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The genus Tethya, one of the most iconic groups in the phylum Porifera. includes nearly 100 valid species. Tethya shows a
nearly cosmopolitan distribution, and thus this clade could help elucidate global mechanisms of speciation in sponges.
Contrasting with many other marine organisms, Tethya peaks in diversity in the temperate region, with only ~30% of
diversity occurring in the tropics. This pattern may however be related to a lack of studies in the tropics, masked by dubious
taxonomic identifications. To address this question, we studied new collections from the Western Atlantic (Caribbean and
Brazil) and the Northeastern Atlantic, as well as museum material from the Indian Ocean. Combining morphological
investigation with molecular phylogenetics and the study of the sponge’s microbial communities, we conclude that four
constitute new species that we describe here: Tethya martini Riesgo, Giribet, & Santodomingo, sp. nov.; Tethya simoni
Santodomingo, Zea, & Riesgo, sp. nov.; Tethya erici Diez-Vives, Santodomingo, Moles, & Riesgo, sp. nov.; Tethya orioni
Kenny, Santodomingo & Riesgo, sp. nov. Some species thought to be widespread (e.g., 7. aurantium and T. seychellensis),
each represent multiple species with unique geographic distributions. A phylogenetic analysis of Tethya (based on COI and
28S rRNA sequence data) recovered five main clades, which were also characterized by distinct prokaryotic communities.
This suggests that microbiomes could be used as a guide for taxonomic identification in Tethya. We finally explored the
existence of a phylosymbiotic pattern in sponges at different levels of prokaryotic taxonomic resolution (i.e., at phylum, class,
and genus-level analysis of prokaryotes). Remarkably, our analysis revealed high levels of coevolution of Tet/ya and their
associated microbial communities, even when microbiomes were analysed at the genus level. Our findings support the use of
an integrative approach to better understand the evolutionary history of sponges.
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Introduction

Sponges in the genus Tethya Lamarck, 1815 are iconic
taxa among the phylum Porifera (Sara, 2002) for being
the only metazoans with spherical symmetry (Brusca
et al., 2023). Their spherical shape, well-defined cortex,
and surface usually covered by tubercles and buds, are
characteristics that give Tethya the common name of
‘golf balls’, and make this genus one of the most easily
recognized groups of species among demosponges
(Sara, 1987). There have been 96 accepted species
described worldwide since the original designation of
the genus name 7Tethya by Lamarck in 1815 (de Voogd
et al., 2024). They have been noted to occur from shal-
low coastal waters to the deep sea, in all oceans except
the poles (Bergquist & Kelly-Borges, 1991; Sara, 2002).

Some of the first species described for the genus,
Tethya aurantium (Pallas, 1766), T. seychellensis
(Wright, 1881), T. diploderma Schmidt, 1870, and T.
Japonica Sollas, 1888, were long thought to be cosmo-
politan or having a broad distribution range (Sara,
1987). However, some records remained dubious and
were later confirmed to belong to undescribed species
(Bergquist & Kelly-Borges, 1991; Ribeiro & Muricy,
2004, 2011). Regional inventories conducted over the
past 30years have uncovered a hidden diversity of
Tethya, with species described from Australia and New
Zealand (Bergquist & Kelly-Borges, 1991; Sara & Sara,
2004), Brazil (Ribeiro & Muricy, 2004, 2011), the
Mexican Pacific and California (Austin et al., 2014,
Sara Gomez, & Sara, 2001), as well as Galapagos
(Desqueyroux-Faundez & van Soest, 1997; Sara et al.,
2000; Sim-Smith et al., 2021). The remaining described
Tethya species are thought to be widely distributed
across the Mediterranean Sea, the North Atlantic Ocean,
North Pacific Ocean, with a few species described in
the Chilean fjords, the Caribbean Sea, and the Indian
Ocean. From all this diversity, over 60% of the Tethya
species occur in temperate waters, about 30% are from
the tropics, and 10% have a widespread distribution in
both temperate and tropical waters. Although the current
Tethya distribution could be a result of an underlying
biogeographic pattern, it could also be attributed to a
collection bias, as in other poriferan groups (van Soest
et al., 2012) and lack of studies in the tropical region, in
particular the central Indo-Pacific and the Caribbean. To
date, only six species are known from the Caribbean:
the imprecise type locality of T. diploderma and T.
globum Duchassaing de Fonbressin & Michelotti, 1864
is Antilles; Tethya actinia de Laubenfels & Hindle,
1950 was first described from Bermuda; and 7. maza
Selenka, 1879 was described from southern Brazil. The
other two Caribbean species, 7. aurantium and T. sey-
chellensis, have type localities in the Mediterranean Sea

and the Seychelles, respectively. Previous records of 7.
aurantium from California have been reclassified into
two new species: T. californiana de Laubenfels, 1932
and T. vacua Austin et al., 2014. Similarly, former T.
aurantium specimens from Brazil have been identified
as T. beatrizae Ribeiro & Muricy, 2011. In conse-
quence, the occurrence of 7. aurantium in the Caribbean
remains uncertain.

The taxonomic work led by Sara and collaborators on
Tethya has resulted in the description of 34 species,
which comprise over a third of the current valid species
(de Voogd et al., 2024). According to Sara (1994,
2002), the diagnostic characters that distinguish Tethya
from the other 13 genera in the family Tethyidae
include their spherical or hemispherical body, with a
well-developed cortex differentiated from the choano-
some, and their main skeleton formed by strongyloxea
bundles radiating from the centre of the sponge. The
spicule complement of the genus is greatly conserved,
containing megascleres (mostly strongyloxeas) and
euasters (both megasters and micrasters) (Ribeiro &
Muricy, 2004; Sara, 2002; Sara & Sara, 2002). Because
the terminology for the megasters and micrasters has
evolved over the years, Ribeiro and Muricy (2011) rede-
scribed the different morphologies and unified the
euaster terminology to make comparisons across species
from Brazil more detailed and less confusing. This ter-
minology was adopted in later work for a new species
from Brazil (Macola & Menegola, 2018), but it has not
been used in subsequent descriptions of new Tethya spe-
cies from other regions (Austin et al., 2014; Hajdu
et al., 2013; Sorokin et al., 2019), where the authors still
used the classic terms (Boury-Esnault & Riitzler, 1997;
Sara, 1994, 2002).

Pioneering work on the evolutionary framework of
Tethya was also developed by Sara (1987), who com-
piled the main character variation within the genus
including morphological, ecological, cytological, bio-
chemical, reproductive, and biogeographic traits. This
study exposed some of the main gaps of information
and envisaged the presence of cryptic species within the
widely distributed species T. aurantium, T. seychellen-
sis, and T. japonica Sollas, 1888 (Sara, 1987). Bergquist
and Kelly-Borges (1991) built the first phylogeny of
Tethya based on morphological characters, mainly with
Australian and New Zealand species. Their work high-
lighted the need to use standard terminology and
revealed that well-defined characters such as the
arrangement of megascleres, spheraster shape, colour,
and the regularity or deformity of micrasters, among
others, had high consistency index values, hence being
highly informative in phylogenetic analyses. The exer-
cise was repeated by Sara and Sara (2004) with a larger
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number of species also from the Austral region and
showed a correspondent arrangement of species groups
within Tethya. A similar cladistic approach was used for
the reconstruction of a family-level phylogeny, suggest-
ing that the speciose genus Tethya diverged early in the
evolution of the Tethyidae with successive branching of
monospecific or less speciose genera in the family (Sara
& Burlando, 1994).

Subsequent attempts to reconstruct the phylogeny of
Tethya included the combination of a single molecular
marker (cytochrome ¢ oxidase subunit I, COl) and mor-
phological characters (Heim et al., 2007), and with few
exceptions, the groups recovered by the molecular anal-
yses correspond to those found using morphological
characters. Since then, some of the new Tethya species
have been described including molecular data and,
therefore, subsequent reexaminations of the phylogeny
have been conducted (Heim & Nickel, 2010; Sorokin
et al., 2019). In the most recent study, Sorokin et al.
(2019) discussed the possibility of using external colour
as a diagnostic character for some clades, and, given the
lack of other synapomorphies, they proposed that the
exploration of chemical compounds, specialized cells,
and associated microbes could provide additional
insights on the phylogenetic relationships of the differ-
ent lineages in the family.

The sponge microbiome is well-known for being
species-specific (Thomas et al., 2016, Yang et al., 2019)
and even genotype-specific (Griffiths et al., 2019; Diez-
Vives et al., 2020; Easson et al., 2020), and also show-
ing strong functional convergence of the microbiome
roles (Fan et al.,, 2012). Two ecological sponge types
were described based on their microbial abundance,
diversity, and pumping rate (Vacelet & Donadey, 1977).
One type, termed ‘Low Microbial Abundance’ (LMA)
sponges, has a microbial concentration close to that of
seawater, and these sponges rely on heterotrophic feed-
ing on particulate organic matter. The second type,
‘High Microbial Abundance’ (HMA) sponges, can con-
tain microbial communities occupying up to 80% of
their tissues in some species, and these sponges rely on
this microbiome to acquire nutrients (Hentschel et al.,
2006; Weisz et al., 2007; Pankey et al., 2022). While
the LMA sponges harbour microbiota of very diverse
phylogenetic signatures (Sipkema et al., 2015, Thomas
et al., 2016), the HMA sponges are dominated by a few
microbial phyla (Moitinho-Silva, Nielsen et al., 2017
Pita et al., 2018). Tethya species are consistently consid-
ered to be LMA, either by using predictive methodolo-
gies (Moitinho-Silva, Steinert et al., 2017; Pankey et al.,
2022), by 16S rRNA amplicon sequencing (Thiel et al.,
2007; Waterworth et al., 2017), or by direct ultrastruc-
tural observation of tissues (Gaino et al., 2006; Gaino &

Sara, 1994). Microbiomes can be vertically transmitted
to the offspring through oocytes, which secure necessary
symbionts during the settlement phase, or horizontally
acquired from the environment by filtration, or a com-
bination of both (Schmitt et al., 2008; Vrijenhoek, 2010;
Ebert, 2013; de Oliveira et al., 2020). Given that several
studies have reported vertical transmission of symbionts
in Mediterranean species of Tethya (Gaino et al., 1987,
Gaino & Sara, 1994; Sciscioli et al., 2002), and follow-
ing up on the idea by Sorokin et al. (2019), we explored
how the microbiome signatures can potentially serve as
an additional feature to aid in the systematics of
sponges, in the genus Tethya in particular.

