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Abstract: Elastic materials are usually composed of long polymeric entangled chains of organic
elements, typically understood as complex networks that can be stretched. This paper presents a
theoretical study of a network described as an ensemble of polymer sections, each one modelled as a
non-interacting attractive spring with constant k fixed at one spring-end and subjected to a force F
at the other end. An analytical solution of the model in the canonical ensemble is presented. Monte
Carlo simulations are also carried out for different values of temperature and tensile force. Then,
an extensive analysis of the trends of thermodynamic magnitudes is exposed. The found qualitative
behaviours are studied and compared with the experimental and theoretical results in the literature.
A final proposal to add interactions into the model is discussed.

I. INTRODUCTION

Elastomers are materials composed of polymers,
stretchable long chains of molecules typically formed of
organic elements [1]. This kind of materials are attract-
ing a lot of attention thanks to their promising proper-
ties, such as elasticity, low costs, and room temperature
transformations. For example, one of the most novel ap-
plications is based on the so-called elastocaloric effect
(eCe), which consists on a sudden increase in temper-
ature of the material after an adiabatic stretching [2],
partly due to Strain-Induced Crystallization (SIC) [3].
The inverse effect can also be induced, i.e., a tempera-
ture decrease after unstretching. This phenomenon could
be the basis for environmentally friendly cooling applica-
tions [4]. In addition, the process of vulcanization, that
is, cross-linking different polymer sections by adding ele-
ments such as carbon to a sample has shown to enhance
the eCe of elastomers [3], as well as some mechanical
properties including rigidity and durability. Wide ex-
perimental and theoretical research focused on these and
many other topics based on elastomers have been and is
continuously being carried out.

A thermodynamic description of these systems have
been elaborated [5], exposing other interesting features.
For instance, when the temperature of natural rubber
subjected to a constant tensile stress increases, it con-
tracts in the direction of the applied force, i.e., it reduces
its length [6]. This reflects the presence of an elastic
force that opposes the external force that stretches the
polymer, which may be counter-intuitive. For example,
ideal gases, a very familiar system, always expand in all
directions when their temperature increase. This will be
a fact, among others, that will be treated in the present
study. The properties of elastic materials described so far
are complex and fascinating and have awaken the interest
of condensed matter physicists.

An appropriate physical image of rubber-like materi-
als is a 3-dimensional network of long polymer chains of
different lengths linked by a given number of nodes, i.e.
cross-links [1, 7]. It is not easy to propose a theoreti-

cal and microscopic model for such a challenging prob-
lem. The objective of this study is to tackle the prob-
lem at a fundamental level to enhance the understanding
of rubber-like materials within a comprehensible vision.
Part of the complexity of the problem could be taken
into account by considering that every chain between the
nodes is an attractive spring, given the elastic behaviour
of polymeric chains [7]. The aim of this study is, however,
to investigate the fundamental unit of this model. Con-
sidering initially a network of polymeric chains, a single
section is isolated and modelled as a spring fixed at one
end, as shown in Fig. 1 (a). The other extreme is free to
fluctuate thermally. The isolated spring is then subjected
to an external force F , which will allow the description of
stretching and some related properties mentioned above.

This way of approaching the problem by focusing on
its elemental component is, of course, a simplification.
Making an analogy to magnetic materials or gases, it
could be thought as if one single spin or atom was studied

Figure 1: The studied system corresponds to an isolated poly-
meric chain of a 3-dimensional network of polymers. It is
modelled as an attractive spring of elastic constant k, and
natural length l0. One of its ends is fixed, while the other one
is subjected to a force F (a). Spring potential for different
values of F plotted for lx = ly = 0 in terms of lz (b), as given
by Eq. 2
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in order to understand their basic behavior, respectively.
However, there is a fundamental difference, which is that
here the polymeric chain does perceive its own elasticity
described by a potential containing only an attractive
component, see Fig 1(b).

