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Summary 
Polyamines are essential in plant defense, with putrescine (Put), spermidine (Spd), and spermine (Spm) 
being the most abundant ones. In response to various pathogens, including Pseudomonas syringae pv. 
tomato DC3000 (Pst DC3000), polyamine levels increase, highlighting their importance in immune 
responses.  

Our research compared the effects of Put and Spm on pathogen-associated molecular pattern (PAMP)-
triggered immunity (PTI) responses in Arabidopsis. While Put enhances the production of reactive 
oxygen species (ROS) triggered by PAMPs like flg22, Spm exhibits an inhibitory effect on ROS burst 
dependent on RBOHD (RESPIRATORY BURST OXIDASE HOMOLOG D). It also attenuates cytosolic 
calcium influx stimulated by flg22, suggesting a broader influence on PTI signaling. Genome-Wide 
Association Studies (GWAS) conducted in 136 Arabidopsis accessions from diverse populations aimed 
to unravel the genetic determinants underlying the Spm inhibitory effect on flg22-induced ROS 
production. This approach identified associated polymorphisms, shedding light on candidate genes 
involved in this process. 

Additionally, we also found that Pst DC3000 stimulates Put biosynthesis through coronatine perception 
and jasmonic acid (JA) signaling, independently of salicylic acid (SA). Conversely, Spm deficiency 
resulted in heightened JA signaling and compromised SA-mediated defense responses, stimulating 
disease resistance to Botrytis cinerea. Moreover, Spm deficiency increased endoplasmic reticulum (ER) 
stress signaling in response to Pst DC3000, suggesting a role for Spm in buffering ER stress during 
defense.  

In summary, this research provides valuable insights into the differential contributions of polyamines to 
plant defense. 

Resumen 
Las poliaminas son esenciales para la defensa de las plantas, siendo la putrescina (Put), la espermidina 
(Spd) y la espermina (Spm) las poliaminas más abundantes. En respuesta a diferentes patógenos, 
incluyendo Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), los niveles de poliaminas 
aumentan, destacando su importancia en las respuestas inmunitarias.  

Nuestra investigación ha comparado los efectos de la Put y la Spm en las respuestas inmunes 
desencadenadas por patrones moleculares asociados a patógenos (PTI) en Arabidopsis. Mientras que la 
Put incrementa la producción de especies reactivas de oxígeno (ROS) desencadenadas por PAMPs como 
flg22, la Spm provoca un efecto inhibidor de la explosión oxidativa dependiente de RBOHD 
(RESPIRATORY BURST OXIDASE HOMOLOG D). También atenúa el influjo de calcio citosólico 
estimulado por flg22, lo que sugiere una influencia más amplia en las vías de señalización de PTI.  

Los estudios GWAS realizados utilizando 136 accesiones de Arabidopsis de diversas poblaciones, nos 
han permitido identificar los determinantes genéticos detrás del efecto inhibidor de la Spm en la 
producción de ROS inducida por flg22. 

Además, también encontramos que Pst DC3000 estimula la biosíntesis de Put a través de la percepción 
de coronatina y la señalización del ácido jasmónico (JA), independientemente del ácido salicílico (SA). 
Por el contrario, la deficiencia de Spm resultó en una mayor señalización de JA y una inhibición de las 
respuestas de defensa mediadas por SA, estimulando la resistencia a la enfermedad causada por Botrytis 
cinerea. Además, la deficiencia de Spm se relacionó con un aumento de la señalización de estrés en el 
retículo endoplásmico (RE) en respuesta al Pst DC3000, lo que sugiere un papel de la Spm en la 
mitigación del estrés del ER durante la defensa. 

En resumen, esta investigación proporciona valiosas contribuciones sobre las funciones diferenciales de 
las poliaminas en la defensa de las plantas. 
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1. Arabidopsis thaliana

1. 1 The history of Arabidopsis thaliana

A. thaliana belongs to the mustard (Brassicaceae) family, which includes cultivated
species like cabbage and radish, and is widely distributed in natural habitats across
Europe, Asia, and North America (Krämer, 2015; Meinke et al., 1998). The entire life
cycle of A. thaliana, encompassing seed germination, rosette plant formation, main
stem bolting, flowering, and the maturation of the first seeds, unfolds within 6 weeks
(Meinke et al., 1998). A. thaliana exhibits a high frequency of self-pollination in the
wild (Abbott & Gomes, 1989). This results in individuals being homozygous at most
loci.

The advantages of using A. thaliana as a genetic model organism include its small 
genome size, short generation time, ease of hybridization, strong reproductive 
capability, and possible self-pollination, along with broad selection of accessions and 
mutant lines and the ability to perform saturated mutagenesis screens in the laboratory 
(Fridman et al., 2023; Laibach, 1943; Meyerowitz & Pruitt, 1985; Provart et al., 2016; 
Somssich, 2019). These factors have collectively led to a significant increase in the 
volume of research on this species. 

Initially documented with the name of Pilosella siliquata by the physician Johannes 
Thal in the Harz Mountains of Northern Germany in 1577, this plant was featured, 
renamed, and placed into the genus Arabis in Carolus Linnaeus's Species Plantarum II, 
published in 1753 (Krämer, 2015; Woodward & Bartel, 2018). In 1842, Gustav 
Heynhold elevated A. thaliana to the generic level, designating A. thaliana as the 
exclusive representative of the genus (Al-Shehbaz & O'Kane, 2002; Woodward & 
Bartel, 2018). 

In 1907, Friedrich Laibach noted that A. thaliana has only five pairs of chromosomes 
(Laibach, 1907). Laibach is acknowledged as the pioneer of A. thaliana research. In 
1943, Laibach highlighted the advantages of using A. thaliana for scientific research: 
easy to grow, small genome, short lifecycle, high seed yield, can be crossed and 
mutagenized, and proposed considering A. thaliana as a model plant (Laibach, 1943, 
1951). Additionally, in 1945, Erna Reinholz, Laibach's student, used X-ray treatment to 
isolate the first induced mutant of A. thaliana (Meyerowitz, 2001; Somssich, 2019).  

In 1964, Gerhard Röbbelen collaborated with Laibach, Andreas Müller, George Rédei, 
and Jiri Veleminsky to publish the first A. thaliana Information Service (AIS) newsletter 
(Meyerowitz, 2001; Somerville & Koornneef, 2002). Röbbelen with Albert Kranz 
administered a seed stock center housing Röbbelen's own mutants and Laibach’s 
assortment of ecotypes (later referred to as accessions) alongside various induced 
mutants (Koornneef & Meinke, 2010; Somerville & Koornneef, 2002). Röbbelen 
orchestrated the inaugural International Arabidopsis Symposium in 1965 in Göttingen, 
Germany, which drew attendance from 25 participants (Koornneef & Meinke, 2010; 
Meyerowitz, 2001; Somerville & Koornneef, 2002).   

In 1975, George Rédei published a notable review article in the Annual Review of 
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Genetics highlighting A. thaliana as a model genetic plant and reiterated the advantages 
as pointed out by Laibach over 30 years ago (Koornneef & Meinke, 2010; Rédei, 1975). 
In 1957, Rédei used X-ray to mutagenize Landsberg seeds which were originally from 
Laibach and screened for mutants of interest (Rédei, 1992; Somssich, 2019). During 
the mutant screening process, Rédei discovered that Landsberg was not homozygous 
and could be a mixture of multiple plants (Rédei, 1962, 1992; Somssich, 2022). 
Therefore, Rédei went back to the original Landsberg seeds that had not been treated 
with X-rays and established a new homozygous plant for subsequent research 
(Somssich, 2019, 2022). Following Laibach’s rule of naming according to the place of 
discovery, Rédei named this accession Columbia (Col) (Rédei, 1975; Somssich, 2019, 
2022). 

In 1983, Maarten Koornneef et al. released the first comprehensive genetic linkage map 
of A. thaliana, which comprised 76 loci allocated in five linkage groups (Koornneef et 
al., 1983). In 1986, Elliot Meyerowitz et al. first reported the cloning of a gene coding 
for ALCOHOL DEHYDROGENASE (ADH) in A. thaliana (Chang & Meyerowitz, 
1986). In 1988, the Meyerowitz lab published the first restriction fragment length 
polymorphism (RFLP) linkage map of the A. thaliana genome, which included 90 
molecular markers randomly distributed across the genome (Chang et al., 1988). 

In 2000, the A. thaliana complete genomic sequence was reported, marking the first 
fully sequenced eukaryotic plant genome, and holding immeasurable value for 
biological studies (The Arabidopsis Genome, 2000).  A. thaliana carries five 
chromosomes of approximately 125 million base pairs (125 Mbp) and over 25,000 
genes sorted in 11,000 families, of which only ∼9% had been experimentally 
characterized with assigned functions (The Arabidopsis Genome, 2000). In contrast, 
the rice genome is approximately 400 to 430 Mb (Eckardt, 2000). In 2005, the map-
based rice genome sequence was drawn, which showed that 71% of the total 37,544 
non-transposable element-related protein-coding genes had putative homologs in A. 
thaliana (International Rice Genome Sequencing, 2005). In 2017, the A. thaliana 
genome annotation was updated (Cheng et al., 2017).  

The completion of the A. thaliana genome significantly accelerated research involving 
mutants. The main collections of T-DNA insertion mutant lines currently include SALK, 
SAIL, GABI-Kat, and WiscDsLox. The three most used accessions in A. thaliana are 
Landsberg erecta (Ler), Columbia (Col), and Wassilewskija (Ws), with the Col 
accession being employed in most mutant collections. The SALK lines were 
constructed by the Salk Institute and developed in the lab of Joseph R. Ecker (Alonso 
et al., 2003), which is the most used collection worldwide. The SAIL (Syngenta A. 
thaliana Insertion Library) population was characterized by amplification of DNA 
fragments flanking the T-DNA left borders from approximately 100,000 transformed 
lines using the method of thermal asymmetric interlaced (TAIL)-PCR (Sessions et al., 
2002). The GABI-Kat line was constructed by the Max Planck Institute for Plant 
Breeding Research in Germany (Rosso et al., 2003). The WiscDsLox collection 
developed by University of Wisconsin-Madison, comprises 10,459 T-DNA lines 
generated using the A. thaliana accession Col (Woody et al., 2007). Collectively, these 
lines encompass over 260,000 individual mutants, each representing at least one 
insertion mutation in almost every A. thaliana gene (O’Malley et al., 2015). 

8

General Introduction_______________________________________________________________________________________



1.2 Forward and reverse genetics 

In A. thaliana research, the most used genetic research strategies include forward and 
reverse genetics. The forward (from-phenotype-to-gene) method aims to identify the 
sequence changes underlying a specific mutant phenotype, starting from already 
available or specifically searched and predicted mutants with the phenotype of interest 
(Peters et al., 2003). For example, in 1999, Fletcher et al. used forward genetics to clone 
a small, predicted extracellular protein CLAVATA 3 and identified that this gene could 
participate in the proliferation and differentiation of the shoot apical meristem tissue 
(Fletcher et al., 1999; Fletcher & Meyerowitz, 2000). Forward and reverse genetics 
approaches employed in plant research can be seen in figure 1. 

The first step in forward genetics is to obtain mutants (Aklilu, 2021). There are three 
primary approaches to induce mutations: one involves employing the mutagen EMS 
(ethyl methanesulfonate) for chemical mutagenesis (Greene et al., 2003); another entail 
utilizing X-ray for physical mutagenesis; and the third method involves Agrobacterium-
mediated T-DNA transformation to generate mutants (Alonso et al., 2003). Different 
populations can be used for gene mapping, including F2 populations, backcross (BC) 
populations, recombinant inbred lines (RILs), and double haploids (DH). Gene 
mapping can be performed through different methods such as bulk segregant analysis 
(BSA) (Zou et al., 2016), Quantitative trait loci (QTL) mapping (Sahu et al., 2020), 
Genome-wide association studies (GWAS) (Huang & Han, 2014; Miculan et al., 2021), 
and Mapping-Based Cloning (Peters et al., 2003). 

Reverse genetics is a strategy to determine the function of a specific gene by studying 
the phenotype of individuals with alterations in the gene of interest (Sessions et al., 
2002). For reverse genetics, it is required to obtain candidate genes using other 
approaches, those including different ‘omics’ such as transcriptomic, metabolomic and 
proteomic analyses (Weckwerth et al., 2020).  

Figure 1. Forward and reverse genetics approaches employed in plant research. BSA: Bulk segregant 
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analysis, EMS: Ethyl methanesulfonate, QTL: Quantitative trait loci, GWAS: Genome-wide association 
studies, VIGS: Virus-induced gene silencing, TFs: Transcription factors, Chlp-PCR: Chromatin 
Immunoprecipitation-Quantitative Polymerase Chain Reaction, LUC: Luciferase, IP-MS: 
Immunoprecipitation-Mass Spectrometry. 

2. The plant immune system

The term "innate immunity" was established by Charles Janeway (Janeway, 1989). In 
the 1990s, Janeway proposed the groundbreaking hypothesis about the occurrence of 
pathogen-associated molecular patterns (PAMPs) and pattern recognition receptors 
(PRRs) that recognize these PAMPs (Janeway, 1989). The first insights into innate 
immunity were established in animal models. In Drosophila, two primary pathways 
exist for recognizing microbes. The Toll pathway is responsible for recognizing fungal 
and gram-positive bacterial pathogens, while the Imd pathway is essential for 
recognizing and responding to Gram-negative bacterial infections (Medzhitov, 2001; 
Tanji et al., 2007). In 1996, Jules Hoffmann's team discovered Toll's role in Drosophila's 
resistance to fungal infection, where Toll-activated mutants consistently produced 
antifungal peptides, contrasting with Toll-deletion mutants that lose their ability to 
combat fungal infections (Lemaitre et al., 1996,1997). Subsequently, Bruce Beutler's 
research team identified that TLR4 (Toll-like receptor 4), a Drosophila protein Toll 
homolog, primarily evolved to aid in recognizing LPS (lipopolysaccharide) in mice 
(Beutler, 2002; Poltorak et al., 1998). Due to their groundbreaking work and significant 
contributions in the field of innate immunity, they jointly received the Nobel Prize in 
2011 (Nüsslein-Volhard, 2022). 

2.1 Introduction to the plant immune system 

Unlike most animals, plants typically do not move, but some can persist for centuries. 
Plant natural immunity was established slightly later than animals. In the last two 
decades, studies using the plant-pathogen interaction model of A. thaliana and 
Pseudomonas syringae have revealed many components of plant immunity (Xin et al., 
2018). In plants, two distinct strategies have been developed for detecting pathogens, 
namely PTI and ETI (Jones & Dangl, 2006).  

The frontline of active plant defense is established by PRRs (pattern recognition 
receptors), which are cell surface receptors identifying PAMPs (pathogen associated 
molecular patterns) (Thomma et al., 2011). Activation of PRRs results in PAMP-
triggered immunity (PTI) (Engelsdorf et al., 2018). In turn, effective pathogens utilize 
effectors that enhance pathogen virulence and disrupt PTI, leading to effector-triggered 
susceptibility (ETS) (Jones & Dangl, 2006). For example, the virulent pathogen of 
tomato and A. thaliana, Pst DC3000 (Pseudomonas syringae pv. tomato DC3000), 
deploys virulence effector proteins into the plant cell host, via the type III secretion 
system (T3SS), thus inhibiting PTI immune responses (Guttman et al., 2014; Li et al., 
2002).  

Confronting the attack of pathogenic microorganisms, plants have intracellular receptor 
proteins known as NLRs (nucleotide-binding/leucine-rich-repeat receptors), which 
trigger the so-called effector-triggered immunity (ETI) upon detecting pathogenic 
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effectors, typically impeding the invasion of pathogens (Cui et al., 2015). ETI could 
lead to the establishment of the hypersensitive response (HR), leading to programmed 
cell death (PCD) (Coll et al., 2011). Plants have developed resistance (R) proteins that 
either directly or indirectly recognize certain effectors, which are referred to as 
avirulence (AVR) proteins (Dangl & Jones, 2001; Jones & Dangl, 2006; Petit-Houdenot 
& Fudal, 2017). Upon local activation of PTI and/or ETI, distant leaves can induce SAR 
(systemic acquired resistance), effectively limiting pathogen spread across the foliage 
(Zeier, 2021). 

PTI involves the detection of PAMPs, but also danger-associated molecular patterns 
(DAMPs) that are derived from cellular damage (Zipfel, 2014). Various molecules, such 
as flg22 (flagellin22), EF-Tu (elongation Factor-Tu), and peptidoglycans derived from 
bacteria, have demonstrated immune-stimulating properties, serving as PAMPs (Ge et 
al., 2022) (Fishman & Shirasu, 2021; Kemen & Jones, 2012). In addition, host cell 
damage releases substances, such as extracellular ATP (Tanaka et al., 2014), that can 
behave like DAMPs (Ge et al., 2022). DAMPs are clasified as constitutive (cDAMPs) 
and inducible (iDAMPs) (Tanaka & Heil, 2021). The cDAMPs, such as 
oligosaccharides, nucleotides, and amino acids, carry out fundamental and conserved 
functions, manifesting a signaling role only in instances of cellular damage (Ge et al., 
2022; Tanaka & Heil, 2021). In contrast, immunomodulatory peptides (also referred to 
as phytocytokines) serve solely as signals and, when subjected to injury, become 
activated as inducible DAMPs (iDAMPs). (Ge et al., 2022; Schilmiller & Howe, 2005; 
Tavormina et al., 2015).  

PRRs are divided into RECEPTOR LIKE KINASES (RLKs) and RECEPTOR LIKE 
PROTEINS (RLPs) depending on the presence of the kinase domain (KD) (Tang et al., 
2017). RLKs contain a ligand-binding extracellular domain (ECD), a single-pass 
transmembrane domain (TM), and an intracellular KD, whereas RLPs lack the KD 
(Macho & Zipfel, 2014). The family of RLKs comprises over 600 members, providing 
up to 60% of all kinases present in A. thaliana (Shiu & Bleecker, 2003). Based on 
variations in the ECD, PRRs can be categorized in leucine-rich repeat (LRR), lysine 
motif (LysM), lectin domain, epidermal growth factor-like (EGF-like) domain, domain 
of unknown function 26 (Duf26) and others (Gandhi & Oelmüller, 2023; Ngou et al., 
2024; Tang et al., 2017; Wrzaczek et al., 2010; Yu et al., 2021).  

The NLRs contain a N-terminal domain, a central NB-ARC (nucleotide-binding 
domain adapter shared by APAF-1, R proteins, and CED-4) and C-terminal LRR 
domain (Steele et al., 2019). According to the differences in N-terminal domains, NLRs 
can be divided into coiled-coil (CC)-NB-LRRs and Toll/interleukin-1 receptor (TIR)-
NB-LRRs (Bentham et al., 2018). The NB-ARC domain engages in ATP/ADP 
exchange by undergoing conformational changes (Rafiqi et al., 2009; Tameling et al., 
2006). NLRs, upon activation, often assemble into oligomeric complexes known as 
inflammasomes in animals and resistosomes in plants, subsequently triggering 
regulated cell death termed hypersensitive response (HR) (Bi et al., 2021). The HOPZ-
ACTIVATED RESISTANCE 1 (ZAR1), a typical CC-NB-LRR with a canonical CC 
domain, can detect various pathogen effector proteins, such as HopZ1a, HopF1, HopX1, 
HopO1, and HopBA1 from Pseudomonas syringae tomato, XopJ4 from Xanthomonas 
perforans, and AvrAC from Xanthomonas campestris campestris (Bi et al., 2021; Lewis 
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et al., 2013; Seto et al., 2017; Wang et al., 2015). The RECOGNITION OF 
PERONOSPORA PARASITICA 1 (RPP1) locus, identified in A. thaliana ecotype Ws, 
contains a complex resistance gene cluster (Krasileva et al., 2010;  Ma et al., 2020). 
Several members of the RPP1 gene family confer disease resistance against 
Hyaloperonospora arabidopsidis (Krasileva et al., 2010;  Ma et al., 2020). The 
ARABIDOPSIS THALIANA RECOGNIZED1 (ATR1),  a simple locus in H. 
arabidopsidis, exhibits diverse allelic variants across different pathogen strains and 
proteins encoded by RPP1 alleles are known to recognize the corresponding effector 
ATR1 (Krasileva et al., 2010;  Ma et al., 2020). 

