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Effects of Coulomb and isospin symmetry breaking interactions on neutron-skin thickness
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Both the Coulomb interaction and isospin symmetry breaking (ISB) parts of the nuclear interaction break
the isospin symmetry in atomic nuclei. Effects of these two kinds of interaction on properties of atomic nuclei,
especially the mass difference of mirror nuclei and the neutron-skin thickness of N = Z and N �= Z nuclei, are
discussed. It is found that corrections to the Hartree-Fock-Slater approximation for the Coulomb interaction
negligibly affect the neutron-skin thickness, while the charge-symmetry breaking term originating from the
strong interaction might affect it non-negligibly. According to our calculations, the ISB terms other than the
Coulomb interaction affect the estimation of the density dependence of the symmetry energy, L, by about
0–12 MeV using the correlation with the neutron-skin thickness.
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I. INTRODUCTION

The isospin invariance of strong interaction was first pro-
posed by Heisenberg in 1932 [1]. If the isospin symmetry of
the strong interaction is fully valid, the charge symmetry and
the charge independence of nuclear interaction hold. Here,
the former denotes the case that the proton-proton nuclear
interaction vpp is the same as the neutron-neutron interaction
vnn, and the latter denotes the case that the T = 1 channel of
the proton-neutron nuclear interaction vpn is identical to the
average of vpp and vnn for each L, S, ... channel. However,
the isospin symmetry of atomic nuclei is partially broken
due to the isospin symmetry breaking (ISB) terms of nu-
clear interaction together with the Coulomb interaction. The
charge-symmetry breaking (CSB) term of nuclear interaction
originates from the mass difference of protons and neutrons
and the π0-η and ρ0-ω meson-exchange processes, and the
charge-independence breaking (CIB) term of nuclear inter-
action is mainly due to the mass difference between π0 and
π± [2]. These two terms are defined by

vCSB ≡ vnn − vpp, (1a)

vCIB ≡ vpn − vnn + vpp

2
, (1b)
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respectively. Effects of the ISB terms of the nuclear interac-
tion on the nuclear properties have been discussed [3–26], as
well as impact on neutron-star mass-radius relation [27].

The Coulomb interaction affects properties of the nuclear
structure, and breaks the isospin symmetry of the atomic nu-
clei [5,28]. The ISB terms of nuclear interaction and Coulomb
interaction are of different origins. These effects are, in gen-
eral, measured as a net effect, while the Coulomb interaction
plays a major role. To disentangle these effects from the ex-
perimental data, it is necessary to understand which quantities
are sensitive to the ISB or Coulomb interaction. Hence, sen-
sitivity studies for the Coulomb and the ISB terms of nuclear
interactions are indispensable.

Here, a key issue to discuss such sensitivity studies is the
accuracy of the calculation, since the ISB terms of the nuclear
interaction are only a tiny part of the whole. To evaluate
the contribution of the Coulomb interaction to nuclear prop-
erties, recently, a high-accuracy treatment of the Coulomb
interaction for nuclear structure calculations was developed
[29–31]. In this series of works, the density gradient effect
was considered for the Coulomb exchange energy density
functional (EDF) using the generalized gradient approxima-
tion (GGA). On top of that, the proton and neutron electric
form factors were taken into account self-consistently, and
the vacuum polarization for the Coulomb interaction was
considered.

The ISB terms of the nuclear interactions have also been
included in the Skyrme EDF [32] in Refs. [22,33–35]. We
discussed a possibility to determine the CSB strength of the
Skyrme interaction referring to ab initio calculations [36].
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This paper aims to a complete sensitivity study of the nu-
clear EoS and the neutron-skin thickness to the Coulomb and
ISB terms. In the previous Letter [37], we discussed the effect
of ISB terms on the charge-radii difference of mirror nuclei
�Rch and, accordingly, on estimating the density dependence
of the symmetry energy, L, using �Rch. In this paper, we
will discuss similar analyses for different quantities related
to isospin symmetry breaking: the neutron-skin thickness and
the mass differences of mirror nuclei. The ISB effect on the
difference between the calculated charge radius of 40Ca and
that of 48Ca, where it was claimed that such difference is
related to the symmetry energy of an employed EDF [38], will
also be discussed.

This paper is organized as follows. In Sec. II, effects of the
ISB terms on nuclear matter properties will be discussed. In
Sec. III, the theoretical framework will be shown. In Sec. IV,
the sensitivity study of the neutron-skin thickness �Rnp, the
difference between the charge radius of 40Ca and that of 48Ca,

and mass differences of mirror nuclei will be investigated.
The ISB effect on the correlation between the neutron-skin
thickness and the density dependence of the symmetry energy
[39–41] will also be discussed. In Sec. V, we will summarize
this paper.

II. ISOSPIN SYMMETRY BREAKING INTERACTION
AND NUCLEAR EQUATION OF STATE

In this section, the ISB contributions to nuclear matter
properties are discussed. In order to discuss it, first, the energy
density of the Skyrme-ISB interaction is shown. Although
only the leading-order (t0-like) Skyrme-ISB interaction is
considered in our numerical calculations, we will show the
momentum-dependent (t1 and t2-like) Skyrme-ISB contribu-
tions for the EDF here.

The Skyrme CSB and CIB interactions are denoted by

vCSB
Sky (r) =

{
s0(1 + y0Pσ )δ(r) + s1

2
(1 + y1Pσ )[k†2δ(r) + δ(r)k2] + s2(1 + y2Pσ )k† · δ(r)k

}
τz1 + τz2

4
, (2a)

vCIB
Sky (r) =

{
u0(1 + z0Pσ )δ(r) + u1

2
(1 + z1Pσ )[k†2δ(r) + δ(r)k2] + u2(1 + z2Pσ )k† · δ(r)k

}
(a1τ1 · τ2 + a2τz1τz2), (2b)

respectively, in analogy with the isospin-symmetric Skyrme interaction [32,42]

vIS
Sky(r) = t0(1 + x0Pσ )δ(r) + t1

2
(1 + x1Pσ )[k†2δ(r) + δ(r)k2] + t2(1 + x2Pσ )k† · δ(r)k

+ t3
6

(1 + x3Pσ )δ(r)[ρ(R)]α + iW0σ · k† × δ(r)k, (3)

where r = r1 − r2 and R = (r1 + r2)/2. See Ref. [43] for the
standard definitions of the other symbols.

It is worthwhile to discuss the form of the CIB operator.
Three types of the CIB operator—the simple form τz1τz2, the
isotensor form T12 = τ1 · τ2 − 3τz1τz2, and the general form
a1τ1 · τ2 + a2τz1τz2—are widely used [7,22,33,44]. However,
there is no criterion to fix values of a1 and a2 in a1τ1 · τ2 +
a2τz1τz2 from any fundamental theory. For example, as shown
in Appendix A, according to the one-pion exchange nuclear
interaction, a relation a1 = −a2 can be derived; however, the
one-pion exchange interaction gives only a part of the CIB
interaction. The difference between the isotensor and the one-
pion exchange forms can be absorbed in the isospin symmetric
part, i.e., the term τ1 · τ2 itself is isospin symmetric. In order
to keep generality, here, the general form of CIB operator,
a1τ1 · τ2 + a2τz1τz2, is adopted.

It will be shown that if one uses a1 = −a2 for the CIB
operator and does not assume the formalism of the proton-
neutron mixed density functional theory [45–47], the CIB
contributions to the energy density vanishes.1 For other cases,

1This is true even if one takes a Gogny interaction.

whatever form of CIB operator is used, the CIB contribution
to the nuclear matter does not vanish. Therefore, whichever
form of the CIB operator other than a1 = −a2 is used, there
is neither disadvantage nor advantage. Note that the ISB
contributions to the energy density in the formalism of the
proton-neutron mixed density functional theory is given in
Ref. [48].

A. ISB nuclear energy density

Although the ISB nuclear energy density has been shown
in Ref. [49], it is convenient to show it here again to discuss
effects of ISB terms on nuclear matter properties. The nuclear
energy density for the isospin symmetric part is shown in,
for example, Refs. [32,45,50,51]. Here, we do not consider
the proton-neutron mixed density, i.e., ρpn(r) and ρnp(r) are
assumed to be zero.

