the Mediterranean Sea; 
however, they can also be found along rocky shores of the neigh-
boring Atlantic Ocean (Costantini et al., 2010; Cúrdia et al., 2013). 
The white gorgonian E. singularis is the only Mediterranean octocoral 
exhibiting symbiosis with photosynthetic dinoflagellates (Carpine 
& Grasshoff, 1975; Rossi, 1959; Weinberg, 1976), whereas the red 
coral C. rubrum is an aposymbiotic species considered to be one of 
the most overharvested precious corals due to its use for the jewelry 
industry (Santangelo et al., 2004; Tsounis et al., 2010). Both E. singu-
laris and C. rubrum are gonochoric species and internal brooders, re-
leasing lecithotrophic larvae (planulae) once a year in June– July and 
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July– August, respectively (Ribes et al., 2007; Santangelo et al., 2003; 
Torrents & Garrabou, 2011; Weinberg & Weinberg, 1979). While 
C. rubrum releases non- symbiotic ciliated larvae, E. singularis lar-
vae, like the adult colonies, contain algal symbionts that belong to 
the Symbiodinium genus (phylotype that was previously assigned 
to temperate clade A; Forcioli et al., 2011; Weinberg, 1979). The 
larval size of C. rubrum is ~1 mm along the major axis and 0.3 mm 
along the minor axis (Lacaze- Duthiers, 1864), whereas E. singularis 
larval axis dimensions are ~2.5 and 0.5 mm, respectively (Weinberg 
& Weinberg, 1979). Planulae of both species have a pelagic larval 
duration of approximately 1 month (Martínez- Quintana et al., 2015; 
Theodor, 1967; Weinberg & Weinberg, 1979). Larval competence 
(i.e., period during which pelagic larvae are able to settle) is ap-
proximately 8 days for E. singularis and 20 days for C. rubrum (Zelli 
et al., 2020).

2.2  |  Specimen collection and maintenance

Ten colonies of E. singularis and 10 colonies of C. rubrum were 
collected at the end of June 2020, prior to the expected time of 
larvae release. Collections were performed by SCUBA diving in 
the Natural Park of Cap de Creus (42°19′37″N; 003°18′39″E, NW 
Mediterranean Sea, Spain), under permit FUE- 2020- 01576039 is-
sued by the Generalitat de Catalunya, Department of Territory and 
Sustainability. Colonies of E. singularis were collected at depths of 
13– 16 m, whereas colonies of C. rubrum were collected at depths 
of 25– 35 m. To ensure their sexual maturity, collections were lim-
ited to colonies of E. singularis larger than 20 cm (Ribes et al., 2007) 
and C. rubrum larger than 5 cm (Tsounis et al., 2006). The collected 
colonies were maintained in seawater at 19 ± 1.0°C and trans-
ported (within 2 h from sampling) to the University of Barcelona. 

F I G U R E  1  Adult colonies of Eunicella 
singularis (a) and Corallium rubrum (b) used 
in the present study. Expanded polyps 
during the brooding period event for E. 
singularis (c) and C. rubrum (d) (arrows 
indicate the larvae ready to be spawned). 
Pink larvae of E. singularis (e) and white 
larvae of C. rubrum (f). New recruits of E. 
singularis (g)

(b)

(d)(c)

(f)(e)

(g)

(a)
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Colonies of each species were maintained separately in 8 L tanks 
and kept at ambient temperature (20 ± 0.2°C) in a temperature- 
controlled experimental chamber (Conviron Gen2000). Since E. 
singularis colonies contained symbiotic algae, a 12 h:12 h light: dark 
cycle was established with irradiance matching the light intensity 
for the population at the field site (150 μmol photons m−2 s−1), 
whereas C. rubrum colonies were maintained in dark conditions. 
Seawater temperature and light intensity were monitored using 
a HOBO logger (MX2202) in each tank. Continuous water move-
ment was provided by air bubbling, and one- third of the seawater 
volume was renewed daily within each tank.