Here, we describe the morphological features of four
new species of the genus Tethya from the Caribbean,
North and South Atlantic, and the Persian Gulf, and
place them in a molecular phylogenetic framework. In
addition, we analyse the microbiome of the new species
and additional sympatric Tethya species to understand
phylosymbiotic patterns in this cosmopolitan sponge
genus.

Materials and methods

Several specimens of two morphospecies (preliminarily
identified as Tethya) were collected on coral reefs in
Isla Cristobal, Bocas del Toro, Panama (9.21685,
—82.21370) in March 2010 by scuba diving (Table 1)
and three more in the intertidal area of Pituba Beach,
Salvador de Bahia, Brazil (—13.0066632, —38.4547663)
in January 2018. Three specimens of an undescribed
Tethya species were also collected in a rocky shore in
the ‘corrales’ of Chipiona, Cadiz, Spain (36.74168,
—6.43887) and subtidal pools in La Palma, Canary
Islands (28.693245, —17.759086) by snorkelling, in
October 2014 and September 2022, respectively. A spe-
cimen collected in 1998 in the Persian Gulf, Ras
Ghumeis, United Arab Emirates (24.380880, 51.576362)
and deposited at The Natural History Museum, London,
UK (NHMUK) under voucher number 2000.9.14.16 was
also examined (Table 1). All newly collected specimens
were fixed in 96% ethanol soon after collection. To
compare the morphological and molecular features of
the new species, several other Tethya specimens, includ-
ing type material from the collections of the NHMUK,
were examined (Table 1).

Spicules were prepared by dissociation in sodium
hypochlorite, followed by two washes with water, and
one with 96% ethanol. Microscope slides of the spicules
were prepared and permanently mounted with DPX (dis-
tyrene, plasticizer, and xylene) medium. Thick sections
for most species were prepared using tissue embedded
in paraffin, sectioned with a microtome at 10pm,
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Table 1. Continued.
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5 stained with haematoxylin and mounted in DPX. Images
§ g were taken on an Olympus BX43 light microscope with
= e a UC50 camera. Additional spicules were mounted on
g 5 SEM stubs, coated with gold, and imaged under a Zeiss
4 % UltraPlus scanning electron microscope (SEM) at the
- - CZ> % % % CZ> CZ> NHMUK. Measurements for megascleres were taken

from light microscopy images, while measurements for

megasters/micrasters were taken from SEM images
E using the software ImageJ (Schneider et al., 2012). All
ﬁg measurements were obtained from the holotype speci-
3 5 oo v o o mens unless otherwise indicated.

= o O S ') Nal
218% < 3 X
& ldd ¢ g 8 , L

e % % S 2 DNA ex.tractlon, amplification, and
- sequencing
% . Following the protocols of the Sponge Barcoding
gé 5 Project (www.spongebarcoding.org), we seguenced two
f E % molecular makers, the standard mitochondrial COI frag-
8 a ment (Folmer et al.,, 1994) and a fragment of the 28S
rRNA ribosomal gene (28S rRNA), using the primer

g pair Por28S15F—Por28S1520R (Morrow et al., 2012).

g This encompassed 51 specimens from 11 putative spe-

2 S cies (Table 1). Small fragments of choanosom%l tissue

ElG % ° were used for DNA extraction using the Qiagen Blood

¢ S = = and Tissue extraction kit, following the manufacturer’s

.?:; E % % N A instructions. Spicules were removed by adding one spin-

H % E = % 8 8 ning step after lysis and before transferring the mixture

Z|l20om = Z Z into the Qiagen columns. The quality and quantity of

resulting extracts were checked with a NanoDrop
spectrophotometer.
The PCR programme for COI was 94 °C for 5min, 5

E cycles (94°C for 30s, 45°C for 1.5min, 72°C for

§ g I min), 35 cycles (94°C for 30s, 50°C for 1.5min,

a = B 72°C for 1min) and final extension at 72°C for 7 min

E g [; % (Cérdenas et al., 2010). The PCR programme for 28S
T 2 2 g rRNA was 94°C for 5min, 30 cycles (94°C for 30s,
53°C for 30s, 72°C for 30s) and final extension at
72°C for 5min (Morrow et al., 2012). Amplification of

2 § § § both COI and 28S rRNA markers was performed in

£ § é g 5 ::x . 12.5 pl reactions, using 10.5 pul of VWR Red Tag DNA

=] : : § S8 Lig 2o s o Polymerase 1.1x Master Mix (VWR International bvba/

@ BT 5SS RSE : :

ElgasdSae3d PR sprl, Belgium), 0.5 ul of the forward and reverse pri-

2 ‘Q : §§§\§ g E\% §§§ mers, and 1pl of DNA template. PCR products were

SSE2SS<g2giy verified by gel electrophoresis on 1.5% agarose.

SEsE S X Purification and sequencing of PCR products were con-
ducted at the Molecular Core Labs (Sequencing

g« 5 Facility) of the NHMUK.

885 . § Individual reads were assembled and trimmed into

ey o2 o § consensus sequences using the software Geneious

<< % § £ "§ >y 5 v.2021.1.10 (https://www.geneious.com). In a few cases,

7 % 2‘ E N;g\? § g%\ only forward or reverse sequences were used due to the

g SE5 § 3 § S § poor quality of one of the sequencing reactions.

SIEEE & SN Consensus sequences were checked for contamination
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using BLAST (Madden, 2002). Available sequences of
Tethya and Tethyidae were downloaded from GenBank.
Alignment was performed with the multiple sequence
alignment program, MAFFT v.7.309 (Katoh & Standley,
2013). The alignment for COI contained 658 bp for 84
taxa while the alignment for 28S rRNA contained 1500
characters for 54 taxa. Phylogenetic analyses were con-
ducted using maximum likelihood in RAXxML 8.1.22
(Stamatakis, 2014). The best-fit model of evolution was
selected using jModelTest (Darriba et al., 2012), result-
ing in HKY + I4+G4 model for COI and GTR 4 I model
for 28S rRNA. Phylogenetic analyses for COI and 28S
rRNA were run separately 10 times, with 100 bootstrap
replicates. Additional COI sequences of T. burtoni Sara
& Sara, 2004 and T. bergquistae Hooper in Hooper &
Wiedenmayer, 1994 from Australian waters were also
included in the analyses (Table 1), although not directly
sequenced in this study. Raw sequences for COI and
28S generated in this study were deposited at GenBank
(Table 1).

Microbiome composition and structure

16S rRNA amplification. For 33 specimens of 9 spe-
cies of Tethya, we targeted the V4 hypervariable region
of the 16S rRNA gene to study the composition and
structure of their microbiome. The V4 region was
amplified using general bacterial primers 515F-Y
(Parada et al., 2016) and 806 R (Apprill et al., 2015),
with the Illumina adapter overhang sequences in both
primers and dual-barcoding approach (Kozich et al.,
2013). These primers contain degenerate bases to avoid
the previous bias against Crenarchaeota/Thaumarchaeota
and the Alphaproteobacterial clade SAR11. We used the
PCRBIO HiFi Polymerase (PCR Biosystems Ltd) under
the following conditions: 95°C for 3 min, followed by
28 cycles of 95°C for 20s, 60°C for 20s and 72°C for
30s, after which a final elongation step at 72°C for
Smin was performed. DNA amplification was done in
duplicates, and PCR products were checked on a 1%
agarose gel to determine the success of amplification
and the relative intensity of bands. PCR products were
purified with Agencourt AMPure XP Beads (Beckman
Coulter Inc.), and libraries prepared with the Nextera
XT DNA Library Preparation Kit (Illumina Inc.). An
equimolar pool of DNA was generated by normalizing
all samples at 4nM for sequencing. Next-generation,
paired-end sequencing was performed at the NHMUK
on an Illumina MiSeq using v3 chemistry (2 x 300 bp).
Raw amplicon sequence reads were deposited at the
Sequence Read Archive (SRA) with BioProject acces-
sion ID PRINA970968.

Read processing, taxonomic assignment, and core
ASVs. Raw paired reads were imported into Mothur
(v.1.41.3), and an adaptation of the MiSeq SOP protocol
was followed (Kozich et al.,, 2013). Briefly, primer
sequences were removed and sequence contigs were
built from overlapping paired reads. The merged ampli-
con sequence lengths were ca. 298 bp for the V4 region.
Sequences with >0N bases or with >15 homopolymers
were discarded. Unique sequences were aligned against
the Silva reference data set (release 132), and poorly
aligned sequences were removed. Unoise3 (Callahan
et al., 2017), implemented within Mothur, was used for
denoising (i.e., error correction) of unique aligned
sequences, to infer amplicon sequence variants (ASVs),
allowing one mismatch per 100bp (Oksanen et al,
2018). Any singletons remaining at this stage were
removed. Reference-based chimaera checking was con-
ducted using UCHIME with the Silva reference data set
and parameter minh = 0.3. ASVs were classified using
the Silva database v.132, with a cut-off value of 80.
ASVs classified as eukaryotic-chloroplast-mitochondria
or unknown were discarded, these represented 0.08% of
sequences. Community sampling efficiency was exam-
ined using rarefaction curves.