Using the expectation values of the CSB and CIB opera-
tors, expanding the wave function on a basis where the τ and
τz are good quantum numbers, one obtains

〈pp|τ1 · τ2|pp〉 = 〈nn|τ1 · τ2|nn〉 = 1, (4a)

〈pn|τ1 · τ2|pn〉 = 〈np|τ1 · τ2|np〉 = −1, (4b)

〈pn|τ1 · τ2|np〉 = 2. (4c)
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Accordingly, we get

EH
CSB = s0

4

(
1 + y0

2

)(
ρ2

n − ρ2
p

) + 1

8

[
s1

(
1 + y1

2

)
+ s2

(
1 + y2

2

)]
(ρntn − ρptp)

− 1

32

[
3s1

(
1 + y1

2

)
− s2

(
1 + y2

2

)]
(ρn�ρn − ρp�ρp) − 1

32
(s1y1 + s2y2)

(
J2

n − J2
p

)
, (5a)

Ex
CSB = − s0

4

(
1

2
+ y0

)(
ρ2

n − ρ2
p

) − 1

8

[
s1

(
1

2
+ y1

)
− s2

(
1

2
+ y2

)]
(ρntn − ρptp)

+ 1

32

[
3s1

(
1

2
+ y1

)
+ s2

(
1

2
+ y2

)]
(ρn�ρn − ρp�ρp) + 1

32
(s1 − s2)

(
J2

n − J2
p

)
, (5b)

EH
CIB = (a1 + a2)

{
u0

2

(
1 + z0

2

)
(ρn − ρp)2 + 1

4

[
u1

(
1 + z1

2

)
+ u2

(
1 + z2

2

)]
(ρn − ρp)(tn − tp)

− 1

16

[
3u1

(
1 + z1

2

)
− u2

(
1 + z2

2

)]
(ρn − ρp)(�ρn − �ρp) − 1

16
(u1z1 + u2z2)(Jn − J p)2

}
(5c)

Ex
CIB = (a1 + a2)

{
−u0

2

(
1

2
+ z0

)(
ρ2

n + ρ2
p

) − 1

4

[
u1

(
1

2
+ z1

)
− u2

(
1

2
+ z2

)]
(ρntn + ρptp)

+ 1

16

[
3u1

(
1

2
+ z1

)
+ u2

(
1

2
+ z2

)]
(ρn�ρn + ρp�ρp) + 1

16
(u1 − u2)

(
J2

n + J2
p

)}
, (5d)

where tτ = ∑
j |∇ϕ jτ |2 and Jτ = ∑

j ϕ jτσ × ∇ϕ jτ are the kinetic energy and spin-orbit densities for nucleon of species τ , and
EH and Ex correspond to the Hartree and exchange contributions, respectively.

B. Nuclear equation of state with ISB terms

The nuclear equation of state can be calculated as

ESkyrme

A
(ρ, β ) = εSkyrme(ρ, β )

= ε0(ρ) + ε1(ρ)β + ε2(ρ)β2 + O(β3), (6a)

ε0(ρ) = 3

5

h̄2

2m

(
3π2

2

)2/3

ρ2/3 + 1

8
[3t0 − (a1 + a2)u0(1 + 2z0)]ρ

+ 3

80

(
3π2

2

)2/3

{3t1 + t2(5 + 4x2) − (a1 + a2)[u1(1 + 2z1) − u2(1 + 2z2)]}ρ5/3 + t3
16

ρα+1, (6b)

ε1(β ) = s0

8
(1 − y0)ρ + 1

20

(
3π2

2

)2/3

[s1(1 − y1) + 3s2(1 + y2)]ρ5/3, (6c)

ε2(β ) = 1

3

h̄2

2m

(
3π2

2

)2/3

ρ2/3 − 1

8
[t0(1 + 2x0) − 3(a1 + a2)u0]ρ

− 1

24

(
3π2

2

)2/3

{3t1x1 − t2(4 + 5x2) − (a1 + a2)[u1(4 − z1) + u2(8 + 7z2)]}ρ5/3 − t3
48

(1 + 2x3)ρα+1, (6d)

where ρ = ρn + ρp and β = (ρn − ρp)/ρ. It is obviously
found that the CIB term contributes to the isoscalar term
and β2 term, while the CSB term generates β term. Here,
ESkyrme is the Skyrme EDF, which also includes the CSB and
CIB contributions [Eq. (5)], as well as the ordinary isospin
symmetric part.

If one does not consider the CSB term, ε1 ≡ 0 holds; ac-
cordingly, the symmetry energy εsym can be simply defined by
εsym(ρ) = ε2(ρ), which is the usual definition. Once the CSB
term is introduced, ε1 term appears and there can be several

possible definitions of εsym: εsym is defined by εsym(ρ) =
1
2

∂2ε(ρ,β )
∂β2 |β=0 or by εsym(ρ) = ε(ρ, 1) − ε(ρ, 0). As discussed

in Ref. [37], the latter definition

εsym(ρ) = ε(ρ, 1) − ε(ρ, 0)

� ε1(ρ) + ε2(ρ) (7)

leads to the straightforward extension of the relation be-
tween the pressure of neutron matter at the saturation density,
P(ρsat, 1), and the density dependence of symmetry energy,
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L, as P(ρsat, 1) = Lρsat/3. The approximation of Eq. (7) is justified around the saturation density since the terms higher order
than β2 are small.

EoS parameters εsat, K∞, J , L, and Ksym and their extensions to ISB terms are defined by [52]

ε0(ρ) = εsat + εCIB
sat + 1

2

(
K∞ + KCIB

∞
)(ρ − ρsat

3ρsat

)2

+ . . . , (8a)

εsym(ρ) = (J + JCIB + JCSB) + (
L + LCIB + LCSB

)(ρ − ρsat

3ρsat

)
+ 1

2

(
Ksym + KCIB

sym + KCSB
sym

)(ρ − ρsat

3ρsat

)2

+ . . . , (8b)

where the CSB contribution to εsat and K∞ are zero. These EoS parameters read

εsat = 3

5

h̄2

2m

(
3π2

2

)2/3

ρ
2/3
sat + 3

8
t0ρsat + 3

80

(
3π2

2

)2/3

[3t1 + t2(5 + 4x2)]ρ5/3
sat + t3

16
ρα+1

sat , (9a)

εCIB
sat = −1

8
(a1 + a2)u0(1 + 2z0)ρsat − 3

80

(
3π2

2

)2/3

(a1 + a2)[u1(1 + 2z1) − u2(1 + 2z2)]ρ5/3
sat , (9b)

K∞ = −6

5

h̄2

2m

(
3π2

2

)2/3

ρ
2/3
sat + 3

8

(
3π2

2

)2/3

[3t1 + t2(5 + 4x2)]ρ5/3
sat + 9

16
t3α(α + 1)ρα+1

sat , (9c)

KCIB
∞ = −3

8

(
3π2

2

)2/3

(a1 + a2)[u1(1 + 2z1) − u2(1 + 2z2)]ρ5/3
sat , (9d)

J = 1

3

h̄2

2m

(
3π2

2

)2/3

ρ
2/3
sat − t0

8
(1 + 2x0)ρsat − 1

24

(
3π2

2

)2/3

[3t1x1 − t2(4 + 5x2)]ρ5/3
sat − t3

48
(1 + 2x3)ρα+1

sat , (9e)

JCIB = 3

8
(a1 + a2)u0ρsat + 1

24

(
3π2

2

)2/3

(a1 + a2)[u1(4 − z1) + u2(8 + 7z2)]ρ5/3
sat , (9f)

JCSB = s0

8
(1 − y0)ρsat + 1

20

(
3π2

2

)2/3

[s1(1 − y1) + 3s2(1 + y2)]ρ5/3
sat , (9g)

L = 2

3

h̄2

2m

(
3π2

2

)2/3

ρ
2/3
sat − 3

8
t0(1 + 2x0)ρsat − 5

24

(
3π2

2

)2/3

[3t1x1 − t2(4 + 5x2)]ρ5/3
sat − t3

16
(1 + 2x3)(α + 1)ρα+1

sat , (9h)

LCIB = 9

8
(a1 + a2)u0ρsat + 5

24

(
3π2

2

)2/3

(a1 + a2)[u1(4 − z1) + u2(8 + 7z2)]ρ5/3
sat , (9i)

LCSB = 3

8
s0(1 − y0)ρsat + 1

4

(
3π2

2

)2/3

[s1(1 − y1) + 3s2(1 + y2)]ρ5/3
sat , (9j)

Ksym = −2

3

h̄2

2m

(
3π2

2

)2/3

ρ
2/3
sat − 5

12

(
3π2

2

)2/3

[3t1x1 − t2(4 + 5x2)]ρ5/3
sat − 3

16
t3(1 + 2x3)α(α + 1)ρα+1

sat , (9k)

KCIB
sym = 5

12

(
3π2

2

)2/3

(a1 + a2)[u1(4 − z1) + u2(8 + 7z2)]ρ5/3
sat , (9l)

KCSB
sym = 1

2

(
3π2

2

)2/3

[s1(1 − y1) + 3s2(1 + y2)]ρ5/3
sat , (9m)

respectively.
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The pressure of nuclear matter reads

P(ρ, β ) = ρ2 ∂εSkyrme(ρ, β )

∂ρ

�
{

2

5

h̄2

2m

(
3π2

2

)2/3

ρ5/3 + 1

8
[3t0 − (a1 + a2)u0(1 + 2z0)]ρ2

+ 1

16

(
3π2

2

)2/3

{3t1 + t2(5 + 4x2) − (a1 + a2)[u1(1 + 2z1) − u2(1 + 2z2)]}ρ8/3 + t3
16

(α + 1)ρα+2

}

+
{

s0

8
(1 − y0)ρ2 + 1

12

(
3π2

2

)2/3

[s1(1 − y1) + 3s2(1 + y2)]ρ8/3

}
β

+
{

2

9

h̄2

2m

(
3π2

2

)2/3

ρ5/3 − 1

8
[t0(1 + 2x0) − 3(a1 + a2)u0]ρ2 − 5

72

(
3π2

2

)2/3

×{3t1x1 − t2(4 + 5x2) − (a1 + a2)[u1(4 − z1) + u2(8 + 7z2)]}ρ8/3 − t3
48

(α + 1)(1 + 2x3)ρα+2

}
β2, (10)

where the higher-order terms than β2 are neglected. The pressure of the pure neutron matter at the saturation density reads