2.3  |  Larval release and collection

Tanks were inspected daily to detect larval release, starting on June 
24 for E. singularis and July 12 for C. rubrum. Larval release was not 
artificially stimulated by physical or chemical factors. When the 
breeding period initiated, tanks were inspected for larvae twice a 
day until no more larvae were detected. All the larvae released in the 
morning before 8 am were counted and considered to be released 
during the previous night, whereas larvae counted before 9 pm were 
considered to be released during the day. Larvae were collected 
from the tanks using 3- ml plastic Pasteur pipettes.

2.4  |  Experimental design

To assess the effects of seawater temperature on larvae survival 
and settlement, the collected larvae of both species (E. singularis and 
C. rubrum) were maintained under three temperature treatments: 
20°C (control), 24°C, and 26°C (±0.2°C in each treatment). These 
temperature treatments were selected to represent extreme condi-
tions in the Mediterranean Sea that (1) have already been observed 
during heatwaves in the last few years (24°C; T- MEDNet database, 
www.t- mednet.org; Garrabou et al., 2021, 2022), and (2) are ex-
pected to occur for periods as long as 3 weeks in duration by 2050 
(25– 26°C; Galli et al., 2017). Each treatment was maintained using 
15 L water baths (one water bath for each temperature and species) 
inside a temperature- controlled experimental chamber (Conviron 
Gen2000). The temperature of each water bath was maintained with 
a titanium heater (Aqua Medic AM- 300) connected to an electronic 
controller (Aqua Medic TH- 100) with submersible pumps (Sicce 
Nano 2000) for water circulation, and temperature was recorded 
every 10 min using a HOBO logger. For each species and treatment, 
10 larvae were placed into each of 10 replicated glass beakers con-
taining 300 ml of 0.2 μm filtered seawater to estimate survival (100 
larvae in each of the three temperature treatments, and 300 lar-
vae in total for each species). Five additional glass beakers (300 ml) 
for each species with approximately 70 larvae were maintained in 
each treatment and sampled after 5 days of exposure to assess larval 
biomass and energetic consumption (see below). This sample timing 
was chosen based on previous observed survival of Mediterranean 

gorgonian larvae (Kipson et al., 2012) to allow for detection of sub-
lethal effects. Since the breeding period of both species occurs over 
the course of several days and the number of larvae released per 
day was lower than the total number of larvae necessary for the ex-
periments, the sampling of larvae was conducted across different 
days. When more than 30 larvae were collected per day, larvae were 
placed into their own beaker glass for each treatment (10 larvae for 
each treatment). In each glass, a piece of coralline algae Lithophyllum 
stictaeforme (~5 cm2) was added as suitable substrate for settlement 
(Zelli et al., 2020). Since larvae of E. singularis contain symbiotic algae, 
a 12 h:12 h light: dark cycle was maintained with the same irradiance 
as for the parental colonies (150 μmol photons m−2 s−1), whereas lar-
vae of C. rubrum were maintained in dark conditions. In each glass 
beaker, two- thirds of total seawater volume were replaced daily.

2.5  |  Larval survival and settlement rates

For each temperature treatment and species, larval survival was 
assessed every day by counting the number of larvae in each glass 
beaker (n = 10 for each treatment and species) for a total of 20 con-
secutive days, since the heatwaves are expected to occur for periods 
as long as 3 weeks in duration (Galli et al., 2017). Settlement rate and 
post- settlement survival were also assessed by counting the number 
of larvae settled in each glass beaker every day throughout the 20- 
day observation period.

