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Abstract: The objectivity in quantum mechanics is not unambiguous. This issue is illustrated
in Wigner’s friend thought experiment, where two observers experience different realities according
to the deterministic evolution of the Schrödinger equation or according to the collapse when a
measurement is performed. This work aims to discuss whether this different observer facts can be
described in a framework where both are independent of the observer. To address this question, the
problem is exposed and will be discussed.

I. INTRODUCTION

Wigner’s friend thought experiment illustrates one of
the thorniest conflicts in quantum theory. It highlights
the contrast between the deterministic and continuous
nature of processes within isolated systems according to
the Schrödinger equation iℏ∂t|ψ(t)⟩ = H|ψ(t)⟩, as op-
posed to the probabilistic and discontinuous nature state
update after the measurement, where the measurement
outcome will be one of the possible eigenvalues with the
probability given by P(O : αi) = ||Πi|ψ⟩||2, in which O
is a certain observable and Πi is the projector onto the
subspace of eigenvalue αi.
In this experiment, a quantum system is subjected to
measurements by an observer referred to as Wigner’s
friend, conducted within a sealed laboratory. Mean-
while, outside the laboratory, another observer, Wigner,
remains unaware of the specific measurements carried out
by the friend. As previously mentioned, the friend’s mea-
surement leads to the assignment of an eigenstate corre-
sponding to the observed outcome, following the state-
update rule, while Wigner, assumes the perspective of a
super-observer, describing the laboratory and all its con-
tents as a unitary evolving quantum state.
This means that the interpretation of ”what is happening
inside the laboratory” varies depending on the perspec-
tives of Wigner and Wigner’s friend. According to quan-
tum theory, the different descriptions do not lead to an
inconsistency, because they have been made by different
observers who are in their respective different systems. If
the observers do not exchange information about the re-
sults, their perceptions of the experiment differ, but when
Wigner’s friend communicates the result, it is considered
as a measurement for Wigner, leading to the collapse of
Wigner’s state to that of the friend and the system.
The primary question arising from this scenario is
whether it exists a theory in which joint probabilities
can be assigned to the outcomes of the two observers,
assuming the existence of objective properties accessible
to both perspectives, known as ”facts of the world”.
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II. WIGNER’S FRIEND EXPERIMENT

Once the scenario proposed by Wigner is set out, it is
taken the standard description of the experiment, which
involves a two-level system, meaning that the system can
exist in any quantum superposition of two independent
quantum states.
It is considered that the system subjected to measure-
ments is a prepared photon state, existing in a super-
position of horizontal |H⟩ and vertical |V ⟩ polarizations,
described by: |ϕ⟩ = 1√

2
(|H⟩+ |V ⟩).

Wigner’s friend, who is positioned within the sealed
laboratory, measures the polarization using the z-basis:
{|H⟩, |V ⟩}. Once the measurement is taken, the observer
obtains one of the two possible outcomes, which are then
recorded in some physical memory as the facts of the
friend’s measurement, denoted as |”H”⟩ and |”V ”⟩.
From Wigner’s point of view, he is not exchanging in-
formation with the friend, and he can not see the inside
of the laboratory, so the initial state is described as a
unitary interaction that entangles the photon and the
friend’s recording. The composite state ”polarization +
friend’s laboratory” described by Wigner is given by:

|Φ⟩ = 1√
2
(|H⟩|”H”⟩+ |V ⟩|”V ”⟩), (1)

here |”H”⟩ and |”V ”⟩ represent orthogonal states.

Wigner can also perform a measurement, but an
important remark about the experiment is that he
can conduct two types of measurement. He can
either exchange information regarding the outcome
observed by the friend, causing his own state to col-
lapse accordingly, or he can perform a distinct type
of measurement to confirm the presence of super-
position. The latter measurement is carried out in
the x-basis: |ϕ⟩ = 1√

2
(|H⟩|”H”⟩ ± |V ⟩|”V ”⟩) and

|φ⟩ = 1√
2
(|H⟩|”V ”⟩ ± |V ⟩|”H”⟩).