P(ρsat, 1) �
{

s0

8
(1 − y0)ρ2

sat + 1

12

(
3π2

2

)2/3

[s1(1 − y1) + 3s2(1 + y2)]ρ8/3
sat

}

+
{

2

9

h̄2

2m

(
3π2

2

)2/3

ρ
5/3
sat − 1

8
[t0(1 + 2x0) − 3(a1 + a2)u0]ρ2

sat − 5

72

(
3π2

2

)2/3

×{3t1x1 − t2(4 + 5x2) − (a1 + a2)[u1(4 − z1) + u2(8 + 7z2)]}ρ8/3
sat − t3

48
(α + 1)(1 + 2x3)ρα+2

sat

}

= L + LCIB + LCSB

3
ρsat. (11)

The saturation density ρsat, which is defined by P(ρsat, 0) = 0, satisfies

2

5

h̄2

2m

(
3π2

2

)2/3

ρ
5/3
sat + 1

8
[3t0 − (a1 + a2)u0(1 + 2z0)]ρ2

sat + 1

16

(
3π2

2

)2/3

× {3t1 + t2(5 + 4x2) − (a1 + a2)[u1(1 + 2z1) − u2(1 + 2z2)]}ρ8/3
sat + t3

16
(α + 1)ρα+2

sat � 0, (12)

where the approximation comes from Eq. (10) and is correct
up to β2. This equation implies that the saturation density ρsat

itself is changed due to the CIB term. Effects of ISB terms
to the saturation density and EoS parameters are discussed in
Sec. IV A.

III. EDFS OF ISB AND COULOMB INTERACTIONS

To calculate the density and total energy, the self-consistent
nuclear density functional theory [53–58] is used. In nuclear
density functional theory including the case of Skyrme EDFs,
the ground-state energy is written as

Egs = T0 + EIS[ρp, ρn] + ECSB[ρp, ρn]

+ ECIB[ρp, ρn] + ECoul[ρch], (13)

where T0, EIS, ECSB, ECIB, and ECoul are the Kohn-Sham
kinetic energy, the isospin symmetric, CSB, CIB, and the
Coulomb EDFs, respectively. The proton and neutron density
distribution are denoted by ρp and ρn, respectively. The defi-

nition of the charge density distribution ρch will be discussed
in the next section.

A. Nuclear part

In SHF, the isospin symmetric nuclear term EIS is the
standard Skyrme EDF [32,50]. In this paper, we mainly use
the SAMi EDF [59] and the SAMi-J EDF family [60]. In
addition, we also use the SAMi-ISB EDF [22]. Note that the
SAMi-ISB EDF includes ECSB and ECIB as well; we call the
SAMi-ISB EDF without ISB terms, as the “SAMi-noISB”
EDF to avoid any confusion with the SAMi EDF without
ISB terms. The EIS of SAMi-noISB EDF is different from
that of the original SAMi EDF, since EIS, ECSB, and ECIB

are optimized altogether simultaneously, although the same
protocol was adopted. In the original papers of these EDFs
[22,59], only limited digits are shown. However, since we will
discuss details of numerical results, more digits are demanded
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to achieve higher accuracy. The precise values of the parame-
ters of SAMi and SAMi-ISB EDFs are shown in Appendix B.

For the ISB terms of nuclear part, ECSB and ECIB, we
adopt the SAMi-ISB EDF, whose forms are the leading-
order Skyrme-ISB interaction, i.e., s1 = s2 = u1 = u2 = 0 in
Eqs. (2), with a1 = 0 and a2 = 1/2. The CSB and CIB EDFs,
respectively, read

ECSB[ρp, ρn] = s0(1 − y0)

8

∫
{[ρn(r)]2 − [ρp(r)]2} dr, (14)

ECIB[ρp, ρn] = u0(1 − z0)

8

∫
{[ρn(r)]2 + [ρp(r)]2} dr

− u0(2 + z0)

4

∫
ρn(r)ρp(r) dr (15)

with y0 = z0 = −1.

B. Coulomb part

The Coulomb part ECoul is, in general, divided into four
terms, the Coulomb Hartree term ECH, the Coulomb ex-
change term ECx, the vacuum polarization term EVP, and
the electromagnetic spin-orbit term EEMSO [31]. Note that
many-body effects of the Coulomb interaction, namely, the
Coulomb correlation [29,61–63], are not considered in this
paper and left for future perspectives. We start from the
Hartree-Fock-Slater approximation [64,65], i.e., the Coulomb
LDA exchange EDF for ECx with EVP ≡ 0 and EEMSO ≡ 0,
together with the point-particle approximation ρch ≡ ρp. On
top of the Hartree-Fock-Slater approximation, in order to see
effects of the Coulomb interaction, the precise treatment of the
Coulomb interaction—the GGA, the proton finite-size effect,
the neutron finite-size effect, and the vacuum polarization
EVP—is introduced step by step as proposed in Ref. [31]. We
use abbreviations “NoEx,” “LDA,” “GGA,” “p-fin,” “pn-fin,”
and “All” for

ENoEx
Coul = ECH[ρp], (16a)

ELDA
Coul = ECH[ρp] + ELDA

Cx [ρp], (16b)

EGGA
Coul = ECH[ρp] + EGGA

Cx [ρp], (16c)

E p-fin
Coul = ECH

[
ρ

p-fin
ch

] + EGGA
Cx

[
ρ

p-fin
ch

]
, (16d)

E pn-fin
Coul = ECH

[
ρ

pn-fin
ch

] + EGGA
Cx

[
ρ

pn-fin
ch

]
, (16e)

EAll
Coul = ECH

[
ρ

pn-fin
ch

] + EGGA
Cx

[
ρ

pn-fin
ch

] + EVP[ρp], (16f)

respectively. Here, ELDA
Cx and EGGA

Cx are the Coulomb exchange
EDFs in the LDA and GGA,

ELDA
Cx [ρ] = −3e2

4

(
3

π

)1/3 ∫
[ρ(r)]4/3 dr, (17a)

EGGA
Cx [ρ] = −3e2

4

(
3

π

)1/3 ∫
F (s(r))[ρ(r)]4/3 dr, (17b)

respectively. In this paper, we use the modified Perdew-Burke-
Ernzerhof GGA enhancement factor [66]

F (s) = 1 + κ − κ

1 + λμs2/κ
, (18a)

s = |∇ρ|
2kFρ

, (18b)

kF = (3π2ρ)1/3, (18c)

μ = 0.21951, (18d)

κ = 0.804, (18e)

with λ = 1.25 [30], which is determined to reproduce the
exact-Fock energy at the level of the point-particle approxima-
tion. Here, ρ

p-fin
ch and ρ

pn-fin
ch are charge densities in which only

proton finite size and both proton and neutron finite size are
considered, respectively. They are defined in the momentum
space as

ρ̃
p-fin
ch (q) = G̃Ep(q2)ρ̃p(q), (19a)

ρ̃
pn-fin
ch (q) = G̃Ep(q2)ρ̃p(q) + G̃En(q2)ρ̃n(q)

= ρ̃ch(q), (19b)

respectively, where ρ̃(q) is the Fourier transform of the den-
sity in the coordinate representation ρ(r). In this paper, we
only consider the electric form factors of nucleons, G̃Eτ (τ =
p, n), and use the form factors obtained by Friedrich and
Walcher [67]. We will use ρch to calculate the Coulomb energy
only: only the electric form factors are considered in Eq. (19)
and effects of the magnetic form factors are considered pertur-
batively as the electromagnetic spin-orbit interaction. Since
the vacuum polarization is weak compared to the Coulomb
Hartree and exchange terms, the finite-size effect on the vac-
uum polarization is not considered [29]. On top of “All,” the
electromagnetic spin-orbit term EEMSO is considered perturba-
tively, which is abbreviated as “All + EMSO.” Since EEMSO is
considered at first-order perturbation theory, it does not affect
the density distribution, i.e., charge radius or �Rnp.

C. Calculation setup

All the terms shown above have been implemented in the
calculation code SKYRME_RPA [68]. The spherical symmetry
is assumed and the pairing correlation is neglected in the
calculation, since we focus on only the doubly magic nuclei.
A meshed box of 0.1 fm × 150 is used.

IV. NUMERICAL RESULTS AND DISCUSSION

This section is devoted to show numerical results: ISB
effects on nuclear matter properties and the sensitivity study to
the Coulomb interaction and the ISB strength dependence of
the following physical observables—the neutron-skin thick-
ness, the difference between the charge radius of 40Ca and that
of 48Ca, and mass differences of mirror nuclei of 48Ca - 48Ni
isobars. For the first check, we select 16O, 40Ca, 48Ca, 48Ni,
and 208Pb as examples to study the neutron-skin thickness.