2.6  |  Larval biomass and energy consumption

To examine larval biomass and energy consumption, five filters with 
10 larvae for E. singularis and 15 larvae for C. rubrum were used in 
each analysis and treatment. Larvae were collected just after release 
and 5 days after exposure to the respective temperature treatment. 
Larvae were fixed on pre- combusted (5 h at 450°C) GF/F filters and 
immediately frozen in liquid nitrogen and stored at −80°C. Samples 
were then freeze- dried for 24 h at −110°C at a pressure of 100 mbar. 
Larval biomass was assessed by measuring the organic carbon con-
tent of each filter using a C/N autoanalyzer (Perkin- Elmer 2040). 
Biomass was reported per larva by dividing the value of each fil-
ter by 10 for E. singularis and by 15 for C. rubrum. Energetic content 
was analyzed by combustion calorimetry using differential scanning 
calorimetry (DSC; Mettler Toledo DSC- 822e). The DSC temperature 
was programmed to increase from 30°C to 450°C (10°C min−1) in 
a synthetic air atmosphere (50 ml min−1). The daily average energy 
consumption of larvae under each temperature treatment was cal-
culated according to the following equation: El = (Ec1 –  Ec2) Δt−1, 
where El is the daily average energy consumption, Ec1 is the larval 
energy content in calories just after release, Ec2 is the larval energy 
content after exposure to each temperature (in calories), and Δdt is 
the number of days of exposure (i.e., 5 days). El was reported per 
larva by dividing the El equation- value by 10 for E. singularis and by 
15 for C. rubrum.
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2.7  |  Statistical analyses

Estimates of the survival function probabilities for each temperature 
treatment and species were obtained from the observed larval sur-
vival using the Kaplan– Meier product- limit method (Kaplan & Meier, 
1992). The Kaplan– Meier method was also applied to examine sur-
vival in larvae released at the beginning and the middle of the release 
period. The unsettled larvae (i.e., still alive) remaining at the end of 
the experiment represented censored data, since they did not reach 
the outcome of interest during the study (i.e., death or settlement) 
and their future survival was not determined. In the analysis, a value 
of 0 was assigned to these censored data, whereas a value of 1 was 
assigned to all larvae with complete endpoint observations (i.e., a 
recorded time- point of larval death or settlement during the study). 
Log- rank test was used to test the differences in larval survival among 
temperature treatments. This is a non- parametric test based on the 
rank ordering of survival times that can be applied to censored data. 
Survival analysis was performed with the survival (Therneau, 2015) 
and survminer packages (Kassambara et al., 2019) in R version 3.5.0 
(R Core Team, 2019). To analyze the settlement probabilities of larvae 
(response variables) according to larval age (explanatory continuous 
variable) and temperature treatment (explanatory discrete varia-
bles), a generalized linear model (GLM) was fitted for each species. 
Settlement probabilities were also analyzed in larvae released during 
the beginning and the middle of the release period. Since the data of 
all parameters were over- dispersed (i.e., residual deviance was sig-
nificantly higher than the residual degrees of freedom, which is often 
the case when a data set contains many low and many high values), 
the negative binomial model was used with the “log link” function to 
correct for over- dispersion of the data. GLMs were performed via the 
foreign, ggplot2, and MASS packages in R. For each species, biomass 
and energy consumption was compared among the three tempera-
ture treatments by two- way analysis of variance (ANOVA) followed 
by Tukey's test for pairwise comparison. Before performing ANOVAs, 
normality of data residuals and variance homogeneity were tested 
with Shapiro– Wilk and Bartlett tests, respectively.

3  |  RESULTS

3.1  |  Larval release

Larval release of E. singularis started on July 3 (2 days before full 
moon) and ended on August 1st (Figures 1c and 2a). Similar number of 
larvae released was observed during the day (from 8 am to 9 pm) and 
night (from 9 pm to 8 am). The number of larvae released increased 
gradually, reaching its maximum on July 15, 12 days after the first 
larval release (Figure 2a). The maximum larval release occurred for 
1 week with 297 ± 68 larvae day−1 (mean ± SD) and then decreased 
gradually over a period of 10 days. Corallium rubrum released lar-
vae for approximately 1 month, starting on July 21 (1 day after new 
moon) and ending on August 20 (Figures 1d and 2b), without any dif-
ference between the number of larvae released during day or night. 
During the first week, C. rubrum released a moderate number of lar-
vae every day (65 ± 17 larvae day−1, mean ± SD), reaching a maximum 
of 140 larvae on day eight. The maximal larval release occurred over 
the next 11 days with 110 ± 25 larvae day−1 (mean ± SD) and then re-
duced drastically during the following 13 days (20 ± 12 larvae day−1).

