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Abstract: Strong gravitational lensing provides a powerful tool for studying the density profiles
of dark matter halos in massive galaxy clusters. In this work, we apply a strong lensing analysis to a
recent high-resolution JWST observation of a redshift z = 1.605 galaxy (WISE J122651.0+214958.8,
dubbed Cosmic Seahorse). This galaxy is observed in three different images in the sky, two of which
form a highly elongated radial arc near the main galaxy of the foreground galaxy cluster (SDSS
J1226+2149). After observing an Einstein radius of θE = 20.4′′, we obtain a mass-to-light ratio of
Υ ≃ 104Υ⊙ for the main galaxy of the foreground cluster, far beyond the expected values for stellar
systems. We numerically show that NFW profiles with parametric exponents for the foreground
lensing galaxies are able to reproduce the three observed images. The obtained exponents for the
main lensing galaxy are β ≃ 0.7 for the inner region of the mass distribution and γ ≃ 3.4 for the
outer one.

I. INTRODUCTION

One of the direct predictions of the theory of General
Relativity is that strong gravitational fields bend light
rays around them [1]. This gravitational lensing effect
ranges from changing the observed position of stars [2]
to making distant galaxies appear larger, distorted, and
even multiple times in the sky [3], providing valuable in-
formation about both the light source and the foreground
lensing mass distribution.

Information about mass distributions is of remarkable
importance when considering that ∼ 85% of the mass of
the universe is made of dark matter [4], a hypothetical
form of collisionless matter that does not interact with
light and therefore remains invisible to our telescopes.

On large-scale structures such as galaxies and galaxy
clusters, the collisionless dark matter contribution (as op-
posed to the stellar contribution) dominates the mass
density in the outer parts of the structure, and is there-
fore usually referred to as a dark matter halo. Gravita-
tional lensing provides a powerful tool for studying the
properties of dark matter halos, such as their density pro-
files, which is the main interest of this work. Hints on the
nature of dark matter may hide in their density profiles,
especially close to the halo centers.

Numerical N-body simulations using the standard
ΛCDM cosmological model have suggested a halo density
profile with an inner power-law ρ ∼ r−1, and an outer
one ρ ∼ r−3, known as Navarro-Frenk-White (NFW) [5].
This profile is supported by observations of weak lens-
ing in galaxy clusters [6], but rotation curves have in-
stead suggested constant density cores [7]. This core-cusp
problem motivates the further study of density profiles
near the center of dark matter halos.

This work is focused on a recent publicly available im-
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age taken by the James Webb Space Telescope (JWST),
in which a strongly lensed galaxy (dubbed Cosmic Sea-
horse) appears three times in the sky, two of them in the
form of a radially elongated arc near the largest galaxy of
the foreground galaxy cluster. The particular position of
the three images is used to estimate a plausible density
profile of the foreground galaxies.

Section II discusses the needed mathematical formal-
ism of gravitational lensing for the work. In Section III,
the observation of the radially elongated image is pre-
sented, and estimations for the foreground galaxy mass
and mass-to-light ratio are computed in Section IV. In
Section V, we present a simple lens model for reproducing
the multiple images of the Cosmic Seahorse observation.

Throughout this work we use a standard flat ΛCDM
cosmological model with Ωm = 0.3, ΩΛ = 0.7 and H0 =
70 km s−1 Mpc−1.

II. GRAVITATIONAL LENSING FORMALISM

The aim of this section is to understand how gravita-
tional lensing theory predicts radially elongated images
(radial arcs), such as the Cosmic Seahorse, and how tan-
gentially elongated images (tangential arcs) allow us to
estimate the foreground galaxy mass. Throughout this
section we will follow [8].

Given a general lensing mass distribution, the relation

between the source angular position (β⃗) and the observed

images (θ⃗), known as the lens equation, under the small-

angle approximation is θ⃗ = β⃗ + α⃗(θ⃗), where α⃗(θ⃗) is the
total deflected angle of a light ray generating an image at

the angular position θ⃗. If the gravitational field is weak
and the mass distribution is thin, the total deflected angle
is linear and the impact position of a light ray is constant
along the lens. General Relativity predicts that, given a

surface mass density distribution Σ(θ⃗), the total deflected
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angle is

α⃗(θ⃗) =
1

π

∫
R2

d2θ⃗′κ(θ⃗′)
θ⃗ − θ⃗′

∥θ⃗ − θ⃗′∥2
with κ(θ⃗) ≡ Σ(θ⃗)

Σcrit
,

(1)

where κ(θ⃗) is the dimensionless surface density and
Σcrit ≡ c2/(4πG) × Ds/(DlDls) is the critical surface
density for generating multiple images in the sky. Ds, Dl

and Dls are the angular diameter distances of the source,
lens, and between lens and source.