There is also an atypical NLR called RESISTANCE TO POWDERY MILDEW 8 (RPW8), 
which sometimes is also considered as “helper NLR” (Duggan et al., 2021; Li et al., 
2020; Saile et al., 2021). CC-NB-LRRs and TIR-NB-LRRs are “sensor NLRs” which 
possess the ability to directly or indirectly recognize effectors (Feehan et al., 2020; 
Maruta et al., 2022). RPW8 proteins, which confer resistance to powdery mildew 
fungus, are characterized by a potential transmembrane domain at their N-terminus, 
followed by a specific truncated CC domain, but without NB or LRR domains 
(Barragan et al., 2019; Wang et al., 2009b; Xiao et al., 2001; Zhong & Cheng, 2016). 
The latest research indicates that RPW8.1 boosts ethylene (ET) signaling, while ET 
dampens RPW8.1 defenses by downregulating its expression (Zhao et al., 2021a). 
Another atypical NLR is RESPONSE TO HOPBA1 (RBA1), which only has a TIR 
domain, and exhibits a distinct immune response by specifically targeting the bacterial 
type III effector protein HopBA1(Nishimura et al., 2017). 

Table 1. Examples of immune receptors characterized in A. thaliana 

Receptors Ligand Receptor type References 
FLS2 Flg22 LRR-RLK (Chinchilla et al., 2006;  Gómez-

Gómez & T. Boller, 2000) 
EFR EF-Tu LRR-RLK (Kunze et al., 2004; Zipfel et al., 2006) 

PEPR1/2 Pep1-8 / Pep1-2 LRR-RLK (Bartels et al., 2013; Krol et al., 2010; 
Yamaguchi et al., 2006b, 2010) 

CEPK1 Chitin LysM-RLK (Cao et al., 2014; T. Liu et al., 2012; 
Miya et al., 2007) 

LORE LPS Lectin-RLK (Luo et al., 2020; Ranf et al., 2015) 

WAK1 OGs EGF-like-RLK (Brutus et al., 2010; Wagner & Kohorn, 
2001) 

CRK13/36 ? Duf26-RLK 
(Acharya et al., 2007; Lee et al., 2017; 
Wrzaczek et al., 2010;  Zhang et al., 
2023) 

RLP23 NLPs LRR-RLP (Albert et al., 2015) 
LYM1/3 PGN LysM-RLP (Willmann et al., 2011) 

ZAR1 HopZ1a, AvrAC, 
XopJ4, HopF2 CC-NB-LRR (Bi et al., 2021; Lewis et al., 2013; 

Seto et al., 2017; Wang et al., 2015) 

RPP1 ATR1 TIR-NB-LRR (Krasileva et al., 2010;  Ma et al., 
2020) 

RBA1 HopBA1 Atypical NLR (Nishimura et al., 2017) 

The relationship between PTI and ETI is intricate. PTI is typically effective against 
non-adapted pathogens, a phenomenon known as non-host resistance, whereas ETI is 
specifically activated against adapted pathogens (Dodds & Rathjen, 2010). Furthermore, 
there is an overlap in the sets of genes activated during both PTI and ETI (Navarro et 
al., 2004). The PRRs activation of PTI strengthens the ETI-triggered HR to limit 
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pathogen proliferation, while ETI enhances PTI responses by elevating PTI signaling 
elements and regulating protein processes, amplifying defense mechanisms (Ngou et 
al., 2021; Yuan et al., 2021). Cooperation between PRRs and NLRs is necessary in plant 
immunity. Table 1 shows some examples of immune receptors characterized in A. 
thaliana, some of which are furtherly detailed in the following sections. 

2.2 PAMP-triggered immunity (PTI) 

The signaling mechanisms triggered by PRRs in PTI include Ca2+ influx, reactive 
oxygen species (ROS) burst, MITOGEN-ACTIVATED PROTEIN KINASES (MAPK) 
cascades, salicylic acid (SA) and ET production, callose deposition, and stomatal 
closure, among others (Bigeard et al., 2015; Li et al., 2016b). 

2.2.1. PTI and Calcium signaling 

The influx of extracellular Ca2+ into the cytosol, occurring approximately between 30 
seconds to 2 min after PAMP perception, peaks at 4–6 min (Bigeard et al., 2015; Ranf 
et al., 2011). Ca2+ channel blockers like LaCl3, inhibit Ca2+ signals and immune 
responses by preventing Ca2+ entry from the apoplast, indicating the crucial role of Ca2+ 
influx across the plasma membrane (PM) in both layers of immunity, despite its storage 
in intracellular organelles such as the ER and vacuole lumen (Bi et al., 2021; Jacob et 
al., 2021; Wang & Luan, 2024). The activation of PRRs like PAMP receptors FLS2 
(FLAGELLIN SENSING 2) and EFR (EF-Tu RECEPTOR), induces a rapid but transient 
spike in cytoplasmic calcium (Jeworutzki et al., 2010). Besides the Ca2+ fluxes induced 
by PAMPs flg22 and elf18, the plant derived pep1 (peptide 1) can also initiate calcium 
influx (Ranf et al., 2011). Apart from eliciting changes in calcium ions, flg22 triggers 
swift effluxes of Cl−, NO3

−, and K+, alongside an influx of H+ across the PM, often 
causing depolarization and extracellular alkalinization (Jeworutzki et al., 2010).  

A common method to measure [Ca2+] cyt levels in plants is using the bioluminescent 
calcium sensor apoaequorin from jellyfish Aequorea victoria, which emits light upon 
binding calcium ions, and the bioluminescence can be quantified using microplate 
readers (Knight et al., 1991; Ranf et al., 2012). In plant research, besides the calcium 
ion inhibitor LaCl3, ionomycin can be used as a Ca2+ ionophore, inducing Ca2+ influx 
into the cell (Morgan & Jacob, 1994). For instance, ROS production by RBOHD 
(RESPIRATORY BURST OXIDASE HOMOLOG D) was induced by ionomycin in A. 
thaliana, facilitating the study of the correlation between Ca2+ influx and ROS burst 
(Ogasawara et al., 2008). 

2.2.2. PTI and ROS burst 

Another immediate reaction to PTI is the ROS burst (Torres et al., 2006). Upon sensing 
flg22 or other PAMPs, there is a rapid generation of ROS in the apoplast, which is 
typically detected utilizing chemiluminescence (Jabs et al., 1997), initiated within 
around 2 min and peaking at approximately 10 min (Chinchilla et al., 2007). The 
PAMP-triggered ROS burst is mainly mediated by the membrane NADPH 
(nicotinamide adenine dinucleotide phosphate) oxidase RBOHD in A. thaliana (Nühse 
et al., 2007; Ranf et al., 2011). Besides RBOHD, PRXs (PEROXIDASES) also 
contribute to ROS burst during PTI, as evidenced by decreased H2O2 levels via DAB 
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(3,3'-diaminobenzidine) staining in prx33/prx34 mutants after different PAMP 
treatments, resembling the rbohD mutant (Daudi et al., 2012). PRX33 and PRX34 play 
crucial roles in SA-mediated gene expression like PR1 (PATHOGENESIS-RELATED 
GENE 1), and subsequent defense responses (Bindschedler et al., 2006; Boudsocq et 
al., 2010). Ca2+ influx and ROS production create a positive loop, boosting the defense 
signal and enhancing immune responses (Köster et al., 2022; Tian et al., 2019; Yuan, et 
al., 2017a). For example, the ROS sensor HPCA1 (HYDROGEN PEROXIDE 
INDUCED Ca2+ INCREASE 1) is an LRR-RLK located at the PM and becomes 
activated by H2O2 through covalent alteration of cysteine residues (Wu et al., 2020). 
HPCA1 facilitates the opening of calcium channels in guard cells in response to H2O2 
that is essential for the closure of stomata (Wu et al., 2020). 

2.2.3. PTI and MAPK cascades 

MAPK (MITOGEN-ACTIVATED PROTEIN KINASES) cascades consist of three tiers 
phosphorylation reactions (Meng & Zhang, 2013). The standard MAPK cascade 
comprises at least one MAPK (MPK), one MAPK kinase (MAPKK, MKK, or MEK), and 
one MAPKK kinase (MAPKKK, MKKK, or MEKK) (Zhang & Zhang, 2022). Based on 
sequence homology, the A. thaliana contains roughly 20 MAPKs, 10 MAPKKs, and 
around 60 MAPKKKs (Meng & Zhang, 2013). The PAMPs flg22 or elf18 can induce a 
strong but transient activation of MAPKs in A. thaliana, such as MPK3 (Asai et al., 
2002), MPK6 (Nuhse et al., 2000), MPK4 (Suarez-Rodriguez et al., 2007), and MPK11 
(Bethke et al., 2012; Bigeard et al., 2015). Flg22-induced MAPK activation in A. 
thaliana is independent of ROS burst, BIK1(BOTRYTIS-INDUCED KINASE 1)/PBL1 
(PBS1-LIKE 1), and SA/JA/ET signaling pathways (Bigeard et al., 2015). Especially 
MPK3 and MPK6 are engaged in both biotic and abiotic stress responses (Kumar et al., 
2020; Ren et al., 2008). 

In the plant immune signaling pathway, MAPK and CDPK (CALCIUM-DEPENDENT 
PROTEIN KINASE) can regulate the expression of plant immunity-related genes 
through phosphorylation modification of downstream TFs (Bredow & Monaghan, 2019; 
Sun & Zhang, 2022). For example, A. thaliana CALMODULIN-BINDING 
TRANSCRIPTION ACTIVATOR 3 (CAMTA3), a transcription factor known for its 
negative regulatory role in plant immunity, is phosphorylated by MPK3/6 upon flg22 
treatment, leading to destabilization of CAMTA3 protein and facilitation of its nuclear-
to-cytoplasmic trafficking (Jiang et al., 2020). After flg22 treatment, MPK3 
phosphorylates the bZIP transcription factor VIP1 (VIRE2-INTERACTING PROTEIN 
1), causing its movement into the nucleus to activate PR1 gene expression (Djamei et 
al., 2007). Following flg22 treatment, MPK6 phosphorylates ERF104, leading to 
activation of defense genes (Bethke et al., 2009; Bigeard et al., 2015). On the other 
hand, CPK5/CPK6 or MPK3/MPK6 phosphorylate WRKY33 to regulate camalexin 
biosynthesis in A. thaliana (Zhou et al., 2020). 

2.2.4. PTI and transcription factors 

Key TFs of plant immunity include bZIP (basic leucine ZIPPER), bHLH (basic HELIX-
LOOP-HELIX), MYB (MYELOBLASTOSIS), NAC (Petunia NAM and Arabidopsis 
ATAF1, ATAF2, and CUC2), CAMTA (CALMODULIN-BINDING TRANSCRIPTION 
ACTIVATOR), ERF (ETHYLENE RESPONSIVE FACTOR), and WRKY gene families 

14

General Introduction_______________________________________________________________________________________



(Bian et al., 2020; Xiao et al., 2021). ERF subfamily members exhibit high affinity for 
the GCC sequence (AGCCGCC) and play a role in regulating genes responsive to biotic 
stress, particularly those associated with the JA and ET signaling pathways (Tsuda & 
Somssich, 2015). Notable members of ERF subfamily include ORA59 
(OCTADECANOID-RESPONSIVE ARABIDOPSIS AP2/ERF 59), ERF1, ERF6, and 
ERF104 (Tsuda & Somssich, 2015). In the NAC family, ANAC019, ANAC055, and 
ANAC072 are direct targets of MYC2 (bHLH) (Meraj et al., 2020; Zheng et al., 2012). 
WRKY gene family members are extensively involved in plant immunity (Pandey & 
Somssich, 2009). For example, WRKY46 is a substrate of MPK3, and its overexpression 
enhances the expression of the immune-related gene NHL10, thereby boosting plant 
disease resistance (Sheikh et al., 2016). 

2.2.5. PTI and hormone signaling 

Synthesis of SA initiates between 3 to 6 h following flg22 treatment, reaching its 
maximum level after 9 h (Tsuda et al., 2008). Flg22 treatment leads to the accumulation 
of SA and activates the expression of typical SA-responsive genes such as SID2 
(SALICYLIC ACID (SA) INDUCTION DEFICIENT 2), EDS5 (ENHANCED DISEASE 
SUSCEPTIBILITY 5), NPR1 (NONEXPRESSOR OF PATHOGENESIS-RELATED 
GENES 1), and PR1 (PATHOGENESIS-RELATED GENE 1) (Mishina & Zeier, 2007; 
Tsuda et al., 2008). The defense signaling pathways mediated by SA and ET/JA interact 
both synergistically and antagonistically (Li et al., 2019; Mur et al., 2006). Low 
concentrations of SA and JA lead to synergistic expression of SA target gene PR1 and 
JA marker gene PDF1.2 (PLANT DEFENSIN GENE 1.2), while higher concentrations 
result in antagonistic expression of these genes (Mur et al., 2006). Additionally, the 
activation of both SA and JA signaling pathways impacts the ROS burst and callose 
deposition triggered by flg22 (Yi et al., 2014). 

ET production commences approximately 1 h post-flg22 treatment, reaching its peak 
around 4 h (Liu & Zhang, 2004). The TFs EIN3 (ETHYLENE INSENSITIVE 3) and 
EIL1 (EIN3-LIKE 1), activated by ET, interact with the promoter of FLS2 to control the 
transcription of this gene (Boutrot et al., 2010). It is highly likely that ET and JA 
pathways coordinate during plant defense, while ET and SA pathways exhibit 
antagonism. JA signaling amplifies the activity of EIN3 and EIL1, resulting in the 
elevation of ERF1 and ORA59 (OCTADECANOID-RESPONSIVE ARABIDOPSIS 
AP2/ERF 59) expression (Zhu et al., 2011). EIN3 suppresses SA signaling by repressing 
SID2 expression (Chen et al., 2009), while SA reduces ORA59 accumulation (Van der 
Does et al., 2013) and the ein3 eil1 double mutant or ein2 single mutant accumulates 
more SA and is more resistant to P. syringae (Pseudomonas syringae) (Chen et al., 
2009). Endoplasmic reticulum (ER) localized ERFs integrate ET signaling with key 
defense pathways (Müller & Munné-Bosch, 2015). ERF6, phosphorylated by 
MPK3/MPK6, induces the expression of PR genes like PDF1.2, thus enhancing 
resistance against Botrytis cinerea (Meng et al., 2013). ERF96 overexpression increases 
the expression of JA/ET defense genes like PDF1.2a, PR-3, and PR-4, boosting 
resistance against Botrytis cinerea and Pectobacterium carotovorum (Catinot et al., 
2015). EIN2 (ETHYLENE INSENSITIVE 2) serves as a key membrane protein in ET 
signaling pathways, with EIN3 and EIL1 acting downstream as TFs to regulate 
hundreds of ET-responsive genes (Yang  et al., 2015b). 
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2.2.6. PTI and callose deposition 

After treating with flg22, and staining with aniline blue, there is significant fluorescence 
observed, indicating the presence of dense callose deposits in A. thaliana leaves 
(Gómez-Gómez et al., 1999). Callose, a (1,3)-β-glucan cell wall polymer with (1,6)-
branches, is present in both multicellular green algae and higher plants (Ellinger & 
Voigt, 2014). The activity of callose synthase GSL5 (GLUCAN SYNTHASE-LIKE 5) 
was essential for the induction of callose deposition triggered by flg22 (Jacobs et al., 
2003; Luna et al., 2011). The role of callose in plant-bacteria interactions is still under 
debate (Ellinger & Voigt, 2014). It may act as a barrier against pathogens or help 
detoxify antimicrobial compounds (Ellinger & Voigt, 2014; Luna et al., 2011; 
Samardakiewicz et al., 2012). The pmr4 (gsl5) mutant showed increased SA 
biosynthesis and constitutive expression of defense-related genes (Nishimura et al., 
2003). Moreover, neither the absence nor the excess of callose deposition alone 
enhanced resistance to bacterial pathogens (Moreau et al., 2012). Callose deposition 
near plasmodesmata neck zone acts as a defense mechanism, controlling their 
permeability (Amsbury et al., 2018). Plasmodesmata closure and callose deposition 
induced by SA or pathogens necessitate an SA pathway dependent on EDS1 
(ENHANCED DISEASE SUSCEPTIBILITY 1) and NPR1 and rely on the plasmodesma 
gating regulator PDL5 (PROTEIN DISULFIDE ISOMERASE-LIKE 5) (Wang et al., 
2013). Flg22, EF-Tu, LPS (lipopolysaccharide), and PGN (peptidoglycan) hairpins all 
induce callose deposition (Ellinger & Voigt, 2014). However, distinct signaling 
pathways regulate different PAMPs-induced callose deposition (Wang et al., 2021). 

2.2.7. PTI and stomata regulation 

Stomatal closure, as an early immune response, aims to restrict bacterial entry (Sakata 
& Ishiga, 2023). When leaves or epidermal peels are exposed to Pst DC3000 suspension, 
stomata closes within 1 to 2 h, but reopens at 3 h (Melotto et al., 2006). PAMP-induced 
stomatal closure involves the buildup of ROS and NO, oscillations in cytosolic calcium 
levels, stimulation of S-type anion channels, and suppression of potassium (K+) inward 
channels (Melotto et al., 2006, 2008,2017). Abscisic acid (ABA) also regulates stomatal 
movements during water-deficit conditions (Hsu et al., 2021). But stomatal closure 
induced by flg22 involves both LOX1 (LIPOXYGENASE 1) and MPK3 and MPK6, 
along with SA, in an ABA-independent process (Montillet et al., 2013). 

OSCA1.3 and OSCA1.7 (HYPEROSMOLALITY-GATED CALCIUM-PERMEABLE 
CHANNEL 1.3 and 1.7) are indispensable for flg22-triggered stomatal immunity (Thor 
et al., 2020). Flg22 triggers the activation of SLAC1 (SLOW ANION CHANNEL-
ASSOCIATED 1) and SLAH3 (SLAC1 HOMOLOGUE 3), which are S-type anion 
channels in guard cells, necessary for stomatal closure in A. thaliana (Geiger et al., 
2011; Guzel Deger et al., 2015). SLAC1 can be activated by OST1 (OPEN STOMATA 
1) in a Ca2+-independent manner (Geiger et al., 2010) or Calcium Dependent Protein
Kinases CDPK3 and CDPK21, in a manner largely dependent of cytosolic calcium
elevation (Geiger et al., 2010; Scherzer et al., 2012). SLAH3 activation requires the co-
expression of CDPKs and the CBL (CALCINEURIN B-LIKE PROTEIN) and CIPKs
(CBL-INTERACTING PROTEIN KINASES) module but not OST1 (Geiger et al., 2011;
Maierhofer et al., 2014). OST1 is essential for mediating stomatal closure induced by
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flg22 (Guzel Deger et al., 2015; Melotto et al., 2006). Recent findings indicate that 
BAK1 (BRASSINOSTEROID INSENSITIVE ASSOCIATED RECEPTOR KINASE 1) 
phosphorylates OST1 in vitro and is necessary for ABA -induced ROS production in 
guard cells (Shang et al., 2016). However, the mechanism of OST1 activation by flg22 
needs further investigation. 

2.2.8. PTI and Leucine-rich repeat receptors. 

In addition to PTI triggered by LRR-PLKs like FLS2 and EFR, other PRRs also induce 
PTI. The LysM -RLKs CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1), which 
may serve as a co-receptor of LYSIN MOTIF-CONTAINING RECEPTOR-LIKE 
KINASE 5 (LYK5) (Cao et al., 2014), detects fungal chitin in cell walls using its 
extracellular LysM domains (Miya et al., 2007). The cerk1 mutant, deficient in the 
chitin-triggered PTI pathway, showed weaker defense responses against Fusarium 
oxysporum f. sp. cubense (Foc) B2, including reduced gene expression, lack of stomatal 
closure, lower ROS levels, and decreased callose deposition compared to the wild-type 
(Huaping et al., 2017). CERK1, along with two LysM-RLPs (LYM1 and LYM3) have 
been involved in PGN (peptidoglycan) ligand binding (Willmann et al., 2011). The A. 
thaliana receptor-like cytoplasmic kinase PBS1-LIKE 27 (PBL27) is necessary for the 
activation of MAP kinases induced by chitin but is not involved in the generation of 
ROS (Shinya et al., 2014; Yamada et al., 2016; Zipfel & Oldroyd, 2017). When chitin 
is detected by CERK1/LYK5 complexes, PBL27 directly phosphorylates the anion 
channel SLAC1 HOMOLOGUE 3 (SLAH3), which is important for stomatal immunity 
(Liu et al., 2019a).  