In short, in this work an ensemble of many independent
springs that represent the polymer sections constituting
elastomers are studied and their thermodynamic features
are evaluated, in order to understand the fundamental
behaviour of polymers with a simple and intuitive pic-
ture. Firstly, in section IIA an analytical solution in the
canonical ensemble is presented and Monte Carlo (MC)
simulations are performed in section II B. Further inves-
tigations could be done by interconnecting the springs,
that is, adding interactions between polymer sections,
and exploring if this more sophisticated model agrees well
with known experimental results, which is discussed in
section IIC. The paper finalizes with the conclusions in
section III.

II. STATISTICAL MECHANICS OF
NON-INTERACTING ATTRACTIVE SPRINGS

A. Analytical model

One of the main advantages of this simplified model,
with non-interacting springs, is that it corresponds to a 1-
body problem, so it can be solved analytically. Consider
a spring of natural length l0 and elastic constant k with
one fixed end (representing a node within the polymeric
network) and the other one free to thermally fluctuate in
three dimensions (Fig. 1). The latter is subjected to an
external force F that is taken parallel to the z axis and
that stretches the system. For a given point in the phase

space, the length of the spring is l =
√
l2x + l2y + l2z . The

spring response is modulated as an attractive elastic force
that only acts if l > l0. It is in thermal equilibrium at a
temperature T . A statistical treatment in the canonical
ensemble corresponding to this situation is going to be
exposed now. The Hamiltonian of the system may be
written as

H =
p2

2m
+HL − Flz, (1)

HL being the term for the elastic potential energy:

HL =

{
0 if l ≤ l0
1
2k(l − l0)

2 if l > l0,
(2)

see Fig 1(b). Its partition function is thus given as:

Z =

∫
Ω

e−βHdΩ, (3)

where β = 1
kBT is the Boltzmann factor. This expression

can be calculated by breaking the whole integral into an
integral of moments and the integral in the position coor-
dinates (lx, ly, lz), both written in spherical coordinates,

ZP = (2πm/β)
3/2

, and

ZL =
4π

βF

∫ ∞

0

dle−βHL l sinh (βF l) =
4π

βF
Is1, (4)

respectively. The notation of this integral in terms of
Is1 is given because the latter appears again in some
other important expressions. The “s” sub-idex denotes
sinh(βF l) (it would be a “c” for a cosh) and the 1 refers
to the power of l. The partition function obtained is:

Z =

(
2πm

β

)3/2
{
cosh (βF l0)

[
l0
Fβ

+

√
π

2βk

e
βF2

2k

k

(
F + kl0 erf

(√
βF 2

2k

))]

+ sinh (βF l0)

[
1

kβ
− 1

(βF )2
+

√
π

2βk

e
βF2

2k

k

(
kl0 + F erf

(√
βF 2

2k

))]}
.

From here the Helmholtz free energy and the entropy of
the single spring could be computed. However, this study
focuses on the expected values in the different directions,
given by:

⟨A⟩ =
∫
p

dp3
∫
l

dl3
e−βH

Z
A. (5)

As one could expect, there is no mean displacement in the
directions perpendicular to the axis of the applied force,
i.e., ⟨lx⟩ = 0 and ⟨ly⟩ = 0. Other calculated expected

values are:

< lz >=
1

βFIs1
(βFIc2 − Is1) , (6)

< l2x >=
1

(βF )2Is1
(βFIc2 − Is1) , (7)

< l2z >=
1

(βF )2Is1

(
(βF )2Is3 − 2βFIc2 + 2Is1

)
. (8)
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These expressions are important because they give, for
instance, an estimation of the volume of the system. No-
tice that the expected values remain in terms of some in-
tegrals that repeat themselves in the expressions. These
integrals have been determined analytically. For more
details see the Annex. The corresponding functions, as
represented in Fig. 2, are compared with respective MC
simulations. In the following section we develop the lat-
ter and discuss the results altogether.

