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Abstract: The study of quantum networks continues to prove its value both in practical and
theoretical applications. Among these networks, one of the simplest to consider is the minimal
triangle scenario, for which it is not known whether it accepts a quantum nonlocal distribution.
To study this, we propose an algorithm based on inflation techniques. Despite promising results,
we have not found such a distribution. The code’s flexibility also allowed us to explore a subset of
symmetric distributions for the three-outcome case, improving some previous results from the field.

I. INTRODUCTION

Indeterminacy in nature is a core tenet of quantum
physics. The proof of this fundamental principle came
thanks to the efforts of John Bell, who was the first to
show that the ability to recover a deterministic model in
a certain setup can be experimentally falsified [1]. Conse-
quently, phenomena that falsify determinism are termed
Bell Nonlocality.

Bell’s scenario involved two distant parties perform-
ing independently chosen two-output measurements on a
shared quantum state. Recent research has focused on
generalizing Bell’s scenario by increasing the number of
parties and shared quantum states, and exploring vari-
ous connections among parties. This study of quantum
networks offers insights into quantum mechanics, robust
certification of quantum devices’ functioning, and con-
straints on possible physical theories [2, 6].

When studying such networks, our goal is to investi-
gate if a quantum-classical gap exists for a given causal
structure. That is, can measurements performed on en-
tangled quantum sources generate correlations that clas-
sical physics cannot explain?

A particularly intriguing and seemingly simple network
is the triangle scenario [3] (see Fig. 1), featuring three
parties – Alice, Bob and Charlie – in a triangle-shaped
structure. When the parties have binary measurement
output, it is known as the Minimal Triangle Scenario
(MTS). Remarkably, whether a quantum-classical gap
exists for the MTS is still an open question. To try to
see if such a gap exists is the main focus of this thesis.

The non-convex nature of the correlation set in the
MTS makes this problem particularly challenging. We
have tackled this problem with the help of inflation [7, 8],
an algorithm which tests for causal compatibility between
a causal structure and a joint probability distribution.
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Figure 1: Representation of the triangle scenario. The parties
(triangles) are named A,B,C and the resources they share (either
local variables or entangled quantum states) are labelled X,Y, Z.

Adapted from [8].

II. THEORETICAL FRAMEWORK

A. Bell Nonlocality

Experimental setups in physics laboratories to check
for Bell Nonlocality are called Bell Tests, and are typi-
cally introduced as games involving different parties. In
the MTS (see Fig. 1), these tests involve three parties –
Alice, Bob, and Charlie – who, after agreeing on a strat-
egy, are separated to produce outputs a, b, c, respectively.
They use different processesX,Y, Z to produce these out-
puts, relying either on classical strategies or by perform-
ing local measurements on shared quantum states.
We can mathematically describe the joint probability

distribution P (a, b, c) in the classical (or local) case as

P (a, b, c) =∫
dXdY dZ PA(a|X,Y )PB(b|Y,Z)PC(c|X,Z).

(1)

The goal is to determine whether a joint P (a, b, c) is local
(can be decomposed as in Eq. (1)).
Quantum mechanics introduces a novel nonlocal re-

source: quantum entanglement. Formally, a joint dis-
tribution is quantum realizable if there exist states ρAB ,
ρBC , and ρAC , and measurements MA, MB , and MC

such that:

P (a, b, c) = tr (ρAB ⊗ ρBC ⊗ ρAC Πa ⊗Πb ⊗Πc) (2)

for all a, b, c, (this assumes states and measurements are
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independent). By measurements we mean the following.
Let mA be Alice’s number of outputs. We consider a
family of mA operators,

MA = {Πa, a = 1, . . .mA},

where MA is a positive operator-valued measure
(POVM)1. These operators Πa are positive semidefinite
and act on Alice’s Hilbert space HA, satisfying∑

a

Πa = Id.

Similarly, we define POVMs MB and MC for Bob and
Charlie.