In the early stage of P. syringae (Pseudomonas syringae) infection, LPS 
(lipopolysaccharide) perception leads to auto-phosphorylation of LORE 
(LIPOOLIGOSACCHARIDE-SPECIFIC REDUCED ELICITATION), a membrane 
localized S-domain receptor kinase that is involved in LPS sensing. LORE in turn 
phosphorylates the Receptor-like cytoplasmic kinases PBL34/PBL35/PBL36 activating 
immune responses (Luo et al., 2020; Ranf et al., 2015). WAK1, known for its role in 
maintaining cell wall integrity (Rui & Dinneny, 2020; Wagner & Kohorn, 2001), 
responds to OGs (Oligogalacturonides) and functions in the later stages of PTI immunity, 
as evidenced by significantly reduced callose deposition in wak1 mutants (Brutus et al., 
2010). In response to avirulent strains of P. syringae, the expression of the CYSTEINE-
RICH RECEPTOR-LIKE KINASE 13 (CRK13) showed strong induction, and its 
overexpression resulted in increased resistance to P. syringae (Acharya et al., 2007). 
Another cysteine-rich receptor-like kinase, CRK36, has been shown to modulate PTI 
responses triggered by flg22 by interacting with BIK1(BOTRYTIS-INDUCED KINASE 
1) (Lee et al., 2017). However, ligands for Duf26-RLK still remain unknown.

In A. thaliana, when the LRR receptor protein involved in PAMP mediated immunity 
RLP23 (RECEPTOR LIKE PROTEIN 23) senses NECROSIS- AND ETHYLENE-
INDUCING PEPTIDE 1 (NEP1)-LIKE PROTEINs (NLPs), it triggers signaling 
through the leucine rich repeat transmembrane protein SOBIR1 (SUPPRESSOR OF 
BIR1-1) and leucine-rich  receptor serine/threonine protein kinase BAK1, resulting in 
bacterial and fungal resistance (Albert et al., 2015; Liebrand et al., 2014; Ono et al., 
2020). Arabidopsis plants with deficiencies in the EDS1 (ENHANCED DISEASE 

17

General Introduction_______________________________________________________________________________________



SUSCEPTIBILITY 1)-PAD4 (PHYTOALEXIN-DEFICIENT 4)-ADR1 (ACTIVATED 
DISEASE RESISTANCE 1) module exhibit decreased RLP23-dependent PTI 
stimulation such as ET production, ROS burst, callose deposition, and resistance to Pst 
DC3000 (Pruitt et al., 2021). This suggests that PTI may also depend on elements 
associated with ETI signaling. 

2.3 Flg22-triggered PTI 

In A. thaliana, a widely recognized LRR-PRR is the kinase FLS2, which specifically 
detects a conserved 22-amino acid N-terminal sequence within the bacterial flagellin 
protein known as flg22 (Chinchilla et al., 2006; Felix et al., 1999; Gómez-Gómez et al., 
2001). In 2001, the team of Thomas Boller used forward genetics to obtain the mutant 
fls2 that was insensitive to flg22 (Gómez-Gómez & Boller, 2000; Gómez-Gómez et al., 
2001). In 2006, Thomas Boller lab also used reverse genetics to identify the receptor 
EFR that recognizes EF-Tu from numerous receptor kinases (Zipfel et al., 2006). In 
contrast to FLS2, the genes encoding EFR are exclusively found in the Brassicaceae 
(Nekrasov et al., 2009). The most extensively studied PAMP/PRR pairs in plants are 
flg22-FLS2 and elf18-EFR (Yu et al., 2021). 

In A. thaliana, flg22 triggers callose deposition, ROS burst, and inhibits plant growth 
(Gómez-Gómez & Boller, 2000; Gómez-Gómez et al., 1999). Flg22 also activates the 
MAP kinase cascade (MEKK1, MKK4/MKK5, and MPK3/MPK6) and 
WRKY22/WRKY29 transcription factors (Asai et al., 2002; Suarez-Rodriguez et al., 
2007).  

At first, FLS2 possibly forms homodimers in the absence of flg22 (Sun et al., 2012). In 
resting plants, FLS2 interacts with both BIK1 (BOTRYTIS-INDUCED KINASE 1) and 
PBL1 (PBS1-LIKE 1) that belong to the group of cytoplasmic receptor-like kinases 
lacking extracellular domains (Liang & Zhou, 2018; Lu et al., 2010; Zhang et al., 
2010a). In the absence of the ligand, FLS2 and BAK1 are typically found in close to the 
PM (Roux et al., 2011; Schulze et al., 2010; Yu et al., 2021).  

Flg22 induces the formation of the immune receptor complex between FLS2 and BAK1 
(Chinchilla et al., 2007; Schulze et al., 2010; Sun et al., 2013). The reduced sensitivity 
of bak1-3 and bak1-4 mutants to flg22, along with diminished ROS burst induced by 
flg22 and EF-Tu, and weakened MAPK signaling activation, indicates that BAK1 serves 
as a positive regulator of PAMPs (Chinchilla et al., 2007). In vivo, the formation of the 
FLS2 and BAK1 complex is rapid, occurring within 2 min of flg22 treatment (Chinchilla 
et al., 2007). 

Upon flg22 induction, BIK1 undergoes rapid phosphorylation by BAK1 and dissociates 
from the FLS2 protein (Lin et al., 2014). After treatment with flg22, bik1 mutants 
exhibit reduced ROS burst and immune gene expression compared to wild-type plants, 
suggesting BIK1's involvement in positively regulating PTI signal transduction 
(Veronese et al., 2006; Zhang et al., 2010a). Subsequent in vivo Co-IP and in vitro pull-
down assays confirmed the direct interaction of RBOHD with both BIK1 and FLS2, and 
treatment with flg22 induced the dissociation of RBHOD from FLS2 (Li et al., 2014). 
In addition, BIK1 phosphorylates RBOHD (Kadota et al., 2014; Li et al., 2014) at Ser39 
and Ser343, which is crucial for flg22-induced ROS production. The phosphorylation 
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at Ser39 is calcium independent (Li et al., 2014). 

The NADPH oxidase RBOHD, located at the plasma membrane (PM), mediates the 
flg22-induced burst of ROS (Nühse et al., 2007; Zhang et al., 2007). NADPH oxidases 
generate O2•− from oxygen molecules in the apoplast, and the O2•− can quickly convert 
to H2O2 either spontaneously or through the action of SUPEROXIDE DISMUTASE 
(SOD), which enzymatically detoxifies O2•− (Chen & Yang, 2020). In A. thaliana, two 
putative SODs, Mn-SOD (AT3G56350) (Chen et al., 2022) and Fe-SOD (AT4G00651), 
are predicted to be secreted into the apoplastic space (Waszczak et al., 2018). H2O2 can 
activate Ca2+ influx in A. thaliana (Klusener et al., 2002; Pei et al., 2000). In turn, 
cytoplasmic Ca2+ binding to RBOHD N-terminal EF-hand domains are crucial for ROS 
production (Ogasawara et al., 2008).  

PBL1 and BIK1 play a crucial role in calcium signaling induced by flg22 (Li et al., 2014; 
Ranf et al., 2014). Upon flg22 stimulation, BIK1 and PBL1 become phosphorylated 
(Zhang et al., 2010a). The identity of the Ca2+ channel(s) involved in PTI remains 
unclear, but these results suggest that BIK1 and PBL1 may phosphorylate and activate 
Ca2+ channels or positive regulators, or that ROS plays a role in channel activation 
(Kadota et al., 2015).  

BIK1 phosphorylates and activates the cyclic proteins CNGC2 and CNGC4 (CYCLIC 
NUCLEOTIDE-GATED CHANNEL 2 and 4), and HYPEROSMOLALITY-GATED 
CALCIUM-PERMEABLE CHANNELS 1.3 (OSCA1.3) channels for Ca2+ influx upon 
flg22 perception (Thor et al., 2020; Tian et al., 2019). Calcium channels, like CNGCs 
(CYCLIC NUCLEOTIDE GATED CHANNELS), GLUTAMATE RECEPTOR-LIKE 
PROTEINS (GLRs), OSCAs, TWO-PORE CHANNELS (TPCs), and ANNEXINS 
(ANNs), play crucial roles in modulating Ca2+ fluxes during plant immunity (Xu et al., 
2022). Plant CNGCs, belonging to the superfamily of voltage-gated ion channels, are 
tetrameric proteins characterized by six transmembrane domains and possess cytosolic 
N-terminal and C-terminal regions per subunit (Dietrich et al., 2020; Jegla et al., 2018).
In A. thaliana, the OSCA family, comprising 15 genes, exhibits structural characteristics
including 11 transmembrane helices and a cytosolic domain, forming homodimers (Xu
et al., 2022).

The entry of Ca2+ can potentially trigger the activation of CDPKs, which possess a dual 
calmodulin-like calcium sensor and a protein kinase effector domain (Kudla et al., 
2010). Indeed, calcium-dependent protein kinases CDPK4, CDPK5, CDPK6, and 
CDPK11 were found to undergo transient activation following flg22 treatment 
(Boudsocq et al., 2010). Flg22 triggers phosphorylation of CDPK5, which 
phosphorylates RBOHD, leading to the modulation of ROS (Dubiella et al., 2013). 
However, CDPK proteins have no impact on the activation of MAPK induced by flg22, 
indicating that CDPK and MAPK pathways may operate independently (Boudsocq et 
al., 2010). 

BIK1 is dispensable for the activation of MAP kinases induced by flg22 (Feng et al., 
2012; Zipfel & Oldroyd, 2017). Flg22-induced MPK3/MPK6 activation is comparable 
between the quadruple mutant dde2 ein2 pad4 sid2 and the wild-type (Tsuda et al., 
2009). This could imply that MAPK activation occurs regardless of SA, ET and JA 
signaling pathways (Bigeard et al., 2015; Tsuda et al., 2009). The two response 
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pathways, MAPKKK3/5 -MKK4/5-MPK3/6 (Asai et al., 2002; Sun, Nitta, et al., 2018) 
and MEKK1-MKK1/2-MPK4 (Gao et al., 2008; Qiu et al., 2008; Suarez-Rodriguez et 
al., 2007) cascades, are rapidly activated in response to flg22 stimulation. 

Upon treatment with flg22, perception by FLS2 can trigger subsequent PTI responses, 
as well as to induce negative regulation. Two U-box E3 ubiquitin ligases, PUB12 and 
PUB13 (PLANT U-BOX 12 and 13), interact with FLS2 under the mediation of BAK1, 
leading to ubiquitination modification of FLS2 and ultimately resulting in its 
degradation (Lu et al., 2011). FLS2 undergoes endocytosis upon ligand induction, 
transitioning from the PM to vesicles or vacuoles in plant cells, potentially leading to 
degradation (Mbengue et al., 2016; Robatzek et al., 2006; Smith et al., 2014). In the 
absence of flg22, FLS2 can also undergo degradation. A. thaliana ORM 
（OROSOMUCOID）proteins, recognized as negative regulators of sphingolipid 
biosynthesis, act as selective autophagy receptors interacting with non-activated FLS2 
and the autophagy key protein ATG8 (AUTOPHAGY-RELATED PROTEIN 8) to 
facilitate FLS2 degradation (Yang et al., 2019). 

2.4. NADPH oxidases 

The NADPH (nicotinamide adenine dinucleotide phosphate) oxidase, referred to as the 
RESPIRATORY BURST OXIDASE (RBO), is sensitive to inhibition by diphenylene 
iodonium (DPI) but not by cyanide or azide (Torres et al., 2006). The key catalytic 
subunit of the phagocyte NADPH oxidase (phox) is gp91phox, a glycoprotein 
embedded within the membrane, exhibiting an apparent molecular mass of around 91 
kDa (Keller et al., 1998; Sumimoto, 2008; Torres et al., 2002). A. thaliana possesses 
ten RBO HOMOLOGS (RBOH) (RBOHA to RBOHJ) that are analogous to gp91phox 
(Chapman et al., 2019; Torres et al., 1998, 2006). 

In A. thaliana, RBOHD and RBOHF are vital for the buildup of reactive oxygen 
intermediates during plant defense reactions (Torres et al., 2002, 2005). Subsequent 
studies have found that RBOHD is the primary contributor to PAMP-induced ROS 
production, while RBOHF contributes less to this process (Nühse et al., 2007; Zhang et 
al., 2007). When A. thaliana is exposed to PAMPs such as flg22, elf18, and chitin, the 
promoter of RBOHD can cause excessive expression of GUS (β-glucuronidase) and 
LUC (luciferase) reporter genes (Morales et al., 2016). The upregulation of RBOHD 
promoters initiates 15 min after flg22 treatment, peaking at 1–1.5 h, whereas no activity 
of RBOHF promoter is detected (Morales et al., 2016). These findings confirmed that 
RBOHD is a key gene which expression is upregulated during pathogen infection, 
contributing to ROS production. 

RBOHD is a protein located at the plasma membrane (PM), with cytosolic N and C 
termini, featuring six conserved transmembrane helices that anchor two heme groups 
(Kadota et al., 2015). The N terminus of RBOHD contains two Ca2+-binding EF-hand 
motifs, a phosphatidic acid-binding motif, and multiple phosphorylation sites (Kadota 
et al., 2015). The Protein Kinase PBL13 can directly phosphorylate conserved residues 
at the C-terminus of RBOHD, affecting its activity and promoting its degradation via 
E3 ligase under normal conditions (Lee et al., 2020). 
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BIK1 phosphorylates RBOHD at Ser39, Ser339, and Ser343 residues, specifically 
(Kadota et al., 2015; Li et al., 2014). BIK1, along with other RECEPTOR-LIKE 
CYTOPLASMIC KINASE (RLCK) members like PBL1, PBL9, and PBL11, promotes 
flg22-triggered ROS production (Li et al., 2021; Sun et al., 2022; Wu et al., 2023). 
Phosphorylation of Ser163 is contingent upon calcium levels (Kadota et al., 2015). The 
calcium-dependent protein kinase CDPK5, which signaling can improve salicylic acid 
(SA)-mediated resistance to the pathogen Pst DC3000, alter plant defense gene 
expression, and induce ROS synthesis, phosphorylates RBOHD at Ser148, Ser163, and 
Ser347 residues (Boudsocq et al., 2010; Dubiella et al., 2013). Treatment with calcium 
chelators and mutations in EF-hand motifs inhibit PAMP-induced ROS production, 
indicating the essential role of calcium in the regulation of RBOHD (Kadota et al., 2015; 
Kimura et al., 2012; Ogasawara et al., 2008). 

The increased Ca2+ levels also lead to the activation of CALCINEURIN B-LIKE 
PROTEIN 1 (CBL1) and CBL9, both of which bind to CALCINEURIN B-LIKE 
PROTEIN (CBL)-INTERACTING PROTEIN KINASE 26 (CIPK26) to phosphorylate 
RBOHF, establishing a positive feedback loop for ROS generation (Drerup et al., 2013; 
Mittler & Blumwald, 2015). In addition, ET induces stomatal closure by generating 
H2O2 through RBOHF (Desikan et al., 2006). 

2.5. Salicylic acid 

SA signaling is mainly involved in response to biotrophic and hemibiotrophic 
pathogens, leading to SAR (systemic acquired resistance) (Ding et al., 2011; Klessig et 
al., 2018). SA is a phenolic compound synthesized from chorismate through two 
pathways involving PHENYL ALANINE AMMONIA-LYASE (PAL) and 
ISOCHORYSMATE SYNTHASE (ICS) enzymes (Peng et al., 2021). In A. thaliana, SA 
production during pathogen attack mainly relies on the ICS pathway, particularly 
through the induction of ICS1 (ISOCHORISMATE SYNTHASE 1) (Wildermuth et al., 
2001).  

ICS1 (also referred to as SID2) proteins are found in chloroplasts (Garcion et al., 2008). 
PBS3 (AvrPphB SUSCEPTIBLE 3), located in the cytosol, is crucial for pathogen-
triggered SA accumulation by catalyzing the conjugation of isochorismate (IC) to 
glutamate, forming IC-9-Glu (isochorismate-9-glutamate), which is an essential 
intermediate in SA production and can either spontaneously degrade into SA or be 
converted to SA by the BAHD acyltransferase ENHANCED PSEUDOMONAS 
SUSCEPTIBILTY 1 (EPS1) (Rekhter et al., 2019; Torrens-Spence et al., 2019). The 
BAHD acyltransferases utilize CoA thioesters and catalyze the synthesis of a diverse 
range of plant metabolites, serving multiple biological functions within plants (D’Auria 
et al., 2006; Wang et al., 2023). The name "BAHD" originates from the initial letters of 
the first four characterized enzymes: BEAT, AHCT, HCBT, and DAT, encompassing 
benzylalcohol O-acetyl transferase, anthocyanin O-hydroxycinnamoyl transferase, N-
hydroxycinnamoyl anthranilate benzoyl transferase, and deacetylvindoline 4-O-
acetyltransferase (D’Auria, 2006; Luo et al., 2007; St-Pierre & De Luca, 2000; Wang 
et al., 2023). 

Isochorismate must be transported from plastids to the cytosol for SA production, with 
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EDS5 (ENHANCED DISEASE SUSCEPTIBILITY 5) /SID1 likely facilitating this 
process (Nawrath et al., 2002; Rekhter et al., 2019; Serrano et al., 2013). In A. thaliana, 
this ICS1 pathway also depends on some other important proteins, including EDS1 
(ENHANCED DISEASE SUSCEPTIBILITY 1), PAD4 (PHYTOALEXIN-DEFICIENT 4), 
NDR1 (NON-RACE-SPECIFIC DISEASE RESISTANCE 1) and ACD6 
(ACCELERATED CELL DEATH 6) (Qi et al., 2018a). During PTI, lipase-like proteins 
EDS1 and PAD4 initiate SA biosynthesis (Pieterse et al., 2012). Upon ETI initiation by 
TIR-NBS-LRR type R proteins, SA biosynthesis is facilitated by EDS1 and PAD4 
(Pieterse et al., 2012; Wiermer et al., 2005). However, when CC-NBS-LRR type R 
proteins trigger ETI, SA production onset is regulated by NDR1 (Knepper et al., 2011; 
Pieterse et al., 2012). In A. thaliana, most SA is converted to 2,5-dihydroxybenzoic acid 
(2,5-DHBA), catalyzed by DOWNY MILDEW RESISTANT 6 (DMR6) already in the 
absence of pathogen infection (Peng et al., 2021; Zhang et al., 2017).  

Upon pathogen invasion, ICS1 expression rapidly increases, causing a substantial rise 
in SA levels (Strawn et al., 2007; Wildermuth et al., 2001). SARD1 (SYSTEMIC 
ACQUIRED RESISTANCE DEFICIENT 1) and CBP60g (CALMODULIN BINDING 
PROTEIN 60-like g) regulate ICS1 expression and SA biosynthesis after flg22 
treatment, with loss of both genes resulting in inhibited ICS1 induction and SA 
accumulation (Wang et al., 2011b; Zhang et al., 2010b). The synthesis or signaling 
pathway of SA may also be associated with calcium ion concentration. CBP60g 
contains an essential N-terminal CaM (CALMODULIN)-binding domain which 
mediates SA signaling upon pathogen recognition (Wang et al., 2009a). On the contrary, 
three TFs CAMTA1/2/3 play a role in suppressing the expression of SARD1 and CBP60g, 
as well as SA biosynthesis (Jacob et al., 2018; Kim et al., 2013b; Sun et al., 2020). ChIP 
analysis indicated that SARD1 and CBP60g also target FMO1 (FLAVIN-DEPENDENT-
MONOOXYGENASE 1), ALD1(AGD2-LIKE DEFENSE RESPONSE PROTEIN 1), 
SARD4 (SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 4), EDS5 (ENHANCED 
DISEASE SUSCEPTIBILITY 5) and PBS3 (AvrPphB SUSCEPTIBLE 3) (Sun, Busta, et 
al., 2018; Sun et al., 2015). Upon pathogen infection, ALD1, SARD4, and FMO1 
expression are significantly induced, leading to increased production of Pipecolic acid 
(Pip) and N-HydroxyPip, which both are crucial for SAR (Chen et al., 2018; Hartmann 
et al., 2018; Liu et al., 2020a). MAPK activation can increase Pip and NHP (N-
hydroxypipecolic acid) levels (Wang, et al., 2018b). In wrky33 mutant, ALD1 
expression, Pip accumulation, and SAR were impaired, with ChIP demonstrating 
MPK3/6-regulated transcription factor WRKY33 binding to the ALD1 promoter (Wang 
et al., 2018b). In addition, WRKY70 binds to a specific motif in the SARD1 promoter, 
suppressing SARD1 expression in the absence of pathogens (Zhou et al., 2018). 

