
Tensor network based integration methods

Author: Pau Torrente Badia
Facultat de F́ısica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.∗

Advisors: Stefano Carignano & Joan Soto Riera

Abstract: In this work we overview the Tensor Train Cross decomposition of large tensors and
its applicability to high-dimensional integration. Furthermore, two different algorithms for building
this decomposition are showcased and compared against a Monte Carlo method, both outperforming
it in terms of resource efficiency. A python package is also presented, containing these two algorithms
along other tools to leverage the power of the framework in a comprehensive and easy to use manner.

I. INTRODUCTION

Reliable numerical integration tools are essential, as
analytical descriptions are not available in most cases.
When working with very few variables, quadrature meth-
ods that evaluate the desired function in a discretized
variable space are very useful. For systems with a large
amount of degrees of freedom, though, the exponential
increase in the amount of points to be evaluated makes
these methods unusable. This is known as curse of dimen-
sionality. In these cases where regular quadrature rules
are not feasible, then, the standard tools to tackle numer-
ical integration are Monte Carlo (MC) methods, which
rely on sampling the function in the variable space ran-
domly. Nonetheless, MC methods also have their draw-
backs. First, they converge with the number of sampled
points (N) only as 1/

√
N . Secondly, when the integrated

function rapidly oscillates and is not strictly positive, the
random samples of opposite sign end up cancelling each
other and not allow the method to converge. This type
of integrals occur frequently e.g. in gauge theories with
fermions, and this difficulty for reaching convergence is
known as a sign problem.

In this work we study a tensor network approach to the
same problem of highly-dimensional integration. Tensor
networks have found success in condensed matter physics
and applied mathematics by being able to reduce the cor-
relation degrees of freedom of the studied system to just
those that are necessary or that can be tracked. In the
context of integration, the evaluation of the function in a
grid is interpreted as a large tensor that is approximated
with a tensor network with fewer elements. Neither its
size nor the number of function samples needed to build
it grow exponentially with the number of variables, and
so regular quadrature rules can be used again. These
methods not only have been shown to outperform MC
methods in certain scenarios [1], but since they do not
rely on a probabilistic process, theories which present
sign problems can be treated without issues.

This paper, then, is organized as follows. In Sec. II,
the formalism of tensor networks is briefly introduced. In

∗Electronic address: ptbadia@gmail.com

Sec. III the tensor train approximation to the quadra-
ture tensor is presented. In IV, two algorithms for build-
ing this approximation with a limited amount of samples
are showcased. In Sec. V, both algorithms are tested
against an integral of Ising type [2] and compared to a
MC method. Lastly, conclusions are discussed in Sec VI.

II. TENSOR NETWORKS

Tensor networks are at their core a diagrammatic de-
scription of multilinear equations. By representing ten-
sors of rank N as objects with N legs coming out of them,
large arrays of contracted tensors can be expressed in a
visual way as a network interconnected via the legs that
represent common indices. The indices that are not con-
tracted, are left as open legs. Fig. 1 displays a very
simple network for illustrative purposes.

S

i k l

= M N

i k

l
j ⇔ Sikl =

∑
j MijNjkl

FIG. 1: Example of a very simple tensor network that decom-
poses a tensor S into two M,N , connected through index j.

Notice that the range of the bonded index j determines
the number of entries in M and N , since the dimensions
of the open legs can’t change. We will refer to the di-
mensions of these bonded indices as bond dimensions.
Apart from simply representing systems of equations,

tensor networks are also very powerful as a computa-
tional tool for dissecting larger systems into small parts
and controlling the correlations between them. To per-
form these decompositions, the most commonly tool used
is the singular value decomposition (SVD), which factor-
izes a matrix M into two isometries joined by a diagonal
matrix of singular values as M = USV †. These sin-
gular values are a measure of the correlations between
the two subspaces into which the matrix has been sepa-
rated, and in the context of quantum physics, for exam-
ple, are directly related to entanglement [3]. By discard-
ing the smallest ones, this decomposition also guarantees
the best low rank approximation to the original matrix.

mailto:ptbadia@gmail.com

Tensor network based integration methods Pau Torrente Badia

The SVD then, allows us to go from full tensors to net-
works that contain fewer elements by just keeping the
correlation degrees of freedom desired i.e, by adjusting
the resulting bond dimensions. In the context of this
work, it will be used in Sec. IVA to determine how cor-
related are two sets of variables.