Statistical design and analysis. Description of the
microbial community was done using the total number
of ASVs transformed to relative abundances (RA) for
each individual. The core microbiome was determined
on the rarefied data as the ASVs that were present in
70% of samples at any abundance, and among the
phylogenetic clusters defined using the COI gene.
Measures of ASV richness and Shannon index were cal-
culated using rarefied samples in R v.4.0.5. Analysis of
variance (ANOVA) was performed to compare alpha
diversity among both Tethya clades and species, and
Tukey’s honestly significant difference (HSD) was used
for addressing pairwise comparisons. Beta diversity was
calculated using the Bray—Curtis dissimilarity coefficient
on RA transformed ASVs with a minimum of 0.01%
RA across samples (these included 89-98% of the total
RA). The relative abundances were log2 transformed
prior to the calculation of Bray—Curtis dissimilarities.
These dissimilarity matrices were visualized using
Principal coordinates analysis (PcoA) using ‘cmdscale’
in vegan v. 2.5-7 (De Caceres & Legendre, 2009).
Permutational Analysis of Variance (PERMANOVA),
using the adonis function of the ‘vegan’ package, was
used to examine differences in microbial composition
between Tethya clades. Microbial orders that were dif-
ferentially abundant between the taxonomic clades and
between the Tethya species were identified in pairwise
comparisons using the ‘TukeyHSD’ package in R.
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Orders with an adjusted (i.e., Benjamini—-Hochberg cor-
rected) p-value of less than 0.05 were considered differ-
ential between groups.

Museum  acronyms. SNSB-BSPG,  Bayerische
Staatssammlung fiir Palaontologie und Geologie,
Munich, Germany; INV, Museo de Historia Natural
Marina de Colombia, Invemar, Santa Marta, Colombia;
LEB-ICML-UNAM, Coleccion de Esponjas of the
Instituto de Ciencias del Mar y Limnologia, Universidad
Nacional Auténoma de México, México DF, México;
MCZ, Museum of Comparative Zoology, Harvard
University, Cambridge, MA, USA; MNRIJ, Museu
Nacional da Universidade Federal do Rio de Janeiro,
Rio de Janeiro, Brazil;, NHMUK, The Natural History
Museum, London, UK; MNHN, Muséum national
d’Histoire naturelle, Paris, France; MSNG, Museo
Civico di Storia Naturale di Genova ‘Giacomo Doria’,
Genova, Italy; SAM, South Australian Museum,
Adelaide, South Australia, Australia; UCPM, University
of California Museum of Paleontology, Berkeley, CA,
USA; UPSZMC, Zoology collections of the Museum of
Evolution, Uppsala University, Uppsala, Sweden;
WAM, Western Australian Museum, Perth, Western
Australia, Australia; UFBAPOR, Museu de Histdria
Natural da Bahia, Salvador, Bahia, Brazil.

Results

Systematics

Class DEMOSPONGIAE Sollas, 1885
Order TETHYIDA Morrow & Cardenas, 2015
Family TETHYIDAE Gray, 1848
Genus Tethya Lamarck, 1814

Tethya martini Riesgo, Giribet & Santodomingo,
Sp. nov.

ZooBank registration:
urn:lsid:zoobank.org:act:412FE7B6-BDES-4678-8665-
B4C11326168A
Fig. 1

Examined material: Holotype MCZ:1Z:133702 (DNA in
Biobank with number DNA106632), Bahia de los
Delfines (9.21685, —82.21370), Isla Cristobal, Bocas del
Toro, Panama, 5m deep, leg. A. Riesgo & G. Giribet,
15 Mar 2010. Paratypes MCZ:1Z:135212 1 and 2 (DNA
in Biobank with number DNA106830), two specimens,
same locality as holotype, leg. G. Giribet, 13 Mar 2012.

Diagnosis. Tethya with bright red colour, thin cortex,
and no spherasters. Two types of micrasters present:
strongylasters and tylasters; spherasters absent.

Description. Body of holotype and paratypes hemi-
spherical to spherical, 6-8 mm in diameter by 5-6 mm
high (Fig. 1A and Table 2), attached to substrate by
short lateral extensions of the base. External colour
in vivo bright red (Fig. 1A and Table 2), whitish in
ethanol. Cortical surface covered by flattened, polygonal
tubercles with regular size, 0.4-0.5mm in diameter by
0.3-0.4mm high, homogeneously distributed and sepa-
rated by reticulate areas. Some buds protrude from
tubercles, 100-150 um in diameter, stalked by thin
peduncles 1.1-2.1mm long (Fig. 1A and Table 2).
Oscules 0.5-1 mm in diameter, generally located in the
apex or laterally in the sponge body, if more than one;
holotype with a single apical oscule and paratype with
up to three, one apical and two lateral.

Skeleton. Cortex about 0.4 mm thick (holotype and par-
atypes) with lacunae. Radial bundles of megascleres,
approximately 200pum thick, ending in fan-shaped
expansions of the cortex, subdivided into 2-3 fascicles.
Without megasters in the cortex or choanoderm.
Tylasters present in both the choanosome and the cor-
tex, and strongylasters more prevalent in the choano-
derm (Table 2).

Spicules. Holotype. Megascleres, main strongyloxeas
with rounded or hastate ends, straight or slightly bent,
700.5-884.8-1174.5 um long by 8.2-13.6-18.8 um wide
(Fig. 1A-B, Supplemental Fig. S1A); accessory strongy-
loxeas with rounded or hastate ends, 407.2-473-
592.4um long by 5.6-7.3-10 um wide; no spherasters.
Microscleres, strongylasters, and tylasters of similar size
(Fig. 1E-G). Strongylasters type 1 and type 2 with simi-
lar sizes, 9.5-11.1-12.7pum in diameter, with small
nucleus 2.5-2.9-3.3um, and 10-12-15 straight, cylin-
drical rays spined in their distal !/ portion, with
rounded and sometimes bifurcated ends (strongylaster
type 1, Fig. 1E) or 10-12-15 slightly conical rays (4.3-
4.7-5.5um in length by 0.7-0.9-1.1um in width) with
larger, sharper spines, along their 2/ distal portion
(strongylaster type 2, Fig. 1F). Tylasters (Fig. 1G) 8.4-
9.7-10.9 um in diameter, with slightly larger nucleus
2.7-3.2-3.7um, and 10-12-15 straight, short, cylindrical
rays enlarged at the tips; rays 3.0-3.7-4.3 um long by
0.9-1.1-1.2 um wide, bearing high spines with rounded
tips along the 3/4 or 1/, of the rays, although in larger
density at 1/4 tips (Table 2).

Distribution and ecology. Tethya martini sp. nov. has
been found in shallow coral reefs in Bocas del Toro
(Panama), in crevices among rubble of the scleractinian
Porites porites (Pallas, 1766), at a depth of <5m.
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Fig. 1. Tethya martini sp. nov. MCZ:1Z:133702. A. Field image of a live specimen. B. Skeletal architecture of cortex and upper
choanosome in cross section. C. Strongyloxea, slightly bent. D. Strongyloxea, rounded and hastate tips. E. Strongylaster type 1. F.

Strongylaster type 2. G. Tylaster.

Remarks. The lack of spherasters (or megasters) in 7.
martini sp. nov. is a character shared with 7. fastigata
Bergquist & Kelly-Borges, 1991 and 7. amplexa
Bergquist & Kelly-Borges, 1991 from New Zealand
(Bergquist & Kelly-Borges, 1991), as well as with the
genus Oxytethya. With T. fastigata, it shares the brick-
red colour when alive and a low density of microscleres
in the choanosome, but 7. fastigata differs in having
deformed micrasters (~polyrhabds) and abundant oxy-
asters. Tethya amplexa has a distinct yellow colour, and
a high density of micrasters and oxyasters, all features
different from the new species. Tethya martini sp. nov.
is not a species of Oxytethya (which lacks megasters),
since the main feature of the genus Oxytethya, and pre-
sent in the only species described so far, O. mirabilis
Sara & Sara, 2002, is the abundance of oxeas as main

(4000-5000 um) and auxiliary (180-210um) mega-
scleres, and polyrhabds among the micrasters (Sara &
Sara, 2002), both spicule types absent in 7. martini sp.
nov. In addition, Oxytethya is only known from SE
Australia. We compared 7. martini sp. nov. with all
other species known to occur in the Caribbean, includ-
ing T. diploderma  Schmidt, 1870 (NHMUK
1870.5.393, holotype, Supplemental Fig. S2) and the
NW Atlantic (NHMUK 1938.4.26.14, Supplemental
Fig. S3), T. taboga (de Laubenfels, 1936) from
Panama (USNM 22216), T. maza Selenka, 1879 from
Brazil (MNRJ 810, neotype), and 7. simoni sp. nov.
(Table 2, Fig. 2), but all of them possess spherasters
(Table 2, Supplemental Figs. S2 and S3), making the
absence of spherasters in 7. martini sp. nov. its main
diagnostic character among other species in the region.


https://doi.org/10.1080/14772000.2024.2383341
https://doi.org/10.1080/14772000.2024.2383341
https://doi.org/10.1080/14772000.2024.2383341
https://doi.org/10.1080/14772000.2024.2383341
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A. Field

Fig. 2. Tethya simoni sp. nov. MCZ:1Z:133701.

‘so1o[ose3ow

image of a live specimen. B. Skeletal architecture of cortex

and upper choanosome in cross section. C. Spherasters, large
(with bent tips) and small-size classes. D. Common spherasters
with bifurcated tips. E. Strongylaster type 1. F. Strongylaster

type 2. G. Oxyaster type 1. H. Tylaster type 1.

6243542CD6B5
Fig. 2

ZooBank registration:
urn:lsid:zoobank.org:act: D9ID59AFD-4D20-44C0-8737-

Etymology. The species is named after Martin Taboada,
Tethya simoni Santodomingo, Zea & Riesgo, sp. nov.

the firstborn son of Ana Riesgo.
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Examined material. Holotype: MCZ:1Z:133701 (ex.
DNA106631), Bahia de los Delfines (9.21685,
—82.21370), Isla Cristébal, Bocas del Toro, Panama, 15
Mar 2010, leg. A. Riesgo & G. Giribet, Sm deep.
Paratypes: MCZ:1Z:135212 (spec. 3 and 4), same local-
ity as holotype, leg. G. Giribet, 13 Mar 2012;
UFBAPOR 5019, UFBAPOR 5020, UFBAPOR 5021,
Intertidal rocks on an arenitic plateau at Praia da Pituba,
Salvador de Bahia, Brazil, 25 Jan 2018, leg. E. Lanna &
F. Calvacanti.