B. Monte Carlo simulations

Monte Carlo simulations implementing the Metropolis
algorithm of the considered attractive spring have been
also carried out. First, these simulations can be used as a
numerical test for the analytical solutions obtained in the
previous section. In addition, they open the opportuni-
ties to further research. It is important to highlight that
here only an ensemble of independent springs is consid-
ered, ignoring interactions between them. Nevertheless,
a future aspiration is to connect them, as well as being
able to take into account a set of non-identical springs
(different values of l0, k, and considering interactions).
The written MC code lays out the groundwork for such
future developments.

In particular, in this paper simulations of ≈ 106 MC
steps using the pseudo-random generator MT19937 [8]
have been executed for each reduced temperature T ∗ =
kBT and F . It is important to highlight that it has
been imposed that l0 = 1 and k = 1. These values
define the length and energy scales of the problem, so
the range of values of the temperature T ∗ and F have
been chosen taking this into account accordingly. There-
after, all the graphs have been plotted normalizing the
length value by l0 and the energy or force magnitude by
k. The acceptance ratio for the MC steps has been con-
trolled by adapting the value of the proposed change of
the thermally fluctuating position. The acceptance has
been forced to be between 0.6 and 0.9.
The written program allows to perform MC simula-

tions for different values of T ∗ and F for the spring; sim-
ulating a loop in T ∗ for a fixed F , or a loop in F for a fixed
T ∗. The initial considered conditions are lx = ly = lz = 0
at each MC step. The not-fixed spring-end is subjected to
a force F and fluctuates thermally. Consequently, a fam-
ily of curves in terms of (F, T ∗) is obtained. The results
of the trends of the executed values for T ∗ = 1 are shown
in Fig. 2. The chosen value of T ∗ is reasonable for two
reasons. First, it agrees with the mentioned energy and
length scales. This has been verified using the analytical
expressions. Second, the maximum values of lz/l0 ≈ 5
are plausible, since there is wide experimental evidence
showing that these materials can be stretched perfectly
up to five times, or even more, its initial length [3].

It can be observed in Fig. 2 that the analytical solu-
tions represented in black lines perfectly match with the
computational results for all the expected values, which
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Figure 2: Expected values of the mean displacement and the
mean square displacement in the different directions. z is the
direction of the applied force. The results shown correspond
to T ∗ = 1. The color dots represent the MC results, while
the straight black lines correspond to the analytical solutions
for each magnitude.

validates the numerical calculations. From now on, all
the simulation behaviours will be discussed.
Firstly, one may notice that, as expected, there is no

mean displacement in the directions perpendicular to the
applied force: ⟨lx⟩ = ⟨ly⟩ = 0. By contrast, the mean
square displacement in these directions ⟨l2x⟩ = ⟨l2y⟩ is non-
zero. The obtained tendency is that it decreases when the
applied force increases. This phenomenon corresponds to
a reduction of the width of the sample when stretched,
as its length increases. Fig. 3(a) shows the relative value
of the components perpendicular to the force (x) with
those parallel to it (z), for different temperatures. The
system size increases along the direction parallel to the
applied force, while the perpendicular section reduces, as
typically observed in systems under uniaxial stress. All
the plotted curves tend to 0 for large values of F , but
their decay is more gentle (less abrupt) as T ∗ increases,
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Figure 3: Plot of the obtained curves of ⟨l2x⟩/⟨l2z⟩ in terms of
the external applied force F for different temperatures T ∗ (a)
and representation of the evolution of the estimated volume
(b).
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Figure 4: Evolution of the elongation ⟨lz⟩ in terms of the
applied force when the spring is at different temperatures (a),
and in terms of T ∗ for constant F (b).

owing to a greater influence of the thermal fluctuations
(the entropic contribution).

It is worth pointing out that the conservation of vol-
ume was one of the main assumptions made by Flory
to deduce the equation of state for rubber-like materi-
als. The paper written by this author in 1939 is one of
the most important references in this research field [9].
Here, Flory predicted the SIC and calculated the entropy
change associated with this phenomenon. Apart from the
fact of being a condition for his theoretical studies, the
conservation of volume has been also observed experi-
mentally for different materials, those having a Poisson
ratio of ν = ϵtrans/ϵaxial = 0.5 being ϵ the strain along
the indicated direction.