B. Certificates of infeasability

Let {kx : x = 1, . . . , N} be a set of measurements out-
comes associated with operators {Kx : x = 1, . . . , N}.
Our task is to determine if a quantum state ρ, consid-
ered as a density operator, can explain these measure-
ments outcomes. Since ρ is a quantum state, it must be
a positive semidefinite operator2 with unit trace. This
problem can thus be expressed as:

minimise δ

subject to kx − δ ≤ tr(Kxρ) ≤ kx + δ, ∀x
tr(ρ) = 1, ρ ⪰ 0.

(3)

This is an example of a semidefinite program (SDP),
an optimization problem with linear constraints on oper-
ators. If the optimal value is δ∗ = 0, then the problem
is feasible, that is, there exists a quantum state and a
POVM compatible with the observed measurement out-
comes; if δ∗ > 0, we say the problem is infeasible. Each
SDP has a corresponding dual SDP, derived using a La-
grangian (see [4]). Under mild conditions, the optimal
values of both the primal and dual SDPs are equal. It
is dual in the sense that if the original SDP was a mini-
mization problem, the dual is a maximization SDP, and
vice versa.

It can be proven that the dual of the problem (3) is

maximise z + t⃗ · k⃗

subject to z · Id + t⃗ · K⃗ ⪯ 0

N∑
x=1

|tx| ≤ 1.

(4)

Where we have introduced the vectors k⃗ = (k1, . . . , kN )

1 Analogously to how density operators generalize pure states, we
can define general measurements that allow for the existence of
noise in our systems. A particular instance of this are POVMs,
which represent cases where we do not care about the state of
our system after the measurement.

2 For operators A,B, A ⪰ B iff A−B is positive semidefinite.

and K⃗ = (K1, . . . ,KN ). Now, let ρ be an arbitrary quan-
tum state. Then, for any dual feasible variables z, t⃗, we
have

z +

N∑
x=1

tx tr(ρKx) = tr
(
ρ
(
z · Id + t⃗ · K⃗

))
≤ 0. (5)

The first equality follows from the linearity of the trace
operator and the inequality from the positive definite-
ness of ρ and the constraints in (4). Therefore, if we find

dual feasible variables z, t⃗ such that z + t⃗ · k⃗ > 0 for the

given measurements k⃗, then those measurements cannot
originate from a quantum state, providing a certificate
of infeasibility. Geometrically, the dual SDP provides a
separating hyperplane in the space of all possible mea-
surements.

C. Inflation

Inflation [7] examines correlations in causal scenarios
involving latent nodes (e.g., sources of classical random-
ness or quantum states) and visible nodes (random vari-
ables from measurements). Arrows show the influence
direction between systems, specifying system distribu-
tion among parties. To avoid causal paradoxes, these ar-
rows must form directed acyclic graphs (DAGs). Figure
2 presents examples of inflations in the triangle scenario.
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Figure 2: Two inflations of the triangle scenario: its spiral (a)
and web (b) inflation. Triangles represent observable nodes and

circles latent ones. Adapted from [8].

Inflation analyzes distributions in a causal scenario us-
ing a hypothetical experiment with multiple copies of la-
tent (physical systems) and visible (operations) nodes in
the DAG. Parents of a visible node’s copy are copies of
the original node’s parents, simplifying the characteriza-
tion of compatible distributions. Constraints on distribu-
tions in inflated scenarios become necessary constraints
for the original scenario. Thus, inflation discards nonlo-
cal behavior by proof by contradiction: begin by assum-
ing the distribution is local. If it is, it must satisfy the
new constraints imposed by the inflated scenario. If it
does not, we can conclude that the distribution is nonlo-
cal. Note also that inflation does not allow us to prove
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that a distribution is local (it is not an ‘if and only if’
statement).

Probability distributions in inflation scenarios can be
characterized using linear programming for classical or
generalized physical systems. Efficient algorithms are
available to solve these problems using standard com-
puting resources [8].