III. THE TT-CROSS APPROXIMATION FOR
INTEGRATION

Let f : D1 × D2 × ... × DN → C with Dk ⊂ R be a
multivariate scalar function. For generality purposes, we
can suppose that it is complex valued. Its integral over
the domain on which it is defined can be approached
numerically using quadrature rules by evaluating it over
all the points of a grid that discretizes the variables. We
can encapsulate these evaluations in a tensor A of rank
N whose entries are defined by:

A(i1, . . . , iN) = f(xi1 , . . . , xiN)

is = 1, . . . , ks, s = 1, . . . , N (1)

where by xis we denote the is-th point in the grid in
the s-th variable/direction. With this tensor then, the
integral can be computed as:

I =

∫
D1

dx1· · ·
∫
DN

dxNf(x1, . . . , xN)

≈
∑

i1...iN

N∏
s=1

ωs(is)A(i1, . . . , iN) (2)

where ωs is a vector containing the quadrature weights
for each of the points in the direction s of the grid.
Our goal then is to go from this N-legged tensor with an

exponentially large number of entries to a tensor network
approximation of the form:

A(i1, . . . , iN) ≈
∑

b1,...,bN−1

X(1)(i1, b1)X
(2)(b1, i2, b2) · · · ×

×X(N−1)(bN−2, iN−1, bN−1)X
(N)(bN−1, iN) (3)

We will refer to this construction as a tensor train, be-
cause of its chain-like structure, which is depicted in Fig.
2. The number of elements in it scales as O(Nnχ2),
with n = maxk |{ik}| and χ = maxk |{bk}|. If the size
of the bond indices can be contained while maintaining
the quality of the approximation, then we will have com-
pressed greatly the information of the function from the
original tensor containing nN elements.
Starting from the initial tensor this decomposition

would easily be reached by performing sequentially N−1
singular value decompositions [4], but that would require
the evaluation of the function in the whole grid, which is
precisely what we want to avoid. We need, therefore, a
way of building this tensor train with a cleverer strategy,
leveraging more efficiently the information given by our
function of interest.

A

i1 i2 i3 i4 i5

≈

i1

X(1)
b1

i2

X(2)
b2

i3

X(3)
b3

i4

X(4)
b4

i5

X(5)

FIG. 2: Tensor network representing the decomposition of the
initial tensor A from Eq. (5) for the case N = 5.

A. Cross decomposition of a matrix

Let A be a matrix of size n×m and rank r, this is, that
it has r linearly independent rows and columns. Let I =
{i1, i2, ..., ik} and J = {j1, j2, ..., jk} be sets of k row and
column indices, respectively, and A(I, J) the submatrix
formed with the entries that lie at the intersection of
rows I and J in A. We will refer to these sets as crosses.
If rank(A) = k and the sets I and J denote k linearly
independent rows and columns on A, the elements of the
matrix can be expressed as:

A(i, j) = Ã(i, j) :=

k∑
s,l=1

A(i, jl) [A(I, J)]
−1
(is,jl)

A(is, j)

(4)
or using Einstein notation to avoid writing the sums:

A(i, j) = Ã(i, j) = A(i, J) [A(I, J)]
−1

A(I, j) (5)

which is known as the skeleton or cross decomposition of
A. If on the other hand rank(A) > k the cross decom-
position will be an approximation of A. In this case this
approximation will be best when A(I, J) is the submatrix
of A of maximal volume. Despite the fact that finding
this submatrix is an NP-Hard problem [5], the Maxvol
algorithm introduced in Ref. [6] presents an iterative
and heuristic way of obtaining a large volume submatrix
of size k × k in a r × k matrix to construct the cross
approximation with a bounded error. Regardless of if
rank(A) = k or not, one of the most important charac-
teristics of the decomposition is the exact interpolating
property:

A(i, j) = A(i, J) [A(I, J)]
−1

A(I, j)

if i ∈ I or j ∈ J, 1 ≤ |I|, |J | ≤ rank(A) (6)

This is, the entries of the decomposition in the crosses
are equal to those in the original matrix, no matter the
number of crosses used to build the approximation.