Similar to a magnifying glass, gravitational lenses can
also converge light rays and therefore increase the ob-
served flux (S) of a distant source. The observable conse-
quence of this converging effect is a proportional increase
in the angular size (ω) of the images in the sky, while
keeping their surface brightness (I) constant (brightness
theorem). The relation between the observed and intrin-
sic flux of the source is called magnification (µ) and it is
related to the lensing parameters as

µ =
dS

dS0
=

Idω

Idω0
=

d2θ

d2β
=

1

detA
, (2)

where Aij ≡ ∂βi/∂θj is the Jacobian matrix between
source and image position and can be written as

A =

(
1− κ(θ⃗)− γ1(θ⃗) −γ2(θ⃗)

−γ2(θ⃗) 1− κ(θ⃗) + γ1(θ⃗)

)
, (3)

if γ1 ≡ (∂α1/∂θ1 − ∂α2/∂θ2)/2 and γ2 ≡ ∂α1/∂θ2. The
magnification of an image as a function of the lens profile
will then be

µ(θ⃗) =
1

(1− κ(θ⃗))2 − γ1(θ⃗)2 − γ2(θ⃗)2
. (4)

An interesting consequence is that most lens models pre-
dict positions where detA = 0 and therefore where the
magnification formally diverges. This unphysical result
corresponds to the convergence of several light rays to a
single point. Even though there are realistic phenomena
such as the finite size of the source limiting this magnifi-
cation, positions where detA = 0, called critical curves,
still predict high magnification areas and are therefore
of huge importance. The source positions of images ly-
ing on the critical curves are called caustics. Our cases
of interest, radial and tangential arcs, are both exam-
ples of images lying close to the critical curves of the
lens model. Gravitational lensing theory allows us to nu-
merically compute the position of the critical curves and
caustics given a known lens model.

It is now interesting to apply the above reasoning
to a generic polar symmetric mass distribution, i.e.,

κ(θ⃗) = κ(θ). One can show that, in this case, the Ja-
cobian reads detA = (1 − κ̄)(1 + κ̄ − 2κ), where κ̄(θ) is
the enclosed mean dimensionless surface density within
radius θ. From here it follows that the predicted criti-
cal curves are κ̄(θ) = 1 and κ̄(θ) = 2κ(θ) − 1. Because
the direction of image elongation (given by the Jacobian

matrix eigenvector of the vanishing eigenvalue) is in the
first case tangential and radial in the second, the former
are called tangential critical curves and the latter radial
ones.
If a source happens to lie on the tangential caustic, it

will form a circular image on the tangential critical curve
known as an Einstein ring, with a radius called Einstein
radius (θE). From the above condition of tangential crit-
ical curves, it follows that the enclosed mass within θE
is

M = πθ2ED
2
l × Σcrit . (5)

This result allows us to estimate the mass of the main
foreground galaxy in the Cosmic Seahorse observation in
Section IV.
An important example of mass distribution with po-

lar symmetry is the NFW profile, which has the form
ρ(r) = ρ0/[(r/Rs)(1 + r/Rs)

2]. As shown in Figure 1
this distribution can reproduce both radial and tangen-
tial arcs. As previously mentioned, this NFW profile is
supported by dark matter simulations and observations,
and will therefore be the studied model for the Cosmic
Seahorse observation.

FIG. 1: Left: dimensionless surface density (κ) plot for
a NFW mass distribution, with the corresponding caustics
(green) and critical curves (red). A source lying on the star
marker produces images A, B and C. Center: intrinsic surface
brightness plot (arbitrary units) of a circular source. Right:
lensed (observed) surface brightness plot generated by the
circular source. We can clearly identify a tangential (upper
right) and a radial (lower left) arc.

III. COSMIC SEAHORSE OBSERVATION

The main focus of the work is the study of a re-
cent JWST observation [15] of a redshift zS = 1.605
lensed galaxy (WISE J122651.0+214958.8, dubbed Cos-
mic Seahorse) by the redshift zL = 0.435 foreground
cluster SDSS J1226+2149 [9]. The position of the main
galaxy of the foreground cluster in equatorial coordinates
is (α, δ) = (12hr 26m 51.151s,+21◦49′52′′.15). The ob-
served cluster is shown in Figure 2, and we can clearly
identify the lower redshift (bluer) foreground galaxies
from the lensing cluster and the higher redshift (redder)
lensed sources from the background. The Cosmic Sea-
horse red galaxy appears in three different images, two
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of which constitute a radial arc near the main galaxy of
the foreground lensing cluster.