The simulation does not show a conservation of the
volume, whose estimation has been taken as V =√

⟨l2x⟩⟨l2y⟩⟨l2z⟩ , as shown in Fig. 3(b). The most reason-

able explanation for this disagreement may be the follow-
ing. Since the considered ensemble of identical springs is
a simplification, it assumes that the exerted force is the
same for all of them. Nevertheless, in reality, when a
polymeric network is stretched, not all the sections feel
the same force owing to the disordered geometric distri-
bution in polymers. This could be tested in the future
by adding a geometric factor to the code, which would
require further theoretical analysis.

The next step is to examine in greater detail the be-
haviour along the direction z in which the external force
that stretches the polymer has been applied. ⟨lz⟩, the
length along the stretched direction, is a parameter of
elongation. It can thus be regarded that ⟨lz⟩ describes
the strain of the system in this direction, whereas the
tensile force F is the stress.

First, note that Fig. 4(a) shows that the usual Hooke
linear relation between the elongation ⟨lz⟩ and the force
F is satisfied in the limit of high values of F , when the
chain is fully taut. Indeed, when the polymer section is
stretched with an external force F , its reaction is an op-
posite elastic force: Freact = −k(lz − l0) = −F . This
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Figure 5: Crystallization index evolution in terms of the ex-
ternal applied force at different values of T ∗.

expression turns into lz = F/k + l0 which is precisely
the indicated straight red line that overlaps the compu-
tational data in the limit of large F .

Another interesting feature can be noticed. If a value
of the force is taken and a vertical line is traced from
there, the first curve that will be intercepted is the one
corresponding to T ∗ = 2 (the largest T ∗ in this graph),
which means that, for a constant F , a lower value of ⟨lz⟩
is found for a higher temperature T ∗. In order to under-
stand this relation in a clearer way, ⟨lz⟩ is also plotted
in terms of T ∗ for different constant applied forces F
in Fig. 4(b). The MC noise that can be perceived in
Fig. 4(b) could not be smoothed out by increasing the
number of MC steps up to 3 · 106, but it does not affect
the next qualitative discussion. Indeed, the elongation
⟨lz⟩ decreases with temperature, when the external force
remains constant in the polymer. This is, therefore, a
phenomenon of contraction in the longitudinal direction
(z axis) when T ∗ is raised for a constant F [6], and fol-
lows from the entropic forces that appear in this sort of
materials when they are stretched. From a general point
of view, polymers want to contract in order to increase
their entropy, since the conformation entropy of a poly-
mer in its amorphous, random-coiled state is bigger than
in the extended (e.g. crystalline) state due to a larger
number of available configurations or micro-states.

SIC is the phase transformation of polymers from an
amorphous state to a crystalline state when they are sub-
jected to a tensile stress. In the crystalline phase, poly-
mer chains are taut and highly oriented in the direction of
the applied force. It has been widely studied experimen-
tally [10] and is one of the contributions to the eCe [3].
The crystallization index (CI) is defined as the fraction of
polymer chains that are taut. Fig. 5 shows the evolution
of the CI when applying a force for the studied system. It
has been computed by counting the number of times that
the simulated spring is tensed throughout the MC steps.
Note that for large values of F all the chains are com-
pletely aligned, as it has to be (limit CI → 1). Moreover,
the CI decreases at lower T ∗ and F = 0. This is ascribed
again to the contribution of thermal fluctuations. Cer-
tainly, at low T ∗, the only way of increasing CI is via the
application of an external force.
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C. Future work concerning the addition of
interactions

The model described above is a simplification because
it does not account for the interactions between different
springs. Here every polymer section was represented by
an independent spring that feels only its own elasticity.
Moreover, identical values of l0 and k for the springs have
been considered (similar to an Einstein model). In a real
network, a number of sections are connected to two cross-
links (Fig 1(a)), in a way that they feel the influence of
their neighbouring chains. It is also unrealistic to assume
the same values of l0 and k for all the polymeric sections,
given the randomness of the distribution of nodes created
by the vulcanization process. There is a large number of
options to take these facts into account.