Diagnosis. Tethya with thick cortex, spherasters present,
in two sizes; larger spherasters often with bifurcated
tips, three types of micrasters: strongylasters = tylasters
< oxyasters.

Description. Body hemispherical to spherical 0.8—
1.2cm in diameter by 0.9-1.2cm high (Fig. 2A). Live
specimens orange (Fig. 2A), becoming yellow or beige
in ethanol. Pinacoderm covered by flattened, circular,
irregularly distributed tubercles of variable sizes, 0.2—
0.6 mm in diameter with a fiddle-shaped peduncle 0.4—
0.7mm high, separated by reticulate areas. In paratype
specimens from Brazil, no tubercles were observed. No
oscules evident on holotype nor paratypes.

Skeleton. Cortex 1-1.4mm thick, with regular lacunae,
mainly constituted by abundant spherasters and a thin,
outer layer of tylasters. Deposits of collagen form a
dense layer between the cortex and choanosome. Main
radial bundles of strongyloxeas, 150-250 pm thick, form
fan-shaped expansions of the cortex, single or subdi-
vided in 2-3 fascicles. Tylasters present in both choano-
some and cortex. Strongylasters and oxyasters more
abundant in choanosome.

Spicules. Holotype. Megascleres, strongyloxeas, and
spherasters. Main strongyloxeas with rounded and hast-
ate ends, straight, 810.2-1107.5-1470.5 um long by 9.2-
19.3-30.3um wide; accessory strongyloxeas with
rounded and hastate ends, 210.9-480.3-600.5 pm long by
2.6-9.9-18.4um  wide (Supplemental Fig. S1B).
Spherasters in two sizes, large spherasters more abun-
dant, 72.1-89.5-110.1 um in diameter, large core 33.3-
42.9-53.2 um, R/C 0.4-0.6-0-7, with 20-22-26 smooth,
conical rays, although_mainly with variable shapes,
more commonly with bifurcated rays (47%), mammi-
lated (20%), or rays with bent tips (20%) (Fig. 2C-D);
small spherasters sparse in the cortex with 22-24-26
smooth, conical, straight rays, 45.1-55.9-62.9 uﬁ in
diameter, large core 20.5-30.7-35.6 um,WC 0.3-0.4-0.6
(Fig. 2C). Microscleres, tylasters, and strongylasters of
similar size, larger oxyasters. Strongylasters 11.8-14.7-

17.7 um in diameter, with small nucleus 3.2-4.0-4.6 um
in diameter, and 14-15-16 straight, cylindricalTays with
rounded ends, bearin_g a crown of high, sharp spines,
rarely with sparse 1-2 spines at 1/3 to 1/4 of distal por-
tion of rays; rays 4.2-5.6-7.2 um long by 1.1-1.5-1.9 pm
wide (Fig. 2E—F). Tylasters 10.3-12.5-13.9 um in diam-
eter, with large nucleus 3.4—4.6-T4pm, and 12-14-15
straight, short, cylindrical ray_s enlarged at the_tips;
short, robust rays 3.7-4.6-5.5 um long by 1.7-2.0-2.3 pm
wide, with large, shag spines concentrated at the s
ends, mostly pointing upwards; some rays bearing a
small spine at their basal part (Fig. 2H). Large oxyasters
18.5-21.7-27.9 um in diameter, reduced nucleus 4.0-4.5-
5.7 um, and long, straight, thin 12-16-19 rays; rays 7.1-
8.4-10.6 ym long by 1.3-1.6-2.0 wide, bearing short,
blunt or acerate spines, sp;rse 1/, towards the tips, in
more density at the /4 ends of the rays (Fig. 2G); some
oxyasters with bifurcated rays at the /3 proximal part.

Distribution and ecology. Tethya simoni sp. nov.
inhabits the coral reefs of Bocas del Toro (Panama),
where it has been found attached to fragments of dead
branches of Porites porites and other hard corals,
around 5m depth. In Brazil, it was collected under rocks
in an intertidal arenitic plateau. This new species is dis-
tributed from the southern Caribbean (Panama) to the
northeast coast of Brazil.

Remarks. Reports of 7. aurantium from the Caribbean
date back to 1936 in a study of the sponges on both
sides of the Panama Canal (de Laubenfels, 1936).
Subsequent records include specimens from Puerto Rico
and the Dominican Republic (Sara & Gaino, 1987),
from Cuba (Alcolado, 1985), and it is also in a recent
checklist from Panama (STRI Research Portal, 2023).
These records and some others could be attributed to 7.
simoni sp. nov. (see below). Tethya aurantium was
described from the Mediterranean Sea, and although we
did not have access to the neotype (MSNG 49670, Bay
of Naples), T. aurantium material studied here was col-
lected in the Bay of Naples. Measurements of our 7.
aurantium specimens from the Mediterranean show a
wider and continuous range of strongyloxea size (544.5-
1423.2-2366.3 pm long by 11.8-20.8-29.5 um wide) as
well as spheraster size (24.3-76.7-105.1 um in diameter),
which correspond to the Mype description (Sara,
2002; Table 2). In T. simoni sp. nov., strongyloxeas
have smaller sizes, and spherasters with bifurcated rays
are common, contrary to a unique instance observed in
this study on specimen MCZ:1Z:106628 of T. aurantium
collected in the type locality, in Naples, Italy (Tables 1-
2). De Laubenfels (1936) noticed the similarities
between his Panamanian specimens and those of T.



https://doi.org/10.1080/14772000.2024.2383341

Integrative taxonomy of Tethya

aurantium from the Mediterranean but remarked the
presence of two sizes of spherasters, which are not
described for 7. aurantium but are diagnostic for T.
simoni sp. nov. (Fig. 2C, Table 2). The molecular affin-
ity of T. aurantium and T. simoni sp. nov. is clear, as
they are sister species in a well-supported clade using
two different markers (Figs 3 and 4) and their dominant
haplotypes are separated by 8 mutational steps (Fig. 3).
Tethya simoni sp. nov. is constrained to the West
Atlantic, and so far only found in the southern Caribbean
(Panama) and northeast Brazil. Other examined specimens
of the NHMUK collections from the Caribbean and close-
by areas (Table 2), included the type of T. diploderma
NHMUK 1870.5.393 (West Antilles) (Supplemental Fig.
S2), USNM 22203 (Panama) and NHMUK 1938.4.26.14
(Bermuda;  Supplemental Fig. S3), T. actinia
BMNH1948.8.6.48 (Bermuda) and 7. taboga USNM
22216 (Panama). The most important character separating
T. simoni sp. nov. from these other Caribbean species is
the presence of two sizes of spherasters, the most abundant
one much larger than those in the other species (Table 2).
Since 7. simoni sp. nov. also appears in Brazil, we
compared it with recently described species from the
coast of Brazil, comprehensively reviewed in Ribeiro
and Muricy (2011). Tethya rubra Samaai & Gibbons,

99 Cliona Delata KY492595
X999089

100 p=——

hiacospongia 5b, KC869430

Timea unistellata KC869427
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2005, T. cyanae Ribeiro & Muricy, 2004, and T. ignis
Ribeiro & Muricy, 2004 lack strongylasters, while those
are conspicuous in 7. simoni sp. nov. Diagnostic charac-
teristics of 7. beatrizae (previously identified as 7. aur-
antium sensu Hechtel, 1976 in Ribeiro & Muricy,
2011), such as having a smooth surface (no tubercles)
and oxyasters without spines (oxyaster type 2) differ
from those of 7. simoni sp. nov. The main difference
from other Brazilian Tethya species is the presence of
two types of spherasters, one larger than those present
in most other Brazilian species, except for T. brasiliana
Ribeiro & Muricy, 2004 (Table 2). In this particular
case, the character distinguishing 7. brasiliana and T.
simoni sp. nov. is the absence of tylasters in 7. brasili-
ana (Ribeiro & Muricy, 2004). The Brazilian species, T.
nicolae Ribeiro & Muricy, 2011 and 7. maza Selenka,
1879, share some characteristics with T. simoni sp. nov.
Tethya nicolae has also spherasters with bifurcated tips,
but of much smaller size (37-48-57 um) and although
strongylasters and tylasters have similar shapes and sizes
in both species, oxyasters in 7. nicolae are smaller with
smooth rays, contrasting with the typical spinose and
sometimes bifurcated in 7. simoni sp. nov. In compari-
son with 7. maza, which also seems to have a wide
range of spherasters that vary from a small size (26 um)
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Fig. 4. Maximum likelihood consensus tree for the 28S rRNA alignment. Only bootstrap values over 70% are shown. Known
geographic regions for species in the tree are shown with coloured squares. Specimens in bold letters were sequenced in this study

for the first time.

to a larger size (100 um) and some with bifurcated tips,
this species has polyrhabds-like spicules (see fig. 1F in
Ribeiro & Muricy, 2011, referred to as oxyasters type
1), which are absent in 7. simoni sp. nov. The wide dis-
tribution of 7. maza along the Brazilian coast, and simi-
larities in the skeletal features, suggest that this species
may be part of the same lineage as 7. aurantium and T.
simoni Sp. nov.

We also compared Tethya simoni sp. nov. with speci-
mens collected in the Bay of Chengue (Colombia)
(Supplemental Fig. S4) and in Salvador (Brazil) that
belong to 7. gracilis Sara (Sara et al., 2001). While T.
gracilis was described from aquaria in the Dusseldorf
Museum for the first time, it is likely that the species
originated in a tropical setting that the authors located
in the Indo-Pacific based on the affinities of T. gracilis
to the previously sequenced 7. seychellensis (see Sara
et al., 2001). However, the sponges could have also ori-
ginated in the Caribbean. Although the spicular content
is similar in both 7. simoni sp. nov. and T. gracilis, T.

simoni sp. nov. has spherasters of two sizes, with the
larger class doubling the size of the ones found in T.
gracilis, and the strongyloxeas are much smaller in the
former species (Table 2).

Etymology. The species is named after the son of Nadia
Santodomingo, Simon Peter-Contesse Santodomingo.