B. TT-Cross approximation

The matrix cross approximation can be extended into
the tensor train format [4]. Let A be a rankN tensor with
entries A(i1, . . . , iN). This tensor can be reshaped into an
arbitrary rank tensor by grouping indices i1, . . . , is, for
example, into a single multi-index i1 . . . is. When these

Treball de Fi de Grau 2 Barcelona, June 2024

Tensor network based integration methods Pau Torrente Badia

grouped indices are ordered, we introduce the following
notation shortcuts:

i≤k = i1 . . . ik, i>k = ik+1 . . . iN (7)

With this we can, for example, reshape our initial tensor
to another one of rank 3 where its entries are given by:

B(i≤k−1, ik, i>k) = A(i1, . . . , iN) (8)

For the following developments, we will omit the renam-
ing to B and take the shape by the number of indices
that are used to compute the entries of the tensor. We
will also reference a tensor from just its entries, i.e. the
tensor A(i≤k−1, ik, i>k).
With this, the tensor A(i1, . . . , iN) can be reshaped

into a matrix that isolates the first index from the rest
and apply to it the cross decomposition, such that its
entries are given by:

A(i1,i2 . . . iN) ≈
r1∑

t1,s1=1

A(i1,J (1)
t1)×

×
[
A(I(1)

s1 ,J (1)
t1)

]−1

A(I(1)
s1 , i2 . . . iN), (9)

where I(1),J (1) are sets of r1 multi-indices i≤1 and j>1.
If r1 is smaller than the rank of A(i1, i2 . . . iN), the choice
of indices will be crucial for the quality of the approxi-
mation.

If we proceed in the same way with the rightmost ma-

trix in Eq. (9), reshaped into A(I∫∞
(1)i2, . . . iN), and

repeat the same process iteratively for all the remaining
indices, we arrive at the Tensor Train Cross decomposi-
tion of our initial rank N tensor A:

A(i1, . . . , iN) ≈ Ã(i1, . . . , iN) = A(i1,J (1))×

×
[
A(I(1),J (1))

]−1

A(I(1), i2,J (2)) . . . A(I(N−1), iN)

(10)

where Einstein notation for the index sums has been
used, as in Eq. (5). In this expression Ã is the TT-Cross
decompostion of A and I(k),J (k) are sets of rk multi-
indices i≤k and j>k, respectively. We will refer to rk as
the TT-ranks of the approximation, which are a measure
of the correlations between the variables at both sides
of the chain. Notice about this construction that if at
each step in the iterative matrix cross decomposition the
number of index sets does not match the rank of the ma-
trix, i.e. it is not a full rank decomposition, the choice of
index sets will be crucial. This choice of I(k), however,
won’t be from the sets of all possible multi-indices {i≤k}
in our iterative process, but just from I(k) ⊗ {i≤k−1}. If
this property is also enforced on the J (k) index sets, such
that the following condition is satisfied:

I(k+1) ⊂ I(k) ⊗ {ik+1} ; J (k) ⊂ {ik} ⊗ J (k+1) (11)

A(1) A(2) A(3) A(4)B(1) B(2) B(3)

ω1 ω2 ω3 ω4

FIG. 3: Tensor diagram representing the approximated value
of the integral as shown in Eq. (13) for a simple case withN =

4. In the figure, the 3-legged tensors labeled as A(k) refer to
A(I(k−1), ik,J (k+1)), the 2-legged ones labeled as B(k) refer

to
[
A(I(k),J (k))

]−1

and lastly the circle tensors labeled as

ωk represent the quadrature weight vectors.

it can be proven that Eq. (10) also interpolates the en-
tries of the tensor [7]:

A(I(k−1), ik,J (k)) = Ã(I(k−1), ik,J (k)) (12)

We will refer to the index sets I(k) (J (k)) that satisfy
this condition as left (right) nested.

C. Integrating from the TT-Cross approximation

If instead of the whole tensor A we work with its TT-
Cross approximation in Eq. (2), the integral can be ex-
pressed as:

I ≈
∑

i1...iN

w1(i1)A(i1,J (1))
[
A(I(1),J (1))

]−1

w2(i2)×

×A(I(1), i2,J (2)) . . . wN (iN)A(I(N−1), iN), (13)

which in diagrammatic terms corresponds to the network
shown in Fig. 3. The calculation therefore results in just
a product of vectors and matrices, comparatively small
with respect to the size of A, which can be performed ef-
ficiently. Furthermore, once the approximation has been
built, apart from computing integrals, we have a way of
accessing in an approximate way an exponential num-
ber of points with a memory cost of O(Nnχ2), where
χ = maxk |I(k)| and n = maxk |{ik}|. The problem hence
becomes finding which are the best sets {I(k)}, {J (k)}.