III. CODE IMPLEMENTATIONS

Algorithm 1: Finding a Quantum Nonlocal
Distribution in the MTS

1 while We have not found a quantum nonlocal
distribution do

2 Sample a random distribution;
3 if Inflation cannot discard locality then
4 Return to Step 2;
5 else
6 Extract the certificate C;
7 Minimise C[PQ], for PQ ∈ Q; starting from

a random quantum distribution;
8 Test whether the final distribution is local

using inflation;

The main goal of this thesis is to determine
whether quantum nonlocal behaviour exist in the
MTS3. Formally, this asks if there are shared states
ρAC , ρAB , ρBC (representing X,Y, Z in Figure 1) and
POVMs MA,MB ,MC such that the joint quantum
probability distribution (2) is not of the form (1).

The MTS is a fundamental example in quantum net-
work studies, valuable for both practical applications
(e.g., certifying quantum devices) and theoretical in-
sights into quantum mechanics. As has been said, it
is particularly interesting because while nonlocal distri-
butions (compatible with relativistic no-signaling) have
been found for the MTS (cf. [5]), whether these are quan-
tum realizable is still unknown.

Let us begin by fixing some notation. Let P be the
set of all joint probability distributions in the MTS, and
Q ⊂ P be the set of all quantum distributions as in (2).
Similarly, let L be the set of all local distributions. A
certificate of infeasibility is denoted by C. If P ∈ P, the
evaluation of certificate C on distribution P is written as
C[P ]. By definition, C[P ] < 0 ⇒ P /∈ L.
Our original approach for finding a quantum nonlocal

distribution is summarized Algorithm 1. The main idea is
to generate a certificate of infeasibility from some random
(not necessarily quantum-realizable) distribution. Once
we have a certificate C, we try to find a quantum distribu-
tion PQ for which nonlocality is proven, i.e. C[PQ] < 0.
If we fail, we move on to another randomly generated
certificate. For this to work, the certificate should ap-

3 All code implementations are publicly available at
https://github.com/mvinervi7/Triangle.git.

proximate the boundary between local and nonlocal phe-
nomena for nonlocal points near this boundary. This is
the subject of study in the next section.

A. Contour lines of infeasability certificates

Consider the following family of distributions for the
MTS,

PG(p, q) = pδ000 + qδ111 +
1− p− q

6
δ. (6)

Where δ000 is the distribution with support only on the
000 event (analogously for δ111), and δ contains equal
probabilities on all other (non-000 and non-111) out-
comes. Also, p, q ∈ [0, 1] = I. A first observation is
that PG(0, 0) is local. Indeed, with notations as in Fig.
1, letX,Y, Z be 3 random numbers in I, with at least two
different. The local strategy where each party outputs 1
if the input they receive from the left is strictly bigger
than the one from the right, and 0 otherwise, realizes the
probability distribution PG(0, 0). It is also intuitively
clear that PG(1/2, 1/2) is nonlocal, with a proof in [7].
Now, to identify the nonlocal regions, we examine

straight segments from (0, 0) to points in {(1, q) | 0 ≤ q ≤
1}∪ {(p, 1) | 0 ≤ p ≤ 1}. Using the bisection method, we
identify the first transition point on each segment where
inflation verifies that PG(p, q) is nonlocal. The blue dots
in Figure 3 illustrate these results.
Next, we test how well the contour lines of a point’s cer-

tificate near the boundary align with the actual bound-
ary. Consider the segment p = q, parametrized as (t, t),
t ∈ I. Using the bisection method, suppose that inflation
first detects nonlocality for t = t∗. By setting t = t∗ + ε
with ε > 0, we obtain a certificate of infeasibility due to
inflation, C. In Fig. 3, ε = 1 × 10−4. Plotting the con-
tour lines of f(p, q) = C[PG(p, q)], we see they align with
the curve connecting all transition points, as we sought
to prove.

As a final comment, we mentioned that certificates pro-
vide a separating hyperplane, where distributions on one
side are nonlocal. However, the contour line f(p, q) = 0
is not straight because inflation examines marginal prob-
abilities, which are polynomials of the original distri-
bution. Consequently, while inequalities in the inflated
subgraph are linear in the inflated distribution, they are
polynomial in the original distribution.