3.2  |  Larval survival

At the end of of experiment, survival of E. singularis larvae (Figure 1e) 
showed similar trends among 20°C (control), 24°C and 26°C treat-
ments (Figure 3a; Kaplan– Meier survival analysis, log- rank test, 
p > .05). However, during the first 10 days, larvae showed lower sur-
vival at 26°C than in the control and 24°C treatments (Kaplan– Meier 
survival analysis, log- rank test, p < .05). During the first day of the 
experiment, the probability of survival was maintained at around 
90% in all treatments. In the second day of exposure, the differ-
ences among treatments increased. After 5 days, survival dropped 
from 88% to 41% at 26°C, whereas in the control and 24°C treat-
ments it decreased to 64%. Median larval survival (i.e., time from 
larval release at which 50% of the initial number of larvae had died 

F I G U R E  2  Number of larvae released per day (a) Eunicella singularis and (b) Corallium rubrum. Moon symbols represent lunar phases (full, 
last quarter, new and first quarter). The range of x- axes indicates the days that colonies were inspected to detect larvae released (from June 
24 to August 8 for E. singularis and from July 12 to August 26 for C. rubrum).
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or settled) was 3– 4 days under 26°C and 8– 9 days for the other two 
treatments. Larval survival was not related with the date of larval 
release in the control and 24°C treatments (Kaplan– Meier survival 
analysis, log- rank test, p > .05; Figure S1). However, at 26°C larvae 
released at the beginning of the breeding period showed lower 
survival than larvae released later in the breeding period (when we 
observed the maximum number of larvae released; Kaplan– Meier 
survival analysis, log- rank test, p < .05; Figure S1). Survival of C. ru-
brum larvae (Figure 1f) showed significant differences among the 
three temperature treatments (Kaplan– Meier survival analysis, log- 
rank test, p < .001; Figure 3b). At the control temperature, survival 
gradually decreased to 67% at the end of the 20 days experiment, 
whereas larval survival was reduced under 30% and 18% at 24°C 
and 26°C, respectively. Larvae of C. rubrum did not show any abrupt 
change on survival probability according to the days of exposure 
in any treatment. Median larval survival was 8– 9 days at 26°C, 13– 
14 days at 24°C and >20 days for control conditions. Similar to E. sin-
gularis, the larval survival in C. rubrum was not related with the timing 
of larval release in the control and 24°C treatments (Kaplan– Meier 
survival analysis, log- rank test, p > .05; Figure S2). However, at 26°C, 
larvae released at the middle of the breeding period showed higher 
survival than larvae released at the beginning of the breeding period 
(Kaplan– Meier survival analysis, log- rank test, p < .01; Figure S2).

3.3  |  Settlement rates

Settlement rates of E. singularis (Figure 1g) were generally not af-
fected by temperature treatments, being 50 ± 7.8% at 20°C, 
41 ± 5.7% at 24°C and 45 ± 7% at 26°C of larvae settled at the end 
of the experiment (mean ± SE). However, the highest temperature 
(26°C) had a positive effect on settlement rate in the first 10 days of 
larval age (GLM, p < .01; Figure 4; Table S1). Settlement probability 
was strongly related to the time when larvae were released during 

the breeding period (Figure S3). Larvae released at the beginning 
had lower probabilities of settlement success in all treatments com-
pared with larvae released during the middle of breeding period 
(GLM, p < .01; Table S2). In C. rubrum no larval settlement was ob-
served during the experiment in any treatment.