A. Nuclear matter properties

The parameter sets of SAMi and SAMi-ISB EDFs are
optimized by using the same protocol. To see more precise
effects of CSB and CIB nuclear matter properties, we switch
on and off CSB and CIB terms of SAMi-ISB in Table I.
The saturation density ρsat and EoS parameters εsat, J , and L
defined in Sec. II are calculated by SAMi-noISB, SAMi-CIB,
SAMi-CSB, and SAMi-ISB EDFs shown in Table I. To see

064302-6



EFFECTS OF COULOMB AND ISOSPIN SYMMETRY … PHYSICAL REVIEW C 107, 064302 (2023)

TABLE I. The saturation density ρsat and EoS parameters εsat , J , and L calculated by SAMi-noISB, SAMi-CIB, SAMi-CSB, and SAMi-ISB
EDFs. To see the effect of refitting, those by SAMi EDF are also shown.

EDF SAMi SAMi-noISB SAMi-CIB SAMi-CSB SAMi-ISB

EIS SAMi SAMi-noISB SAMi-noISB SAMi-noISB SAMi-noISB
ECIB No No Yes No Yes
ECSB No No No Yes Yes
ρsat (fm−3) 0.1587 0.1613 0.1597 0.1613 0.1597
εsat + εCIB

sat (MeV) −15.9271 −16.0288 −15.7700 −16.0288 −15.7700
J + JCIB + JCSB (MeV) 28.1256 30.8274 31.4337 29.7667 30.3835
L + LCIB + LCSB (MeV) 43.5582 50.0953 52.3624 46.9132 49.2118

the effect of refitting of SAMi and SAMi-noISB, i.e., the
effect of difference of Skyrme parameters, t0−t3, x0–x3, W0,
W ′

0 , and α, results of the original SAMi are also listed. Here,
SAMi-noISB, SAMi-CIB, and SAMi-CSB, respectively, refer
to SAMi-ISB without any ISB terms, only with CIB term, and
only with CSB term. Summary of their abbreviations is also
shown in Table I.

The CIB term makes ρsat smaller and εsat larger, but their
effects are, respectively, less than 0.002 fm−3 and 0.2 MeV,
which are negligible. The refitting effect, i.e., difference
between ρsat and εsat obtained by SAMi and those by SAMi-
noISB, is also quite tiny.

The CIB term makes J + JCIB + JCSB and L + LCIB +
LCSB larger, respectively, by 0.6 MeV and 2.3 MeV and the
CSB term makes them smaller, respectively, by 1.1 MeV
and 3.2 MeV. Effects of these two terms almost cancel each
other, and, eventually, J + JCIB + JCSB and L + LCIB + LCSB

obtained by SAMi-noISB and SAMi-ISB are quite similar.
In contrast, the refitting effect on J and L are, respectively,
2.7 MeV and 6.5 MeV. The refitting effect on L may not be
negligible.

B. Neutron-skin thickness

1. Coulomb term and L parameter

It has been shown that the neutron-skin thickness �Rnp is
related to the density dependence of the symmetry energy of
nuclear matter L [39–41,69,70]. First, we show the sensitivity
study of the L parameter on the Coulomb part of the EDF.
In this calculation, the ISB terms are not considered, i.e.,
ECSB ≡ 0 and ECIB ≡ 0. For the Coulomb part ECoul, we adopt
NoEx, LDA, GGA, p-fin, pn-fin, and All, which are defined
in Eqs. (16).

All the calculations are performed with the SAMi
EDF and the SAMi-J EDF family. The parameter sets
of the SAMi-J family are determined by the same crite-
ria of the SAMi EDF with a fixed symmetry energy J .
Accordingly, each SAMi-J EDF has different symmetry
parameter L, as shown in Table II. The neutron-skin thickness
�Rnp for various L can be calculated using SAMi and SAMi-J
EDFs, and the data are fitted to

�Rnp ≡ Rn − Rp = a + bL, (20)

i.e., the same as Ref. [40], where Rn and Rp are the root-mean-
square radii of the neutron and proton density distributions,
respectively.

Panel (a) of Figs. 1–5 shows the neutron-skin thick-
ness �Rnp as a function of the symmetry parameter L for
16O, 40Ca, 48Ca, 48Ni, and 208Pb, respectively. The pen-
tagon, circle, square, up-triangle, down-triangle, and diamond
symbols show the results of NoEx, LDA, GGA, p-fin,
pn-fin, and All, respectively. Using the data, a and b in
Eq. (20) are determined as shown in Table III. Panel (b)
of Figs. 1–5 shows the difference between the neutron-
skin thickness �Rnp calculated by these Coulomb EDFs
and that by the Coulomb LDA EDF. As will be discussed
later, the treatment of the Coulomb interaction scarcely af-
fects the neutron-skin thickness �Rnp. The experimental
values of �Rnp for 40Ca (�Rnp = −0.010+0.022

−0.023 fm [71]),
48Ca (0.168+0.025

−0.028 fm [71] and 0.121 ± 0.050 fm [72]), and
208Pb (�Rnp = 0.211+0.054

−0.063 fm [73], 0.283 ± 0.071 fm [74],
and the reanalyzed data of PREX-II experiment �Rnp =
0.190 ± 0.020 fm [75]) are also shown as vertical lines in
Figs. 2, 3, and 5, respectively.

First, let us compare the L dependence of �Rnp among
all the calculated nuclei. In N = Z nuclei, the neutron-skin
thickness �Rnp is almost independent of the slope parame-
ter L, because b is small [O(10−5) MeV fm−1]. In contrast,
in N > Z nuclei, the neutron-skin thickness �Rnp has a
strong L dependence as mentioned in Refs. [40,41] with b �
O(10−3) MeV fm−1. Moreover, as seen in 48Ca and 48Ni, the
values b of the mirror nuclei have almost the same absolute
value but opposite signs. In contrast, the absolute value a
for 48Ni is almost twice of that for 48Ca, which is quite a
significant difference considering the isospin symmetry of the

TABLE II. The saturation density ρsat , the symmetry energy J ,
and its slope L of the SAMi EDF [59] and the SAMi-J family [60].

EDF ρsat (fm−3) J (MeV) L (MeV)

SAMi-J27 0.1595 27 30.0001
SAMi-J28 0.1587 28 39.7416
SAMi-J29 0.1579 29 51.6040
SAMi-J30 0.1571 30 63.1784
SAMi-J31 0.1563 31 74.3683
SAMi-J32 0.1555 32 85.1014
SAMi-J33 0.1548 33 95.4072
SAMi-J34 0.1542 34 105.3074
SAMi-J35 0.1537 35 114.9543
SAMi 0.1587 28.1256 43.5582
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FIG. 1. (a) Neutron-skin thickness �Rnp as a function of
the symmetry parameter L for 16O. The dash-dash-dotted, solid,
long-dashed, dashed, dash-dotted, and dash-dot-dotted lines with
pentagon, circle, square, up-triangle, down-triangle, and diamond
symbols show the results without Coulomb exchange (NoEx), of
Coulomb LDA and Coulomb GGA in point-particle approximation
(LDA and GGA), of Coulomb GGA with proton and proton-neutron
finite-size effects (p-fin and pn-fin), and of Coulomb GGA with
proton-neutron finite-size effects and the vacuum polarization (All),
respectively. (b) Change of �Rnp from that of the Coulomb LDA
EDF.

nuclear interaction. In these calculations in Figs. 1–5, the ISB
terms of the nuclear interaction are not considered, and the
effects of the ISB terms of the nuclear interaction are left for
the next section. Note that negative values of b in 16O, 40Ca,
and 48Ni indicate proton skins, instead of neutron skins. The
detailed discussion of the origin of the correlation between
�Rnp and L can be found in several papers in the literature,
e.g., in Refs. [39,76]. Note that the mean-field calculation
sometimes underestimates the isospin impurity [77–79].

Next, we recognize a clear dependence on the treatment
of the Coulomb interaction in the value a, i.e., in the abso-
lute value of �Rnp. Even if the treatment of the Coulomb
interaction is changed, the L dependence of �Rnp is almost
unchanged, i.e., b is almost constant. This is due to the fact
that, in the atomic nuclei, the nuclear interaction EIS dom-
inates and the gross structure of ρp and ρn are determined
by EIS. The subdominant Coulomb interaction mainly affects
proton distribution, and thus Rp, but its effect on Rp is less
than 0.01 fm order. That is, the Coulomb interaction changes
the absolute value, and thus a, but it hardly changes the slope
b. This is the same as the charge-radii difference of mirror
nuclei [37]. The fact that the slope parameter b is hardly
changed by the treatment of the Coulomb interaction can
be also understood referring to Ref. [80]. Treatment of the

FIG. 2. The same as Fig. 1 but for 40Ca. The experimental value
of �Rnp = −0.010+0.022

−0.023 fm [71] is shown as a vertical line.
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FIG. 3. The same as Fig. 1 but for 48Ca. The experimental
value of �Rnp = 0.168+0.025

−0.028 fm (RCNP) [71] and 0.121 ± 0.050 fm
(CREX) [72] are shown as vertical lines.
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FIG. 4. The same as Fig. 1 but for 48Ni.
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FIG. 5. The same as Fig. 1 but for 208Pb. The experimental val-
ues of �Rnp = 0.211+0.054

−0.063 fm (RCNP) [73] and 0.283 ± 0.071 fm
(PREX-II) [74] are shown as vertical lines. Reanalyzed data of
PREX-II �Rnp = 0.190 ± 0.020 fm (PREX-II*) [75] is also shown
as a vertical line.