FIG. 2: Composite image of the central area of the
J1226+2149 galaxy cluster, using the F444W, F356W and
F277W NIRCam filters as RGB colors. The three multiple
images from the Cosmic Seahorse galaxy are marked with
green indicators.

IV. MAIN FOREGROUND GALAXY’S MASS
COMPUTATION

As discussed in Section II, the observation of a tan-
gential critical curve allows us to compute the enclosed
mass of a polar symmetric mass distribution within the
Einstein radius (θE) of the critical curve. Even if tan-
gential arcs appear on critical curves only if the source
lies exactly on the caustic, high tangentially magnified
images are close to the critical curve and can be used as
indicators of it.

This is the case of the above presented observation. In
the previous Figure 2, we can identify a background red
galaxy that has been strongly tangentially lensed on the
left side of the Cosmic Seahorse radial arc. We use this
image to estimate the Einstein radius of the mass dis-
tribution, assuming polar symmetry for the foreground
galaxy and that its center coincides with the center of
light. The Einstein radius computation is shown in Fig-
ure 3 and the obtained value is θE ≃ 20.4′′. Knowing
both source and lens redshifts and therefore their an-
gular diameter distances, we use equation (5) to esti-
mate the enclosed mass within θE . The obtained value
is Menclosed ≃ 9.4 × 1013M⊙, which is reasonable when
compared to other existing estimations [10].

It is interesting now to compare the obtained mass
with the total luminosity of the foreground galaxy. It is
common to define the mass-to-light ratio parameter, by
taking the ratio between the mass of a spatial volume
and its luminosity. Stellar systems composed entirely
of stars have typical values for the mass-to-light ratio of

FIG. 3: Tangential critical curve estimation (green dotted
line) from the observation of two tangentially magnified im-
ages (green dots). The obtained Einstein radius is θE = 20.4′′.
The red circle marks the studied galaxy for the total luminos-
ity estimation.

Υ ≡ M/L ∼ 1–10Υ⊙ [11], where Υ⊙ is the solar mass-to-
light ratio. However, volumes with a high dark matter
contribution may have mass-to-light ratios up to Υ ∼
500Υ⊙.
The luminosity estimation can be derived from the

publicly available apparent magnitude (m) of the main
foreground galaxy of mr = 17.70 [12]. Because the light
we detect is a factor (1 + zL) redder than the emitted,
we decide to compare the red filter (658 nm) for the
source with the green one (464 nm) for the solar absolute
magnitude (M) of M⊙ = 4.68 [13]. From the absolute
magnitude definition, the luminosity of the foreground
galaxy can be computed as L/L⊙ = 100(M⊙−M)/5,
whereM = m−5 log10(DL/1 pc)+5 andDL = (1+z)2Dl

is the luminosity distance of the foreground galaxy. The
obtained value for the luminosity of this main foreground
galaxy is L = 3.6× 1011L⊙.

To make a fair comparison with the above computed
mass, we should take into account the rest of the lumi-
nosity enclosed in θE other than the main galaxy. We
estimate this contribution by taking the galaxy marked
with a red circle in Figure 3 as a representative of all ∼
22 smaller galaxies observed. From the publicly avail-
able data (F444W filter), we compute a flux ratio be-
tween the 22 smaller galaxies and the main one of ∼ 1.5.
With a total luminosity within θE of ∼ 2.5L, we obtain a
mass-to-light ratio of Υ ≃ 104Υ⊙, far beyond the range
of stellar systems. This value for the mass-to-light ra-
tio provides a reasonable hint that the total mass of the
system is dominated by non-light-emitting matter, with
collisionless dark matter as the main candidate.

V. NUMERICAL LENS MODELS

In this section we present the methods and results of
finding a plausible lens model (foreground mass distribu-
tion) for reproducing the three main Cosmic Seahorse im-
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ages. We use the publicly available Lenstronomy python
package [14], an open-source package for gravitational
lens modeling. The features of interest for the work
are the image plane construction (lensed images) from
a given lens and source models (Figure 1) and the nu-
merical lens equation solver for a given lens model.

The followed methodology consists of optimizing a
function that compares observations to the predictions
of a given lens and source models. With the goal of test-
ing the robustness of the results, we adopt two different
techniques to define this optimizing function, which we
call source plane (I) and image plane (II) optimization.