3.4  |  Larval biomass

In E. singularis, larval biomass just after release was 57.8 ± 5.3 μg C 
per larvae (mean ± SD). After 5 days of exposure, the biomass was 
56.4 ± 6.6 μg C per larvae under control conditions, whereas at 24°C 
and 26°C it was 51.7 ± 9.0 and 43.8 ± 4.1 μg C per larvae, respec-
tively (Figure 5a). The results only showed significant differences 

F I G U R E  3  Kaplan– Meier estimated larval survival probabilities for (a) Eunicella singularis and (b) Corallium rubrum in the control (20°C, 
grey line), 24°C (pink line) and 26°C (red line) treatments. All replicates are pooled and the total number of larvae per treatment was 100. 
Shading represents 95% confidence intervals.
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between the control and 26°C treatments (p < .01). Larval biomass of 
C. rubrum just after release was 13.1 ± 0.9 μg C per larvae, whereas 
after 5 days of exposure the biomass was 12.7 ± 1.8, 10.8 ± 4.2 and 
8.5 ± 1.7 μg C per larvae under the control, 24°C and 26°C treat-
ments, respectively (Figure 5a). Similar to E. singularis, the biomass of 
C. rubrum larvae significantly differed between the control and 26°C 
treatments (p < .001, Figure 5b).

3.5  |  Larval energy consumption

Larvae of E. singularis had an energetic value of 67.9 ± 7.2 Cal per 
larvae just after release (mean ± SD). Energy consumption of the 

larvae increased with temperature, representing a daily energy loss 
of 0.8 ± 0.7, 3.4 ± 1.4 and 3.9 ± 3.0 Cal per larvae and day−1 under the 
control, 24°C and 26°C treatments, respectively (Figure 6a). Daily 
energy consumption showed significant differences between larvae 
under the control and 24°C (p < .01), whereas no significant differ-
ences were found among the treatment at 26°C and the other tem-
peratures (p > .05). C. rubrum larvae presented an energetic value of 
22.4 ± 5.8 Cal per larvae just after release. The daily energy loss of C. 
rubrum larvae was similar between the control and 24°C treatments, 
being 1.5 ± 0.8 and 1.4 ± 1.5 Cal per larvae and day−1, respectively 
(Figure 6b). Daily energy consumption increased to 2.4 ± 1.6 Cal per 
larvae and day−1 under 26°C; however, results did not show signifi-
cant differences among treatments (p > .05).

F I G U R E  5  Box- plot with overlaying data points of larval biomass (μg C per larvae) in (a) Eunicella singularis and (b) Corallium rubrum just 
after larval release (to black bar n = 5) and after 5 days of exposure in the control (20°C, grey bar, n = 5), 24°C (pink bar, n = 5) and 26°C (red 
bar, n = 5) treatments. Bars marked with the same letters are not significantly different (Tukey post hoc, p > .05).
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4  |  DISCUSSION

Octocoral species play a paramount role as ecosystem engineers in 
Mediterranean benthic communities, as well as around the world 
(Gili & Coma, 1998; Velásquez & Sánchez, 2015; Wild et al., 2011), 
and are considered one of the main three- dimensional constituents 
of the “marine animal forests” (sensu Rossi, 2013). Internal brooder 
species, such as the Mediterranean E. singularis and C. rubrum, rep-
resent more than 40% of all octocoral species with known repro-
ductive strategies (Kahng et al., 2011). Despite their importance, 
compared with broadcast coral species, reproductive characteristics 
such as the duration, number of events and larval release intensity of 
brooders remain largely unknown.