TABLE III. Parameters a and b in Eq. (20). See the text for more
detail.

Nuclei Coulomb a (fm) b (fm MeV−1)

16O NoEx −0.029353 0.00001469
LDA −0.023886 0.00001274
GGA −0.023782 0.00001283
p-fin −0.021061 0.00001097

pn-fin −0.021098 0.00001192
All −0.021278 0.00001192

40Ca NoEx −0.053942 0.00003132
LDA −0.048232 0.00002847
GGA −0.048001 0.00002903
p-fin −0.044467 0.00002712

pn-fin −0.044467 0.00002712
All −0.044879 0.00002843

48Ca NoEx 0.104330 0.00144605
LDA 0.108463 0.00144801
GGA 0.108747 0.00144866
p-fin 0.111525 0.00144897

pn-fin 0.111554 0.00144857
All 0.111254 0.00144857

48Ni NoEx −0.238189 −0.00129505
LDA −0.229357 −0.00130689
GGA −0.229163 −0.00130595
p-fin −0.223682 −0.00131776

pn-fin −0.223767 −0.00131670
All −0.224293 −0.00131690

208Pb NoEx 0.069984 0.00167210
LDA 0.073847 0.00168003
GGA 0.074152 0.00168124
p-fin 0.077225 0.00168631

pn-fin 0.077268 0.00168528
All 0.076585 0.00168461

Coulomb interaction mainly changes the Coulomb potential
in the surface region [30], while the correlation between L
and �Rnp of a nucleus with a well-developed bulk like 208Pb
is slightly affected by the surface effect [80].

Let us see in more detail the effects of the Coulomb in-
teraction. If the Coulomb exchange term is neglected, �Rnp

becomes smaller. Since the Coulomb exchange term ECx is
effectively attractive, the Coulomb effect gets stronger if ECx

is neglected. Then, ρp extends, i.e., Rp becomes larger, while
ρn scarcely changes. As discussed in Ref. [30], the GGA EDF
scarcely changes ρp nor ρn; hence, �Rnp is also scarcely
changed. The proton finite-size effect makes the Coulomb
interaction between protons weaker [31]. Accordingly, ρp

shrinks, i.e., Rp becomes smaller, while ρn remains almost the
same, so that �Rnp becomes larger. In contrast, the vacuum
polarization makes the Coulomb interaction between protons
stronger and thus �Rnp becomes smaller.

To understand the effect of neutron finite size to �Rnp,
we introduce here the effective charge formalism to im-
plement the finite-size effect. For simplicity, we consider
only the Hartree term, while it can be straightforwardly
extended to the Coulomb exchange term. If the effective
charges of the protons and neutrons, eeff p and eeffn, are
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FIG. 6. Neutron-skin thickness of 16O calculated with several
Coulomb treatment with SAMi (circle), SAMi-noISB (pentagon),
SAMi-CIB (plus), SAMi-CSB (cross), and SAMi-ISB (square)
EDFs.

introduced,2 the charge density distributions are written as

ρch(r) � eeff pρp(r) + eeffnρn(r). (21)

Here, eeffn is assumed to be negative since the mean-square
radius of neutron charge distribution r2

En is negative. Since
eeffn is negative, the proton-neutron Coulomb interaction is
attractive. At the same time, ρch shrinks when the neutron
finite-size effect is considered, because of eeffn < 0. There-
fore, the behavior is rather complicated, and eventually, the
intercept a is almost unchanged, because the neutron finite-
size effect is weak.

At last, we discuss how much the Coulomb interaction
affects the estimation of L value from �Rnp in 208Pb. Here,
uncertainties due to the linear fitting is not considered. For
instance, if �Rnp = 0.20 fm is assumed, adopting the present
estimations with the Coulomb LDA EDF, the slope parameter

2The effective charges may have r, Z , or N dependences, while such
dependences are not considered here for simplicity.

FIG. 7. The same as Fig. 6 but for 40Ca.

FIG. 8. The same as Fig. 6 but for 48Ca.

is estimated as L = 75 MeV, while it is estimated as 73 MeV
with the All Coulomb EDF. This difference is much smaller
than the experimental error or uncertainty due to the linear
fitting. The treatment of the Coulomb interaction does not
impact much on the extraction of L from the experimental
result for �Rnp.

2. Comparison between Coulomb and ISB interactions

Next, we show the dependence of the treatment of the
Coulomb interaction and the ISB interaction on �Rnp in
Figs. 6–10. Circles, pentagons, pluses, crosses, and squares
show calculated results with SAMi, SAMi-noISB, SAMi-
CIB, SAMi-CSB, and SAMi-ISB EDFs, respectively. Their
values in 40Ca, 48Ca, and 208Pb are also shown in Table IV.

Both the CSB and CIB terms contribute to �Rnp: The
former decreases �Rnp for both N = Z and N �= Z nuclei;
the latter slightly decreases �Rnp in N < Z nuclei, whereas
it slightly increases for N > Z nuclei. The CIB term does not
affect �Rnp in N = Z nuclei. The values of the CSB and CIB
contributions can be found in Table IV and Figs. 6–10.

It is shown that SAMi and SAMi-noISB give almost the
same �Rnp in N = Z nuclei, while SAMi-noISB gives larger
(smaller) �Rnp than SAMi in N > Z (N < Z) nuclei. In

FIG. 9. The same as Fig. 6 but for 48Ni.
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FIG. 10. The same as Fig. 6 but for 208Pb.

N = Z nuclei, if neither the ISB interaction nor the Coulomb
interaction is considered, �Rnp is equal to zero due to the
isospin symmetry. Thus, �Rnp of the SAMi and SAMi-noISB
are constructed only due to the Coulomb interaction, and
thus these two EDFs give the similar �Rnp in N = Z nu-
clei. In contrast, N �= Z nuclei, difference between the SAMi
and the SAMi-noISB reflects the property of these EDFs,
especially their L values (SAMi: L = 44 MeV, SAMi-noISB:
L = 50 MeV).

Comparing how �Rnp is changed as the Coulomb interac-
tion is treated precisely step-by-step, one can find that such
changes are universal among the results calculated with the
SAMi, SAMi-noISB, SAMi-CIB, SAMi-CSB, and SAMi-
ISB. Thus, one can conclude that the effect of the model
dependence associated with the treatment of the Coulomb
interaction is unchanged [O(0.001) fm], which is comparable
with the effect of the CIB term on �Rnp for N �= Z nuclei.

References [8,9,81] claimed that the ISB interaction and
the Coulomb exchange give a nontrivial cancellation. If the
claim in Refs. [8,9,81] is valid, �Rnp calculated with the
SAMi EDF without the Coulomb exchange term and that with
the SAMi-ISB EDF with the Coulomb LDA exchange (or all
the Coulomb) term should be identical. However, as seen in
Table IV and Figs. 6–10, �Rnp for 40Ca, 48Ca, and 208Pb cal-
culated with the SAMi without the Coulomb exchange term
are −0.0527, 0.1710, and 0.1425 fm, respectively, whereas
those with the SAMi-ISB and the Coulomb exchange (all
Coulomb) are −0.0706, 0.2133, and 0.1508 fm (−0.0672,

FIG. 11. Neutron-skin thickness �Rnp as functions of the CSB
and CIB strength −s0 and u0, respectively, for 16O. The long-dashed
and dashed lines show results only with CSB and only with CIB,
respectively. Filled and empty arrows show �Rnp calculated by the
full SAMi-ISB and the SAMi EDFs, respectively.

0.2160, and 0.1534 fm); these two are still non-negligibly
different, except 208Pb. The case of 208Pb may be accidental.
Thus, such treatment is not fully acceptable to discuss �Rnp

quantitatively.

3. ISB term and neutron-skin thickness

At last, we study how much the ISB strength correlates
with the neutron-skin thickness �Rnp. In this calculation, the
SAMi-noISB EDF is used for EIS. The CSB strength −s0 in
ECSB is gradually changed from 0 MeV fm3 to 50 MeV fm3,
while the CIB strength u0 in ECIB is kept 0 MeV fm3, or
the CIB strength u0 in ECIB is gradually changed from
0 MeV fm3 to 50 MeV fm3, while ECSB = 0 MeV fm3 is
kept. Note that this calculation with u0 = 25.8 MeV fm3 and
−s0 = 26.3 MeV fm3 exactly corresponds to the SAMi-ISB
EDF. The Coulomb LDA EDF [Eq. (16b)] is used for the
calculation.