IV. ALGORITHMS FOR FINDING THE
CROSSES.

In this section we give an overview of two algorithms
whose objective is to find the sets {I(k)}, {J (k)} that re-
sult in a good TT-Cross approximation. Starting from
an initial guess of sets, both algorithms work sequen-

tially with the matrices A(I(k−1)
s ik, ik+1J (k+1)

l) to find

the best index sets I(k), J (k) for k = 1, . . . , N − 1. For
coherence purposes, we introduce the dummy index sets
I(0) = ∅ and J (0) = ∅ to define these 2-site blocks in the
ends of the network in the same way.

Treball de Fi de Grau 3 Barcelona, June 2024

Tensor network based integration methods Pau Torrente Badia

C(k)I(k−1)
s ik ik+1J (k+1)

l
⇒
SVD

UI(k−1)
s ik

S
V ik+1J (k+1)

l

⇒I(k) = Maxvol (UI(k−1)
s ik rk)

FIG. 4: Diagrammatic description of the two steps that play
in an index update performed by the TTRC algorithm in a
left-to-right sweep. The tensor labeled as C(k) refers to the

matrix A(I(k−1)
s ik, ik+1J (k+1)

l).

A. The TTRC algorithm.

The first algorithm we present is the tensor train renor-
malization cross (TTRC) algorithm, first introduced in
Ref. [8]. The algorithm starts off with an initial crude
approximation to the sets and updates them doing sweeps
from left to right and back. The update process of the in-
dex sets proceeds in two steps. After computing the ma-

trix A(I(k−1)
s ik, ik+1J (k+1)

l) an SVD is performed. With
this, we are able to capture the correlations between the
multi-indices i≤k and i>k and determine the TT-rank be-
tween sites k and k+1. At this step this bond dimension
can also be truncated in a controlled way if needed with
minimal error.

After this decomposition has been performed, the
Maxvol algorithm is applied to the left (right) output
block of the SVD in a left-to-right (right-to-left) sweep.
With this, we obtain the best set of indices I(k) (J (k)),
of size rk, out of the total I(k−1)⊗{ik} ({ik+1}⊗J (k+1))
which formed the original matrix. Fig. 4 displays these
two steps in diagrammatic notation for the sake of clar-
ity. A more detailed description of the algorithm can be
found in Algorithm 1 of [8].

B. The Greedy-Cross algorithm

The second algorithm we present is the Greedy-Cross
(GC) algorithm, which follows a greedy approach for
finding the best set of crosses {I(k)}, {J (k)}. Start-
ing off from just a single multi-index in the index sets,
the algorithm sweeps back and forth the tensor train
adding a new element to I(k) and J (k) at each step
improving the approximation. To do so, the matrix

A(I(k−1)
s ik, ik+1J (k+1)

l) is computed as in the TTRC al-
gorithm. We will denote this matrix by A. On the other
hand, the index sets I(k),J (k) give its matrix cross ap-
proximation. If we denote by S and K the positions
of the elements of I(k) and J (k) in the ordered sets
I(k−1)⊗{ik}, {ik+1}⊗J (k+1) all the entries of A can be
obtained from:

A(l, r) ≈ Ã(l, r) = A(l,K) [A(S,K)]
−1 A(S, r) (14)

Since we know the cross decomposition has the interpo-
lating property, see Eq. (6), the error in the entries with
l ∈ S or r ∈ K is zero. Consider now the multi-indices

i≤k and i>k associated with the row and column where

the error |A − Ã| is the largest. If we add these crosses
to I(k), J (k), the respective row and column will now
also be interpolated in an exact way. The approach then
is greedy in the sense that it assumes that the previous
crosses are good enough, and just adds the multi-indices
that improve the approximation the most at the current
step. More details about this algorithm, along with more
sophisticated variants that focus on parallelization can be
found in Ref. [7] and Ref. [1].