4.1  |  Breeding characteristics

In this study, the breeding period in E. singularis took place in one 
single event lasting 4– 5 weeks, longer than 2– 3 weeks previously re-
ported for the same species by Theodor (1976). Initially, it had been 
assumed that larvae were released in approximately equal amounts 
during the entire breeding period, showing no correlation with 
the lunar phase (Weinberg, 1979). However, our results showed a 
gradual increase of larvae released, reaching its maximum 12 days 
after the breeding period started. The maximum release of larvae 
was concentrated in the period between the last quarter and the 
new moon. However, additional observations are needed to further 
explore this possible relationship between larval release and lunar 
phase, as has been observed in other Mediterranean octocoral spe-
cies such as P. clavata (Linares, Coma, Mariani, et al., 2008). Similar 
to E. singularis, larval release of C. rubrum occurred over a single 
event for approximately 4– 5 weeks, without any difference in the 
number of larvae released between day and night. The breeding pe-
riod duration was longer than the 1– 2 weeks previously reported for 
this species (Lacaze- Duthiers, 1864; Vighi, 1970). Weinberg (1979) 
suggests a possible correlation between new moon and maximum 
intensity of larval release in C. rubrum; however, our results show 
the maximum release between the last quarter and the new moon. 
Therefore, our study shows that breeding of E. singularis and C. ru-
brum occurs over a longer period and reproductive behavior (i.e., 
release of larvae) is more variable than previously reported. Our re-
sults could also indicate a phenological shift in the duration of the 
breeding season over the last 50 years. This possible phenological 
shift could be caused by the on- going ocean warming, since a longer 
spawning season has been positively correlated with longer expo-
sure to warmer waters in several broadcasting coral species studied 
across latitudinal gradients (De Putron & Ryland, 2009; Mangubhai 
& Harrison, 2009; Oliver et al., 1988). Indeed, the sea surface tem-
perature of the Mediterranean has warmed by 1.48°C on average 
for the entire basin over the last four decades, corresponding to an 
increase of 0.41°C per decade, which is three to six times higher than 
the warming rate of oceans globally (Cramer et al., 2018; Garrabou 
et al., 2021; Pisano et al., 2020). During the brooding period (April 

to July), satellite observations from the last few decades showed a 
significant increase in seawater temperature with the peak increase 
occurring in June (0.08°C year−1; Nykjaer, 2009).

Since reproductive events have evolved to occur at optimal times 
to maximize the survival of the next generation (Stearns, 1992), 
rapid shifts in reproductive phenology could threaten the long- 
term viability of populations (Charmantier et al., 2008; Edwards & 
Richardson, 2004). Shefy et al. (2018) showed an increase in the du-
ration of the larval release period of Stylophora pistillata from 2– 3 
to 5– 6 months in the past four decades, which could be caused by 
anthropogenic and environmental impacts. In broadcast corals of 
the Red Sea, shifts in the timing of gamete release have been found 
due to environmental changes with potential consequences for coral 
reproductive success (Shlesinger & Loya, 2019). Our results show 
that the breeding periods of the studied corals span over longer time 
periods than previously documented which could be the result of 
different environmental cues in their current habitat. Future studies 
should focus on looking at the plasticity in reproductive breeding 
behavior of the adult colonies under ocean warming conditions, and 
performing longer larval experiments to obtain a better understand-
ing of the resilience of parental colonies and offspring to thermal 
stress.

4.2  |  Effects of thermal stress on larval 
survival and energy reserves

The two Mediterranean octocoral species studied here showed a 
contrasted response in larval survival under thermal stress treat-
ments that simulated marine heatwave events caused by on- going 
global climate change. Whereas +4°C and +6°C increases in temper-
ature did not cause significant negative effects in the symbiotic E. 
singularis larvae, the survival of non- symbiotic C. rubrum larvae was 
drastically reduced (Figure 3). Until now, the temperature effects on 
larvae from octocorals at shallow depths (5– 30 m) have only been 
studied in the surface brooders Heliopora coerulea, P. clavata and 
Rhytisma fulvum (Conaco & Cabaitan, 2020; Da- Anoy et al., 2020; 
Kipson et al., 2012; Liberman et al., 2021). In these species, larvae 
showed some tolerance to elevated temperature that was explained 
by the absence of symbionts in larvae tissues. Conversely, in the pre-
sent study, the symbiotic larvae of E. singularis showed higher resist-
ance to temperature increases than C. rubrum non- symbiotic larvae. 
The thermotolerance observed in E. singularis larvae contrasts with 
results from several hexacoral species showing that thermal stress 
weakens endosymbiont interactions in coral larvae and reduces lar-
val survivorship (Edmunds et al., 2001; Graham et al., 2017; Randall 
& Szmant, 2009; Schnitzler et al., 2012; Serrano et al., 2018). The 
thermotolerance of E. singularis symbiotic larvae is in line with the 
performance of adult colonies of the same species which do not 
show any evidence of coral bleaching when exposed to thermal 
stress (26°C; Ferrier- Pagès et al., 2009).