Using these data, u0 or −s0 dependence of �Rnp is
parametrized as

�Rnp = c + d (−s0), (22a)

�Rnp = e + f u0. (22b)

Figures 11–15 show the neutron-skin thickness �Rnp as func-
tions of the ISB strength −s0 and u0 for 16O, 40Ca, 48Ca,
48Ni, and 208Pb. Since the refitting effect of the Skyrme EDF
is non-negligible, the experimental data are not shown in the

TABLE IV. Neutron-skin thickness �Rnp of 40Ca, 48Ca, and 208Pb calculated with SAMi-ISB EDF without Coulomb exchange term
(NoCx), with Coulomb LDA (LDA), or with full Coulomb treatment (All) without ISB term, only with CSB term, only with CIB term, and
with all ISB terms. For comparison, �Rnp calculated with the SAMi EDF is also shown. All the values are in fm.

40Ca 48Ca 208Pb

EIS ISB NoCx LDA All NoCx LDA All NoCx LDA All

SAMi No ISB −0.0527 −0.0471 −0.0437 0.1710 0.1752 0.1781 0.1425 0.1467 0.1497
SAMi-noISB No ISB −0.0514 −0.0460 −0.0426 0.2299 0.2340 0.2369 0.1663 0.1703 0.1731
SAMi-noISB Only CIB −0.0512 −0.0458 −0.0424 0.2332 0.2373 0.2401 0.1739 0.1779 0.1806
SAMi-noISB Only CSB −0.0767 −0.0712 −0.0678 0.2057 0.2099 0.2127 0.1390 0.1430 0.1458
SAMi-noISB All ISB −0.0760 −0.0706 −0.0672 0.2092 0.2133 0.2160 0.1468 0.1508 0.1534
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FIG. 12. The same as Fig. 11 but for 40Ca.

figures. The long-dashed and dashed lines show the results
only with CSB and only with CIB, respectively. Filled and
empty arrows show �Rnp calculated by the full SAMi-ISB
and the original SAMi EDFs, respectively. Using the data, c
and d in Eq. (22a) and e and f in Eq. (22b) are determined as
shown in Table V.

The CSB strength makes �Rnp smaller and its slope d has
almost the same value, d � −0.001 MeV−1 fm−2, among all
the calculated nuclei. On the other hand, a larger CIB strength
changes �Rnp around 10–20% of the CSB case in N �= Z
nuclei, while around 0.5–1% in N = Z nuclei. Moreover,
�Rnp becomes larger in N > Z nuclei and smaller in N < Z
nuclei as the CIB strength u0 becomes larger. The absolute
value of the change of �Rnp is almost the same among the
mirror nuclei. Eventually, the CSB term gives the dominant
contribution to �Rnp, and the ISB contribution to �Rnp is
qualitatively universal in all the selected nuclei.

We will consider the main reason of such behaviors.3 The
Skyrme-like zero-range CSB interaction for proton-proton,
proton-neutron, and neutron-neutron are [7,22]

v
pp
CSB(r1, r2) = − s0

2
(1 − Pσ )δ(r1 − r2), (23a)

v
pn
CSB(r1, r2) = 0, (23b)

3The mechanism how the CSB interaction affects �Rnp was already
discussed in the previous paper [36].

FIG. 13. The same as Fig. 11 but for 48Ca.

FIG. 14. The same as Fig. 11 but for 48Ni.

vnn
CSB(r1, r2) = + s0

2
(1 − Pσ )δ(r1 − r2), (23c)

respectively, with s0 < 0. Hence, as |s0| becomes larger, the
proton-proton repulsive interaction and the neutron-neutron
attractive interaction become stronger. Accordingly, ρp ex-
pands and ρn shrinks. Consequently, �Rnp becomes smaller
as |s0| becomes larger.

On the contrary, the Skyrme-like zero-range CIB interac-
tion for proton-proton, proton-neutron, and neutron-neutron
are [7,22]

v
pp
CIB(r1, r2) = +u0

2
(1 − Pσ )δ(r1 − r2), (24a)

v
pn
CIB(r1, r2) = −u0

2
(1 − Pσ )δ(r1 − r2), (24b)

vnn
CIB(r1, r2) = +u0

2
(1 − Pσ )δ(r1 − r2), (24c)

respectively, with u0 > 0. Hence, as u0 becomes larger, the
proton-proton and neutron-neutron repulsive interactions and
the proton-neutron attractive interaction become stronger. The
effective CIB potential for protons and neutrons read

V p
CIB(r) = δECIB[ρp, ρn]

δρp(r)

= u0

2
ρp(r) − u0

4
ρn(r)

= u0

4
[2ρp(r) − ρn(r)], (25a)

FIG. 15. The same as Fig. 11 but for 208Pb.
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TABLE V. Parameters c, d , e, and f in Eqs. (22). See text for
more detail.

Nuclei ISB c or e (fm) d or f (MeV−1 fm−2)

16O CSB −0.023145 −0.00087127
CIB −0.023168 0.00000455

40Ca CSB −0.045923 −0.00096055
CIB −0.045986 0.00000927

48Ca CSB 0.233945 −0.00091309
CIB 0.233977 0.00012818

48Ni CSB −0.344227 −0.00109382
CIB −0.344459 −0.00017291

208Pb CSB 0.170209 −0.00103236
CIB 0.170300 0.00029200

V n
CIB(r) = δECIB[ρp, ρn]

δρn(r)

= u0

2
ρn(r) − u0

4
ρp(r)

= u0

4
[2ρn(r) − ρp(r)], (25b)

respectively. In N = Z nuclei, the proton and neutron den-
sity distributions are approximately the same, ρp(r) � ρn(r).

Therefore, V p
CIB(r) � V n

CIB(r) also holds, and thus the CIB
effect on Rp is almost same as that on Rn. Hence, even though
Rp and Rn are changed as the CIB strength u0 is changed, the
neutron-skin thickness �Rnp is almost unchanged. In N > Z
nuclei, in general, ρn(r) > ρp(r) holds, and thus the repulsive
potential V p

CIB is weaker than V n
CIB, i.e., V p

CIB < V n
CIB. Hence, Rn

extends more than Rp, and accordingly, �Rnp increases. Since
V p

CIB is approximately equal to V n
CIB of the mirror nucleus, the

behaviors among the mirror nuclei have the same magnitude
but with opposite signs.

At last, we will discuss how large the CSB and CIB
strengths affect the estimation of L value. Here, 208Pb is taken
as an example. As we did in Sec. IV B 1 and Ref. [37], the
L-�Rnp correlation is derived by using the SAMi EDF and
SAMi-J family. Because the pressure of neutron matter is
proportional to L + LCIB + LCSB, the neutron-skin thickness
is also expected to be correlated with L + LCIB + LCSB. If one
does not consider CIB or CSB term, LCIB and LCSB are equal
to zero.

In order to see the ISB contribution, the ISB terms of the
SAMi-ISB EDF [Eqs. (14) and (15)] are considered on top of
the SAMi EDF and SAMi-J family. The correlations without
any ISB terms, only with CIB term, only with CSB term,
and with both the CSB and CIB terms, denoted by all ISB,
respectively, read

�Rnp =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.001680(L + LCIB + LCSB) + 0.07385 (without ISB terms),

0.001661(L + LCIB + LCSB) + 0.07907 (only with CIB term),

0.001698(L + LCIB + LCSB) + 0.04987 (only with CSB term),

0.001678(L + LCIB + LCSB) + 0.05526 (with all ISB terms),

(26)

and are shown in Fig. 16. If the same �Rnp is assumed, the dif-
ference between obtained L + LCIB + LCSB without any ISB

FIG. 16. Correlation between L + LCIB + LCSB and �Rnp calcu-
lated without any ISB terms, only with CSB term, only with CIB
term, and with the all ISB terms, respectively, shown in dash-dotted,
long-dashed, dashed, and solid lines. The ISB terms of the SAMi-ISB
EDF [Eqs. (14) and (15)] are considered on top of the SAMi EDF and
SAMi-J family.

terms and that with all ISB terms is 11.1 MeV. Using LCIB =
2.3 MeV and LCSB = −3.2 MeV, one finds that L itself is
changed by 12.0 MeV once the ISB terms are considered.
Thus, the ISB contributions, in particular, the CSB one, to the
L parameter may not be negligible. In contrast to the case of
the charge-radii difference of mirror nuclei �Rch, the effect
on L is smaller. This is because the CIB effect and the CSB
one is opposite direction in �Rnp for N > Z nuclei, while
they are coherent in �Rch. It should be noted that once EIS is
refitted with considering the ISB terms, the effect of ISB terms
becomes rather mild. Here, the uncertainty due to the fitting is
not considered, since both correlations between L and �Rnp

and that between ISB strengths and �Rnp obtained in this
paper are almost perfect (with r ≈ 1.000), and accordingly,
the uncertainty due to the correlation is negligible.

C. Charge radii difference between 40Ca and 48Ca

Figure 17 shows the CSB- and CIB-strength, −s0 and u0,
dependences of the difference of charge radii, RCa-48

ch − RCa-40
ch .