These different descriptions, as mentioned earlier, do
not result in inconsistency. However, an alternative ver-
sion of the experiment is proposed, introducing an ex-
change of partial information about the results between
the two observers.
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III. DEUTSCH’S VERSION OF THE
EXPERIMENT

Deutsch [1] proposes a variation of the experiment in
which Wigner can acquire direct information of whether
a definite outcome of the measurement has been observed
by the friend. In Deutsch version, it is imperative that
this communication does not contain any information
about the observed outcome. Thus, the friend may open
the laboratory in a manner that facilitates communica-
tion to Wigner while maintaining isolation of all other
degrees of freedom.
The information provided will be in the form of: ”I have
observed a definite outcome” or ”I have not observed a
definite outcome”. The overall state will be:

|Φ⟩ = 1√
2
(|H⟩|”H”⟩+ |V ⟩|”V ”⟩)|”definite”⟩. (2)

Building upon the universality of quantum theory,
even if the message from the friend indicates a definite
outcome, Wigner will uphold his assignment of states.
Thus, Wigner not only perceives his own facts but also
acquires direct evidence for the existence of the friend’s
facts. This hints at the coexistence of the two sets of
facts, setting out the question: Is it possible to estab-
lish a framework where observer-independent facts exist?

In order to address this question, it becomes necessary
to introduce a different version of the experiment, an
extended one, because we can not acquire the two types
of measurement at the same time in order to answer it.

IV. EXTENDED VERSION OF THE
EXPERIMENT

Brukner [2] presents the expanded version of the exper-
iment which involves two super-observers, Alice and Bob,
and two observers, Charlie and Debbie. The approach of
the experiment is the same, but each pair of observers
measure a single photon belonging to an entangled state
of two photons (FIG. 1):

|φ⟩P1P2
=

1√
2
(|φ+⟩P1P2

+ |φ−⟩P1P2
), (3)

where |φ+⟩P1P2
= 1√

2
(|H⟩P1

|H⟩P2
+ |V ⟩P1

|V ⟩P2
) and

|φ−⟩P1P2 = 1√
2
(|H⟩P1 |V ⟩P2 − |V ⟩P1 |H⟩P2). Taking

that P1 refers to Charlie/Alice’s photon and P2 to
Debbie/Bob’s photon.

Initially the overall state of the polarization for Alice
and Bob, including Charlie’s and Debbie’s laboratories
is:

|Φ⟩P1P2
= |φ⟩P1P2

|0⟩A|0⟩B . (4)

Then it is assumed that when Charlie and Debbie per-
form the measurement of the polarization along the z
direction the overall state for Alice and Bob is:

|Ψ⟩ = 1√
2
(|ψ+⟩+ |ψ−⟩), (5)

where

|ψ+⟩ = 1√
2
(|AH⟩|BH⟩+ |AV ⟩|BV ⟩), (6)

|ψ−⟩ = 1√
2
(|AH⟩|BV ⟩ − |AV ⟩|BH⟩), (7)

and

|AH⟩ = |H⟩P1|”H”⟩C ; |AV ⟩ = |V ⟩P1|”V ”⟩C , (8)

|BH⟩ = |H⟩P2|”H”⟩D; |BV ⟩ = |V ⟩P2|”V ”⟩D. (9)

Here as taken previously, states P1 and P2 refers
to the photons, while C and D denote the outcomes
measured by Charlie and Debbie, respectively.

FIG. 1: Wigner’s friend experiment of two entangled photon
state. Charlie and Debbie, the friends, measure a photon of
the pair in the entangled state. Alice and Bob, the super-
observers, measure the entire contents of the laboratory; one
photon of the pair and the respective friend recording.

Now two sets of binary observables are established,
which measure the outcomes along the z and x axis: for
Alice observations Az = A0 = |AH⟩⟨AH |−|AV ⟩⟨AV | and
Ax = A1 = |AH⟩⟨AV |+ |AV ⟩⟨AH |, for Bob observations
we can obtain Bz = B0 and Bx = B1 similarly. This
is described as such because, as said before, Alice
and Bob, can decide which measurement they want to
perform, the one performed by the friend’s, in the z-axis
meaning that the laboratory is opened, or Wigner’s
type of measurement, in the x-axis meaning that the
superposition is proved.