Tethya erici Diez-Vives, Santodomingo, Moles, &
Riesgo, sp. nov.
ZooBank registration: urn:lsid:zoobank.org:pub:54F8
0ESE-99A4-43CE-BA3A-BCDO1E715595
Fig. 5

Examined material. Holotype: MNCN 1.01/1023,
Chipiona  ‘Corrales’,  Cadiz, Spain  (36.74168,
—6.43887). Leg. Juan Moles, 2m depth, Oct 2014.
Paratypes: MNCN 1.01/1024 and MNCN 1.01/1025,
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Fig. 5. Tethya erici sp. nov. MNCN 1.01/1023. A. Specimen preserved in ethanol. B. Detail of cortex showing bundles (b) and
lacunae (la). C. Skeletal architecture. D. Spheraster type 1. E. Spheraster type 2. F. Strongylaster type 1. G. Tylaster type 1. H.

Tylaster type 2. I. Oxyaster.

collected with the holotype, and 14 specimens MNCN
1.01/1027 to MNCN 1.01/1041 collected in La Palma,
Canary Islands, Spain (28.693245, —17.759086), leg.
Juan Moles, 2 m depth, Sept 2022.

Diagnosis. Tethya with thin cortex, small strongyloxeas
in two sizes, spherasters in two sizes, micrasters: strong-
ylasters, tylasters, and oxyasters, all with similar size
ranges, but strongylasters slightly larger and in two

types.

Description. Body hemispherical to spherical, 1cm in
diameter; colour green in live specimens, in alcohol white
externally, beige internally (Fig. SA-B). Pinacoderm cov-
ered by flattened, plate-like tubercles of variable sizes
0.3-0.4mm in diameter by 0.1-0.2 mm high, irregularly
distributed. Buds with mushroom-like shape, protruding
from some tubercles, peduncle 0.4-0.6mm high and
320-400 um in diameter (Fig. SA—B). No oscules evident
on holotype nor paratypes. Cortex firm, resistant; choano-
some compressible.
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Skeleton. Cortex 0.85-0.98 mm thick with regular lacu-
nae (Fig. 5B), mainly formed by abundant spherasters,
tylasters, and oxyasters (Fig. 5C). Thin layer of collagen
between cortex and choanosome. Main radial bundles of
strongyloxeas 250—400 um thick, forming single fan-
shaped expansions of the cortex. Strongylasters mainly
present in choanosome, with abundant tylasters and oxy-
asters, and sparse spherasters (Fig. 5SB—C).

Spicules. Holotype. Megascleres, strongyloxeas, and
spherasters. Main strongyloxeas with rounded and hastate
ends, straight, 808.7-859.1-983.1 um long by 11.5-14.5-
20.4 um wide; accessory strongyloxeas with rounded and
hastate ends, 236.9-340.2-472.86 um long by 3.6-5.4-
7.5um wide (Supplemental Fig. S1C). Two sizes of
spherasters, small when compared with other Tethya spe-
cies. Spherasters of larger size 15.4-40.1-56.7 um in
diameter, large core 8.2-19.5-25.3 um, R/IC 0.4-0.5-0.7,
with 11-13-17 smooth, conical rays (Fig. 5D), and smaller
spheraste_rs of 15.2-15.6-16.3 um, core 6.1-7.1-8.2 um, R/
C 0.5-0.6, with 10-12 conical rays (Fig. S5E).
Microscleres, mean size of strongylasters slightly larger
than tylasters and oxyasters, but all have similar size
range. Strongylasters in two types, 6.9-9.6-11.7 ym in
diameter, with small nucleus 1.1-2.6-3.7 u?in diameter,
and 7-9-13 straight, cylindrical ra_ys with rounded ends
bearing_ spines at 1/3 to 1/4 of distal portion of rays; strong-
ylaster type 1 have enlarged tips with shorter, sparse
spines (Fig. 5F); strongylaster type 2 have conical
rounded ends, with sharp and larger spines. Tylasters 5.9-
8.3-11.8 um in diameter, with large nucleus 1.7-2.6-
3.7 um, and 7-8-10 straight, short, cylindrical rays sligmy
enlarged at the tips; cylindrical rays 1.6-3.1-4.2 um long
by 0.7-1.0-1.1 pm wide, sharp, short spines concentrated
at the 1/4 ends, pointing outwards (Fig. 5G—H). Small oxy-
asters 6.3-8.8-10.8 um in diameter, reduced nucleus 0.9-
1.2-1.6 pm, and long, straight, thin 6-7-9 rays; rays 2.9-
@-4.4 pm long by 0.3-0.5-0.6 wide, bearing short spines
at the 1/4 ends of the rays (Fig. 51).

Distribution and ecology. Tethya erici sp. nov. occurs
under rocks on rocky shores in shallow waters (1 m
depth), so far only found in the ‘Corrales’ on the coast
of Chipiona (Cadiz, Spain) and La Palma (Canary
Islands, Spain) rocky shore pools. The ‘Corrales’
(Spanish plural of corral) are artificial enclosures histor-
ically used for centuries for fishing by hand at low tides.
These are rocky enclosures with scattered boulders
under which T. erici sp. nov. was found. This region is
located in the southernmost part of the North Atlantic,
near the Strait of Gibraltar, which connects the Atlantic
and the Mediterranean Sea. The coast is influenced by
the sedimentary inputs of the Guadalquivir River and

nearby the large estuarine system of the Donana
National Park. In La Palma, the rocky ecosystems where
the sponges were found were mostly intertidal pools
under boulders at 2 m depth.

Etymology. The species is named after the son of
Cristina Diez-Vives, Eric Nielsen Diez.

Remarks. Among the Atlantic species, Tethya erici sp.
nov. is most similar to 7. nicoleae Ribeiro & Muricy, 2011
from Brazil in their spicular content, but the former has
smaller strongyloxeas that are in two size classes, spherast-
ers with fewer rays and none with bifurcated tips, micrast-
ers of smaller size and more variability with additional
strongylasters type 2 and oxyaster type 3. In comparison
with other North Atlantic species 7. erici sp. nov. falls
within the range of distribution of 7. aurantium and T. cit-
rina. Although the spicule types are similar to 7. auran-
tium, they differ in having smaller sizes, with
strongyloxeas and spherasters up to half of the size.
Spherasters in T. erici sp. nov. have a larger core (R/C 0.4—
0.7) different from the typical oxyspherasters (R/C 0.6—
1.4) in T. citrina. Concerning 7. hibernica and T. norveg-
ica, spicules of T. erici sp. nov. are more similar to 7.
hibernica but the latter has typical tylasters of shorter and
thicker rays (Heim, Nickel, Picton, & Briumer, 2007).
Finally, in contrast to the recently described 7. meloni
Corriero et al., 2015 from the Mediterranean Sea, 7. erici
sp. nov. lacks oxyspherasters (R/C 1-1.8), and tylasters
described in 7. meloni are strongylaster-like with longer
rays and smaller cores (Corriero et al., 2015). T. erici
shares geographic distribution with Tethya irregularis Sara
& Bavestrello, 1998 from the Canary Islands, however it
differs in the absence of abnormal megasters and the pres-
ence of strongylasters and oxyasters. In the molecular phyl-
ogeny, T. erici sp. nov. forms a well-supported clade with
T. bergquistae from Australia and New Zealand, which has
larger strongyloxeas and micrasters (Fig. 3).

Tethya orioni Kenny, Santodomingo & Riesgo, sp. nov.
ZooBank registration: urn:lsid:zoobank.org:act:FBS6A
581-9311-46EF-A141-8925E0CDS58EOQ
Fig. 6

Examined material. Holotype: NHMUK 2000.9.14.16,
tip of causeway, Ras Ghumais, United Arab Emirates,
Persian Gulf. Leg. J.D. George, 3-8 m depth, 15 Oct
1998.

Diagnosis. Tethya with thick cortex, irregular tubercles,
variable spherasters with fewer rays, three types of
micrasters: oxyasters = strongylasters > tylasters.
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Fig. 6. Tethya orioni sp. nov. NHMUK 2000.9.14.16. A. Specimen preserved in ethanol. B. Skeletal architecture of cortex and upper
choanosome in cross section. C. Spherasters with abnormal shape and mammillated rays. D. Large spheraster. E. Small spherasters.
F. Strongylaster. G. Oxyaster. H. Oxyaster with bifurcated tips. I. Tylaster.

Description. Body spherical 2.7 cm in diameter by 2 cm
high (Fig. 6A). Specimen bluish tinge when alive (J.D.
George, pers. comm.) and white to light beige in ethanol
(Fig. 6A). Pinacoderm covered by tightly arranged
tubercles of irregular shape and rugose surface, ranging
from 0.5-3.5mm wide by 0.6-1 mm high. Some buds
grow from tubercles, attached through thin peduncles
200-300 pm in diameter and 1.3-2.2 mm long. No oscu-
les visible.

Skeleton. Thick cortex 1-3mm thick with irregular
lacunae, mainly constituted by abundant spherasters and
some tylasters (Fig. 6B). Deposits of collagen under the
cortex. Main radial bundles of strongyloxeas, 280—

400 um thick, form fan-shaped expansions of the cortex,
generally subdivided into 3—4 fascicles (Fig. 6B).
Oxyasters and strongylasters abundant in the choano-
some. Tylasters less common in choanosome than in the
cortex.