Here, the root-mean-square radius Rch is calculated by

R2
ch =

∫
r2ρch(r) dr + R2

so, (27)
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FIG. 17. The CSB and CIB strength, −s0 and u0, dependences
of the difference of the calculated charge radius of 40Ca and that of
48Ca. Experimental value taken from Ref. [85] is shown as a vertical
line.

where ρch is the charge density distribution calculated by
using Eq. (19), which only includes effects of nucleon electric
form factors, and R2

so is the spin-orbit (magnetic) contribution
to charge radius [82–84]. The spin-orbit contribution can be
calculated as R2

so = 0 fm2 and −0.101 fm2 for 40Ca and 48Ca,
respectively. As we did in Sec. IV B 3, on top of the SAMi-
noISB EDF, the CSB or CIB strength, −s0 or u0, is gradually
changed from 0 MeV fm3 to 50 MeV fm3. These data are fitted
to

RCa-48
ch − RCa-40

ch = 0.011697 − 2.0767 × 10−4(−s0),

(28a)

RCa-48
ch − RCa-40

ch = 0.011637 + 2.0297 × 10−5u0, (28b)

respectively.
Since the proton numbers of both nuclei are the same (Z =

20), the difference of the proton radii, and thus the charge
radii, is due to the proton-neutron interaction. As shown in
Eqs. (23) and (24), the attractive CIB interaction exists be-
tween protons and neutrons, but the CSB interaction does
not. Thus, one may think that the CIB strength u0 influences
the difference more than the CSB one. Nonetheless, the fig-
ure shows a puzzling behavior; the CSB strength affects the
difference, while the CIB strength scarcely does.

To understand such a behavior, let us consider the nuclear
EoS. As shown in Sec. II, the CSB and CIB interactions,
respectively, give β and β2 dependences on nuclear EoS [see
Eq. (6)]. In the case of 48Ca, the isospin asymmetry is approx-
imately β ≈ (28 − 20)/48 = 0.17. Because ε1 is negative,
whereas εIS

2 � J and 3u0ρ/16 are positive, the slope of the
CIB dependence is opposite to that of the CSB dependence.
Since 0 < β < 1 and |ε1| is almost the same value of the
CIB contribution to εCIB

2 , the CSB contribution, which is the
leading order with respect to β, gives larger contribution. It
should also be noted that different models of the Coulomb
interaction give almost the same RCa-48

ch − RCa-40
ch , since both

nuclei have the same proton numbers.

FIG. 18. The mass difference of mirror nuclei 48Ca - 48Ni cal-
culated with several Coulomb treatment with SAMi (circle),
SAMi-noISB (pentagon), SAMi-CIB (plus), SAMi-CSB (cross),
and SAMi-ISB (square) EDFs. Experimental data is taken from
AME2020 [86].

D. Mass difference of mirror nuclei

In this section, we discuss the model dependence of the
mass difference of mirror nuclei. The 48Ca - 48Ni pair is se-
lected as an example, �Etot = ECa-48

tot -ENi-48
tot .

First, the dependence on the treatment of Coulomb inter-
action is shown in Fig. 18. The difference of two estimated
binding energies (416.00120 MeV for 48Ca and 347.3 MeV
for 48Ni) taken from AME2020 [86] is shown as a horizontal
line.4

As discussed in Ref. [31], the SAMi-ISB EDF reproduces
the experimental value given by the AME2020. The model de-
pendence of Coulomb energy is about 1.2 MeV and does not
change this conclusion much. Next, we focus on the compari-
son between the ISB and Coulomb effects. First, effect of the
precise treatment of Coulomb interaction is almost the same
among all the tested Enucl. Comparing results by SAMi-noISB
and SAMi-ISB, the ISB effects to �Etot are around 7.2 MeV.
This is basically the effect of the CSB term, whereas the effect
of the CIB term on less than 0.3 MeV. The difference between
�Etot calculated by using SAMi and that by using SAMi-ISB
is around 5.8 MeV.

Moreover, although the effects of the exchange term
(or more precise treatment) of the Coulomb interaction are
partially canceled with that of the ISB terms, the differ-
ence between �Etot calculated with the SAMi EDF without
Coulomb exchange term and that with the SAMi-ISB EDF
with the Coulomb exchange (or all the Coulomb) term is
still non-negligibly different. Thus, the nontrivial cancellation
claimed in Refs. [8,9,81] is not perfect.

We discuss the effects of the CSB and CIB strength on
�Etot. As we did in Sec. IV B 3, on top of the SAMi-noISB
EDF, the CSB or CIB strength, −s0 or u0, is gradually changed
from 0 MeV fm3 to 50 MeV fm3. The CSB- or CIB-strength

4The binding energy of 48Ni has not been measured yet, and this
value is estimated value.
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FIG. 19. The mass difference of mirror nuclei 48Ca - 48Ni as
functions of CSB (square) and CIB (up-triangle) strength −s0 and u0.
Filled and empty arrows show �Rnp calculated by the full SAMi-ISB
and the SAMi EDFs, respectively.

dependence of �Etot is shown in Fig. 19 in the squares and
up-triangles, respectively. These data are fitted to

�Etot = −61.625 − 0.28677(−s0), (29a)
�Etot = −61.625 + 0.01083u0, (29b)

respectively. As seen in the figure, the mass difference of
mirror nuclei �Etot is sensitive to the CSB strength s0. In
contrast, it is not sensitive to the CIB strength u0, although the
absolute value of the total energy is changed. This mechanism
is discussed in details in Ref. [36].

V. CONCLUSION

In the previous Letter [37], we had discussed the effects
of the Coulomb and the isospin symmetry breaking (ISB)
terms of nuclear interactions on the charge-radii difference of
mirror nuclei pair 48Ca and 48Ni, �Rch. We had found that the
ISB terms of the nuclear interaction affect the estimation of
the density dependence of the symmetry energy, L + LCSB +
LCIB, by about 6–14 MeV, using the correlation with �Rch. In
this paper, we performed similar analyses, i.e., the sensitivity
checks of the model dependence of the Coulomb energy and
the ISB nuclear interaction to other properties related to the
isospin symmetry breaking: the neutron-skin thickness �Rnp

of several doubly magic nuclei, the difference of the charge
radii between 40Ca and 48Ca, and the mass difference of
mirror nuclei between 48Ca and 48Ni.

It is found that even if we treat the Coulomb interaction
precisely, its effect on �Rnp is less than 0.01 fm in respect to
L. This difference does not affect the extraction of L from the
experimental �Rnp.

The ISB terms of the nuclear interaction is divided into two
parts: the charge-symmetry breaking (CSB) and the charge-
independence breaking (CIB) ones. The CSB interaction has a
clear manifestation in the neutron-skin thickness and the mass
differences of mirror nuclei. In contrast, the CIB interaction
does not have a significant effect on either the neutron-skin
thickness of N = Z nuclei or the mass difference of mirror
nuclei. The neutron-skin thickness of N �= Z nuclei is affected
by the CIB strength, while its effect is small compared to the
CSB and the Coulomb interaction in some cases. Therefore,

if one attempts to discuss effects of the CIB interaction on
nuclear properties, the Coulomb interaction must be treated
precisely as well.

The difference of the calculated charge radii of 40Ca and
48Ca is claimed to be related to the symmetry energy [38,87].
In this paper, it was confirmed that the strength of the CSB
interaction is correlated to such difference as well, while the
CIB one does not much. Among all the physical observables
we tested, effects of the CIB interaction are smaller than those
of the CSB one, or even invisible on all the observables we
discussed.

Since both the CSB and the CIB interactions affect
�Rnp appreciably, the estimation of L + LCSB + LCIB is also
affected because of the strong correlation between two quan-
tities. For instance, if one assumes the CSB and CIB strengths
as those used in the SAMi-ISB, their effect to L estimated
from the correlation with �Rnp is 12 MeV. Therefore, in order
to estimate L parameter using such experimental observables,
ISB contribution should be considered, which has not been
considered in the previous estimations of L [88,89]. Note that
the CSB effect on �Rnp is opposite to the CIB one, whereas
they are coherent in �Rch. Hence, the net ISB effect on �Rnp

is slightly smaller than that on �Rch.
It was claimed that the Coulomb exchange term and the

ISB of the nuclear interaction are canceled each other, and
accordingly the fitting of EDF without the Coulomb exchange
term was performed, in some Skyrme EDF, such as the SKX
EDF [8,9]. However, we found that such treatment leads to
non-negligible error for both �Rnp and �Etot in comparison
with proper inclusion of both the Coulomb exchange and ISB
interactions.