Both optimizing algorithms are applied to a lens model
consisting of two generalized NFW profiles for the two
main galaxies of the foreground cluster. Each profile
assumes NFW profiles with parametric inner (β) and
outer (γ) exponents. Each profile reads ρ(r) = ρ0/r

β ×
Rγ

s/(r
2 + R2

s)
(γ−β)/2 and the standard NFW profile is

recovered if β = 1 and γ = 3. In case of favoring the
existance of a core in the center of the profile, we expect
to find β ≃ 0. The algorithm takes as optimizing param-

eters the density proportionality constants (ρ
(1)
0 , ρ

(2)
0 ),

their characteristic radial sizes (R
(1)
s , R

(2)
s ), and their in-

ner and outer exponents (β(1), β(2), γ(1) and γ(2)).

Source plane optimization consists in, given a known
set of multiple images of the same source, finding their
corresponding source positions in a two-dimensional grid
and maximizing the overlap between them. A perfect lens
model would predict that, when solving the lens equation
for each image position, all source positions coincide. In
Figure 4 we show a set of selected image pairs, the im-
ages of each we assume to correspond to the same source.
The criterion for selecting these images is merely obser-
vational, and an improved spectroscopic analysis would
be performed if the required data were available.

FIG. 4: Set of image pairs marked on the composite RGB im-
age, showing the three images of the Cosmic Seahorse galaxy.
All images with circular markers of the same colors are as-
sumed to be multiple images of the same source.

Having computed the total overlap, we run a Nelder-
Mead algorithm to repeat the process until an optimal
set of parameters for the lens model is found. The best
lens model we have found using this method is shown in
Figure 5.

We can see that this optimal lens model reproduces
all three images (predicted image plane) of the Cos-

FIG. 5: Optimal lens model configuration for the source plane
optimization method. The background black and white image
is just a reference indicator. Upper left: dimensionless surface
density (κ) plot for the optimal lens model, with its critical
curves (red) and caustics (green). This model allows us to
construct the source positions (upper right) from the observed
images (lower right) and compare them with the predicted
ones (lower left) from the source and lens models.

mic Seahorse observation. For these results, we have
only used the information of two image pairs (red and
cyan) from Figure 4. Adding more image pairs compli-
cates the reproduction of the Cosmic Seahorse’s top im-
age. The obtained optimal parameters of interest for the
main foreground galaxy (right one of the lens model) are

ρ(1) ≃ 3 × 1016M⊙/Mpc3, R
(1)
s ≃ 0.06 Mpc, and expo-

nents β(1) ≃ 0.7 and γ(1) = 3.4. The optimal lens model
is similar to a standard NFW model with a central cusp
at the origin.

On the other hand, image plane optimization consists
in, given a lens and a source model, generating the pre-
dicted image plane and then computing the differences
to the observed one. A perfect lens model would exactly
reproduce the observed image plane.
We take the whole set of images from Figure 4 to con-

struct the observed image plane. For the predicted image
plane construction, we generate one single light source,
whose position and size are three additional parameters
to optimize. By not generating one source for each ob-
served image pair, we lose information about which im-
ages are multiple of the same source. Adding this in-
formation complicates again the reproduction of the top
Cosmic Seahorse image.
We again run a Nelder-Mead algorithm to find the

optimal lens model for reproducing the observed image
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plane. The optimal lens model configuration, with its
image plane comparison between prediction and obser-
vation, is shown in Figure 6.

FIG. 6: Optimal lens model configuration for the image plane
optimization method. This optimal lens model (upper left)
allows us to construct the predicted image plane (lower left)
from an optimized source position (upper right) and compare
it with the observed image plane (lower right).

The optimal parameters for the main foreground

galaxy are ρ(1) ≃ 1 × 1016M⊙/Mpc3, R
(1)
s ≃ 0.11 Mpc,

and exponents β(1) ≃ 1.0 and γ(1) = 3.9. Again, the
results are compatible with a standard NFW profile.

VI. CONCLUSIONS

The distribution of matter in lensing clusters may con-
tain information about the nature and interaction prop-
erties of dark matter. In this work, we have used a recent
strong lensing observation of a radial arc to estimate the
density profile of the main galaxy of the foreground lens-
ing cluster.

From an observed tangential arc, we have obtained
a mass-to-light ratio for this foreground galaxy of Υ ≃
104Υ⊙. This high value indicates, as expected, that the
total mass is dominated by matter that does not con-
tribute to the galaxy’s luminosity, with collisionless dark
matter as the main candidate.

We have then numerically constructed lens models us-
ing the publicly available Lenstronomy package for re-
producing the observed multiple images and the radial
arc of a background galaxy. Using two different optimiza-
tion methodologies, we can reproduce the three images of
the lensed galaxy by assuming two spherical foreground
distributions with generalized NFW profiles. The results
obtained are consistent with standard NFW profiles.
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