Brukner [2] uses this extended scenario and considered
the following assumptions:

1. Universal validity of quantum theory
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2. Locality

3. Freedom of choice

4. Observer-independent facts

where, ”Freedom of Choice” implies that Alice and
Bob have the control of their measurement choices.

From these four statements, a (no-go) theorem is de-
rived, which asserts that at least one of the assumptions
is untrue.
To prove this theorem, it is necessary to observe that
statements (2), (3), and (4) necessitate the existence of
a joint probability distribution for the four individual
facts P (A0, A1, B0, B1), whose marginals coincide with
the probabilities P (Ai, Bj). Any probability distribution
satisfying these conditions must adhere to the Bell
inequalities, specifically the Clauser-Horne-Shimony-
Holt (CHSH) inequality, used for systems with two
observables.

If the inequality is violated, at least one of the as-
sumptions is untrue, as stated by Brukner in the (no-go)
theorem. So, it is necessary to derive the inequality.

V. CHSH INEQUALITIES

The CHSH inequality can be derived by considering
that the measurement outcomes can only take the val-
ues A0, A1, B0, B1 = ±1. If all possible combinations
are considered, it remains certain that |A0B0 + A1B0 +
A0B1 −A1B1| = 2.
To derive the inequalities, we apply the triangle inequal-
ity, |x + y| ≤ |x| + |y|, and |E(x)| ≤ E(|x|), where E(x)
represents the expected value of x. Relating this expres-
sions:

|E(A0B0)+E(A1B0)+E(A0B1)−E(A1B1)| ≤ 2, (10)

where it has been used that E(|A0B0+A1B0+A0B1−
A1B1|) = E(2) = 2 and the expected value defined as:
E(AiBj) = ⟨AiBj⟩ =

∑
a,b abP (Ai = a,Bj = b).

This represents the CHSH inequality that must be
satisfied by any theory implying a joint probability
distribution P (A,B,C,D).

It is important to note that in order to test the in-
equality, the four measurements cannot be taken simul-
taneously. When one measurement is taken, the system
collapses, and the wave function disappears. Therefore,
it is not possible to perform all four measurements at the
same time. The solution to this challenge is to conduct
measurements of identical processes in pairs, in order to
determine P (Ai, Bj).

VI. CHSH TEST

A test assuming the existence of local hidden variables
has been carried out, momentarily leaving aside the
Brukner assumptions. Assuming only local hidden
variables existence, a joint probability distribution must
exist, meaning that the condition also adheres to CHSH
inequalities.
To verify the inequality in this condition, we have
conducted an experiment to measure the individual
polarization of two photons. We have been used
a laser and a filter in order to make the photon
beam monochromatic, and using BBO crystals it
has been splitted generating an entangled pair state:
|ϕ⟩ = 1√

2
(|H⟩P1|H⟩P2 + |V ⟩P1|V ⟩P2).

Once the two photons are split, their corresponding
polarizations can be measured using polarizers. The
purpose of these measurements is to determine the four
expected values of the inequality, this can be achieved
by employing filters and observing whether detection
occurred.

If both measured outcomes have the same polariza-
tion, the product of the results equals 1. On the other
hand, if they are in different polarizations, the prod-
uct of the results equals -1, leading to the expression:
E(AiBj) = (+1)(PHH+PV V )+(−1)(PHV +PV H). These
probabilities are calculated according to the coincidences
observed in photons passing through the polarizers.
For instance, to determine the value of PHH , the fil-
ters are both set in the horizontal configuration, and co-
incidences are recorded within a specific time interval:
PHH = NHH

Ntotal
. Here, NHH represents the number of co-

incidences detected by both detectors in the horizontal
direction, and Ntotal denotes the total emitted photons.
Similarly, the other probabilities are obtained by ad-
justing the filter direction and counting the coincidences
again.
Given a constant photon flux and equal measurement
time intervals for all four measurements, we have:
Ntotal = NHH +NV V +NHV +NV H .
Once these probabilities are determined, the expected
value can be computed, as previously defined:

E(Ai, Bj) =
NHH +NV V −NHV −NV H

Ntotal
. (11)

We have considered that the environmental photons
detected in the experiment are negligible, as it was
conducted in a dark room.