Spicules. Holotype. Megascleres, strongyloxeas in three
size classes, all straight with rounded and hastate ends.
Main strongyloxeas abundant, conform bundles radiating
from the centre of the sponge, 1114.3-1349.1-1598.8 um
long by 16.0-20.5-25.7um wide (Fig. 5); medium
strongyloxeas, less common, 745.1-856.8-956.4 um long
by 10.7-14.8-17.6 um wide; small, accessory strongylox-
eas, profuse, 337.8-466.3-631.0 um long by 8.0-12.5-
16.8 um wide (Supplemental Fig. S1D). Megasters,
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spherasters in two sizes (Fig. 6C-E), large spherasters
abundant in the cortex, 40.1-53.3-68.7 um in diameter,
large core 19.9-26.6-32.9 um, R/C 0.3-0.6-0.9, with 8-
13-16 smooth, conical rays (Fig. 6D), but often in
Hegular and variable shapes, more commonly with
unequal rays, both pointy and rounded (20%), thinner
rays with mammillae-like tips (15%), or amorphous
shape (15%) (Fig. 6C); small spherasters also in variable
shapes, sparse in the cortex, more abundant in the choa-
nosome, with 9-11-14 rays, 22.3-29.7-38.1 pm in diam-
eter, core 11.9-15.9-22.7 um, R/C 0.4-0.6-0.8 (Fig. 6E).
Microscleres, strongylasters and oxyasters of similar
size, smaller tylasters. Strongylasters 22.0-27.2-35.0 pm
in diameter, with small nucleus 5.1—5.8—7.9Rin diam-
eter, and 6-7-8 straight, cylindrical rays with rounded
ends, with s_harp spines sparse thoroughly along rays,
concentrated towards /3 of distal portion of rays; rays
9.9-12.5-16.8 pm long by 1.9-2.5-3.1 um wide (Fig. 6F).
Oxyasters 24.2-32.0-37.3pum in diameter, reduced
nucleus 4.1—5.4—6ﬂm, and long, straight, thin 4-6-8
rays; rays 10.6-15.2-18.5 pm long by 1.6-1.8-2.1 wide,
bearing short, acerate spines, sparse thor(gghly along
the rays (Fig. 6G); most oxyasters with bifurcated rays
at the tips (Fig. 6H), some oxyasters devoid of spines
with straight rays. Tylasters 10.2-13.3-24.7 ym in diam-
eter, with large nucleus 3.1-4.0-6.6 um, and 8-9-10
straight, short, cylindrical rays eﬁarged at the tips,_3.6-
5.3-10.4 um long by 1.2-1.9-2.7 um wide, with a crown
of sharp spines concentrated at the 1/ ends, mostly
pointing upwards (Fig. 6]).

Distribution and ecology. Tethya orioni sp. nov. was
collected in a sheltered area of a rocky shore, 3-8 m
depth.

Remarks. The specimen was deposited in the collec-
tions of the NHMUK under the name 7. seychellensis,
identified by Dr Michelle Kelly in 2000. Detailed
examination of 7. orioni sp. nov. in comparison with
the T. seychellensis holotype NHMUK 1886.10.22.22
(Mahé, Seychelles, Supplemental Fig. S5), showed that
both species have similar body size and, despite having
densely packed tubercles on the pinacoderm surface,
these seem to be more regular in 7. seychellensis,
while very irregular in size and shape in T. orioni sp.
nov. Spherasters and oxyasters are of similar size in T.
seychellensis (Table 2), whilst in 7. orioni sp. nov.
oxyasters are smaller than spherasters. Another differ-
ence is the presence of strongylasters in 7. orioni sp.
nov., which are absent in T. seychellensis. These two
species share some features such as the size class of
strongyloxeas and tylasters, and by having oxyasters
with fewer number of rays and bifurcated tips.

Molecular analyses showed that both species are part
of the same main clade (clade 1; Figs 3—4) but T.
orioni sp. nov. can be distinguished morphologically
and genetically from other Tethya species within that
clade. The irregular shape of spherasters in 7. orioni
sp. nov. is a character also observed in 7. omanensis
Sara & Bavestrello, 1995, described from an under-
water cave in Oman, and T. irregularis described from
the Canary Islands in the vicinity of a freshwater
spring (Sara & Bavestrello, 1998). It has been sug-
gested that these abnormalities and eroded spicular sur-
face are adaptations to reduced salinity (Sara &
Bavestrello, 1998). Tethya orioni sp. nov. was col-
lected in a marine setting with no evident freshwater
input. Tethya omanensis has shorter strongyloxeas
(450-720-980 um), micrasters with an enlarged nucleus,
and ﬁ:rasters with a higher number of rays (24-28)
in comparison to those in 7. orioni sp. nov. Regarding
T. irregularis, micrasters have a larger number of rays
(10-15). Other species described from adjacent waters
in the Indian Ocean are 7. stellagrandis (Dendy, 1916)
and T. ingalli (Bowerbank, 1858). Tethya stellagrandis
differs from other species in the genus in having the
largest  spherasters recorded (up to 250 pum)
(Supplemental Fig. S6A-C). In T. ingalli spherasters
range between 80-140pum (Dendy, 1916), hence they
are double the size of the ones found in 7. orioni
Sp. nov.

Etymology. The species is named after Orion Tamati
Kenny, the firstborn son of Nathan J. Kenny.

Tethya phylogeny

Phylogenetic analyses of the individual COI and 28S
rRNA sequences (Figs 3—4) recovered a monophyletic
order Tethyida with strong support (Figs 3—4). The fam-
ily Tethyidae was also recovered as a single clade with
support over 70 in the COI tree, and low support in the
28S rRNA tree (Figs 3 and 4). In the COI tree, we
obtained five main clades: clades 1-3 and 5 highly sup-
ported but clade 4 with less support (Fig. 3). In clade 1
(Fig. 3), we found 7. burtoni (from New Zealand)
diverging earlier, and then 7. martini sp. nov. (from
Panama), as sister species to a well-supported clade
composed by T. coccinea (from Australia) and
two unidentified Tethya specimens collected in the
Indo-Pacific and the Red Sea (Fig. 3). Finally, the last
subclade obtained in clade 1 grouped T. seychellensis
(from Vietnam), 7. wilhelma, and T. gracilis (both
described from German aquaria), and two specimens
that we collected in the western Atlantic, one from the
Colombian Caribbean and another from Salvador de
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Bahia in Brazil that were extremely similar to the 7.
gracilis holotype. The morphology and spicule comple-
ment of the 7. gracilis holotype (Sara et al., 2001) and
our specimen identified as 7. cf. gracilis from the
Caribbean locality of Chengue Bay in Colombia were
highly similar (Supplemental Fig. S4), despite a 4bp
difference in COI, suggesting that this species may con-
stitute a species complex, or that its potentially invasive
nature has allowed it to diverge quickly into different
lineages. Clade 2 grouped two species, T. bergquistae
from Australia and 7. erici sp. nov. from the North
Atlantic. Clade 3 comprised 7. aurantium, T. simoni sp.
nov., and an unidentified specimen of Tethya from the
Red Sea (Fig. 3). All specimens of 7. aurantium were
collected in the Mediterranean, and showed only two
haplotypes, with only one mutational step between them
(Fig. 3). For T. simoni sp. nov., three specimens were
collected in Panama and three more in Salvador
(Brazil), and all of them showed a single haplotype
shared across their distribution range (Fig. 3). Clade 4 is
the least supported clade with a bootstrap of 70%, and
comprises 7. minuta Sara, Sara, Nickel & Briimmer,
2001, T. actinia, T. californiana, and T. irisae Sorokin
et al., 2019. Tethya californiana is represented by two
haplotypes with a 3 bp difference (Fig. 3). Clade 5 (Fig.
3) comprised the North Atlantic and Mediterranean spe-
cies T. citrina, T. norvegica, and T. hibernica.

In the 28S rRNA tree, there is a wider coverage of
genera within the family Tethyidae thanks to sequences
available in GenBank, including species of the genera
Tethytimea, Tectitethya, Stellitethya, Xenospongia, and
Tethya which mostly clustered together in an unsupported
clade, diverging the closest to the root within Tethyida
(Fig. 4). The sister clade to the general Tethya clade was
composed of Tethytimea carmelita Cruz-Barraza, Vega,
Avila & Vazquez-Maldonado, 2017, and an unidentified
Timea specimen (Fig. 4). The four clades within
Tethyidae observed in the COI tree were not recovered
with 28S rRNA data, but it is important to note that
many species sequenced for COI were not sequenced for
28S rRNA, so these two trees are not directly compar-
able. Within the genus Tethya, generally, the relationships
between the species obtained with COI were mirrored
with 28S rRNA (Fig. 4), with a few exceptions: T.
hibernica did not cluster with 7. norvegica but with T.
citrina (Fig. 4).

Microbial composition

Diversity descriptors. The microbial communities were
studied in 33 samples. The resulting sequencing reads
ranged from 38,288 to 155,303, and the average number
of unique amplicon sequence variants (ASVs) was

2,723 +1382 per sample (Supplemental Table SI).
Tethya citrina 111 (Supplemental Table S1) included the
highest number of ASVs (5552), while T. orioni sp.
nov. had the lowest number of ASVs (461). The most
abundant ASV had 69,754 reads in 7. actinia i3, but in
general, only around 2% of the ASVs showed more
than 500 reads per sample. Diversity (ShannonH) of
samples was not statistically different for sponge clades
in general and in any of the pair-wise comparisons
(» > 0.05, Supplemental Fig. S7A), but there were dif-
ferences between some sponge species pairs (p < 0.05,
Supplemental Table S2). Interestingly, the ‘white’ mor-
photype of T. aurantium 19 from Naples was the most
diverse sample (5.32, Supplemental Table S1), even
when compared with other specimens from the same
species and the same location. As expected, 7. orioni
sp. nov. showed the lowest diversity (1.42), dominated
by one ASV that comprised 71.5% RA and was anno-
tated as Synechococcus CC9902 (100% similarity).
Despite these differences in diversity, all 33 Tethya
specimens whose microbiome was investigated here can
be considered LMA sponges.

The ordination of samples based on Bray—Curtis dis-
similarity (Supplemental Fig. S7B), showed a grouping
of samples by clade, except for 7. norvergica specimens
that were distant to the clade centroid. These latter sam-
ples were collected in deep-sea environments and may
explain why they did not cluster with their designated
clade. Pairwise PERMANOVAs revealed differences
between all pairs of clades, which was the result of both
differences in location and dispersion of Bray—Curtis
dissimilarities (Supplemental Table S1).