B. MTS Code

In section III, we reviewed the code for finding a quan-
tum nonlocal distribution in the MTS. A key aspect is
parametrizing a reasonable subspace of Q. We start with
the code in [9] for parametrizing unitary matrices. Take
notations as in Fig.1. Let X,Y, Z be systems of two (en-
tangled) qubits. Then, if HA is Alice’s Hilbert space,
dim(HA) = 4, as it contains one qubit from X and one
from Y . All states in HA can be parametrized by apply-
ing a unitary operator Ûs to a fixed state |ϕA⟩,“rotating”
it into any other state.
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Figure 3: Contour lines and heat map of f(p, q) = C[PG(p, q)], for
the certificate C corresponding to the point ε = 1× 10−4 above

the critical value on the segment p = q. Transition points
obtained for different segments beginning at (0,0) are pictured

with blue dots.

For measurements, take an orthonormal basis |i⟩ , i =
0 . . . 3. For another unitary operator Ûm, consider pro-
jective measurements Πi = Û†

m |i⟩ ⟨i| Ûm, yielding 4 out-
comes. To get binary outputs, introduce transition prob-
abilities p(a|i), a ∈ 0, 1, i = 0, . . . 3, with p(0|i)+p(1|i) =
1. Define a POVM Pa=0 =

∑3
i=0 p(0|i)Πi, Pa=1 =∑3

i=0 p(1|i)Πi. This parametrizes a subset of Q with
pure states and coarse-grained projective measurements.

Choosing the minimization algorithm in Line 7 of Al-
goritm 1 is crucial. We explored different techniques and
versions of the code:

1. Initially, we used the Nelder-Mead method from
scipy.optimize.minimize. The main concern with this
first version was the code’s slowness.

2. Next, we implemented a gradient descent using the JAX
library [11], speeding up execution and offering flexibility
in epochs. However, evaluation time for certificates was
a bottleneck.

3. An interesting approach was proposed in [8]. They ex-
plored 4884 inequalities for the MTS through an analysis
of independence in the spiral inflation (Fig. 2a). These
were refined to 52 equations in 4 groups, considering sym-
metry (a representative from each group is in the ap-
pendix). Instead of randomly selecting points outside the
local set and extracting their certificates, we used gra-
dient descent to minimize each chosen inequality (with
4 parallel gradient descents for independence). Using
hard-coded inequalities instead of changing certificates
reduced execution time, as symbolic evaluation of chang-
ing certificates was slow.

For this last version of the code, while extremely low val-
ues were recorded for some inequalities (around 1×10−7),

no quantum nonlocal distribution was found. Neverthe-
less, the code’s efficient execution time and flexibility
warrant promising alternatives to explore. One example
would be considering entangled qutrits – instead of qubits
– as quantum resources among parties. However, an im-
plementation with higher dimensional systems raises ef-
ficiency and computer memory concerns that must be
addressed in future research.

C. Beyond the MTS: 3 outcomes scenario

As mentioned above, an advantage of our code is that
it is easily adaptable to scenarios related to the MTS. An
example would be considering a scenario with 3 outcomes
per party instead of 2. In this setting, we considered the
family of symmetric distributions,

P (s111, s112, s123) =
s111
3

δeq +
s123
6

δdif +
s112
18

δ

Where δeq is the flat distribution, with non-zero proba-
bilities only if all three outcomes are the same, similarly
δdif if all three outcomes are different, and δ for the rest of
the events (two outcomes the same, one different). These
distributions bear resemblance to the Elegant Joint Mea-
surement distribution, a prime candidate for studying tri-
angle nonlocality in the four-outcomes case [12]. To iden-
tify quantum nonlocal distributions, we employ gradient
descent to minimize the Euclidean distance between each
distribution P (s111, s112, s123) for 0.36 ≤ s111 ≤ 0.48.
These bounds align with those in [10], where a similar
approach is undertaken using neural networks to find lo-
cal strategies yielding distributions close to points in this
subspace. Results are presented in Fig. 4, and a table
with all considered points can be found in the appendix.
The similarity of the figures suggests that, on aver-

age, there is no significant advantage when using qubits
over classical models. However, for specific points like
(s111, s112, s123) = (0.4, 0.32, 0.28), the quantum algo-
rithm reduces the Euclidean distance by approximately
20%. This result motivates the exploration of entangled
qutrits in place of qubits for future research. Employing
qutrits could potentially yield even greater reductions in
Euclidean distances for symmetric distributions, further-
ing the promise of this quantum algorithm.