SA can undergo different chemical alterations, like hydroxylation, glycosylation, 
methylation, and amino acid conjugation (Peng et al., 2021). During pathogen infection, 
most newly synthesized SA is converted to salicylic acid beta-glucoside (SAG) by 
UDP-glycosyltransferases UGT74F1 and UGT76B1 (Noutoshi et al., 2012). A minor 
portion of SA can be methylated to produce  methyl salicylate (MeSA) by carboxyl 
methyltransferase BSMT1 (BENZOIC ACID/SA CARBOXYL METHYLTRANSFERASE 
1) (Attaran et al., 2009; Chen et al., 2003; Liu et al., 2010).

NPR1 protein has been identified as the receptor for SA and largely regulates SA
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downstream signaling (Pieterse et al., 2012; Wu et al., 2012). NPR1 was discovered 
using map-based approach and found to encode a protein with ankyrin repeats (Cao et 
al., 1997). Uninfected plants exhibit NPR1 in oligomeric complexes in the cytosol, 
while pathogen infection or SA treatment triggers NPR1 complex dissociation into 
monomers (Lindermayr et al., 2005; Spoel et al., 2003; Tada et al., 2008). NPR3 and 
NPR4, act as adaptors for cullin3 E3 ligase, facilitating the regulation of NPR1 optimal 
levels during plant defenses (Ding et al., 2018; Fu et al., 2012). In systemic acquired 
resistance (SAR) tests with Pseudomonas syringae pv. maculicola ES4326 (Psm 
ES4326), the npr3 npr4 double mutant showed a notable decrease in Psm ES4326 
growth even without SAR induction (Fu et al., 2012). However, after SAR induction 
by local inoculation of avirulent Psm ES4326/avrRpt2, there was no additional 
reduction in virulent Psm ES4326 growth in systemic tissue observed in the npr3 npr4 
double mutant (Fu et al., 2012), indicating compromised SAR (Fu et al., 2012). Nuclear 
NPR1 is essential for SA-mediated defense gene expression, while cytosolic NPR1 is 
crucial for mediating the crosstalk between SA and JA (Spoel et al., 2003). Additionally, 
SA inhibits JA accumulation by repressing CATALASE2 (CAT2), which promotes JA 
biosynthesis by enhancing JA biosynthetic enzymes ACX2 and ACX3 (ACYL-COA 
OXIDASES 2 and 3) (Yuan et al., 2017b).  

2.6. Jasmonic acid and interactions with SA 

JA signaling pathways typically respond to necrotrophic pathogens, insects, herbivores, 
and injury (Yang et al., 2015a). JA synthesis begins with linolenic acid (18:3) 
oxygenation in chloroplasts via enzymes like LIPOXYGENASES (LOX), ALLENE 
OXIDE SYNTHASES (AOS), and ALLENE OXIDE CYCLASES (AOC), yielding 12-oxo 
phytodienoic acid (OPDA) (Wasternack & Song, 2017). OPDA, produced in 
chloroplasts, is transferred to peroxisomes where it is reduced by 
OXOPHYTODIENOATE-REDUCTASE 3 (OPR3) and oxidized by ACYL-COA 
OXIDASE 1 (ACX1), leading to JA biosynthesis (Wasternack & Song, 2017). 
JASMONATE RESISTANT 1 (JAR1) catalyzes the conjugation of JA with isoleucine in 
the cytosol to form JA-Ile (JA-isoleucine), which is the most active form of JA 
(Kombrink, 2012; Staswick & Tiryaki, 2004). Some members of the CYTOCHROME 
P450 94 family (CYP94B1, CYP94B3, CYP94C1) in the ER, hydroxylate JA-Ile to 
produce 12-OH-JA-Ile, and CYP94C1 can further convert it to 12-COOH-JA-Ile 
(Caarls et al., 2017; Heitz et al., 2012; Koo et al., 2014). 12-OH-JA-Ile activates COI1 
(CORONATINE INSENSITIVE 1)-dependent JA signaling (Jimenez-Aleman et al., 
2019; Poudel et al., 2019). The F-box protein COI1 mediates JA signaling by promoting 
the ubiquitylation and degradation of JAZ repressor proteins in a hormone-dependent 
manner (Sheard et al., 2010). The JA signaling pathway has two branches: the MYC-
branch and the ERF-branch (Wu & Ye, 2020). 

MYC2 is a key regulator in many JA-mediated pathways for defense and development 
in A. thaliana (Luo et al., 2023). In resting cells, JAZ proteins physically bind and 
inhibit MYC2 and related MYC transcription factors (Fernández-Calvo et al., 2011; 
Song et al., 2017). JAZ proteins interact with NOVEL INTERACTOR OF JAZ (NINJA) 
to recruit the transcriptional co-repressor TOPLESS (Pauwels et al., 2010). JAZ 
proteins also competitively block the interaction between MYC proteins and the 
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MED25 subunit of the transcriptional mediator complex (Çevik et al., 2012; Zhang et 
al., 2015). Upon hormone perception, the binding of JA-Ile and COI1, promotes the 
assembly of the COI1-JAZs complex, leading to the ubiquitination and subsequent 
degradation of JAZ proteins by the 26S proteasome (Chini et al., 2007; Sheard et al., 
2010; Thines et al., 2007). MYC (bHLH) TFs positively regulate the synthesis of 
proteins like VEGETATIVE STORAGE PROTEIN 2 (VSP2), mainly triggering 
defensive responses against wounding and insect herbivores attacks (Boter et al., 2004; 
Schweizer et al., 2013).  

The ERF branch of the JA pathway boosts resistance to necrotrophic pathogens 
(Pieterse et al., 2012). The ORA59 (OCTADECANOID-RESPONSIVE ARABIDOPSIS 
AP2/ERF 59) / ERF1 pathway induces PDF1.2 expression, counteracting the MYC2-
mediated pathway (Kazan & Manners, 2013). The synergistic interaction between JA 
and ET mainly occurs in response to necrotrophic pathogens (Pieterse et al., 2012). JAZ 
proteins inhibit EIN3-mediated expression of ORA59 and ERF1(Zhu et al., 2011). EIN3 
and EIL1, central TFs in ET signaling, bind to JAZ1, JAZ3, and JAZ9, suppressing 
EIN3/EIL1 activity (Zhu et al., 2011). 

Low JA and SA concentrations synergistically upregulate the expression of PDF1.2 and 
PR-1 genes in A. thaliana, while higher concentrations lead to antagonistic effects (Mur 
et al., 2006; Pieterse et al., 2012). Indeed, JA inhibits SA accumulation, and SA 
negatively regulates the expression of JA-responsive genes (Peng et al., 2021). 

WRKY70 likely plays a crucial role in negative feedback regulation of SA-mediated 
defense responses (Ding et al., 2018; Wang et al., 2006). Overexpressing WRKY70 
reduces expression of the JA-responsive gene PDF1.2 and compromises resistance to 
the necrotrophic pathogen Alternaria brassicicola, while loss of WRKY70 function 
increases PDF1.2 expression and enhances resistance to Alternaria brassicicola (Li et 
al., 2006; Li et al., 2004). The edr1 mutant exhibits increased SA signaling, leading to 
reduced expression of JA-regulated PDF1.2 and related defensins (Hiruma et al., 2011). 
EDR1 (ENHANCED DISEASE RESISTANCE 1), a protein kinase like MAPKKKs, is 
also crucial for A. thaliana pre-invasive nonhost resistance against Colletotrichum 
species (Frye et al., 2001; Hiruma et al., 2011). 

The formation of the COI1-JAZ receptor-substrate complex can be promoted by either 
JA-Ile or coronatine (COR) (Katsir et al., 2008; Yan et al., 2009). COR, a toxin secreted 
from various P. syringae strains, imitates JA-Ile and facilitates bacterial entry by 
inducing the reopening of stomata (Melotto et al., 2006). In the COR-insensitive coi1 
mutant (Feys et al., 1994), there is an increase in SA levels, resulting in heightened 
resistance against Pst DC3000 (Kloek et al., 2001). COR promotes the expression of 
NAC TFs, which suppress the expression of ICS1 while inducing the expression of 
BSMT1, ultimately resulting in reduced SA (Zheng et al., 2012). COR-induced JA 
signaling upregulates three NAC transcription factors, ANAC019, ANAC055, and 
ANAC072, which are direct targets of MYC2 (Zheng et al., 2012). The myc2 mutant 
exhibits increased SA biosynthesis and responses, suggesting that MYC2 acts as a 
negative regulator of the SA pathway (Laurie-Berry et al., 2006; Nickstadt et al., 2004). 
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2.7 Reactive Oxygen Species (ROS) and plant defense 

ROS is a term encompassing oxygen derivatives more reactive than O2 itself (Zhou et 
al., 2014). ROS are universally generated as bioproducts during cellular metabolism in 
all living organisms (de Almeida et al., 2022; Sies et al., 2022). ROS can be classified 
into two categories based on their molecular structure: free radicals and non-free 
radicals. Free radicals, such as superoxide anions (O2•−), and hydroxyl radicals (HO•), 
contain unpaired electrons (de Almeida et al., 2022; Radi, 2018). On the other hand, 
non-free radicals with oxidizing properties include hydrogen peroxide (H2O2), singlet 
oxygen(1O2), peroxynitrite (ONOO¯), and hypochlorous acid (HOCl) (de Almeida et 
al., 2022; Epe, 1991). 

H2O2 exhibits relative stability owing to the neutral charge, enabling unhindered 
passage through the cell membrane via aquaporins for effortless entry and exit (Bienert 
& Chaumont, 2014; Dynowski et al., 2008). The half-life of H2O2 spans a mere 1 
millisecond, whereas O2•− exhibits an even briefer half-life of only 1 microsecond 
(Bienert et al., 2006; Reth, 2002). In plants, the primary forms of ROS include H2O2, 
O2•−, 1O2, and HO• (Waszczak et al., 2018). 

As per the ROS generation site within a plant, it can be categorized into two main 
compartments: apoplast and intracellular. In A. thaliana, the generation of ROS in the 
apoplastic region primarily relies on NADPH oxidases, cell wall PEROXIDASES 
(PRXs), and amine oxidases (Qi et al., 2017; Torres et al., 2006). The plasma membrane 
NADPH Oxidase enzyme is most likely involved in promoting superoxide production 
in plants (Sagi & Fluhr, 2001).  

The role of cell wall peroxidases as producers of ROS was first demonstrated 
pharmacologically in cotton cotyledons (Martinez et al., 1998). Following this, class III 
PEROXIDASE PRX33 and PRX34 were identified in A. thaliana, characterized by their 
sensitivity to azide but insensitivity to DPI (Bindschedler et al., 2006). These 
peroxidases, encoded by loci At3g49110 and At3g49120 respectively, serve as sources 
of extracellular oxidative bursts when challenged with avirulent strains of 
Pseudomonas syringae (Bindschedler et al., 2006). In A. thaliana cell suspensions 
treated with various PAMP elicitors, peroxidases, mainly PRX33 and PRX34, accounted 
for over 50% of the produced H2O2, with the remainder attributed to NADPH oxidases 
and intracellular sources (O’Brien et al., 2012). COPPER AMINE OXIDASES (CuAOs) 
and FAD-dependent POLYAMINE OXIDASES (PAOs), comprising 10 and 5 genes in A. 
thaliana respectively, catalyze the oxidation of amines to produce H2O2 (Smirnoff & 
Arnaud, 2019). 

Chloroplast, peroxisomes, and mitochondria are the primary sites where intracellular 
ROS are predominantly produced (Smirnoff & Arnaud, 2019). In PSII, the excitation 
energy from triplet chlorophyll can be transferred to state triplet oxygen (3O2), resulting 
in the formation of highly reactive 1O2 (Durrant et al., 1990; Taylor et al., 2009). 
Additionally, at PSI, oxygen undergoes one-electron reduction, producing the 
superoxide anion (Mehler, 1951; Taylor et al., 2009). A membrane-bound 
COPPER/ZINC SUPEROXIDE DISMUTASE (Cu/ZnSOD) located near PSI converts 
superoxide radicals into H2O2 (Miller et al., 2010). Furthermore, in the presence of 
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metal ions like Fe2+, the superoxide radical further transforms into the more harmful 
HO• via H2O2 in the Fenton reaction (Das & Roychoudhury, 2014; Demidchik, 2015; 
Singh, 2022). 

Peroxisomes have been reported to generate various ROS, including H2O2, O2•−and 1O2 
(Del Río & López-Huertas, 2016; Mor et al., 2014). In mitochondria, ubiquinone 
oxidoreductase complex I reduces O2 to O2•− (Das & Roychoudhury, 2014; Pryde & 
Hirst, 2011). Mitochondria Complex III promotes the production of superoxide anion 
by leaking electrons to O2 from the unstable ubisemiquinone semi-radical (Singh, 2022). 
Superoxide anion is converted to H2O2 by Mn-SOD or APX (ASCORBATE 
PEROXIDASE) in mitochondria (Sharma et al., 2012). 

Increased 1O2 production in A. thaliana mutants leads to photooxidative stress, causing 
significant lipid peroxidation and programmed cell death, and 1O2 is the primary ROS 
responsible for PSII activity loss (Czarnocka & Karpiński, 2018; Triantaphylides et al., 
2008). The OH• is the most reactive and toxic ROS known (Das & Roychoudhury, 
2014). Due to the lack of an existing enzymatic system to scavenge this radical, 
excessive buildup of OH• leads to cellular death (Czarnocka & Karpiński, 2018; Das & 
Roychoudhury, 2014). It can damage various cellular components through lipid 
peroxidation (LPO), protein damage, DNA single-strand breakage, and membrane 
destruction (Czarnocka & Karpiński, 2018; Das & Roychoudhury, 2014; Hiramoto et 
al., 1996; Pinto et al., 2003). Generation and scavenging of ROS in plants can be seen 
in figure 2. 

Figure 2 Generation and scavenging of ROS in plants. Ascorbic acid (AA), reduced glutathione (GSH), 
SUPEROXIDE DISMUTASE (SOD), CATALASE (CAT), ASCORBATE PEROXIDASE (APX), GSH 
PEROXIDASE (GPX). 

In redox signaling, low levels of H2O2 cause the oxidation of cysteine (Cys) residues, 
resulting in the formation of the reversible sulfenic form (R–SOH) (Akter et al., 2015; 
Czarnocka & Karpiński, 2018; Jacques et al., 2013). The sulfenic acid acts as a redox 
sensor in various physiological pathways, impacting the activities of crucial signaling 
proteins and TFs that regulate gene expression (Akter et al., 2015; Poole & Nelson, 
2008; Reddie & Carroll, 2008). Highly reactive sulfenic acids can form disulfide bonds 
with nearby thiols, mixed disulfide bonds via S-glutathionylation, or sulfenylamide 
with the adjacent residue's backbone nitrogen (Akter et al., 2015). These disulfides 
exhibit reversibility since they can undergo reduction facilitated by thioredoxins (Trx) 
or glutaredoxins (Grx) (Akter et al., 2015; Messens & Collet, 2013; Meyer et al., 2012). 
A total of 44 Trx/Trx-like and 50 Grx/Grx-like proteins exist in A. thaliana (Akter et 
al., 2015; Meyer et al., 2012). However, under high H2O2 levels, the sulfenic acid can 
be overoxidized to irreversible sulfenic (R-SO2H) and sulfonic acids (R-SO3H) 
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(Czarnocka & Karpiński, 2018). Typically, overoxidation is irreversible and results in 
protein degradation via the proteasome or through autophagy (Akter et al., 2015; 
Czarnocka & Karpiński, 2018; Kehm et al., 2021). Additionally, high concentrations of 
H2O2 can also trigger PCD (programmed cell death) (Elena-Real et al., 2021). 

ROS plays a double-edged role in plant cell. Typically, low levels of ROS are essential 
for the advancement of various fundamental biological processes, but elevated ROS 
levels pose a considerable threat (Huang et al., 2019). When ROS levels surpass the 
capacity of cellular defense mechanisms, the cell enters a state known as "oxidative 
stress" (Sharma et al., 2012). Plants have both enzymatic and non-enzymatic 
mechanisms for scavenging ROS (Singh, 2022). 

Enzymatic systems mainly consist of SUPEROXIDE DISMUTASE (SOD), CATALASE 
(CAT), ASCORBATE PEROXIDASE (APX), and glutathione (GSH) PEROXIDASE 
(GPX) (Apel & Hirt, 2004). SOD converts O2•− into O2 and H2O2, which reduces the 
likelihood of OH• formation (Gill & Tuteja, 2010b; Liochev & Fridovich, 2007; 
Scandalios, 1993). There are three FeSOD forms (FSD1, FSD2, and FSD3), three 
Cu/ZnSOD (CSD1, CSD2, and CSD3) and one MnSOD (MSD1), distinguished based 
on the presence of metal cofactors in their active sites (Gill & Tuteja, 2010b). 

APX, GPX, and CAT are capable of detoxifying H2O2 (Apel & Hirt, 2004). CAT has a 
strong affinity for H2O2 and is unique among antioxidant enzymes as it doesn't 
necessitate a reducing equivalent (Das & Roychoudhury, 2014). Three CAT genes were 
discovered in A. thaliana, with CAT1 and CAT2 found in the cytosol and peroxisomes, 
and CAT3 located in mitochondria (Chaturvedi et al., 2020; Ghosh & Majee, 2023). 
APX utilizes electron transfer from ascorbic acid (AA) to produce 
monodehydroascorbate (MDHA) and H2O, thereby removing H2O2 (Celi et al., 2023). 
GPX detoxifies H2O2 to H2O using GSH directly as a reducing agent (Gill et al., 2012). 
There are also enzymes that can indirectly play a role in scavenging, such as 
DEHYDROASCORBATE REDUCTASE (DHAR), MONODEHYDROASCORBATE 
REDUCTASE (MDHAR), and GSH REDUCTASE (GR) (Dvořák et al., 2021; Gill et al., 
2013). MDHAR and DHAR assist in the production of AA, while GR generates GSH 
(Gill & Tuteja, 2010b). 

In addition to AA and GSH mentioned above, non-enzymatic clearance mechanisms 
involve α-tocopherol (vitamin E), carotenoids, proline, and flavonoids (Das & 
Roychoudhury, 2014). α-Tocopherol belongs to the lipid-soluble antioxidant, and 
primarily scavenges OH• and 1O2, thus protecting the chloroplast (Munné-Bosch, 2005; 
Singh, 2022). Flavonoids, as a group of water-soluble antioxidants, contribute to 
reducing 1O2, similarly to the function of carotenoids, which belong to the family of 
lipophilic antioxidants (Agati et al., 2012; Ramel et al., 2012; Singh, 2022). 
Additionally, there is strong evidence indicating that anthocyanins scavenge H2O2 
following mechanical injury in living organisms (Agati et al., 2012; Gould et al., 2002). 
Proposed roles of free proline include acting as osmoprotectant, protein stabilizer, metal 
chelator, inhibitor of lipid peroxidation, and scavenger of OH• and 1O2 (Ashraf & 
Foolad, 2007; Gill & Tuteja, 2010b). 

ROS generation is among the initial reactions, commencing shortly after treatment with 
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PAMPs, often within minutes in PTI, but also occurs during ETI, and the rate is 
considerably slower in comparison (Kadota et al., 2015; Wu et al., 2023). The efficiency 
of apoplastic ROS-scavenging mechanisms is lower compared to intracellular systems, 
resulting in high ROS accumulation in the apoplast, which is crucial for systemic 
signaling and pathogen defenses (Choudhury et al., 2017). ROS has critical roles in 
various aspects of plant biology, including growth and development (Swanson & Gilroy, 
2010), stomatal closure (Qi et al., 2018b), maintenance of vegetative apical meristems 
(Kong et al., 2018; Tsukagoshi et al., 2010), stress responses (Mittler et al., 2022), 
epigenetic modifications (Locato et al., 2018; Wang et al., 2016), and hormone 
regulation (Xia et al., 2015).  