Once the procedure is explained, these expected values
are obtained by modifying the direction of the filter, for
both the first and second photons.
This implies that in order to acquire four expected
values, each containing four probabilities, 16 different
measurements must be taken.
Meaning that we need four different vertical axis to
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obtain A0, A1, B0 and B1 in the 16 measurements. The
angles of the polarizer that define these vertical axes are
α, α′, β and β′, respectively.
However, the selection of these angles is not arbitrary,
as the violation of the inequality is dependent on
them. According to quantum theory [3], the angles that
maximize these expected values are: α = 0◦, α′ = 45◦,
β = 22.5◦, and β′ = −22.5◦.

The corresponding setup to obtain N(α, β)V V =
N(A0, B0)V V involves positioning the polarizers at
angles α and β. Following this definition, N(α, β)HV is
obtained with the polarizers positioned at α + 90◦ and
β, N(α, β)V H with α and β + 90◦, and N(α, β)HH with
α+ 90◦ and β + 90◦.
The other measurements, N(α′, β)V V = N(A1, B0)V V ,
N(α, β′)V V = N(A0, B1)V V , and N(α′, β′)V V =
N(A1, B1)V V , and the related four combinations of
directions, are computed following the same procedure
as in the previous example.

The method was followed and the different results are
shown in the FIG. 2:

FIG. 2: Experimental data obtained in the CHSH test. It
shows the outcome probabilities of the four expected values
obtained measuring the coincidences for each case. The red
bars indicate the error taken in each probability as a Poison
Noise.

The inquality can be computed using this results,
yielding 2.473 ± 0.014, which indicates a violation of
CHSH inequalities.
This violation must demonstrate that there does not
exist local hidden variables, and therefore it does not
exist a joint probability distribution for the four facts.

Furthermore, it can be observed that the test con-
ducted is analogous to the assumptions made by

Brukner, with the only alteration being the replace-
ment of assumption (4) with predeterminism rather than
universal independent facts. This Bell test remains indif-
ferent to the specific observables used or the underlying
systems, making any violation sufficient to invalidate the
conjunction of statements (2), (3), and predetermination.

However, a distinct test is required, the Bell-Wigner
test, which relies on highly specific observables to
consider assumption (4) as observer-independent facts.
These specific observables are defined by any physical
system capable of obtaining information from other inter-
acting systems and storing that information in physical
memory.

VII. EXTENDED WIGNER’S VERSION
EXPERIMENT TEST

The Bell-Wigner test conducted in [4] aimed to address
the issue posed by specific observables in the Wigner’s
friend scenario. In order to do that it was performed
a six-photon experiment, which experimentally violated
the associated Bell-type inequality.
In this experiment there were used three photon-pair
sources named S0, SA and SB , which generate pairs of
single photons entangled with the following polarization:
|φ⟩ = 1√

2
(|H⟩A|V ⟩B−|V ⟩A|H⟩B), where A and B denote

the photons that will be measured by Charlie/Alice and
Debbie/Bob respectively.
In the experiment, initially, a pair of photons is created
using the source S0, and then the state is rotated in order
to maximize the violation of inequalities for this concrete
measurement settings. The rotation, |φ̃⟩ = 1⊗U7π/16|φ⟩,
is achieved using a half-wave plate at an angle of 7π/16,
where U7π/16 = cos

(
7π
8

)
σz + sin

(
7π
8

)
σx ( 1 is the iden-

tity operator, and σx and σy are the Pauli operators).
The state obtained after this rotation is :

|φ̃⟩ = 1√
2
cos

π

8
(|H⟩A|V ⟩B + |V ⟩A|H⟩B)

+
1√
2
sin

π

8
(|H⟩A|H⟩B − |V ⟩A|V ⟩B).