Microbial taxonomy. The samples analysed contained
from 11-19 different microbial phyla (Supplemental
Table S2). In all species, the dominant phylum was
Proteobacteria (from 23.8-98.5% RA), except for T.
orioni sp. nov., where Proteobacteria accounted only for
10% RA and Cyanobacteria dominated its microbiome
(86.9%). Cyanobacteria were also abundant in 7. graci-
lis from Brazil (35%) and T. martini sp. nov. (27 and
32.7% RA), but were below 12% in the rest of the sam-
ples. The archaeal community reached important relative
abundance in the species 7. erici sp. nov. (up to 13.7%)
and T. citrina (up to 32.4%) (Supplemental Table S3).
Also, samples of T. erici sp. nov. presented an unusually
high abundance of sequences without a confident taxo-
nomic classification beyond the kingdom Bacteria (up to
38.7%), for both ‘la Palma’ and ‘Chipiona’ samples.
Since all samples were processed similarly, the reasons
for this difference are unclear but could indicate the
presence of bacterial taxa that are not well represented
in the current databases.
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At the deeper level of order, the microbial community
of Tethya simoni sp. nov. and T. aurantium (both compris-
ing clade 3) was mostly formed by Microtrichales
(Actinobacteriota), Rhodobacterales (Alphaproteobacteria),
UBA10353 marine group (Gammaproteobacteria), and
other unclassified Proteobacteria (Supplemental Table S2,
Fig. 7A). Tethya citrina harboured mostly Burkholderiales
(Gammaproteobacteria) and Nitrosopumilales
(Crenarchaeota). However, in 7. norvegica, which also
belonged to clade 5, Pirellulales were more abundant
(reaching up to 544% RA), and Parvibaculares
(Alphaproteobacteria, up to 43.9%), while Nitrosopumilales
and Burkholderiales were less abundant. The three species
belonging to clade 1 were characterized by the dominance
of Synechoccales (Cyanobacteria), with some differences
in other taxonomic orders such as high abundances of
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ships. For instance, T. gracilis clustered with 7. martini
sp. nov., instead of with 7. orioni sp. nov. in the micro-
bial clustering (Fig. 7A). However, it is important to
note here that the relationships within these clusters can
slightly differ depending on the taxonomic resolution
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Fig. 7. Microbiome composition for Tethya spp. A. Barplot showing the relative abundance of each microbial (Bacteria and
Archaea) order with corresponding dendrogram clustering of the samples using Bray—Curtis dissimilarity values. B. Differentially
abundant microbial orders between sponge species that represent > 10% RA. Highlighted orders include the ones that are
significantly significant in any of the pairwise comparisons (see Supplemental Table S6). C. Venn diagram of shared and unique
ASVs for the four clades sequenced. D. Differentially abundant orders that are significant for all pairwise comparisons between one
clade and the other three (see Supplemental Table S5). Circles for ‘diagnostic’ microbial taxa show a black stroke in both B and D.
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used for the microbial composition. For example, in a
dendrogram based on the genus level abundances, clade
2 branches as a sister group of clade 3, a pattern more
similar to the COI tree (Supplemental Fig. S8).

Core microbiome and differentially abundant orders.
Only two core ASVs were shared among 70% of the
samples: one Synechococcus and one Rubripirellula
(Planctomycetes). This core reached a relative abun-
dance ranging from 0 in 7. norvegica to 17.8% in T.
gracilis from Brazil (Supplemental Table S5). In pair-
wise comparisons, the largest number of shared ASVs
occurred intraspecifically in samples of 7. citrina (up to
1171 ASVs) and T. erici sp. nov. individuals (up to 816
ASVs) (Supplemental Table S6).

Across geographic areas, Tethya simoni sp. nNov.
shared 427-624 ASVs in samples from Brazil and
Bocas del Toro; T. citrina from la Palma, Galicia, and
Roscoff shared from 47-463 ASVs; T. erici sp. nov.
from la Palma shared from 177-503 ASVs with the
samples from Chipiona. Across species, 7. erici sp. nov.
shared many ASVs with 7. citrina samples, with the
highest values found among samples of both species
collected in the same area (las Palmas) (from 327-726).
Interestingly, the 7. aurantium ‘white’ phenotype also
shared high numbers of ASVs with these 7. erici sp.
nov. and 7. citrina samples (up to 630 ASVs)
(Supplemental Table S1).

Among clades (i.e., considering the mean of all micro-
bial sequences present in any sample belonging to the
clade), the core microbiome included 37 ASVs, spanning
different phyla (Fig. 7C and Supplemental Table S5), and
the specific ASVs of each clade ranged between 545
(11.5% of ASVs in clade 1) to 1589 (15.3% of ASVs in
clade 3, Fig. 7C). These exclusive ASVs and other taxo-
nomic orders that differed in abundance in one clade
compared with the other four clades can be considered
indicator taxa of the clade, and are shown in Fig. 7B. For
instance, clade 1 presented larger abundances of
Synechococcales in all pairwise comparisons, and
Rhodobacterales in the comparison between clades 1 and
5. Clade 2 displayed larger abundances of Cytophagales,
and, as commented above, a significant proportion of
unclassified bacterial sequences. Clade 3 was character-
ized by Microtrichales, UBA10353 marine group,
Pseudomonadales, and unclassified Alphaproteobacteria.
Clade 4 distinctively harboured high proportions of
Rhizobiales, and clade 5 of Burkholderiales and
Nitrosopumilales. Other microbial taxonomic orders that
were statistically distinct in some pairwise comparisons
among clades can be found in Supplemental Table S7
and Supplemental Fig. 7C. Furthermore, some taxonomic
orders were specific to the sponge species but not the

entire clade. This situation is noticeable in clade 5, where
Burkholderiales and Nitrosopumilales are representative
of T. citrina, but Pirellulales and Parvibaculales are char-
acteristic of 7. norvegica (Fig. 7D). Similarly,
Rhodobacterales was abundant in 7. gracilis, while
Synechococcales dominated 7. orioni sp. nov. (Fig. 7D).
Additional orders with less than 10% RA can be found in
Supplemental Table S8 and Supplemental Fig. S7D.

Discussion

Phylogeny and biogeography

In this study we describe four new species in the genus
Tethya, two from the Western Atlantic (southern
Caribbean and Brazil), one from the North Atlantic, and
one from the Persian Gulf, by integrating morphology,
genetics, and their associated microbial communities.
We revisited the phylogeny of this group by adding new
sequence data from freshly collected material, museum
specimens, and unpublished data. Our revised phylogeny
retrieved the main clades found in previous studies
(Heim et al., 2007; Heim & Nickel, 2010; Sorokin
et al., 2019), but incorporated samples representing new
biogeographic regions. Interestingly, in our phylogenetic
hypothesis, most clades and subclades do not show a
clear biogeographic affinity, as they grouped specimens
inhabiting disparate regions (Fig. 3). The weak biogeo-
graphic concordance uncovered in this study could be
explained by an early divergence of Tethyidae and its
cosmopolitan genus Tethya. According to recent time-
calibrated phylogenies, this divergence has been esti-
mated to have occurred during the late Permian/Triassic
period (260-210Ma) (Pankey et al., 2022; Plese et al.,
2021), although the only fossil record for Tethya is from
the Eocene (Lukowiak, 2016). Our results also support
the idea of the early radiation in this genus proposed by
Sara and Sara (2004) but suggest that this may have
taken place earlier than previously thought (Heim,
Nickel, & Brimmer, 2007). The origin of the main line-
ages may have occurred in the context of an ancient
Palaco-Tethys fauna (late Permian/Triassic) and subse-
quent radiation throughout the Mesozoic linked to the
break-up of Gondwana. Therefore, the most plausible
explanation for the current diversity and distribution of
Australian and Caribbean Tethya species within the
same clades is that they have deep roots and display a
relict Tethyan pattern (Heim et al., 2007; Sara & Sara,
2004). This hypothesis is further supported by the sym-
patric occurrence of species belonging to distant evolu-
tionary clades. To the classic example of T. aurantium
(clade 2) and T. citrina (clade 4) from the
Mediterranean (Sara, 1990), we add that the new species
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from the southern Caribbean, T. martini sp. nov. (clade
1), T. simoni sp. nov. (clade 3), and T. actinia (clade 4)
show also a high genetic distance, belonging to quite
divergent clades of COI (Fig. 3).

The early 20th century was pervaded by descriptions
of Tethya species widely distributed across all oceans,
such as T. aurantium, T. diploderma, or T. seychellensis.
The cosmopolitanism of these species has been previ-
ously refuted (Ribeiro & Muricy, 2011), and our results
provide further evidence of this. The extreme similar-
ities in morphology and close molecular affinity of T.
simoni sp. nov. and 7. aurantium make them easy to be
confused, and thus researchers assigned them to the
same species. Our results show, in turn, that the once-
thought-widespread 7. aurantium might be restricted to
the Mediterranean Sea or at least the NE Atlantic, as
suggested by Heim et al. (2007). These species from
both sides of the Atlantic have a high genetic distance
(two distinct COI haplotypes with eight mutations, Fig.
3), higher than in other sibling Porifera species (e.g.,
Cardenas et al., 2013; Duran & Riitzler, 2006).

Another interesting finding in our study is that two
specimens from the southern Caribbean and the South
Atlantic coast in Brazil were identified morphologically
and genetically as 7. gracilis, a species originally
described from German aquaria. Our data also suggest a
Western Atlantic origin for this species, refuting an
Indo-Pacific origin for Tethya gracilis, as previously
proposed based on a morphological resemblance to T.
seychellensis (Sara et al., 2001) and its grouping within
the same genetic clade (Heim, Nickel, & Brimmer,
2007). Establishing the origins of the three species
described from German aquaria, 7. wilhelma, T. minuta,
and T. gracilis (see Sara et al., 2001), is relevant
because of their use in experimental studies on kinetics,
functional morphology, and biomechanics in clades of
early-branching metazoans (Ellwanger & Nickel, 2006;
Nickel et al., 2006). The affinity of 7. minuta with T.
actinia described from Bermuda (Heim et al., 2007) tilts
the balance towards an Atlantic provenance of two of
the species of Tethya from aquaria, leaving only 7. wil-
helma as the one possibly coming from the Eastern
Mediterranean Sea (Sorokin et al., 2019). Indeed, the
sequence from Tethya sp. (KX866754), originally identi-
fied as T. aurantium (see Idan et al., 2018) is strikingly
similar to that of 7. wilhelma, with only 1bp difference
in COI, suggesting that the origin of 7. wilhelma might
be the Eastern Mediterranean or the Red Sea. Since the
type localities of the three species are three different
public aquaria (Stuttgart, Karlsruhe, and Dusseldorf), it
is likely that they may have originated from different
geographic regions. Although less probable, an alterna-
tive scenario to the Atlantic origin for 7. gracilis could

be its recent introduction from the Indo-Pacific via bal-
last water or biofouling on ship’s hulls (e.g., Mycale
grandis Shih & Popp, 2020). However, previous records
of T. seychellensis in the Colombian Caribbean could
correspond to 7. gracilis (e.g. Wintermann-Kilian &
Kilian, 1984) and the high diversity of Tethya species in
Brazil would support that 7. gracilis is most likely
native to these regions.