2.8. Ca2+ signaling and plant defense 

In typical plant environments like seawater, freshwater, and soils, the Ca2+ 
concentration ranges from 0.1 to 10 mM, while cytosolic Ca2+levels typically remain 
around 100 nM in the resting state (Luan & Wang, 2021; Wang & Luan, 2024). Possibly 
to avoid toxicity, plants possess various calcium reservoirs, such as the apoplast, 
vacuole, nuclear envelope, ER, chloroplast, and mitochondria (Stael et al., 2012; Wang 
& Luan, 2024). The central vacuole is the main calcium storage in plants, with vacuolar 
Ca2+ concentrations ranging from 0.2 mM to 1–5 mM to 80 mM (Stael et al., 2012). 
Calcium (Ca2+) acts as a universal second messenger in all eukaryotes, including plants 
(Kudla et al., 2018; Webb et al., 1996). When A. thaliana plants are cultivated in a low 
0.1 mM Ca2+ medium, the flg22-induced cytosolic Ca2+and ROS bursts are significantly 
diminished compared with those grown in standard 1.5 mM-Ca2+ medium (Tian et al., 
2019). This indicates that external Ca2+ levels affect the plant response to PAMPs (Tian 
et al., 2019). 

The cytoplasmic Ca2+ signals' stimulus-specific details can be conveyed through 
temporal-spatial characteristics like recurrence, size, and positioning (Berridge et al., 
2003; Dodd et al., 2010; Kudla et al., 2018). The typical Ca2+ signaling process involves 
several sequential steps: a stimulus activates Ca2+-permeable channels, generating 
specific Ca2+ signals (encoding); Ca2+ then binds to specific proteins (Ca2+ sensors), 
which regulate effector proteins and induce changes in cellular activities (decoding); 
finally, Ca2+ removal from the cytoplasm restores the resting state (Tian et al., 2020). 

About the encoding, the joint action of Ca2+ influx through Ca2+ channels and energy 
dependent Ca2+ efflux via Ca2+ transporters result in the formation of Ca2+ signatures 
(Kudla et al., 2018). A. thaliana has five families of Ca2+-permeable channels: CYCLIC 
NUCLEOTIDE GATED CHANNEL (CNGC, 20 members), GLUTAMATE RECEPTOR 
(GLR, 20 members), TWO PORE CHANNEL (TPC, one representative), 
MECHANOSENSITIVE PROTEIN CHANNEL (MCA, two members), and 
HYPEROSMOLALITY-GATED CALCIUM-PERMEABLE CHANNEL (OSCA, 15 
members) (Edel et al., 2017; Kudla et al., 2018). The A. thaliana genome contains five 
distinct Ca2+ efflux mechanisms, including AUTOINHIBITED Ca2+-ATPases (ACAs), 
ER-type Ca2+ATPases (ECAs), P1-type ATPases (P1-ATPases), MITOCHONDRIAL 
CALCIUM UNIPORTER COMPLEX (MCUC), and Ca2+ EXCHANGERS (CAXs) (Edel 
et al., 2017). For decoding calcium signals, the A. thaliana genome encodes three 
prominent families: 34 CDPKs, 10 CBLs (CALCINEURIN B-LIKE PROTEINS) and 26 
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CBL-CIPKs (CBL - INTERACTING PROTEIN KINASES), and 7 CaMs 
(CALMODULIN PROTEINS) and 50 CMLs (CaM-LIKE PROTEINS) (Edel et al., 
2017). 

CNGC2 (CYCLIC NUCLEOTIDE-GATED CHANNEL 2) has been documented to play 
a role in Ca2+ influx following the recognition of PAMPs and DAMPs (Ma et al., 2012; 
Tian et al., 2019). The cngc2 mutant shows reduced cytosolic Ca2+ elevations in 
response to LPS (lipopolysaccharide) and Pep3 (Ali et al., 2007; Ma et al., 2012). In A. 
thaliana, the plant elicitor peptides (Pep 1–6) serve as DAMPs (Yamaguchi & Huffaker, 
2011). Pep receptors PEPR1/2 (PEPTIDES RECEPTOR 1 and 2 ), which possess 
guanylyl cyclase activity, can produce cyclic GMP (guanosine monophosphate) to 
activate CNGC2 (Ali et al., 2007; Ma et al., 2012).The kinases BIK1 phosphorylates 
and activates the CNGC2 and CNGC4 and OSCA1.3 channels upon PAMP perception 
(Thor et al., 2020; Tian et al., 2019).The Ca2+-permeable channel OSCA1.3 and 
OSCA1.7 play the critical role in PTI- stomatal closure (Thor et al., 2020). A contrasting 
discovery is that the mutant cngc20-4 induces Ca2+ influx, enhancing PTI responses 
and triggering ETI hypersensitive cell death (Zhao et al., 2021b). Moreover, CNGC20 
engages in self-association, establishes heteromeric complexes with CNGC19, and 
undergoes phosphorylation and stabilization by BIK1(Zhao et al., 2021b). 

An earlier pharmacological investigation proposed that the Ca2+ influx triggered by the 
recognition of various PAMPs, such as flg22, elf18, and chitin, occurs through iGluR 
(IONOTROPIC GLUTAMATE RECEPTOR)-like channels (Kwaaitaal et al., 2011). The 
glr3.3-1 and glr3.3-2 mutants showed notably increased susceptibility to Pst DC3000 
infection compared to the wild-type, suggesting that GLR3.3 (GLUTAMATE 
RECEPTOR 3.3) plays a role in innate immunity (Li et al., 2013). GLRs may also 
participate in JA signal transduction (Kang et al., 2006; Mousavi et al., 2013). BAK1 is 
involved in GLR3.3 and GLR3.6 induced Ca2+ elevation during aphid feeding (Vincent 
et al., 2017). By analyzing the transcriptional landscape during PTI by flg22, elf18, 
pep1 (peptide 1), nlp20 (necrosis- and ethylene-inducing peptide 1 (nep1)-like protein 
20), OGs (Oligogalacturonides) and others, it has been confirmed that some GLRs 
participate in the PTI responses (Bjornson et al., 2021). For example, the triple mutant 
glr2.7 glr2.8 glr2.9 exhibited impaired Ca2+ responses to various elicitors (flg22, elf18 
and pep1) and decreased resistance to P. syringae infection (Bjornson et al., 2021). 

Vacuolar transporters CAX1 (Ca2+ exchanger 1) and CAX3 (Ca2+ exchangers 3) play a 
crucial role in helping plants manage external Ca2+ conditions, likely by sequestering 
excessive Ca2+ into the vacuolar lumen (Cheng et al., 2005; Conn et al., 2011). Plants 
utilize a Ca2+–CBL–CIPK–CAX (Ca 2+ - Calcineurin B-like protein - INTERACTING 
PROTEIN KINASE - Ca2+ EXCHANGER) cascade to link Ca2+ influx to vacuolar 
sequestration, thus preserving cytosolic Ca2+ level under normal circumstances (Wang 
et al., 2024). This pathway constitutes a Ca2+-dependent feedback loop, or self-
regulation, facilitating plant adjustment to the natural soil Ca2+ concentrations (Luan & 
Wang, 2021; Wang et al., 2024). Additionally, in PTI, the FLS2–BAK1–BIK1/PBL1 
module triggers the activation of CAX1/3, thereby modulating Ca2+ signals involved in 
immunity (Wang et al., 2024). 

The PM-localized proteins ACA8 (AUTOINHIBITED Ca2+-ATPase 8) and ACA10 
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(AUTOINHIBITED Ca2+-ATPase 10) interact with copine - like protein BON1 
(BONZAI 1), contributing to the creation of vital cytosolic calcium for stomatal closure 
and affecting plant immunity (Yang et al., 2017). The PM-localized protein BON1 
negatively influences the expression of immune receptor genes while positively affects 
stomatal closure and interacts with both BAK1 and BIR1 (BAK1-INTERACTING 
RECEPTOR-LIKE KINASE 1) (Wang, et al., 2011a). Stomatal closure induced by 
calcium and pathogens was found to be impaired in aca10 and bon1 (Yang et al., 2017). 
ACA8 has been demonstrated to associate with FLS2 to form a complex (Frei dit Frey 
et al., 2012). The aca8 aca10 mutant exhibits reduced flg22-triggered calcium and ROS, 
along with modified transcriptional reprogramming (Frei dit Frey et al., 2012). 
Furthermore, aca8 aca10 displays decreased stomatal aperture and transpiration under 
heat stress compared to the wild type, while it shows increased basal and peak levels of 
transient Ca2+ induced by flg22 (Li et al., 2023).Other AUTOINHIBITED Ca2+- 
ATPases (ACAs), found in the ER like ACA1/2/7, and in vacuole membranes such as 
ACA4/11, might also play a role during PTI (Hilleary et al., 2020; Rahmati Ishka et al., 
2021; Wang & Luan, 2024). 

In A. thaliana, CDPK4, CDPK5, CDPK6, and CDPK11 serve as activators of the ROS 
burst by PAMPs (Boudsocq et al., 2010). The mutants cpk4, cpk5, cpk6, and cpk11 
respond normally to Pst DC3000, while the double cpk5 cpk6 and triple cpk5 cpk6 
cpk11 mutants display heightened susceptibility and decreased ROS production, 
suggesting redundancy among closely related CDPKs (Boudsocq et al., 2010). 
Prolonged activation of CPK4/5/6/11 leads to the direct phosphorylation of a specific 
subset of WRKY TFs, like WRKY8/28/48 (Gao et al., 2013). This collaborative action is 
vital for transcriptional reprogramming essential for the NLR (nucleotide-
binding/leucine-rich-repeat receptor)-mediated limitation of pathogen proliferation 
(Gao et al., 2013). CPK1/2/4/11 phosphorylate NADPH oxidases located at the PM to 
induce the production of ROS (Gao et al., 2013).  

CDPK5 directly phosphorylates CBP60g in response to flg22, thereby enhancing its 
transcription factor activity (Sun et al., 2022). CDPK5 overexpression leads to 
activation of SARD1 and genes for SA biosynthesis, like ICS1 and EDS5, markedly 
boosting SA and NHP (N-hydroxypipecolic acid) levels (Guerra et al., 2020). CPK28 
was shown to play a negative regulatory role in immune signaling (Wang al., 2018a). 
CDPK28 activation phosphorylates U-BOX–type E3 ubiquitin ligases PUB25 and 
PUB26, leading to BIK1 degradation and subsequent attenuation of elicitor-induced 
Ca2+ influx and ROS production (Monaghan et al., 2015; Monaghan et al., 2014; Wang 
et al., 2018a).  

3. Polyamines in plant defense

Polyamines (PAs) are low molecular weight polycationic amines (Chen & Shao, 2019). 
PAs are widely present in most organisms and play important roles in regulating plant 
growth, development, and responses to biotic or abiotic stress conditions (Gill & Tuteja, 
2010a). PAs can generally be found in various forms: free soluble, non-covalently 
conjugated, or covalently conjugated (Pál et al., 2021). Covalently conjugated PAs can 
be categorized into two groups: perchloric acid-soluble and perchloric acid-insoluble 
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(Pál et al., 2021). 

Free PAs primarily include putrescine (Put), spermidine (Spd), and spermine (Spm) in 
higher plants (Mustafavi et al., 2018). In A. thaliana, Spd is predominantly found in 
most organs with the highest content, particularly abundant in flowers where it exists 
in both free and conjugated forms (Tassoni et al., 2000). In lower plants such as algae 
and mosses, unusual PAs, norspermidine (NorSpd) and norspermine (NorSpm), 
structurally resemble their more common polyamine counterparts Spd and Spm 
respectively, except they possess one fewer methyl group in their carbon chain (Hamana 
& Matsuzaki, 1985; Michael, 2016).  

The diamine cadaverine (Cad) has been reported in various plants including rice, oat, 
rye, wheat, barley, maize, and sorghum (Tomar et al., 2013). Cad content level is below 
detectable limits in A. thaliana (Liu et al., 2014; Strohm et al., 2015). Thermospermine 
(tSpm), a structural isomer of spermine, is essential for the proper development of plant 
vasculature, thereby facilitating stem elongation (Kakehi et al., 2008; Muñiz et al., 
2008). T-Spm plays a role in vascular development by regulating SUPPRESSOR-OF-
ACL5 SAC51 family genes encoding bHLH TFs through uORF (upstream Open 
Reading Frame) -mediated mRNA translational regulation in A. thaliana (Cai et al., 
2016; Y. Takahashi et al., 2018; Yamamoto & Takahashi, 2017). 

3.1 Polyamine biosynthesis 

Put is a four-carbon diamine that serves as precursor of Spd and Spm, which are seven-
carbon triamine and ten-carbon tetraamine, respectively (Gerlin et al., 2021). In plants, 
Put biosynthesis occurs through three distinct pathways (Chen & Shao, 2019). 
ARGININE DECARBOXYLASE (ADC) converts arginine to agmatine, and agmatine is 
further converted to N-carbamoyl Put via AGMATINE IMINOHYDROLASE (AIH), 
followed by the hydrolysis of N-carbamoyl Put by N-CARBAMOYLPUTRESCINE 
AMIDOHYDROLASE (CPA) to yield Put (Alcázar et al., 2010). In this pathway, ADC 
serves as the rate-limiting step for Put biosynthesis in plants (Alcázar et al., 2005). 
There are two ADC genes (ADC1 and 2) in Arabidopis (Alcázar et al., 2010). Analysis 
of adc mutants revealed that ADC2 contributes significantly more than ADC1 to basal 
ADC activity and Put biosynthesis during stress conditions (Rossi et al., 2015). ADC 
activity can be inhibited by DL-α- difluoromethylarginine (DFMA), an irreversible 
competitive inhibitor, and by D-Arginine, a reversible inhibitor (González-Hernández 
et al., 2022). The double mutant adc1 adc2 is embryo lethal, indicating the requirement 
of polyamines for cell viability (Kaoru Urano et al., 2005). In the ODC (ORNITHINE 
DECARBOXYLASE) route, ornithine is decarboxylated by ODC to produce Put (Chen 
& Shao, 2019). The ODC gene is absent in A. thaliana and other Brassicaceae family 
members (Hanfrey et al., 2001). In the third pathway, arginine is transformed into 
citrulline, which is followed by the decarboxylation catalyzed by citrulline 
decarboxylase to yield Put (Chen & Shao, 2019; de Oliveira et al., 2018). The citrulline 
pathway has only been identified in sesame (Chen & Shao, 2019; Crocomo & Basso, 
1974). 

Spd is produced from Put by adding an aminopropyl group catalyzed by SPERMIDINE 
SYNTHASE  (SPDS) (Alcázar et al., 2010). Spd is vital for cell survival, possibly 

31

General Introduction_______________________________________________________________________________________



because it serves as a substrate for the hypusination of eukaryotic translation initiation 
factor 5A (Takahashi & Kakehi, 2010). Spm is generated when SPM SYNTHASE 
(SPMS) transfers an aminopropyl group to Spd (Alcázar et al., 2010). While Spm is not 
crucial for A. thaliana survival, it does play a role in enhancing resistance to salt stress 
(Imai et al., 2004; Yamaguchi et al., 2006a). Plants also contain trace amounts of other 
PAs, such as tSpm produced by THERMOSPERMINE SYNTHASE (TSPMS) (Alcázar 
et al., 2010; Kakehi et al., 2008). SPDS1, SPDS2, and SPMS are found in the nucleus 
and cytosol, capable of forming homo and heterodimers (Tiburcio et al., 2014). Notably, 
heterodimers are exclusively located in the nucleus, indicating a nuclear-focused 
metabolic channeling from Put to Spm in A. thaliana (Tiburcio et al., 2014).  

Methionine is converted to S-adenosylmethionine (SAM), which undergoes 
decarboxylation by SAM DECARBOXYLASE (SAMDC) to produce decarboxylated 
SAM, donnor of aminopropyl groups for polyamine biosynthesis (Alcázar et al., 2010). 
The A. thaliana genome carries four SAMDC (SAMDC1-4) two SPDS (SPDS1 and 2), 
and one single SPMS gene (Alcázar et al., 2010; K Urano et al., 2003).  

3.2 Polyamine oxidation 

Polyamines undergo oxidation by amine oxidases to produce ROS and other 
metabolites. There are two major classes of amine oxidases, namely COPPER-
CONTAINING AMINE OXIDASES (CuAOs) and FAD-dependent POLYAMINE 
OXIDASES (PAOs) (Tavladoraki et al., 2016). 

CuAOs preferentially oxidize diamines such as Put, primarily catalyzing their oxidation 
at primary amino groups, resulting in the production of 4-aminobutanal, H2O2, and 
ammonia (NH3) (Alcázar et al., 2010; Tavladoraki et al., 2016). 4-aminobutanal 
cyclizes to form pyrroline, which is then converted to γ-aminobutyric acid (GABA) by 
pyrroline dehydrogenase (Alcázar et al., 2010). Subsequently, GABA is further 
converted to succinate, entering the Krebs cycle (Chen & Shao, 2019). A. thaliana 
possesses about ten identified CuAO genes, yet only five of them (AtAO1 (At4g14940), 
AtCuAO1 (At1g62810), AtCuAO2 (At1g31710), AtCuAO3 (At2g42490), and AtCuAO8 
(At1g31690) ) have been thoroughly characterized (Tavladoraki et al., 2016; Wang et 
al., 2019).  

In situ hybridization reveals that ATAO1 is expressed in lateral root cap cells, root 
vasculature, developing leaves, hypocotyls, and stigma/style tissue in A. thaliana 
(Møller & McPherson, 1998). Histochemical analysis indicates that the expression of 
ATAO1 in developing tracheary elements precedes and coincides with lignification 
(Møller & McPherson, 1998). ATAO1 expression is significantly induced by methyl 
jasmonate (MeJA) treatment, and H2O2 produced by ATAO1 mediates MeJA-induced 
early protoxylem differentiation in A. thaliana roots (Ghuge et al., 2015). 

AtCuAO1, similar to ATAO1, is an extracellular protein containing an N-terminal signal 
peptide, whereas AtCuAO2 and AtCuAO3 are located in peroxisomes (Planas-Portell et 
al., 2013; Wang et al., 2019). AtCuAO1 transcripts are high in rosette leaves, peaking 
in stems and flowers (Planas-Portell et al., 2013). After 24 h of SA treatment, CuAO1 
expression is induced (Planas-Portell et al., 2013), whereas wounding or ACC (1-
aminocyclopropane-1-carboxylate) treatment does not significantly affect AtCuAO1 
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expression (Planas-Portell et al., 2013). cuao1-1 and cuao1-2 mutants have been 
described to be ABA-insensitive (Wimalasekera et al., 2011a). In the two mutants, NO 
synthesis induced by PAs and ABA is compromised, while seed germination, seedling 
growth, and root growth sensitivity to ABA are reduced (Wimalasekera et al., 2011a). 
Additionally, In the two mutants the expression of stress-responsive genes RD29A 
(RESPONSE-TO-DEHYDRATION 29A) and ADH1 (ALCOHOL DEHYDROGENASE 
1) induced by ABA are also compromised (Wimalasekera et al., 2011a).

AtCuAO2 transcript levels are high in stems but low in other organs, with no observed 
increase during development (Planas-Portell et al., 2013). At about 8 h, CuAO2 
expression increases sharply in wounded and MeJA-treated seedlings (Planas-Portell et 
al., 2013). AtCuAO3 transcripts are high in flowers, leaves and stems (Planas-Portell et 
al., 2013). At 24 hours, AtCuAO3 expression increased with MeJA, and decreased with 
ABA or SA (Planas-Portell et al., 2013). AtCuAO3 has the SKL (serine-lysine-leucine) 
tripeptide at its C-terminus, which targets the protein to the peroxisome matrix (Khan 
& Zolman, 2010; Planas-Portell et al., 2013). The cuao3 mutant showed insensitivity 
to ABA in stomata closure, but responded to H2O2 or Ca2+, indicating that CuAO3 acts 
downstream of ABA stimulus (Qu et al., 2014). 

AtCuAO1, AtCuAO2, and AtCuAO3 enzymes oxidize Put and Spd, releasing H2O2 

(Planas-Portell et al., 2013). In contrast, animal CuAOs preferentially oxidize Spd and 
Spm (Tavladoraki et al., 2012).  