(12)

After the state has been rotated, Charlie and Deb-
bie measure the quantum system described above, re-
calling the definition of observer provided earlier. To
record the measurement results without interfering de-
structively there were used the other two photon pair
sources SA and SB . Charlie and Debbie measure their
photon using Type-I fusion gates, if the photons from
S0 and SA/SB have different polarization they will exit
and will not lead to coincident detection, and if they co-
incide the information about the outcome is stored, via
the ancillary entanglement, in the polarization state of
the photon from SA and SB , acting as a memory, while
the single-photon measured S0 is absorbed.
The four-photon state shared by Alice and Bob when
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both fusion gates are successful, the global success prob-
ability is 1

16 , is:

|φ̃′⟩ = 1√
2
cos

π

8
(|H”H”⟩A|V ”V”⟩B + |V ”V”⟩A|H”H”⟩B)

+
1√
2
sin

π

8
(|H”H”⟩A|H”H”⟩B − |V ”V”⟩A|V ”V”⟩B).

(13)

To quantify the inequality, Alice and Bob measure
the observables concerning the joint system (photon +
record). Once again they can take two different types of
measurements, the friend type and the Wigner type. For
Alice they are given by:

A0 = 1⊗ (|”H”⟩A⟨”H”|A − |”V ”⟩A⟨”V ”|A), (14)

and

A1 = |ϕ+⟩⟨ϕ+| − |ϕ−⟩⟨ϕ−|, (15)

where ϕ± = 1√
2
(|H”H”⟩A±|V ”V”⟩A) is the joint system

function. They can be defined similar operators B0 and
B1 for Bob also.

The procedure in this study was similar to the CHSH
test. During the 360 hours they measured the number of
photons detected in each of the 64 possible settings. If
the photon was detected in both detectors, it was noted
as a coincidence. After the measurement period, the
probability was calculated as the number of coincidences
divided by the total pairs of sent photons.
The average values obtained were: ⟨A0B0⟩ = −0.678 ±
0.033, ⟨A0B1⟩ = 0.570 ± 0.040, ⟨A1B0⟩ = 0.595 ± 0.041,
and ⟨A1B1⟩ = 0.571 ± 0.034. These results yielded a
value of 2.416± 0.075, thereby violating the Bell-Wigner
inequality.

The violation of the inequality leads to at least one
of the four statements being untrue. Assuming that
quantum theory is correct, and that locality and freedom
of choice exist, as normally assumed in other fields of
physics; therefore, there cannot exist a framework
where the two observer realities coexist. Under the
assumptions made by Brukner, there is no theoretical

framework where one can jointly assign truth values to
different observer facts.
A possible solution to this problem is to consider that
the ”facts of the world” do not exist; instead, facts can
only be understood relative to the observer.
It is also possible, but less preferred, that one or more
of the other assumptions are not true; for example,
the violation of statement (1) in collapse models or
statement (3) in super-deterministic theories.

VIII. CONLUSIONS

This work has examined Wigner’s friend thought
experiment and the issue of differing observer facts.
Once the scenario is set out and different versions of
the experiment are presented, the following assumptions
are established: Universal validity of quantum theory,
Locality, Freedom of choice and Observer-independent
facts.
The fulfillment of these assumptions should result in
the existence of a joint probability distribution of the
facts, and consequently, they must satisfy the CHSH
inequality.
The inequalities have been derived, and violation have
been demonstrated with an experiment involving specific
observables and taking into account the previously
mentioned assumptions. This suggests that the assump-
tions may not hold simultaneously, thereby challenging
the classical view of observer-independent reality in
quantum mechanics.
Hidden variables necessitate a joint probability distri-
bution and therefore must also adhere to the CHSH
inequality. An experiment involving hidden variables,
disregarding the above assumptions, has been conducted,
and violation have also been demonstrated.
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