IV. CONCLUSIONS

� In section IIIA, we attempted to study the relation-
ship (for a particular family of distributions) between in-
feasability certificates and the boundary separating local
from nonlocal behaviors. To do so, we saw how different
nonlocal distributions – found by inflation – lied relative
to a particular certificate, and found good agreement.

� Through parametrizing a subset of Q and minimizing
certificates in multiple ways, we had aimed to find a
quantum nonlocal distribution in the MTS. Even though
extremely low values for certificates have been attained
(near 1 × 10−7) no such distributions have been found.
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(a) (b)

Figure 4: Ref. [10] results using neural networks to find classical models (a) versus ours using qubits (b). Colours are linked to Euclidean
distances by the legends at the right of each plot. The three corners correspond to the three extremal distributions s111 = 1 (top),

s112 = 1 (bottom left) and s123 = 1 (bottom right). The identity distribution s111/3 = s112/18 = s123/6 is also plotted. In this same
reference, it is shown that above the blue line no distributions can exist compatible with the triangle structure.

While computer memory concerns apply to higher di-
mensional systems, these promising outcomes serve as
motivation to replicate the code with qutrits, rather than
qubits, in future investigations.

� Generalizing further, we minimised the Euclidean dis-
tance between Q and different instances of symmetric
distributions for the three outcomes scenario. Compar-
ing our results to previous ones where only classical mod-
els were considered, we conclude that while there is no
quantum advantage overall, there are specific distribu-

tions for which our implementation obtained appreciably
better results (i.e., a decrease in 20% for the final Eu-
clidean distance).
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APPENDIX

A. Set of inequalities for the MTS

We now present the 52 inequalities mentioned in sec-
tion III B, that can be found in [8]. They can be fit into
4 categories up to symmetry. A representative of each
category is given below,

0 ≤ 1− E[AC]− E[BC] + E[A]E[B]

0 ≤ 3− E[A]− E[B]− E[C] + 2E[AB] + 2E[AC] + 2E[BC]

+ E[ABC] + E[A]E[B] + E[A]E[C] + E[B]E[C]

− E[A]E[BC]− E[B]E[AC]− E[C]E[AB]

+ E[A]E[B]E[C]

0 ≤ 4 + 2E[C]− 2E[AB]− 3E[AC]− 2E[BC]− E[ABC]

+ E[A]E[B]E[C] + 2E[A]E[B] + E[A]E[C]

− E[A]E[BC]− E[C]E[AB]

0 ≤ 4− 2E[AB]− 2E[AC]− 2E[BC]− E[ABC]

+ 2E[A]E[B] + 2E[A]E[C] + 2E[B]E[C]

− E[A]E[BC]− E[B]E[AC]− E[C]E[AB]

Where the outputs of the parties are taken to be {−1, 1}
for convenience and are expressed in terms of correlators
E[·] (see [2]). The number of equations in each class is
(from top to bottom) 12, 8, 24 and 8.