The addition of species from Tethya hotspots such as
Australia, Brazil, the Malay Archipelago, and the
Galapagos islands in future phylogenetic analyses will
bring more insights to the understanding of the evolu-
tion of this diverse genus. Although in this study we
attempted to include some of the Brazilian species using
subsamples from the MNRIJ in Brazil, we were unsuc-
cessful in recovering sequences due to low-quality DNA
preservation. Further studies may consider the inclusion
of museum material through the implementation of
mini-barcodes specifically designed to amplify partial
COI sequences from degraded DNA (Céardenas &
Moore, 2019) or the use of short-read sequencing tech-
nologies, which have proved much more efficient in
dealing with degraded museum samples (Derkarabetian
et al., 2019; Srivathsan et al., 2021).

Systematics

Taxonomists, systematists, and field ecologists strive for
easily observed diagnostic features with high discrimin-
ation power. Among the morphological features with the
potential to become diagnostic for systematics, colour
has been proposed as a reliable character to support
some of the clades in Tethya (Sorokin et al., 2019).
Clades 1 and 2 include red, pink or white species, clade
3 are mainly orange, while clade 4 is composed of
mainly yellow species. Our newly described species
bring more evidence to this hypothesis, and, as
expected, the bright red 7. martini sp. nov. groups in
clade 1 with T. seychellensis and T. coccinea (all red)
and the orange 7. simoni sp. nov is part of clade 3 with
T. aurantium (both orange). However, there are some
exceptions to these trends. In fact, monitoring studies of
Tethya spp. in New Zealand have shown that the same
sponge can experience variations in shape and colour-
ation depending on seasonal environmental changes
(Shaffer et al., 2020). In any case, the colour-based
hypothesis in Tethya species demands further investiga-
tion as this character could be genetically controlled,
since it may be related to the presence of carotenoids
(Tanaka et al., 1982; Tanaka & Yamamoto, 1984) pro-
duced by the sponges (Liaaen-Jensen et al., 1982) or
symbionts, unicellular green algae, or Cyanobacteria
(Belikov et al., 2019).
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The usual morphological diagnostic characters of
spicule morphologies in Tethya are especially problem-
atic, due to the lack of a homogeneous terminology for
the genus. This has been a persistent issue throughout
the taxonomic history of Tethya (Bergquist & Kelly-
Borges, 1991). Therefore, it is important to emphasize
that most-needed phylogenetic analyses within this spe-
cies-rich genus first require the unification of termino-
logy for spicule types based on quantitative
morphometric measurements. For instance, an effort to
encompass the wide variation of micrasters has resulted
in the distinction of three main types, i.e., tylaster,
strongylaster, and oxyaster (~previously pooled in
chiasters, although most referred to tylasters and strong-
ylasters), and subtypes within (e.g. Ribeiro & Muricy,
2011 used numbers for subtypes, while Hajdu et al.,
2013 added the prefix acanthose). Yet their definitions
were rather qualitative, leaving room for some inter-
mediate forms of difficult designation. Therefore, the
redescription of type material under such a unified mor-
phological framework would facilitate mapping charac-
ters onto phylogenetic trees. Finally, identifying new
and reliable external characters and from histological
sections, e.g., tubercle shape, lacunar structure, and col-
lagenous distribution could help to assign species to
their taxonomic units. Although in our study we fol-
lowed the nomenclature of spicules by Ribeiro and
Muricy (2011) to allow comparisons with other Western
Atlantic species, we recommend that a comprehensive
nomenclature framework should also take into account
the definitions proposed by Bergquist and Kelly-Borges
(1991), Sara and Sara (2004) and Heim, Nickel, and
Briimmer (2007), to cover the wide spectra of spicule
variation across the different biogeographic regions.

Microbial composition

Integrative taxonomy aims to incorporate several lines
of evidence that converge in robust hypotheses for spe-
cies delimitation. In the field of sponge systematics,
integrative taxonomy mainly includes morphological
and molecular characters (Dohrmann et al., 2017,
Riesgo et al., 2018; Sorokin et al., 2019). In recent
years, several authors have tried to also incorporate
metabolomics (Reveillaud et al., 2012; Ruiz et al.,
2015) and ecological/biogeographic data (e.g., Azevedo
et al., 2015). Surprisingly, the microbiome has never
been formally used as a taxonomic character, despite its
remarkable species-specificity (Thomas et al., 2016) and
studies hinting at cophylogeny/coevolution patterns with
their hosts (Pankey et al., 2022; Schottner et al., 2013).
Coevolution or phylosymbiotic patterns in marine inver-
tebrates are especially conspicuous in sponges and

cnidarians, which harbour complex communities of pro-
karyotic symbionts (O’Brien et al., 2019). In sponges,
the host is usually the factor driving most divergences
in the coevolutionary patterns (Thomas et al., 2016),
with those being more pronounced at high taxonomic
levels, such as order, and less clear in LMA than in
HMA sponges (Pankey et al., 2022). Our analysis shows
high levels of coevolution in the host and microbial
communities of LMA sponges, even within a single
genus of sponges. Nonetheless, small discrepancies can
be observed at different levels of microbial taxonomy,
both in our study and across the literature. Thus, the
microbiome emerges as an informative intrageneric
diagnostic character with enormous potential for taxo-
nomic identification and evolutionary studies, especially
for species in which COI is extremely conserved (for
instance Riesgo et al., 2016). In fact, in our study,
although the clustering analysis of the prokaryotic com-
munities at ASV level only correlated moderately with
the phylogenetic hypothesis obtained with COI (Figs 3
and 7A, Supplemental Fig. S8), the distinctive microbial
communities for the different clades suggest that these
could be considered an additional taxonomic feature to
aid in Tethya systematics. This high specificity shown
by Tethya in their microbial communities was previ-
ously proposed by Sipkema and Blanch (2010) as an
alternative approach to differentiate between species.
Interestingly, once 7. norvegica was removed from the
microbial analysis, the correlation between the clustering
analysis of the microbiome and the COI tree improved
(Supplemental Fig. S8). In fact, the microbiome of T.
norvegica was very different from that of the rest of
specimens in Clade 5 (7. citrina) and from those in
other clades, likely because it is a deep-sea species,
which typically hosts a distinctive microbiome (Diez-
Vives & Riesgo, 2024).

The microbiome of the previously studied species of
Tethya is dominated by temporally stable Proteobacteria
species, usually represented by a single, dominant oper-
ational taxonomic unit (OTU or ASV in our case),
followed by Cyanobacteria and Bacteroidetes (Astudillo-
Garcia et al., 2020; Sipkema & Blanch, 2010; Thiel
et al, 2007, Waterworth et al., 2017). Although our
results can hardly be compared with these previous stud-
ies because the primers used for the amplification of the
16S rRNA gene were different, an overall gross compari-
son also points to the dominance of Proteobacteria (Fig.
7). These phyla are also typically dominant in other LMA
sponges (Moitinho-Silva, Steinert, et al., 2017). In our
study, Cyanobacteria were present across all species but
dominant in clade 1, with the order Synechococcales dis-
tinctive of the group. Interestingly, the microbiome of T.
burtoni, which belongs to clade 1 (Fig. 3), was sequenced
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by other researchers and did not show a dominance of
Cyanobacteria (Astudillo-Garcia et al., 2020) but, in this
case, the primers used could have had an amplification
bias different from ours. Several other microbial taxa
were characteristic of each of the clades we recovered.
For instance, only Tethya species from clade 3 have
abundant communities of Actinobacteria (in our case of
order Microtrichales), which were also recovered from
other 7. aurantium samples (Thiel et al., 2007) and the
species T. californiana (Sipkema & Blanch, 2010), which
clusters also in clade 3 according to our phylogenetic
results. Similarly, an unidentified species of Tethya col-
lected on Orpheus Island in Australia had Actinobacteria
dominating the community, together with Proteobacteria,
Chloroflexi,  Crenarchaeota, and  Verrucomicrobia
(Thomas et al., 2016). However, whether this unidentified
species belonged to clade 3 is currently unknown. Tethya
citrina  (clade 5) was remarkably dominated by
Burkholderiales (Gammaproteobacteria). This group is
hard to track in the literature because it has been reorgan-
ized differently in the available databases; it was formerly
known as class Betaproteobacteria, but can also be found
as an order placed within class Betaproteobacteria, or as
class Gammaproteobacteria (i.e., NCBI and SILVA tax-
onomy) (Parks et al., 2018). Recently, Taylor et al.
(2021) characterized this group classifying it as a new
gammaproteobacterial order  named Candidatus
Tethybacterales. Only a Metagenome-Annotated Genome
(MAG) annotated as Beroebacter blanensis, and
assembled from Crambe crambe (Schmidt, 1862) from
the Mediterranean Sea, could be detected among 14 of
our samples covering all species (100% sequence iden-
tity), although in low abundances (up to 0.007% RA). In
summary, although the use of the microbiome as a diag-
nostic character has only been tentatively explored here,
it holds enormous potential for future taxonomic studies,
especially in groups where the morphology and the
molecular characters are highly homoplastic.
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