V. BENCHMARKING USING INTEGRALS OF
ISING TYPE

To benchmark the TTRC and GC algorithms we use,
as Ref. [7], the following integral of Ising type:

Cn = 2

∫ 1

0

· · ·
∫ 1

0

dt2 . . . dtn
(1 +

∑n
k=2 wk) (1 +

∑n
k=2 vk)

wk :=

k∏
i=2

ti ; vk :=

n∏
i=k

ti (15)

The reasons for using this integral are three. First of
all, it treats a function which is not separable, which
means that the TT-Cross decomposition won’t be trivial
in terms of correlations. Secondly, the values of Cn have
been computed to very high precision in Ref. [2]. And at
last, it is of physical interest as it is involved in the study
of 2-D spin lattices, as discussed in the same paper. We
have tested the TTRC and GC algorithms against C64,
using a Gauss-Legendre quadrature rule with 5 points per
variable, ensuring a high degree of precision with very few
points. Their performance has been compared against a
MC method computing the same integral as:

Cn ≈ CMC
n =

1

Neval

Neval∑
i=1

f(xi
1, . . . , x

i
n) ; xi

k ∈ U [0, 1]

(16)
The implementation itself of the algorithms in Python
can be found in the py ttcross package [9], which is the
major outcome of this work.
Fig. 5 shows the error with respect to the number of

calls to the integrated function. For the GC, the integral
is computed after each site update. For the TTRC, the
points shown correspond to running the algorithm until
convergence for varying maximum TT-ranks. Since the
cross sets are updated independently, depending on the
sweep direction, they are not of equal size at each update
and the integral cannot be computed at each step unlike
GC, as A(I(k),J (k)) cannot be inverted.
From the figure we can see how the TT-Cross based

methods start off with a slow convergence, but once they
pick up enough crosses, they converge very rapidly, much
faster than the MC method. Values for these two meth-
ods are not shown for more function calls due to the
implementation not working with high enough floating

Treball de Fi de Grau 4 Barcelona, June 2024

Tensor network based integration methods Pau Torrente Badia

FIG. 5: Error committed by a MC method and the TTRC
and GC interpolations on evaluating the integral C64 as a
function of the number of calls to the integrated function.
The GC data correspond to adding new crosses up to a TT-
rank of 6. The TTRC data correspond to running the same
interpolating process with a maximum TT-rank from 1 to 6.

point precision. Once the tensor train gets large enough,
errors start to propagate rapidly, resulting in the algo-
rithm reaching a plateau first, as can be seen in the GC
data, and then diverging. This later behaviour is not
shown in the figure. These results match with what is
shown in Ref. [1], where a more in-depth analysis is per-
formed varying the precision, showing that the TT-Cross
framework is able to saturate it quickly and that by scal-
ing it, the integral value is also able to reach many more
correct decimals using a fraction of the resources used.

VI. CONCLUSIONS

In this work we have studied the TT-Cross frame-
work as an alternative to MC techniques for highly-

dimensional integration. From the results shown, it is
clear that the TTRC and GC algorithms are able to pro-
duce a TT-Cross decomposition that results in an inte-
gral error that scales better with the number of function
calls than the MC approach. This analysis could be ex-
tended in future work to theories with sign problems to
obtain quantitative results out of reach for MC methods.
Apart from this, the core part of this project has been the
development of the py ttcross Python package [9], which
includes several interpolation and integration tools based
on the two algorithms showcased in this paper. Although
a performance oriented implementation of the GC algo-
rithm is presented in Ref. [1], the py ttcross package is,
to our knowledge, the first package available that encom-
passes both interpolation and integration using multiple
cross-finding algorithms. On top of that, the language
choice, along with the large focus on ease of use and
readability with which it has been built lower the entry
barrier to these methods as much as possible. Nonethe-
less, taking into account the capabilities observed from
the TT-Cross based algorithms and the limitations of the
current implementation, a reasonable continuation of the
project would be to translate the package to a more per-
formance oriented language, such as Julia or Fortran for
example, focusing on floating point precision, while keep-
ing the code easy to understand and use.

Acknowledgments

First and foremost, I want to thank my supervisor Dr.
Stefano Carignano for his support and guidance and Dr.
Luca Tagliacozzo for his ideas and insights at the begin-
ning of the project. I would also like to thank my col-
league Adrià Blanco for our very fruitful conversations
and my family for their support. Lastly, I want to thank
Carla Gil for always being there.