In monocotyledonous plants, PAOs facilitate the terminal degradation of PAs by 
oxidizing Spd and Spm (Gerlin et al., 2021; Planas-Portell et al., 2013). This process 
yields 4-aminobutanal and N-(3-aminopropyl)-4-aminobutanal, respectively, along 
with 1,3-diaminopropane (DAP) and H2O2 (Gerlin et al., 2021; Planas-Portell et al., 
2013). In A. thaliana, PAOs oxidize Spd and Spm, leading to a pathway where Spm is 
converted back to Spd, Spd to Put, along with the production of 3-aminopropanal and 
H2O2 (Liu et al., 2019b; Planas-Portell et al., 2013). The A. thaliana genome contains 
five PAOs, named from AtPAO1 to AtPAO5 (Fincato et al., 2011). AtPAO1 and AtPAO5 
are localized in the cytosol, while AtPAO2, AtPAO3, and AtPAO4 are localized in 
peroxisomes, forming a distinct subfamily with similar gene structures and high 
sequence homology (Fincato et al., 2012; Kim et al., 2014). 

AtPAO1 is subcellularly localized in the cytoplasm and prefers to utilize Spm, tSpm, 
and NorSpm as substrates (Tavladoraki et al., 2006). AtPAO1 shows a preference for 
tSpm compared to Spm (Fincato et al., 2012). AtPAO1 exhibits specific expression in 
the root transition region and anther tapetum (Fincato et al., 2012; Yu et al., 2019). 
AtPAO2 and AtPAO3 exhibit similar substrate preferences, with Spd being the most 
favorable substrate, although they also recognize Spm, tSpm and NorSpm (Takahashi 
et al., 2010). AtPAO2 is expressed in the quiescent center, columella initials, and pollen, 
with higher expression observed in shoot meristem, root tip, leaf petiole, and anther 
during later growth stages (Fincato et al., 2012; Takahashi et al., 2010). AtPAO3 shows 
constitutive expression, with highest levels in flower organs, and its promoter activity 
is detected in cotyledon, root tip, mature leaf boundary, and flower filaments, with 
expression also observed in columella, guard cells, and pollen (Fincato et al., 2012; 
Takahashi et al., 2010). Loss of AtPAO3 function increased O2•−production via NADPH 
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oxidase, activating the mitochondrial alternative oxidase pathway (Andronis et al., 
2014).  

AtPAO4 primarily accepts Spm as a substrate and shows limited acceptance of tSpm 
(Takahashi et al., 2010). AtPAO4 is highly expressed throughout young seedlings, 
including roots, and its expression remains ubiquitous in the mature stage, with lower 
levels observed in the stem (Takahashi et al., 2010). Two pao4 loss-of-function mutants, 
pao4-1 and pao4-2, exhibit a 10-fold increase in Spm accumulation and delayed 
senescence onset under dark conditions (Sequera-Mutiozabal et al., 2016).  AtPAO5 
catalyzes the conversion of Spm and tSpm to Spd but does not catalyze the conversion 
to Put (Kim et al., 2014). It is highly likely that AtPAO5 primarily metabolizes T-Spm 
in plants (Kim et al., 2014). The pao5-1 and pao5-2 mutants showed about 2-fold higher 
T-Spm levels but similar levels of Put, Spd, and Spm compared to wild-type plants
(Kim et al., 2014). AtPAO5 is widely expressed during development, particularly in
roots, stems, leaves, and floral organs, playing a role in stem elongation and rosette leaf
development (Fincato et al., 2012; Kim et al., 2014; Takahashi et al., 2010; Yu et al.,
2019). The pathway of polyamine metabolism in Arabidopsis can be seen in Figure 3.

There is potential crosstalk between NO and PAs in plant development, and abiotic and 
biotic stress responses (Wimalasekera et al., 2011b). Applying exogenous Put, Spd, and 
Spm to A. thaliana seedlings induces NO production, suggesting NO as a potential 
mediator of polyamine actions (Wimalasekera et al., 2011). Put, Spd and Spm induced 
stomatal closure and elevated levels of NO and ROS in guard cells (Agurla et al., 2018). 
Mutants lacking functional AtCuAO1 and AtPAO2 exhibit deficiencies in PAs- and/or 
ABA-induced NO production (Wimalasekera et al., 2011ab, 2015). CuAO8 is involved 
in arginine-dependent NO synthesis (Groß et al., 2017). The cuao8 mutants showed 
reduced NO production in seedlings under 2,6-dichloroisonicotinic acid treatment and 
salt stress (Groß et al., 2017). The NO scavenger, cPTIO (2-4-carboxyphenyl-4,4,5,5-
tetramethylimidazoline-1-oxyl-3-oxide), could abolish the function of PAs (Gong et al., 
2014). A fluorimetric method showed that Spd and Spm significantly boosted NO 
release in A. thaliana seedlings, while arginine and put had minimal impact (Tun et al., 
2006). Spm, the most potent polyamine, induced NO release without any noticeable 
delay (Tun et al., 2006). Spm and Spd promoted NO biosynthesis in the elongation 
region of A. thaliana root tips and primary leaves, notably in veins and trichomes (Tun 
et al., 2006).  
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Figure 3 Polyamine metabolism in Arabidopsis (Alcázar et al. 2010). ADC: ARGININE 
DECARBOXYLASE, AIH: AGMATINE IMINOHYDROLASE, CPA: CARBAMOYL PUTRESCINE 
AMIDOHYDROLASE, CuAO: COPPER-CONTAINING AMINE OXIDASE, PAO: POLYAMINE 
OXIDASE Put: putrescine, Spd: spermidine, Spm: spermine, SPDS: SPERMIDINE SYNTHASE , SPMS: 
SPM SYNTHASE, tSPMS: THERMOSPERMINE SYNTHASE. 

3.3. Polyamines and plant stress 

3.3.1. Polyamines and abiotic stress 

Put acts as a precursor for various alkaloids, including nornicotine, nicotine, retronecine, 
and hyoscine, offering significant adaptive benefits to plants synthesized from primary 
metabolites (Zeiss et al., 2021). Put serves as a precursor to nicotine, the signature 
alkaloid in Nicotiana species, acting as a defensive neurotoxin against herbivores (Xu 
et al., 2017). Put accumulates under certain conditions, such as low pH, heavy metals, 
K+ deficiency, low Mg2+, anoxia, cold, or osmotic stress (Cui et al., 2020). ADC2 
expression is induced by high osmolarity, drought, salinity, and wounding stress leading 
to Put accumulation in A. thaliana (Alcázar et al., 2010; Perez-Amador et al., 2002; 
Soyka & Heyer, 1999; Kaoru Urano et al., 2004).  

Exogenous Put application or overexpression of ADC genes generally improves plant 
tolerance to abiotic stresses and enhances growth, photosynthesis, and antioxidant 
activity (González-Hernández et al., 2022). Under salt stress, exogenous Put application 
offers various advantages, such as enhanced growth in citrus rootstocks, enhanced 
activity of antioxidant enzymes in barley, optimized photosynthesis rate in rice, 
increased stomatal conductivity in wheat, protection of photosynthetic pigments in 
beans, and decreased lipid peroxidation in Brassica juncea (Ghalati et al., 2020).  

Exogenous Spd or Spm application enhanced the resistance of wheat seedlings to the 
harmful effects of Cd (Cadmium) stress (Rady & Hemida, 2015). Spd exhibited the 
protective role when applied through seed soaking, and increased Cd-induced oxidative 
stress when pre-treated hydroponically in wheat (Tajti et al., 2018). The combination of 
Spd and Cd resulted in elevated Put, Cd, SA, and proline contents, while only 
hydroponically applied Spd influenced the expression of the phytochelatin synthase 
gene, reducing it under Cd stress (Tajti et al., 2018). Endogenous levels of Spd and Spm, 
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along with GSH, were boosted under Cd stress in silicon-treated wheat plants, 
enhancing tolerance against metal toxicity (Howladar et al., 2018).  

Exogenous Spd and Spm shows potential to enhance salt tolerance by reducing 
oxidative damage and enhancing some enzyme activities (Baniasadi et al., 2018). Spm 
and Spd influence PSI activity in thylakoid membranes during photoinhibition 
(Yaakoubi et al., 2014). Pre-treating thylakoid membranes with Spm and Spd markedly 
attenuated the inhibition of O2 uptake rates, P700 photooxidation, and 
O2•−accumulation in light stress (Yaakoubi et al., 2014). The introduction of SPDS 
cDNA from Cucurbita ficifolia into A. thaliana resulted in transgenic plants with 
increased SPDS activity and Spd content in leaves, leading to enhanced tolerance to 
chilling, freezing, salinity, hyperosmosis, drought, and paraquat toxicity (Kasukabe et 
al., 2004). cDNA microarray analysis under chilling stress also showed increased 
transcription of several stress-responsive genes, including DREB (DEHYDRATION 
RESPONSIVE ELEMENT BINDING) and RD29A (RESPONSE-TO-DEHYDRATION 
29A) (Kasukabe et al., 2004).  

The A. thaliana double-knockout mutant acl5 spms shows heightened sensitivity to 
high salt and drought (Yamaguchi et al., 2007). The phenotype was alleviated by 
pretreatment with Spm, but not with Put or Spd, highlighting the drought 
hypersensitivity by Spm deficiency (Yamaguchi et al., 2007). Exogenously applied 
Spm exhibited potential protection during heat stress, with higher Spm contents 
correlating with increased thermotolerance in A. thaliana (Sagor et al., 2013).  

3.3.2. Polyamines and biotic stress 

Plant polyamines increase during defense and play an important role in biotic stress 
responses. Put enhances the plant defense response by increasing ROS production, 
callose deposition and expression of defense-related marker genes (Liu et al., 2019b, 
2020b). MPK3 and MPK6 positively regulate Put biosynthesis by transcriptionally 
influencing ADC1 and ADC2 expression during pathogen defense in A. thaliana (Kim 
et al., 2013c). The adc2 mutant exhibits higher susceptibility to Pst DC3000 infection 
compared to the wild type, and this susceptibility has been linked to decreased 
expression of the PR1 gene (Kim. et al., 2013c). ADC1 expression in pepper Capsicum 
annuum induces elevated levels of PAs and GABA (gamma-aminobutyric acid), 
prompting bursts of NO and H2O2, ultimately eliciting plant defense and cell death 
responses (Kim et al., 2013a). Exogenous Put suppressed nematode development in 
tomato (Khajuria & Ohri, 2018). Spd enhanced resistance to rice blast by upregulating 
marker genes in the SA signaling pathway and phytoalexin biosynthesis (Moselhy et 
al., 2016). In addition, the Spm signaling pathway in A. thaliana is vital for limiting 
cucumber mosaic virus (CMV) infection-induced HR (Mitsuya et al., 2009). Transgenic 
A. thaliana plants overexpressing SPMS showed increased resistance to Pseudomonas
viridiflava, while spms mutants with low spermine levels were more susceptible
(Gonzalez et al., 2011). Spd and Spm also prime resistance against Botrytis cinerea
(Janse van Rensburg et al., 2021).

Apoplastic PAs are also crucial in plant-pathogen interactions in tobacco, and their 
effects depend on the type of pathogen (necrotrophs or biotrophs) (Marina et al., 2008). 
Infection by the necrotrophic fungus Sclerotinia sclerotiorum increases ADC 
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expression and activity in tobacco tissues, leading to accumulation of Put and Spm in 
the leaf apoplast that correlates with increased tissue necrosis. This response contrasts 
with the enhanced disease resistance to the biotrophic pathogen P. viridiflava  triggered 
by polyamine accumulation (Marina et al., 2008). The importance of the polyamine 
pathway in plant-pathogen interactions is illustrated by the effector Brg11, a TALE 
(transcription-activator-like effector) effector from Ralstonia solanacearum, that 
targets tomato ADC genes, inducing elevated PA levels that inhibit bacterial niche 
competitors of Ralstonia solanacearum (Wu et al., 2019). However, contrasting results 
have been documented that would require further validations. For example, A. thaliana 
adc-silenced lines have been reported to show heightened susceptibility to Botrytis 
cinerea but increased resistance to P.syringae infection (Chávez-Martínez et al., 2020). 
Standarization of pathoassay methodologies may help at a proper comparison between 
works. 

PAs can interact with hormonal pathways in potential crosstalk for plant defense. An 
increase in Spd levels in the plant attenuates ET synthesis, leading to increased 
susceptibility of tomato to Botrytis Cinerea (Nambeesan et al., 2012). Quantitative RT-
PCR and pharmacological tests demonstrated that both AtPAO2 and AtPAO4 transcripts 
were induced by ET (Hou et al., 2013). PAO generates H2O2 in A. thaliana guard cells, 
playing a crucial role in stomatal movement (Hou et al., 2013). Dehydration and high 
salinity increased the expression of AtPAO2 and AtPAO4 to varying extents, 
contributing to stomatal closure (Hou et al., 2013). ABA increases the expression of 
SPMS (Hanzawa et al., 2002). Additionally, it has been observed that CuAO and 
PHOSPHOLIPASE D (PLD) function independently in ABA-induced stomatal closure 
(Qu et al., 2014). NH4

+ nutrition enhances resistance to P. syringae in tomato by 
increasing H2O2 accumulation, which activates SAA (systemic acquired acclimation) 
through ABA and Put (Fernández-Crespo et al., 2015; González-Hernández et al., 2022). 
In Vicia faba guard cells, CuAO is crucial for H2O2 production during ABA-induced 
stomatal closure by degrading Put, with calcium signaling playing a key role (An et al., 
2008). COR or MeJA also can hamper PAs biosynthesis (Adio et al., 2011; Lou et al., 
2016). SA is suggested to have a correlation with PAs under different stress conditions, 
including osmotic stress, and Cd exposure (Doneva et al., 2021; Szalai et al., 2017; Tajti 
et al., 2018). Defense signaling elicited by Put in A. thaliana relies partially on the 
accumulation of SA (Liu et al., 2019b, 2020b), although stimulation of Put biosynthesis 
during defense is largely SA-independent (Zhang et al., 2023) 

Conjugated PAs also play a role in plant development and responses (Pál et al., 2021). 
PAs are frequently conjugated to cinnamic acids, such as p-coumaric, ferulic, and 
caffeic acids, forming conjugates referred to as hydroxycinnamic acid amides (HCAAs) 
(Walters, 2003). Aliphatic amine-containing HCAAs are water-soluble, while aromatic 
amine-containing HCAAs are not (Walters, 2003). HCAAs are potent antimicrobial 
molecules and can strengthen cell walls by forming bonds with polysaccharides and 
bridging dimers, creating complex crosslinkages (Walters, 2003; Zeiss et al., 2021). In 
A. thaliana, COR induces acetylation of Put catalyzed by NATA1 (N-ACETYL
TRANSFERASE ACTIVITY 1) to N-acetyl-Put, competing with SPDS for the shared
substrate and thereby reducing Spd accumulation (Lou et al., 2016). Compared to wild-
type, nata1 mutants respond to P. syringae infection with decreased acetyl-Put levels,
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increased nonacetylated PAs, higher PAs oxidase-mediated ROS production, and 
upregulated expression of pathogen defense genes (Adio et al., 2011; Lou et al., 2016). 
Under heat stress, inhibition of HEAT SHOCK PROTEINS 90 (HSP90s) leads to the 
upregulation of NATA1 expression in A. thaliana (Toumi et al., 2019). HSP90s promote 
PAs acetylation (acetylated Spd and Spm) and interact with PAOs, influencing PAs 
oxidation and H2O2 balance in A. thaliana (Toumi et al., 2019).  

Enzymes involved in PA synthesis or metabolism are also associated with plant defense. 
Overexpressing the SAMDC in rice boosts polyamine levels (Spd and Spm) and 
improves tolerance to NaCl stress (Roy & Wu, 2002). Silencing the SAMDC gene 
reduces tomato resistance to Cladosporium fulvum, leading to small chlorotic spots on 
leaf margins and subsequent hyphal growth during HR (Zhao et al., 2018). Amine 
oxidases are associated with H2O2 production in defense mechanisms (Angelini et al., 
2010; Cona et al., 2006). P. syringae infection increases the expression of AtPAO1 and 
AtPAO2 genes, and the pao1-1 pao2-1 double mutant shows higher susceptibility to the 
pathogen (Jasso-Robles et al., 2020). The PAO mutants displayed changes in ROS 
levels (H2O2 and O2•−) and activities of RBOH, CAT, and SOD enzymes in both infected 
and control plants (Jasso-Robles et al., 2020). Silencing ACL5 in cotton which had low 
tSpm levels, resulted in a dwarf phenotype and decreased resistance to Verticillium 
dahliae(Mo et al., 2015).  

PAs are also related to systemic acquired resistance (SAR), thereby enhancing plant 
immunity. SAR is a plant defense mechanism induced by an avirulent pathogen that 
triggers programmed cell death locally (Fu & Dong 2013). This process leads to SAR 
through the generation of mobile signals, accumulation of salicylic acid (SA), and 
secretion of antimicrobial PR proteins (Fu & Dong 2013). Put treatment induced local 
SA production and triggered local and systemic transcriptional reprogramming that 
intersected with SAR (Liu et al., 2020b). Spm primes defense response by inducing 
SAR and hypersensitive response (HR) in A. thaliana (Seifi et al., 2019). Furthermore, 
simultaneous coapplication of Spm and SA effectively suppresses Botrytis cinerea 
disease in tomato (Seifi et al.,  2019). 
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OBJECTIVES 

Polyamines are small molecules that accumulate during plant defense. Most abundant 
polyamines in plants are the diamine putrescine (Put), triamine spermidine, and 
tetramines spermine (Spm), and its isomer thermospermine (tSpm). These molecules 
can be found as free forms, but also acetylated, or conjugated to hydroxycinnamic acids, 
proteins, or cell wall components. Despite the body of evidence pointing to their 
positive contribution to plant defense responses against pathogenic microorganisms, 
the modes of action of polyamines and detailed analyses on their contributions to the 
different layers of the plant immune system remained poorly investigated. In this 
context, the main objective of my PhD project was investigating the contribution of the 
polyamines (Put and Spm) to PAMP-triggered immunity, and SA/JA-mediated defenses 
in Arabidopsis. The Thesis is constituted by three chapters, which specific objectives 
are outlined below. 

In Chapter 1, I explored how polyamines affect PTI transcriptional responses and early 
immune responses triggered by PAMPs, focusing on flg22-induced ROS burst and Ca2+ 
influxes, which represent key components of PTI. The specific objectives of this 
chapter were: 

1. To investigate whether the polyamines Spm and Put affect early PTI responses such
as PAMP (flg22)-elicited ROS production in Arabidopsis.

2. To explore the mechanisms underlying the Spm inhibitory effect on ROS production,
including its independence on polyamine oxidation, NO signaling, and various defense
components.

3. To investigate how Ca2+ influx dynamics induced by flg22 are affected by the
polyamines Spm Put, and their combinations.

4. To analyze the differential transcriptional responses to flg22 induced by Put and Spm
treatments, and their effects on disease resistance against P. syringae.

In Chapter 2, I examined the role of Spm in the defense respose against P. syringae 
and its impact on JA and SA signaling pathways. The specific objectives of this chapter 
were: 

1. To explore the regulatory role of SA, COR and JA signaling to polyamine
metabolism during the defense response to P. syringae.

2. To analyze the effect of Spm deficiency in the defense respose to Pst DC3000, with
a particular focus on JA/SA signaling.

3. To determine the impact of Spm deficiency on lipid metabolism.

4. To determine the effect of Spm deficiency on endoplasmic reticulum (ER) stress
signaling.
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5. To analyze the contribution of Spm to disease resitance against the necrotrophic
fungal pathogen Botrytis cinerea.

In Chapter 3, I conducted Genome-Wide Association Studies (GWAS) to identify the 
genetic determinisms underlying the natural variation of the Spm inhibitory effect on 
flg22-triggered ROS production, using 136 world-wide Arabidopsis accessions. The 
specific objectives of this chapter were: 

1. To quantify the flg22-triggered ROS response in the presence of flg22 in 136
natural accessions of Arabidopsis from different populations.

2. To use the quantitative data obtained to perform GWAS mapping using already
available genotyping information from these accessions.

3. To identify SNP associated with the variation of the trait and identify the candidate
genes in linkage disequilibrium (LD).