One possibility would be to consider a system with
a random distribution of a given number of cross-links,
with springs between them. Some conditions could be
added, for instance that each link has to be connected to
four springs. Furthermore, a distribution of values of l0
and, therefore, k could be applied in this case, making it
very complex but a more realistic model. This sophisti-
cated system would be computationally challenging, and
it is left to future investigations, that will help to tackle
unanswered questions.

However, it may be pointed out that this would be
a great starting point to study the entropy of polymer
networks. Effects such as the mentioned eCe could be
investigated then. Calculations of the entropy of the sys-
tem would need to be performed in the computational
program. In the initial simplified case, only the entropy
Schain corresponding to the shape of a chain section is
taken into account. Schain concerns the number of micro-
states of a single chain given its length and end-to-end
distance. However, in a real system there is also the
contribution of the entropy related to the geometric dis-
tribution of the cross-links Snodes (e.g. different ways of
distributing a given number of nodes in space). To make
a correct treatment of the entropy both terms would need
to be considered.

III. CONCLUSIONS

A model to describe basic components of polymer net-
works that compose elastomers has been presented. The
model consists of an ensemble of non-interacting springs
fixed at one spring-end and subjected to an external
force. An analytical expression for the partition func-
tion and the expected values of the considered system has
been provided. This has been combined with MC simula-
tions allowing to investigate numerically the dependence
of the thermodynamic magnitudes on temperature and
applied force. An agreement between the calculated ex-
pressions and the numerical results has been confirmed.
The flattening of the system in the transverse direc-

tion when applying a force has been successfully mod-
elled. However, a variation (i.e. no conservation) of the
estimated volume has been found. The lack of a geo-
metric factor in the model that accounts for a realistic
distribution of polymer chains has been proposed as a
possible explanation for the non-conservation of volume.
The phenomenon of contraction in the direction of the
applied force when the force is constant and temperature
raises has been correctly verified. Finally, a well behaved
evolution of crystallization in the process of stretching
has been shown thanks to MC simulations.
Since the model is a non-interacting simplification, fu-

ture steps to develop a more realistic model have been
discussed at the end, which could be implemented in the
written MC code. The resulting model will hopefully al-
low to improve the fundamental understanding of some
of the properties of elastomers, such as the hysteresis cy-
cle for the strain-stress curves or crystallization, which
are important features to improve the efficiency and sus-
tainability of cooling machines based on caloric effects.
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IV. APPENDIX

The integrals that appear in the expressions of the ex-
pected values in section IIA are:

Is1 =

∫ ∞

0

l exp−βHL sinh(βF l)dl, (9)

Ic2 =

∫ ∞

0

l2 exp−βHL cosh(βF l)dl, (10)

Is3 =

∫ ∞

0

l3 exp−βHL sinh(βF l)dl. (11)

HL is given by Eq 2. This notation has been chosen in
order to write compact expressions for the expected val-
ues. The first sub-index “s/c” corresponds to the trigono-
metric function that appears in the integral (sinh(βF l)
or cosh(βF l)), whereas the second sub-index (e.g., the
number) corresponds to the power of l in the integral.
To determine these integrals, first they are broken into

two ranges of integration (from 0 to l0 and from l0 to
∞). Since HL = 0 for l < l0, the exponential of the first
term simplifies. The second is calculated by writing the

hyperbolic function in terms of the exponential function
(using its definition). An example for Is1 is developed
below:

Is1 =

∫ l0

0

l sinh(βF l)dl

+

∫ ∞

l0

le−β 1
2 (l−l0)

2 eβFl − e−βFl

2
dl.

Finally, three integrals need to be calculated because:

Is1 =

∫ l0

0

l sinh(βF l)dl

+
1

2

∫ ∞

l0

le−β 1
2 (l−l0)

2+βFldl

− 1

2

∫ ∞

l0

le−β 1
2 (l−l0)

2−βFldl.
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