[1] S. Dolgov and D. Savostyanov, “Parallel cross interpo-
lation for high-precision calculation of high-dimensional
integrals,” Computer Physics Communications, vol. 246,
p. 106869, 2020.

[2] D. H. Bailey, J. M. Borwein, and R. E. Crandall, “Integrals
of the ising class,” Journal of Physics A: Mathematical and
General, vol. 39, p. 12271, sep 2006.

[3] R. Orús, “Tensor networks for complex quantum sys-
tems,” Nature Reviews Physics, vol. 1, p. 538–550, Aug.
2019.

[4] I. Oseledets and E. Tyrtyshnikov, “Tt-cross approxima-
tion for multidimensional arrays,” Linear Algebra and its
Applications, vol. 432, no. 1, pp. 70–88, 2010.

[5] J. J. Bartholdi, “A good submatrix is hard to find,” Op-
erations Research Letters, vol. 1, no. 5, pp. 190–193, 1982.

[6] S. Goreinov, I. Oseledets, D. Savostyanov, E. Tyrtysh-
nikov, and N. Zamarashkin, “How to find a good subma-
trix,” Matrix Methods: Theory, Algorithms and Applica-
tions, 04 2010.

[7] D. V. Savostyanov, “Quasioptimality of maximum-volume
cross interpolation of tensors,” Linear Algebra and its Ap-
plications, vol. 458, p. 217–244, Oct. 2014.

[8] D. Savostyanov and I. Oseledets, “Fast adaptive interpo-
lation of multi-dimensional arrays in tensor train format,”
pp. 1–8, 2011.

[9] P. Torrente, “py ttcross: A python package for tt-
cross interpolation and integration.” https://github.

com/pau-torrente/py_ttcross.

Treball de Fi de Grau 5 Barcelona, June 2024

https://github.com/pau-torrente/py_ttcross
https://github.com/pau-torrente/py_ttcross

Tensor network based integration methods Pau Torrente Badia

FIG. A1: TT-Cross interpolation of the function given in Eq. (A3) built by the TTRC (in blue) and the GC (in red) algorithms,
for four different values of maximum TT-rank. The black curves depict the exact values of the function.

Appendix A: Interpolation of one dimensional
functions

Here we briefly present the Quantics Tensor Train
(QTT) interpolation of a function [8], as it is also a
tool present in the py ttcross package [9] that allows us
to visualize the interpolating property. The main idea
behind it is the transformation of a discretized variable
xi =

L
2d

(
i+ 1

2

)
, i = 0, . . . , 2d − 1 into a binary grid:

i ↔ (i1, . . . , id), i =

d∑
p=1

ip2
p−1, ip = 0, 1 (A1)

With this, we can convert a single variate function into
a d-variate one, for example, and apply the TT-Cross
based interpolation algorithms showcased in this work,
getting an exponentially fine discretization. Once the
interpolation has been built, the function can be eval-
uated in the interval [0, L] by converting a given point
into binary in the interpolated interval and performing
the contraction shown in Eq. (13) with weight vectors
given by Eq. (A2).

ωp =

{
(1, 0) if ip = 0

(0, 1) if ip = 1
(A2)

As an example, we apply this procedure to the following
function in the interval [0, 2] with d = 16:

f(x) = |sin(10 log(x+ 1))| e−x (A3)

Fig. A1 shows its interpolation both from the GC and
the TTRC algorithms for 4 different values of maximum
TT-rank. In the top two plots, with max(rk) = 6, 8 we
are able to match the behaviour of the studied function
with almost no discrepancies. The case with max(rk) = 4
does start to show some deviations, and the one with
max(rk) = 2 cannot follow the function’s curve.

This is another clear proof, apart from the error met-
ric of Fig. 5, that the algorithms are able to find the
correct index sets, and that once the TT-Cross approxi-
mation is built with enough good crosses, it is capable of
interpolating the studied function with great accuracy.

Treball de Fi de Grau 6 Barcelona, June 2024

	Introduction
	Tensor networks
	The TT-cross approximation for integration
	Cross decomposition of a matrix
	TT-Cross approximation
	Integrating from the TT-Cross approximation

	Algorithms for finding the crosses.
	The TTRC algorithm.
	The Greedy-Cross algorithm

	Benchmarking using Integrals of Ising type
	Conclusions
	Acknowledgments
	References
	Interpolation of one dimensional functions