The higher resistance of E. singularis larvae observed in this 
study may be partly due to their large larval size (Figure 5; e.g., Baria 
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et al., 2015; Chamberland et al., 2017; Conaco & Cabaitan, 2020). 
Larger larvae are more likely to contain higher endogenous ener-
getic reserves provided maternally than smaller larvae (de Putron 
et al., 2017; Hartmann et al., 2013; Marshall & Keough, 2008). It 
is generally assumed that metabolic rates, and consequently en-
ergy consumption, increase with temperature, which may lead 
to higher mortality rates as lecithotrophic larvae deplete their 
endogenous energy reserves faster (e.g., Edmunds et al., 2001; 
Kipson et al., 2012; Pechenik, 1987). However, our results on lar-
val biomass and caloric consumption of C. rubrum suggest that the 
earlier mortality rates caused by increased temperature were not 
related to depletion of endogenous energy. Although survival of 
C. rubrum larvae decreased as temperature increased, energy con-
sumption was similar between all treatments (Figure 6). The earlier 
mortality of C. rubrum larvae may be related to the parental envi-
ronment. Although C. rubrum colonies at ~30 m can experience high 
temperature variability and can experience maximum temperatures 
similar to those found at 5 m depth (Viladrich et al., 2016), colonies 
of C. rubrum at 25– 30 m experience cooler waters than E. singularis 
at 13– 16 m for a substantial amount of time and thus may be less 
adapted to high temperature stress. Other potential causes of high 
mortality of C. rubrum larvae, that represent important directions 
for future research, include disruption of routine metabolic function 
(Pechenik, 1987), damage to membrane structures disrupting trans-
port systems into and between cells (Hofmann & Todgham, 2010), 
molecular responses such as metabolic depression (Rodriguez- 
Lanetty et al., 2009), and increased mitochondrial ROS formation 
(Keller et al., 2004). Our results show that larval biological responses 
to thermal stress are complex, and they cannot only be explained by 
larval size, presence of symbionts in the larvae, and/or brood qual-
ity (i.e., biomass and energy consumption), as previously suggested 
(e.g., Cumbo et al., 2013; Putnam et al., 2010). Finally, our results 
also show that larval survival to thermal stress depends on the day 
of release in both species studied (Figures S1 and S2). This highlights 
the importance to consider the day of larvae release and shifts in 
reproductive phenology to better project the success and viability of 
future coral populations (Cumbo et al., 2012; Edmunds et al., 2001; 
Isomura & Nishihira, 2001; Putnam et al., 2010).

4.3  |  Effects of thermal stress on settlement

Low recruitment rates may undermine the long- term viability of 
coral populations with consequences that may scale up to the com-
munity or the ecosystem level. However, we still have a limited un-
derstanding about how thermal stress impacts on coral larvae might 
affect the transition from larva to juvenile. Some studies have shown 
negative impacts of elevated temperature on coral larvae settlement 
(e.g., Bassim & Sammarco, 2003; Conaco & Cabaitan, 2020), while 
others have found that short- duration stressors had little to no 
ecological consequence for larvae (e.g., Edmunds et al., 2001; Ross 
et al., 2013). Our results show that coral settlement rates in E. sin-
gularis were similar between temperature treatments after 20 days, 