The magnitude of the ISB effect discussed above obvi-
ously depends on the strengths of CSB and CIB interactions.
Although the ISB terms affect most nuclear properties, they
should be taken into account properly, especially, for sev-
eral nuclear properties, for instance, �Rnp, �Etot, and �Rnp.
Thus, it is important to pin down their strengths precisely.
We had discussed the possibility of determining the CSB
strength in comparison with the physical observables before
[36], while we found that phenomenological estimation of the
CSB strength based on density functional theory is 5–10 times
larger than the ab initio estimation in the previous Letter [37].
In this paper, we found that the CIB interaction is insensitive
to �Rnp, �Etot, and �Rch. Hence, it is also important to find
measurable quantities sensitive to the CIB strength.
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APPENDIX A: ISOSPIN DEPENDENCE OF CIB
INTERACTION EXTRACTED FROM ONE-PION

EXCHANGE INTERACTION

In this Appendix, the isospin dependence of CIB interac-
tion is discussed. The main origin of the CIB interaction is
mass difference of the neutral pion π0 and charged one π±.
Here, mπ0 and mπ± denote mass of π0 and π±, respectively.
The one-pion exchange potential reads [90,91]

VOPEP(mπ , q) ∼ − (σ1 · q)(σ2 · q)

m2
π + q2

τ1 · τ2. (A1)

Once the mass difference mπ0 �= mπ± is considered,

VOPEP(mπ0 , q) − VOPEP(mπ± , q) ∼ − (σ1 · q)(σ2 · q)

m2
π0 + q2

τz1τz2 + (σ1 · q)(σ2 · q)

m2
π± + q2

τ+
1 τ−

2 + τ−
1 τ+

2

2

= − (σ1 · q)(σ2 · q)

m2
π0 + q2

τ1 · τ2 + (σ1 · q)(σ2 · q)

m2
π0 + q2

�m2
π

m2
π0 − �m2

π + q2

τ+
1 τ−

2 + τ−
1 τ+

2

2

= − (σ1 · q)(σ2 · q)

m2
π0 + q2

τ1 · τ2 + (σ1 · q)(σ2 · q)

m2
π0 + q2

�m2
π

m2
π0 − �m2

π + q2
(τ1 · τ2 − τz1τz2), (A2)

where τ±
j = τx j ± iτy j ( j = 1, 2) and �m2

π = m2
π0 − m2

π± .
The first term of Eq. (A2) corresponds to the isospin sym-
metric nuclear interaction, while the second term corresponds
to the charge-independence breaking one.

APPENDIX B: PRECISE VALUES OF SKYRME
PARAMETERS

The precise values of the parameters of SAMi and SAMi-
ISB EDFs are shown in Tables VI and VII, respectively.
Even though differences of two parameter sets, published
and precise, are less than 0.1% level at most, the calcu-
lated total energies differ around several hundred keV in
SAMi (−1636.1648 MeV by the published parameter set and

TABLE VI. Parameters of SAMi EDF [59]. Columns named
“Published” and “Precise” show the parameters given in the pub-
lished paper and those with precise values, respectively.

Published Precise

t0 (MeV fm3) −1877.75 −1877.746
t1 (MeV fm5) 475.6 475.5856
t2 (MeV fm5) −85.2 −85.20021
t3 (MeV fm3+3α) 10219.6 10219.58
x0 0.320 0.3197176
x1 −0.532 −0.5319419
x2 −0.014 −0.0137857
x3 0.688 0.6883226
W0 (MeV fm5) 137 137.0603
W ′

0 (MeV fm5) 42 42.32571
α 0.25614 0.2561388

−1636.6149 MeV by the precise parameter set for 208Pb) and
even several MeV in SAMi-ISB (−1629.2878 MeV by the
published parameter set and −1635.6319 MeV by the precise
parameter set for 208Pb). Although both parameter sets give
similar root-mean-square radii, the results may differ in the
order of 0.001 fm level (5.5187 fm by the published SAMi
and 5.5185 fm by the precise SAMi, while 5.5092 fm by the
published SAMi-ISB and 5.5071 fm by the precise SAMi-ISB
for 208Pb). Thus, one needs to use the precise parameter sets
to achieve enough accuracy for the present aim, so that we use
the precise parameter sets in this paper.

TABLE VII. The same as Table VI but for SAMi-ISB EDF [22].

Published Precise

t0 (MeV fm3) −2098.3 −2098.259
t1 (MeV fm5) 394.7 394.7479
t2 (MeV fm5) −136.4 −136.4254
t3 (MeV fm3+3α) 11995 11995.53
x0 0.242 0.2419145
x1 −0.17 −0.1711566
x2 −0.470 −0.4702394
x3 0.32 0.3208390
W0 (MeV fm5) 294 294.7846
W ′

0 (MeV fm5) −367 −367.3859
α 0.223 0.2233004
s0 (MeV fm3) −26.3 −26.3
u0 (MeV fm3) 25.8 25.8
y0 −1 −1
z0 −1 −1
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[35] P. Bączyk and W. Satuła, Mirror energy differences in T =
1/2 f7/2-shell nuclei within isospin-dependent density func-
tional theory, Phys. Rev. C 103, 054320 (2021).

[36] T. Naito, G. Colò, H. Liang, X. Roca-Maza, and H. Sagawa,
Toward ab initio charge symmetry breaking in nuclear energy
density functionals, Phys. Rev. C 105, L021304 (2022).

[37] T. Naito, X. Roca-Maza, G. Colò, H. Liang, and H. Sagawa,
Isospin symmetry breaking in the charge radius difference of
mirror nuclei, Phys. Rev. C 106, L061306 (2022).

[38] U. C. Perera, A. V. Afanasjev, and P. Ring, Charge radii in
covariant density functional theory: A global view, Phys. Rev.
C 104, 064313 (2021).

[39] W. D. Myers and W. J. Swiatecki, Average nuclear properties,
Ann. Phys. (NY) 55, 395 (1969).

064302-17

https://doi.org/10.1007/BF01342433
https://doi.org/10.1103/PhysRevC.26.2402
https://doi.org/10.1016/0031-9163(64)90650-X
https://doi.org/10.1146/annurev.ns.19.120169.002351
https://doi.org/10.1088/0034-4885/41/7/001
https://doi.org/10.1103/PhysRevLett.66.2851
https://doi.org/10.1016/0370-2693(95)00498-A
https://doi.org/10.1103/PhysRevC.58.220
https://doi.org/10.1016/S0370-2693(00)00589-X
https://doi.org/10.1103/PhysRevC.79.064316
https://doi.org/10.1103/PhysRevC.82.061301
https://doi.org/10.1103/PhysRevLett.109.092504
https://doi.org/10.1103/PhysRevC.86.054316
https://doi.org/10.1103/PhysRevC.88.044333
https://doi.org/10.1103/PhysRevLett.110.172505
https://doi.org/10.1103/PhysRevC.89.031302
https://doi.org/10.1088/0031-8949/2015/T166/014011
https://doi.org/10.1103/PhysRevC.91.025501
https://doi.org/10.1016/j.physletb.2017.08.056
https://doi.org/10.1103/PhysRevC.97.021301
https://doi.org/10.1103/PhysRevC.97.054326
https://doi.org/10.1103/PhysRevLett.120.202501
https://doi.org/10.1103/PhysRevC.99.014311
https://doi.org/10.1103/PhysRevC.99.014319
https://doi.org/10.1103/PhysRevC.101.014320
https://doi.org/10.1103/PhysRevLett.130.032501
https://doi.org/10.3390/sym13010144
https://doi.org/10.1016/0370-1573(83)90008-X
https://doi.org/10.1103/PhysRevC.97.044319
https://doi.org/10.1103/PhysRevC.99.024309
https://doi.org/10.1103/PhysRevC.101.064311
https://doi.org/10.1103/PhysRevC.5.626
https://doi.org/10.1016/j.physletb.2017.12.068
https://doi.org/10.1088/1361-6471/aaffe4
https://doi.org/10.1103/PhysRevC.103.054320
https://doi.org/10.1103/PhysRevC.105.L021304
https://doi.org/10.1103/PhysRevC.106.L061306
https://doi.org/10.1103/PhysRevC.104.064313
https://doi.org/10.1016/0003-4916(69)90202-4


TOMOYA NAITO et al. PHYSICAL REVIEW C 107, 064302 (2023)

[40] X. Roca-Maza, M. Centelles, X. Viñas, and M. Warda, Neutron
Skin of 208Pb, Nuclear Symmetry Energy, and the Parity Radius
Experiment, Phys. Rev. Lett. 106, 252501 (2011).

[41] P.-G. Reinhard and W. Nazarewicz, Information content of the
differences in the charge radii of mirror nuclei, Phys. Rev. C
105, L021301 (2022).

[42] T. H. R. Skyrme, The effective nuclear potential, Nucl. Phys. 9,
615 (1958).

[43] X. Roca-Maza and N. Paar, Nuclear equation of state from
ground and collective excited state properties of nuclei, Prog.
Part. Nucl. Phys. 101, 96 (2018).

[44] G. A. Miller, A. K. Opper, and E. J. Stephenson, Charge Sym-
metry Breaking and QCD, Annu. Rev. Nucl. Part. Sci. 56, 253
(2006).

[45] M. V. Stoitsov, J. Dobaczewski, W. Nazarewicz, and P.
Ring, Axially deformed solution of the Skyrme-Hartree-
Fock-Bogolyubov equations using the transformed harmonic
oscillator basis. The program HFBTHO (v1.66p), Comput.
Phys. Commun. 167, 43 (2005).

[46] K. Sato, J. Dobaczewski, T. Nakatsukasa, and W. Sat-
uła, Energy-density-functional calculations including proton-
neutron mixing, Phys. Rev. C 88, 061301(R) (2013).

[47] J. A. Sheikh, N. Hinohara, J. Dobaczewski, T. Nakatsukasa,
W. Nazarewicz, and K. Sato, Isospin-invariant Skyrme energy-
density-functional approach with axial symmetry, Phys. Rev. C
89, 054317 (2014).
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