4. To validate at least one candidate gene using loss-of-function mutants in
Arabidopsis.
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Abstract 

Polyamines are small polycationic amines whose levels increase during defense. Previous studies support the con­
tribution of the polyamine spermine to defense responses. However, the potential contribution of spermine to patho­
gen-associated molecular pattern (PAMP)-triggered immunity (PTI) has not been completely established. Here, we 
compared the contribution of spermine and putrescine to early and late PTI responses in Arabidopsis. We found that 
putrescine and spermine have opposite effects on PAMP-elicited reactive oxygen species (ROS) production, with 
putrescine increasing and spermine lowering the flg22-stimulated ROS burst. Through genetic and pharmacological 
approaches, we found that the inhibitory effect of spermine on flg22-elicited ROS production is independent of poly­
amine oxidation, nitric oxide, and salicylic acid signaling but resembles chemical inhibition of RBOHD (RESPIR ATORY 
BURST OXIDASE HOMOLOG D). Spermine can also suppress ROS elicited by FLS2-independent but RBOHD­
dependent pathways, thus pointing to compromised RBOHD activity. Consistent with this, we found that spermine but 
not putrescine dampens flg22-stimulated cytosolic Ca2+ influx. Finally, we found that both polyamines differentially 
reshape transcriptional responses during PTI and disease resistance to Pseudomonas syringae. Overall, we provide 
evidence for the differential contributions of putrescine and spermine to PTI, with an impact on plant defense. 

Keywords: Defense, NADPH oxidase, pathogen-associated molecular pattern, polyamines, reactive oxygen species,

putrescine, spermine. 

Introduction 

The most abundant polyamines in plants are the diarnine pu­
trescine (Put), the triarnine spermidine (Spd), and the tetra­

mine sperrnine (Spm). The plant contents of polyamines are 
increased in response to stress. Polyarnine levels are regulated 
through tight control of their biosynthesis, oxidation by poly­
amine oxidases (PAOs) or copper-containing amine oxidases 

(CuAOs), conjugation to hydroxycinnamic acids, acylation, 
and transport (Cona et al., 2006;Alcazar et al., 2010;Tiburcio 

et al., 2014; Zeiss et al., 2021). Increasing evidence supports the 
contribution of polyamines to biotic stress resistance, although 
their effects on defense signaling have not been completely es­
tablished (Walters, 2003;Tiburcio et al., 2014; Seifi and Shelp, 

© The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Experimental Biology. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), 
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1 INTRODUCTION 

Abstract 

Polyamines are small aliphatic polycations present in all living organisms. In plants, 

the most abundant polyamines are putrescine (Put), spermidine (Spd) and spermine 

(Spm). Polyamine levels change in response to different pathogens, including 

Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). However, the regulation of 

polyamine metabolism and their specific contributions to defence are not fully 

understood. Here we report that stimulation of Put biosynthesis by Pst DC3000 is 

dependent on coronatine (COR) perception and jasmonic acid (JA) signalling, 

independently of salicylic acid (SA). Conversely, lack of Spm in spermine synthase 

(spms) mutant stimulated galactolipids and JA biosynthesis, and JA signalling 

under basal conditions and during Pst DC3000 infection, whereas compromised 

SA-pathway activation and defence outputs through SA-JA antagonism. The 

dampening of SA responses correlated with COR and Pst DC3000-inducible 

deregulation of ANAC019 expression and its key SA-metabolism gene targets. 

Spm deficiency also led to enhanced disease resistance to the necrotrophic fungal 

pathogen Botrytis cinerea and stimulated endoplasmic reticulum (ER) stress signalling 

in response to Pst DC3000. Overall, our findings provide evidence for the integration 

of polyamine metabolism in JA- and SA-mediated defence responses, as well as the 

participation of Spm in buffering ER stress during defence. 
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Polyamines are aliphatic polycations of small molecular weight 

present in all living organisms. In plants, the major polyamines are 

putrescine (Put), spermidine (Spd) and spermine (Spm) (Figure 1a). 

Changes in polyamine metabolism are part of the metabolic 

reprogramming that takes place during the defence response of 

plants (Gerlin et al., 2021; Tiburcio et al., 2014). Exogenously supplied 

Put triggers the formation of callose deposits and the expression of 

PAMP (pathogen associated molecular pattern)-triggered immunity 

(PTI) marker genes, which are reliant on hydrogen peroxide (H202) 

production and NADPH oxidase function (Liu et al., 2019). Moreover, 

Put stimulates salicylic acid (SA) accumulation in local leaves and 

triggers local and systemic transcriptional reprogramming that 
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Chapter 3. Identification of genes underlying the natural variation of Spm+flg22 
responses by GWAS mapping 

Polyamines (PAs) are small aliphatic amines present in all organisms. In plants, the 
three main PAs are putrescine (Put), spermidine (Spd), and spermine (Spm). PAs play 
important roles in plant growth and development, as well as in biotic and abiotic stress 
responses. Previous studies have shown that Spm inhibits flg22-triggered ROS in 
Arabidopsis. This study utilized Genome-wide association studies (GWAS) to identify 
the genetic determinisms underlying the natural variation of flg22+Spm ROS responses 
using 136 Arabidopsis accessions collected from worldwide. 

Introduction 

Arabidopsisis is capable of self-pollination, maintaining its nearly complete 
homozygous genome across generations (Tang et al., 2007). The average outcrossing 
rate ranges from 0.3% to 2.5% (Abbott & Gomes, 1989; Pico et al., 2008). Nordborg et 
al. examined the polymorphism pattern in a sizable sample of individuals, employing 
loci with sufficient density to gain insight into the genome-wide haplotype structure of 
the species, and endorsed the usefulness of Arabidopsis as a model for evolutionary 
functional genomics (Nordborg et al., 2005). The rapid development of genomics has 
accelerated the establishment of new connections between molecular biology, ecology, 
and evolutionary theory. GWAS enables the association between SNPs and quantitative 
phenotypes using naturally occurring polymorphisms in wild populations of 
Arabidopsis. Atwell et al. first conducted a GWAS analysis of 107 phenotypes in 
Arabidopsis accessions, identifying a significant concordance with already known 
genes and functions. This suggested that GWAS was also applicable for population 
genetic analyses of complex traits controlled by multiple genes in Arabidopsis (Atwell 
et al., 2010). Baxter et al. selected a set of 360 accessions based on the genotypes of 
5,810 worldwide accessions genotyped with 149 SNPs from a previous study, after 
minimizing redundancy and close family relatedness (Baxter et al., 2010; Platt et al., 
2010). More recently, and thanks to the 1001 genomes sequencing initiative, the number 
of accessions available for GWAS mapping has increased significantly, and online 
platforms have been developed to analyze the data (https://gwas.gmi.oeaw.ac.at/). 

Given the inhibitory effect of Spm on flg22-triggered ROS burst (see Chapter 1), we 
aimed to use GWAS mapping to identify genes associated with the natural variation of 
this inhibitory effect. We utilized GWAS to screen 136 Arabidopsis accessions and 
identified several candidate genes, from which one was validated.  

Results and discussion 

Variation of flg22+Spm responses 

The 136 accessions used in this work were randomly chosen in order to obtain a 
population with low population structure. The collection sites of these accessions are 
shown in Figure 1. Using these accessions, we quantified the total sum of RLU upon 
elicitation with flg22 (1 µM) in the presence of Spm (100 µM). In every 96-well plate, 
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the Col-0 accession treated with flg22 was included for signal normalization. We 
observed a significant variation in the flg22-elicited ROS burst generation in the 
presence of Spm that did not follow any evident geographical pattern. (Figure 2).  

Figure 1 Geographical distribution of the main populations contained in the 136 Arabidopsis accessions 
used in this study. The data is detailed in ANNEX III Table S1. 
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Figure 2 Quantitation of the mean sum of relative light units (Mean_SumRLU, ƩRLU) within one hour 
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of treatment with (flg22 + Spm) in 136 Arabidopsis accessions distributed by country. The data is based 
on ANNEX III Table S1. Values represent the mean ± standard error (SE) from six biological replicates. 

GWAS analysis was conducted using the quantitative data collected (mean sum of 
relative light units within one hour of treatment with flg22 + Spm) in the 136 
Arabidopsis accessions. For this, we utilized an online platform 
https://gwas.gmi.oeaw.ac.at/#/home (Seren, 2018) and performed GWAS mapping 
using an accelerated mixed model (AMM). Figure 3 presents the Manhattan and Q-Q 
plots depicting the GWAS results. A QQ plot compares the observed distribution of p-
values (observed on the y-axis) against the expected distribution under the null 
hypothesis (expected on the x-axis). The p-values are sorted from smallest to largest 
and plotted against the quantiles of the uniform distribution (i.e., the expected values). 
If the observed p-values follow the null distribution closely, the points on the QQ plot 
will fall approximately along the diagonal line (y = x). Deviations from this diagonal 
line indicate departures from the null hypothesis. Based on the shape of the QQ-plot, 
we concluded that there were likely genuine associations between the genetic variants 
and the trait.  

A Manhattan plot was constructed to illustrate the associations identified across the 
genome (Figure 3).  A total of three SNPs were found to be significantly associated with 
the variation of the trait, based on the Benjamini-Hochberg test which is a less 
conservative method than the Bonferroni correction. Two other SNP were close to the 
significant threshold. Annotations for the candidate genes were obtained from the 1001 
Genomes https://aragwas.1001genomes.org/ and TAIR www.arabidopsis.org. The 
candidate genes are listed in Table 1. Based on the GWAS score, we selected the 
potentially associated candidate gene AT2G29930 that codes for an F-box/RNI-like 
superfamily (LRR-repeat) protein, for further investigation. To note that the SNP 
associated with this gene was not in linkage disequilibrium with other genes, as LD 
decayed sharply with distance (not shown). In addition, the MAF (minor allele 
frequency) value was low (0.158) indicating the presence of low frequent alleles that 
may cause the association. In these circumstances, the statistical power to detect 
associations is significantly reduced. To further validate the association, we utilized a 
loss-of function mutant line for AT2G29930, SALK_066142C (N654696).  
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Figure 3 A. GWAS mapping profiles using the accelerated mixed model (AMM) of flg22+Spm ROS 
burst responses in 136 Arabidopsis accessions. The Manhattan plot indicates the significant SNP and 
potential candidate genes. B. QQ plots obtained from GWAS mapping. 

Table1 Candidate genes obtained from the GWAS mapping based on SNP position and 
linkage disequilibrium (LD)  

Chromosome SNP 
location 

Score MAF Candidate 
Gene 

Annotation 

2 5172900 5.73 0.203 AT2G12646 Plant AT-rich sequence 
and zinc-binding 
transcription factor 
(PLATZ) family protein 
which plays central role 
in mediating RGF1 
signalling. Controls root 
meristem size through 
ROS signalling. 

2 12757781 6.03 0.158 AT2G29930 F-box/RNI-like
superfamily protein

B 
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3 9101246 5.10 0.241 AT3G24900 Receptor like protein 39 
3 15836568 5.50 0.256 AT3G44080 F-box family protein

AT3G44090 F-box family protein
3 21140514 5.86 0.143 AT3G57120 Protein kinase 

superfamily protein; 

Phylogenetic analysis of AT2G29930 gene 

The sequence of the AT2G29930 gene from 50 Arabidopsis accessions was obtained 
from the 1001 genomes project website and used to build a phylogenetic tree ( Figure 
5). We did not find a simple pattern of genotype-phenotype associations with the data 
of mean sum of relative light units (Mean_SumRLU) within 1h of treatment with 
(flg22 + Spm). In every major clade, accessions with high and low values were 
present. The data is in agreement with the occurrence of low-frequency (rare) alleles 
contributing to the variation of the trait, as anticipated by the low MAF value. 
Therefore, we could not identify conserved allele(s) clearly associated with the trait 
variation. 

Figure 4 Phylogenetic trees of AT2G29930 derived from 50 accessions and the blue histogram of the 
outer ring represents its corresponding the mean sum of relative light units (Mean_SumRLU) within one 
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hour of treatment with (flg22 + Spm) detailed in ANNEX III Table S1. Bootstrap values for different 
nodes are indicated (as percentages of 500 replicates). 

Spm inhibition of flg22-induced ROS in N654696 mutant 

To validate the GWAS association with the gene AT2G29930, we used the loss-of-
function mutant N654696. In this mutant, we tested the inhibitory effect of different 
concentrations of Spm on flg22-induced ROS and found that the mutant N654696 was 
more sensitive to low concentrations of Spm, showing stronger ROS inhibition 
compared to the wild-type (Figure 5). There was little difference between the mutant 
N654696 and wild-type in ROS induced solely by flg22 (Figure 5D), thus indicating 
that the association was not due to flg22 but Spm responsiveness. Under treatment with 
100 μM Spm, ROS induced by flg22 was almost completely inhibited (Figure 5C). But 
under treatment with 25 μM and 50 μM Spm, the mutant N654696 exhibited a stronger 
inhibition of ROS induced by flg22 compared to the wild-type (Figures 5A and 5B).  

Figure 5 The inhibitory effect of different concentrations of Spm on flg22-induced ROS burst. A. 25 μM 
Spm B. 50 μM Spm C. 100 μM Spm and D. no Spm. Values are presented as the mean ± standard error 
(SE) from six replicates per treatment, measured in photon counts [expressed as relative light units 
(RLU)]. 

Quantitation of polyamine levels 

We hypothesized that the elevated sensitivity to Spm of the N654696 mutant could be 
due to an elevation of the basal Spm levels. We then quantified the levels of free 
polyamines in this mutant and in the wild-type (Figure 6). The results evidenced the 
absence of significant differences in the levels of free Put, Spd or Spm between 
N654696 and the wild-type. We suggested that other mechanisms than the modulation 
of polyamine homeostasis might be involved in this exacerbated response to Spm. 
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Figure 6 Polyamine levels in mutant N654696 and wild type. Values represent the mean ± standard error 
(SE) from three biological replicates. Ns, not significant according to Student's t test. 

Overall, we provide evidence for the occurrence of natural variation in the inhibitory 
effect of Spm on flg22-triggered ROS burst. We further provide a number of candidate 
genes underlying such variation, for which one gene was further validated using a loss-
of-function mutant, and confirmed that the association was not linked to flg22 but Spm 
responses. Despite the function of the identified F-box protein is not known, most F-
box proteins (FBP) in plants are integral components of SCF (Skp1-Cul (Cullin) -FBP) 
complexes, which are the predominant type of E3 ubiquitin ligases (Malik et al., 2020). 
The FBP provides specificity through its motif at the C-terminal domain, enables the 
SCF complex to selectively recruit targeted proteins for degradation via the 
ubiquitin/26S proteasome pathway (UPP) in a process known as proteolysis (Abd-
Hamid et al., 2020; Malik et al., 2020). Based on the characteristics of F-BOX proteins, 
they are more likely to form complexes with other specific proteins. Interestingly, the 
expression of SKP1-LIKE3 (AT2G25700), which is the putative E3 ubiquitin ligase 
SCF complex subunit SKP1 (Risseeuw et al., 2003) correlates with AT2G29930. 
However, the specific substrates of the F-box/RNI-like protein AT2G29930 are 
unknown. 

A number of FBP are known to participate in defense responses. For example, in 
Arabidopsis, the FBP CONSTITUTIVE EXPRESSER OF PR GENES1 (CPR1) 
negatively regulates the NLR (nucleotide-binding/leucine-rich-repeat receptor) protein 
SNC1 (SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1) (Gou et al., 2012). CPR1 is 
induced similarly to the negative defense regulator BON1 (BONZAI1) after infection 
by both virulent and avirulent pathogens (Gou et al., 2012). SON1 (SUPPRESSOR OF 
NIM1-1), another FBP in Arabidopsis, acts as a negative regulator in defense responses 
independently of salicylic acid (SA) and SAR (Kim & Delaney, 2002). In tobacco, the 
FBP Avr9/Cf-9–INDUCED F-BOX1 (ACIF1) mediates the hypersensitive response 
(HR) and its silencing impairs HR triggered by various effectors, like Avr9 and Avr4 
(van den Burg et al., 2008). ACIF1 influences N gene-mediated responses to TMV 
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(tobacco mosaic virus) infection, including lesion formation and the accumulation of 
SA (van den Burg et al., 2008). However, it remains to be investigated which are the 
substrates of the F-box/RNI-like protein AT2G29930 and how this integrates with Spm 
responsiveness. 

Materials and Methods 

Plant materials 

Seeds from 136 Arabidopsis accessions were sown directly on soil containing 40% peat 
moss, 50% vermiculite, and 10% perlite. Details about the accessions are provided in 
the Annex III. Seeds were subjected to cold stratification in darkness at 4°C for 2–3 
days to induce germination. Plants were cultivated under 12-hour light/12-hour dark 
cycles at a temperature range of 20–22°C.  

ROS measurements 

The experimental procedure for ROS measurement is similar to the method described 
in Chapter 1(Zhang et al., 2023). Leaf discs (0.5 cm diameter) from 5-week-old plants 
were soaked in 200 µl sterile water for 24 h. Leaf discs were pre-incubated with Spm 
for 24 h before elicitation with flg22 (1 µM). Six replicates were used in each analysis. 
Horseradish peroxidase (Merck) and L-012 (Wako Chemicals) were used to detect 
luminescence as reported in Chapter 1.  The sum of relative light units (Mean_SumRLU) 
within 1h of treatment with (flg22 + Spm) was used as quantitative data for GWAS 
mapping. 

GWAS studies 

GWAS was conducted using the GWAPP web interface at 
https://gwas.gmi.oeaw.ac.at/#/home (Seren, 2018). The overall process of data analysis 
is similar to that described by (López-Ruiz et al., 2022). GWAS was performed using 
the accelerated mixed-mode (AMM) method. Manhattan plots were generated after 
filtering for a minor allele frequency (MAF) ≥ 0.05 (Horton et al., 2012; López-Ruiz et 
al., 2022). GWAS results were plotted using the genomic location of each SNP and its 
association significance represented by [−log10(p-Value)] (López-Ruiz et al., 2022). 
The statistical significance of SNP associations was assessed using the Benjamini–
Hochberg–Yekutieli method to correct for multiple testing, with a false discovery rate 
(FDR) threshold set at 5% (Benjamini & Yekutieli, 2001; López-Ruiz et al., 2022). 

Phylogenetic Tree 

The candidate DNA sequences were downloaded from the 1001 Genomes project 
(www.1001genomes.org). The phylogenetic Tree was constructed using the Neighbor-
Joining method in MEGA 11. Bootstrap values for different nodes are derived from 500 
replicates. To enhance visualization, the tree was optimized using the online tool 
Evolview (https://evolgenius.info/evolview-v2/), and the phylogenetic tree was 
annotated with the corresponding average sum RLU (Relative Light Units) values 
within 1 hour, as detailed in the supplementary data ANNEX III. 

Polyamines Levels 
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The concentrations of free Put, Spd, and Spm were assessed using high-performance 
liquid chromatography (HPLC) after dansyl derivatization, following the procedures 
outlined in Chapter 1 and 2. Each analysis was conducted with three biological 
replicates. 
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In line with present estimations, there is an anticipated need to increase food production 
by twofold by the year 2050 to fulfill the growing global demand (Tilman et al., 2011). 
This undertaking is further complicated by the escalating impacts of climate change, 
including heightened temperatures, frost, floods, and droughts (Tilman et al., 2011; 
Velásquez et al., 2018). A more detailed examination of the intricate relationships 
between plants and pathogens is anticipated to offer valuable insights for the 
advancement of agricultural technology. Extensive research on plant innate immunity 
signaling, coupled with gene editing technologies, will significantly enhance crop 
breeding for disease resistance (Shan et al., 2013).  

Polyamines can be applied exogenously to better adapt to stressful environments. For 
example, in pistachio (Pistacia vera L.) seedlings, exogenous application of free 
polyamines (especially Spm and Spd) enhances salt stress tolerance (Kamiab et al., 
2014). In terms of drought, pretreatment with exogenous Spd or Spm enhanced the 
activities of ADC, ODC, and SAMDC (Yin et al., 2014). Additionally, Spd or Spm 
pretreatment effectively prevented drought-induced oxidative damage in Chinese dwarf 
cherry (Yin et al., 2014). Perhaps in the future, we can use gene silencing technology 
and utilize the physiological advantages of polyamines during defense to obtain 
improved crop varieties. 

In regard to the mechanisms of action for polyamines during plant immunity, we still 
have many unknowns that need to be explored. For instance, while Arabidopsis CuAO 
family comprises 10 genes, only five of them have been minimally characterized (Wang 
et al., 2019). Their biological specificities remain to be explored. In addition, little is 
known about polyamine signaling, although important insights have been recently 
achieved (Liu et al., 2019b; Zhang et al., 2022, 2023). Further investigations into 
polyamine oxidation and conjugation, the subcellular localization of polyamines and 
their signaling pathways may provide important clues for genetic crop improvement. 

Our research findings shed light on the contrasting effects of polyamines, particularly 
Put and Spm, on several aspects of the defense response.  