B. Euclidean Distances in the three-outcomes
scenario

s111 s112 s123 Classical Quantum
0.36 0.00 0.64 2.14× 10−2 1.53× 10−1

0.36 0.04 0.60 1.94× 10−2 1.34× 10−1

0.36 0.08 0.56 2.26× 10−2 2.10× 10−1

0.36 0.12 0.52 2.67× 10−2 1.03× 10−1

0.36 0.16 0.48 2.45× 10−2 8.98× 10−2

0.36 0.20 0.44 2.71× 10−2 6.48× 10−2

0.36 0.24 0.40 2.61× 10−2 5.48× 10−2

0.36 0.28 0.36 2.19× 10−2 3.81× 10−2

0.36 0.32 0.32 2.66× 10−2 2.10× 10−2

0.36 0.36 0.28 1.18× 10−2 5.33× 10−3

0.36 0.40 0.24 2.73× 10−3 3.18× 10−4

0.36 0.44 0.20 8.94× 10−4 1.20× 10−3

0.36 0.48 0.16 3.29× 10−3 1.06× 10−2

0.36 0.52 0.12 7.08× 10−3 2.51× 10−2

0.36 0.56 0.08 9.80× 10−3 4.10× 10−2

0.36 0.60 0.04 1.33× 10−2 5.77× 10−2

0.36 0.64 0.00 1.54× 10−2 7.40× 10−2

0.40 0.00 0.60 4.16× 10−2 1.50× 10−1

0.40 0.04 0.56 4.29× 10−2 1.33× 10−1

0.40 0.08 0.52 4.62× 10−2 1.17× 10−1

0.40 0.12 0.48 4.69× 10−2 1.04× 10−1

s111 s112 s123 Classical Quantum
0.40 0.16 0.44 4.98× 10−2 8.68× 10−2

0.40 0.20 0.40 4.65× 10−2 6.99× 10−2

0.40 0.24 0.36 4.37× 10−2 5.39× 10−2

0.40 0.28 0.32 4.19× 10−2 2.98× 10−2

0.40 0.32 0.28 2.96× 10−2 2.37× 10−2

0.40 0.36 0.24 1.24× 10−2 1.36× 10−2

0.40 0.40 0.20 1.06× 10−2 1.38× 10−2

0.40 0.44 0.16 1.88× 10−2 2.35× 10−2

0.40 0.48 0.12 2.46× 10−2 3.63× 10−2

0.40 0.52 0.08 2.88× 10−2 5.07× 10−2

0.40 0.56 0.04 3.33× 10−2 6.60× 10−2

0.40 0.60 0.00 3.72× 10−2 8.19× 10−2

0.44 0.00 0.56 6.61× 10−2 1.48× 10−1

0.44 0.04 0.52 6.88× 10−2 1.33× 10−1

0.44 0.08 0.48 6.86× 10−2 1.27× 10−1

0.44 0.12 0.44 7.07× 10−2 1.03× 10−1

0.44 0.16 0.40 7.00× 10−2 7.63× 10−2

0.44 0.20 0.36 6.78× 10−2 7.17× 10−2

0.44 0.24 0.32 6.04× 10−2 5.78× 10−2

0.44 0.28 0.28 4.62× 10−2 4.21× 10−2

0.44 0.32 0.24 3.48× 10−2 4.20× 10−2

0.44 0.36 0.20 3.16× 10−2 3.68× 10−2

0.44 0.40 0.16 3.85× 10−2 4.19× 10−2

0.44 0.44 0.12 4.57× 10−2 5.15× 10−2

0.44 0.48 0.08 5.04× 10−2 6.36× 10−2

0.44 0.52 0.04 5.53× 10−2 7.72× 10−2

0.44 0.56 0.00 5.83× 10−2 9.18× 10−2

0.48 0.00 0.52 9.16× 10−2 1.50× 10−1

0.48 0.04 0.48 9.19× 10−2 1.38× 10−1

0.48 0.08 0.44 9.35× 10−2 1.20× 10−1

0.48 0.12 0.40 9.28× 10−2 9.44× 10−2

0.48 0.16 0.36 9.01× 10−2 8.17× 10−2

0.48 0.20 0.32 8.01× 10−2 7.17× 10−2

0.48 0.24 0.28 6.79× 10−2 6.98× 10−2

0.48 0.28 0.24 5.92× 10−2 6.32× 10−2

0.48 0.32 0.20 5.59× 10−2 6.10× 10−2

0.48 0.36 0.16 5.87× 10−2 6.35× 10−2

0.48 0.40 0.12 6.65× 10−2 7.01× 10−2

0.48 0.44 0.08 7.14× 10−2 7.97× 10−2

0.48 0.48 0.04 7.72× 10−2 9.13× 10−2

0.48 0.52 0.00 8.16× 10−2 1.04× 10−1

Table I: Table containing the final Euclidean distance obtained for
the classical strategy proposed in [10] (‘Classical’) and for our qubit
algorithm (‘Quantum’) for all setups s111, s112, s123 considered in
Fig. 4.
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