however, larvae in the high- temperature treatment (26°C) settled 
faster. This suggests that if larvae are exposed to thermal stress in 
the field, they may settle fast and close to their native populations, 
decreasing their potential for long- distance dispersal and connec-
tivity (Costantini et al., 2016). Our results are consistent with other 
studies that have suggested that warmer temperatures can reduce 
coral larval swimming and facilitate settlement (Kipson et al., 2012; 
Putnam et al., 2008; Serrano et al., 2018). However, as mentioned 
above, the day of larvae release can also be a strong factor deter-
mining settlement probability (Figure S3). On the other hand, larvae 
of the octocoral C. rubrum did not settle in any of the treatments 
after 20 days despite having coralline algae L. stictaeforme to pro-
vide positive settlement cues for this species (Zelli et al., 2020). 
However, high variability in C. rubrum settlement and recruitment 
among years and sites have been observed in the field, suggesting 
settlement and recruitment rates by pulses (Bramanti et al., 2003, 
2007; Garrabou & Harmelin, 2002; Santangelo et al., 2012). 
Garrabou and Harmelin (2002) reported that the annual recruit-
ment observed on 10 panels (4000 cm2) over 22 years was limited 
to a single recruitment event at the beginning of the study and long- 
term monitoring of red coral populations across different marine 
protected areas showed very low recruitment rates observed for 
this species (Montero- Serra et al., 2019). Recently, it has been sug-
gested that this high inter- annual variability of settlement and re-
cruitment rates could be related to non- selective transfer of energy 
reserves (i.e., lipids) from maternal colonies to larvae in C. rubrum 
(Viladrich et al., 2021), resulting in a strong dependence of recruit-
ment on the nutritional condition of maternal colonies (Dunstan & 
Johnson, 1998; Yoshioka, 1996).

4.4  |  Ecological consequences and management 
implications

The ability to predict the vulnerability and resilience of corals at 
different life stages during extreme events is essential for under-
standing the effect of global climate change on species distributions 
(Woods et al., 2016), estimating the potential for adaptation and 
designing effective management strategies (Figueiredo et al., 2014). 
Some coral species will be able to persist; other will change their dis-
tribution or disappear due to global climate change, causing a shift in 
species composition. Our results on early life- history stages of the 
octocoral E. singularis combined with previous experimental stud-
ies looking at the high thermal resistance of adult colonies (Ezzat 
et al., 2013; Previati et al., 2010) suggest that E. singularis may be a 
winner species under future climatic conditions in the Mediterranean 
Sea. However, our results also show that thermal stress can induce a 
faster settlement, which may result in lower larval dispersal capacity 
and, consequently, reduced genetic connectivity among populations 
(Cowen et al., 2000). Persistence of precious red coral population is 
at higher risk if heatwaves continue, and severe conservation and 
management plans are not applied. Although adult colonies of C. 
rubrum seem to be experimentally resistance to heat stress events 
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(Previati et al., 2010; Torrents et al., 2008), the impact of recurrent 
heatwaves can cause collapse of their populations (Gómez- Gras 
et al., 2021; Montero- Serra et al., 2019). In addition, the present 
study reveals how ocean warming may have serious consequences 
on larval survival, limiting the introduction of new individuals in the 
population or the possibility to colonize new areas. The viability of 
C. rubrum populations is further aggravated since red coral is one of 
the corals most valued for use in the jewelry industry, and conse-
quently has been and is still overexploited in several Mediterranean 
countries (Tsounis et al., 2010). Low thermotolerance of larvae, 
coupled with uncontrolled harvesting and the impact of recurrent 
marine heatwaves, could bring red coral populations to local extinc-
tion. To better understand the future of benthic communities of the 
Mediterranean Sea, our study provides empirical data that can be 
used to project population dynamics and demography of both octoc-
oral species under the expected future global climate change scenar-
ios based on matrix models and integral projection models (Bramanti 
et al., 2015; Doak et al., 2021; Linares & Doak, 2010; Montero- Serra 
et al., 2019). So, management and conservation actions should be 
based on the outcomes of these simulations to preserve these en-
demic species together with their associated biodiversity.
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