In Chapter 1 we report that co-treatment with flg22 and Put do not significantly alter 
the ROS burst triggered by flg22, while pre-incubation with Put leads to higher ROS 
production compared to the mock treatment. Conversely, Spm at concentrations of 100 
µM and higher strongly inhibits ROS production triggered by flg22. These results 
suggest that Put enhances the amplitude of the ROS response, while Spm suppresses it, 
indicating opposing roles for these polyamines in modulating plant defense. The 
findings in Figure 2 further support this notion by demonstrating that mutants deficient 
in Put biosynthesis (adc1-3 and adc2-4) exhibited similar ROS production triggered by 
flg22 compared to wild-type plants, whereas the spms mutant, deficient in Spm 
biosynthesis, displayed significantly higher ROS levels. Insights were provided into the 
functional implications of the differential regulation of ROS production by Put and Spm 
on plant disease resistance. Wild-type plants pre-infiltrated with Spm and flg22 
supported higher bacterial growth compared to those pre-treated with flg22 alone or 
with Put and flg22. In contrast, pre-treatment with individual polyamines did not 
significantly alter disease resistance compared to mock treatment (Figure 3). These 
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results suggest that Spm-mediated suppression of the ROS burst triggered by flg22 
compromises flg22-elicited defenses, leading to increased susceptibility to pathogen 
infection. 

Overall, our findings firstly demonstrate that Put and Spm have opposing effects on the 
ROS burst triggered by flg22 and subsequent disease resistance in Arabidopsis. While 
Put enhances ROS production and contributes to plant defense, Spm suppresses ROS 
dynamics, thereby attenuating defense responses and compromising resistance to 
pathogen infection. We utilized this characteristic to conduct a genome-wide 
association study (GWAS) on 136 Arabidopsis ecotypes, resulting in the identification 
of several candidate genes associated with this trait (Chapter 3). 

In addition to ROS in Chapter 1, we investigated changes in cytosolic Ca2+ induced by 
PAMPs. Using a bioluminescent Ca2+ sensor, we analyzed the dynamics of cytosolic 
Ca2+ in response to flg22, Spm, Put, and their combinations. Flg22 elicits a robust Ca2+ 
influx, which is inhibited by Spm co-treatment (Figure 5A). Spm alone also increases 
cytosolic Ca2+ levels, but this effect was counteracted by pre-treatment with flg22 
(Figure 5A, B). Put triggered a lower elevation of cytosolic Ca2+, with minimal impact 
on flg22-induced Ca2+ influx (Figure 5C, D). These results suggest that Put and Spm 
induce distinct Ca2+ signals, which may cause different effects on RBOHD function. In 
addition, these specific Ca2+ signals by polyamines may be essential for signaling, not 
only during defense, but also in response to abiotic stress, plant growth and 
development. 

In Chapter 2, we investigated the modulation of polyamine metabolism and the role of 
Spm during the defense response to Pst DC3000. Inoculation with Pst DC3000 
consistently upregulated several genes involved in polyamine metabolism, such as 
ADC2, SPMS, SAMDC3, and CuAOδ2 (Figure 1). Interestingly, the COR-deficient 
strain Pst DC3000 Δcor was not successful in the transcriptional activation of most 
polyamine metabolism genes, suggesting that COR plays a crucial role in modulating 
polyamine metabolism during the defense response to Pst DC3000 (Figure 2a). The 
COR toxin, produced by various strains of P. syringae, shares structural similarities 
with JA-Ile (Mittal & Davis, 1995). SA and JA are key hormones in plant immunity and 
research indicates that their signaling pathways interact (SA-JA crosstalk) to coordinate 
plant defenses against pathogens (Betsuyaku et al., 2018; Hou & Tsuda, 2022). 

We found that Spm deficiency compromises SA-mediated defense responses to Pst 
DC3000. The expression levels of key SA biosynthesis and signaling genes, as well as 
SA-inducible PR1 (PATHOGENESIS-RELATED GENE 1), were significantly lower in 
spms compared to the wild-type at 24 h of Pst DC3000 inoculation. Additionally, spms 
exhibited delayed transcriptional activation of SAR (systemic acquired resistance)-
related genes (Figure 4b). Correspondingly, spms accumulated lower SA levels than the 
wild-type, indicating that Spm deficiency dampened SA-mediated immune responses 
to Pst DC3000 (Figure 4c). Consequently, Pst DC3000 growth was significantly higher 
in spms compared to the wild type at 72 h post Pst DC3000 spray inoculation (Figure 
4d). Additionally, we found that Spm deficiency elicits JA biosynthesis and signaling. 
Compared to the wild type, spms showed delayed transcriptional activation but 
eventually equal or stronger expression of JA biosynthesis genes and JA signaling genes 
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in response to Pst DC3000 (Figure 6). Additionally, spms exhibited significantly higher 
expression of JA-marker genes related to the MYC2-branch of JA signaling at Pst 
DC3000 inoculation (Figure 6). Consistently, JA, JA-Ile, and OPDA levels were higher 
in spms than in the wild type under basal conditions and in response to different 
treatments, indicating stimulated JA biosynthesis in spms (Figure 7). 

Subsequently, we conducted research to investigate whether Spm is involved in the 
crosstalk between SA and JA. We hypothesized that the sustained elevation of JA levels 
in spms might diminish SA responses by modulating crosstalk between the two 
signaling pathways. We analyzed the responsiveness of SA-related genes in spms, and 
wild-type plants challenged with COR and ABA, known modulators of JA-SA crosstalk 
(Figure 8a). The expression of ANAC019, a gene involved in JA-mediated suppression 
of SA defenses (Li et al., 2019), was significantly higher in spms than in the wild-type 
under basal conditions and in response to COR but not ABA. Additionally, differences 
in the expression of ICS1 and BSMT1, genes targeted by ANAC019, were observed 
between the genotypes in response to COR. These findings suggest that the increased 
JA levels in spms may modulate SA responses through JA-SA crosstalk (Figure 8). 
These analyses revealed a significant increase in ANAC019 and BSMT1 transcripts in 
spms compared to wild-type plants upon exposure to Pst DC3000. In summary, these 
findings suggest that the absence of Spm leads to a more pronounced deregulation of 
ICS1 and BSMT1, correlated with ANAC019 expression, in response to COR and Pst 
DC3000, resulting in decreased SA accumulation (Figures 4 and 8a, b). We also 
investigated the role of Spm in the response to infection by the necrotrophic fungal 
pathogen Botrytis cinerea. Spm deficiency enhanced disease resistance to Botrytis 
cinerea (Figure 11).  

Combining the results from Chapters 1 and 2, we can observe a significant role for Spm 
in plant-pathogen interactions. Therefore, we aimed to identify genes associated with 
Spm sensitivity through a GWAS analysis, aiming to provide additional information 
about the Spm signaling pathway in plant disease resistance processes (Chapter 3). 

We first quantified ROS production in the elicitation with flg22+Spm in 136 accessions 
of Arabidopsis for GWAS analysis and identified several candidate genes, as shown in 
Figure 1 and Table 1. Subsequent research in this chapter focused solely on the top-
scoring gene, AT2G29930. However, if time permits in future studies, we may conduct 
in-depth analyses of other candidate genes, which could yield more comprehensive 
results regarding Spm sensitivity. 

The AT2G29930 belongs to an F-BOX protein family. F-BOX proteins in plants are 
associated with various hormonal regulations and play roles in plant immunity 
processes (Abd-Hamid et al., 2020). As outlined in Chapter 2, Spm is linked to plant 
hormones such as SA and JA. This F-box protein may be a candidate link between 
polyamines and JA/SA signaling. Future studies on plant-pathogen interactions may 
explore the connection between this gene and Spm along with plant hormones, 
potentially elucidating further insights into plant defense mechanisms.
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This Thesis primarily discusses the role of Spm in plant-pathogen interactions. The 
Chapter 1 demonstrates Spm's inhibitory effect on flg22-induced ROS during early 
PTI responses. The Chapter 2 illustrates Spm's interaction with plant hormones SA 
and JA in disease resistance. The Chapter 3 aims to identify candidate genes sensitive 
to Spm, providing further insights into Spm's signaling pathways in plant defense.  

The main conclusions are as follows: 

Chapter 1 

1. While Spermine (Spm) inhibits flagellin22 (flg22)-induced RBOHD-dependent
ROS production, Putrescine (Put) shows a stimulatory effect, thus indicating the
specificity of the responses to different polyamines during PAMP-triggered immunity
(PTI).

2. Spm's inhibitory effect on flg22-induced ROS production is independent of
polyamine oxidation and NO signaling, but resembles chemical inhibition of RBOHD.

3. Put and Spm trigger cytosolic calcium influx, albeit at different amplitudes and
durations. Like this, Spm but not Put dampens flg22-triggered Ca2+ influx required for
RBOHD activation, indicating a specific regulatory effect of Spm in modulating
RBOHD activity.

4. Put and Spm differentially modulate the global transcriptional responses to flg22,
with Spm, but not Put, dampening the up-regulation of flg22-inducible genes.

5. These results demonstrate that polyamines can differentially reshape PTI responses
in plants.

Chapter 2 

1. Inoculation with the bacterial pathogen Pseudomonas syringae pv. tomato DC3000
(Pst DC3000) triggers changes in polyamine metabolism, with coronatine (COR)
playing a significant role in modulating polyamine metabolism during the defense
response.

2. Spm deficiency alters transcriptional responses related to salicylic acid (SA) and
jasmonic acid (JA) biosynthesis and signaling; and endoplasmic reticulum (ER) stress
signaling in response to Pst DC3000, influencing defense outputs.

3. Spm deficiency compromises SA-mediated immune responses to Pst DC3000,
leading to lower SA levels and decreased disease resistance. On the contrary, Spm
deficiency elicits enhanced JA biosynthesis and signaling, resulting in higher JA
levels and stronger transcriptional activation of the JA-MYC2 pathway.
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4. The results indicate that polyamines can shift the balance between JA and SA
responses, with Spm deficiency favoring JA over SA responses, thus stimulating
disease resistance to B. cinerea.

Chapter 3 

1. We detected quantitative variation for the inhibitory effect of Spm on flg22-
triggered ROS burst in natural accessions, highlighting the occurrence of natural
variation in this response.

2. Through GWAS analysis, we identified the F-box/RNI-like superfamily protein
AT2G29930 as candidate gene potentially modulating Spm responses. By utilizing of
a loss-of-function mutant, we confirmed the genetic association of AT2G29930 with
Spm responses.

3. The at2g29930 loss-of-funcion mutant does not show differences in basal Spm levels,
suggesting that factors other than polyamine homeostasis may be involved in the
mutant's elevated Spm sensitivity.
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SUPPLEMENTARY FIGURES S1 – S22 

Figure S1. Effect of the Put and Spm cotreatment on flg22-elicited ROS burst. Leaf discs from 5-
week-old wild-type plants were treated with flg22 (1 µM), and Put or Spm (50 µM to 400 µM). Values 
represent the mean ± S.E. from at least twelve replicates per treatment and are expressed in 
photon counts (relative light units, RLU). 
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Figure S2. Effect of Spm on flg22-elicited ROS burst in eds1-2, pad4-1, sid2-1, npr1-1 and fls2 
(negative control) mutants. Leaf discs from 5-week-old plants were treated with flg22 (1 µM), Spm 
(100 µM), Spm (100 µM) + flg22 (1 µM) or mock (water). Values represent the mean ± S.E. 
from at least twelve replicates per treatment and are expressed in photon counts (relative light 
units, RLU). 
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Figure S3. (A) ROS produced by Put and Spm treatments. Leaf discs from 5-week-old 
wild-type plants were incubated with different concentrations (100 µM to 800 µM) of Put, 
Spm and mock (water). Values represent the mean ± S.E. from at least twelve replicates per 
treatment and are expressed in photon counts (relative light units, RLU). (B) Free Put, Spd 
and Spm levels in wild-type plants at 24 h of treatment with flg22 (1 µM) or mock 
(water). Values represent the mean ± S.D. from three biological replicates per 
treatment. Letters indicate values that are significantly different according to Tukey's HSD test 
at P < 0.05. 
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Figure S4. Effect of Spm on flg22-elicited ROS burst in rbohd (N663633 and N670541), rbohf 
(N657584) and double rbohd/f (N9558) mutants. Leaf discs from 5-week-old wild-type plants and 
mutants were treated with flg22 (1 µM), Spm (100 µM) or Spm (100 µM) + flg22 (1 µM). Values 
represent the mean ± S.E. from at least twelve replicates per treatment and are expressed in 
photon counts (relative light units, RLU). 

Figure S5. Analysis of Pst DC3000 disease resistance phenotypes in wild-type plants locally 
pretreated with different concentrations of Put (0 µM to 500 µM). Treatments were performed 24 
h before Pst DC3000 infiltration (OD600 nm= 0.005). Bacterial numbers were assessed at 72 h 
post-inoculation and expressed as colony forming units (CFU) per cm2 leaf area. Values are the 
mean from at least eight biological replicates ± SD. Letters indicate values that are significantly 
different according to Tukey's HSD test at P < 0.05. 

146

ANNEX I_______________________________________________________________________________________



Figure S6. (A) Flg22-elicited ROS and (B) effect of Spm on flg22-elicited ROS production in 
CuAO mutants (atao1, cuao1, cuao2, cuaoa1, cuaoa2, cuaod, cuaoe1, cuaoe2, cuaog2) and 
PAO mutants (pao1, pao2, pao3, pao4 and pao5) in comparison to the wild-type. The total sum of 
RLU (total photon counts) in each genotype was normalized to the total photon counts in the wild-
type reference. Values represent the mean ± S.E. of the normalized values from at least twelve 
replicates per treatment. Letters indicate values that are significantly different according to Tukey's 
HSD test at P < 0.05. 
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Figure S7. Effect of 2-bromoethylamine BEA (5 mM), diphenyleneiodonium chloride (DPI, 20 
µM), dimethylthiourea (DMTU, 5 mM), reduced L-glutathione (GSH, 1 mM), carboxy-PTIO 
(cPTIO, 100 µM), EGTA (2 mM), LaCl3 (1 mM), cycloheximide (CHX, 300 µM) and Latrunculin B 
(Lat B, 20 µM) on Spm inhibition of flg22-triggered ROS burst in wild-type plants. Leaf discs 
from 5-week-old plants were pretreated with the different chemicals 3 h before Spm (100 µM), 
flg22 (1 µM) and Spm (100 µM) + flg22 (1 µM) elicitation. Photon counts (relative light units, RLU) 
were determined over time. Values represent the mean ± S.E. from at least twelve replicates per 
treatment. Letters indicate values that are significantly different according to Tukey's HSD test at P 
< 0.05. 
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Figure S8. (A) Effect of brassinazole (BRZ, 2.5 µM) on Spm inhibition of flg22-triggered ROS 
burst in the wild-type. (B) Effect of Spm on flg22-elicited ROS burst in 3-week-old nia1 nia2 noa1-2 
triple mutant. (C,D) Effect of cycloheximide (CHX, 50 µM) on Spm inhibition of flg22-triggered ROS 
burst in (B) wild-type and rbohd (C) wild-type (wt) and fls2. Pharmacological treatments were 
performed as described in Figure S7. Values represent the mean ± S.E. from at least twelve 
replicates per treatment and are expressed in photon counts (relative light units, RLU). Letters 
indicate values that are significantly different according to Tukey's HSD test at P < 0.05. 

Figure S9. Trypan blue staining of wild-type and rbohd leaves infiltrated with Spm (100 µM), 
methyl viologen (MV, 100 µM) or both (100 µM Spm + 100 µM MV). Staining was performed at 24 h 
of treatment. 
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Figure S10. (A) Principal component analysis (PCA) and (B) Hierarchical clustering analysis (HCA) of

RNA-seq gene expression data obtained from 5-week-old wild-type plants treated with Put (100 µM), 
Spm (100 µM), flg22 (1 µM), Put (100 µM) + flg22 (1 µM), Spm (100 µM) + flg22 (1 µM) and mock 
(water) for 24 h. Each treatment was performed in three biological replicates.  
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Figure S11. (A) Venn diagram, gene ontology (GO) and expression correlation analyses of genes 
significantly deregulated (fold-change ≥ 2; Bonferroni corrected P-value ≤ 0.05) in response to Put 
(100 µM) and Spm (100 µM) at 24 h of treatment in the wild-type. (B) Molecular functions, main 
enzymatic activities and TF families of genes differentially expressed in Put and Spm treatments. 
Bars indicate the mean expression ± S.E. The number of genes within each category are indicated 
on top of the bar and listed in Tables S1.1 to S1.5. 
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Figure S12. Mean expression values and correlation analyses of wild-type (Col-0) plants treated 
with flg22 (1 µM), Spm (100 µM) and Spm (100 µM) + flg22 (1 µM). (A) Genes only significantly 
deregulated by flg22 treatment. (B) Common genes deregulated by flg22 and (Spm + flg22) 
treatments. (C) Genes only deregulated by (Spm + flg22) treatment. (D) Genes only deregulated by 
Spm treatment. Expression values (Log2) are relative to the mock (H2O). The mean 
expression ± S.E of upregulated and downregulated genes is shown for each treatment. 
Asterisks indicate significant differences according to Wilcoxon signed-rank test (***p<0.001). (E) 
Expression correlation between flg22, Spm and (Spm + flg22) treatments.  

Figure S13. Molecular function categorization and metabolic pathway enrichment analysis of 
genes only deregulated by flg22 compared to Spm and (Spm + flg22) treatments in the wild-type. 
Bars indicate the mean expression ± S.E in each category.  
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Figure S14. Molecular function categorization and metabolic pathway enrichment analysis of genes 
commonly deregulated in flg22 and (Spm + flg22) treatments in the wild-type. Bars indicate the mean 
expression ± S.E in each category. 
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Figure S15. Molecular function categorization and metabolic pathway enrichment analysis of 
genes only differentially expressed in (Spm + flg22) compared to flg22 and Spm treatments. Bars 
indicate the mean expression ± S.E in each category. 
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Figure S16. Molecular function categorization and metabolic pathway enrichment analysis of 
genes only differentially expressed in Spm treatment compared to flg22 and (Spm + flg22) 
treatments. Bars indicate the mean expression ± S.E in each category. 
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Figure S17. Mean expression values and correlation analyses of wild-type (Col-0) plants treated with

flg22 (1 µM), Put (100 µM) and Put (100 µM) + flg22 (1 µM). (A) Genes only significantly 
deregulated by flg22 treatment. (B) Common genes deregulated by flg22 and (Put + flg22) 
treatments. (C) Genes only deregulated by (Put + flg22) treatment. (D) Genes only deregulated by 
Put treatment. Expression values (Log2) are relative to the mock (H2O). The mean expression 
± S.E of upregulated and downregulated genes is shown for each treatment. Asterisks indicate 
significant differences according to Wilcoxon signed-rank test (***p<0.001). (E) Expression 
correlation between flg22, Put and (Put + flg22) treatments.  

Figure S18. Molecular function categorization and metabolic pathway enrichment analysis of genes 
only deregulated by flg22 compared to Put and (Put + flg22) treatments. Bars indicate the mean 
expression ± S.E in each category. 

161

ANNEX I_______________________________________________________________________________________



Figure S19. Molecular function categorization and metabolic pathway enrichment analysis of 
genes commonly deregulated in flg22 and (Put + flg22) treatments in the wild-type. Bars 
indicate the mean expression ± S.E in each category.  
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Figure S20. Molecular function categorization and metabolic pathway enrichment analysis of 
genes only deregulated in (Put + flg22) compared to flg22 and Put treatments. Bars indicate 
the mean expression ± S.E in each category. 
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Figure S21. Molecular function categorization and metabolic pathway enrichment analysis of 
genes only deregulated by Put compared to flg22 and (Put + flg22) treatments. Bars indicate 
the mean expression ± S.E in each category. 
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Figure S22. Effect of thermospermine (tSpm, 100 µM) and spermidine (Spd, 100 µM) on flg22-
elicited ROS burst in the wild-type (Col-0). Leaf discs from 5-week-old plants were treated with 
flg22 (1 µM), tSpm (100 µM), Spd (100 µM), tSpm (100 µM) + flg22 (1 µM), Spd (100 µM) + 
flg22 (1 µM) or mock (water). Values represent the mean ± S.E. from at least twelve 
replicates per treatment and are expressed in photon counts (relative light units, RLU). 
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SUPPORTING INFORMATION 

Spermine deficiency shifts the balance between Jasmonic Acid and Salicylic Acid-mediated defense 
responses in Arabidopsis 

Chi Zhang1, Kostadin E. Atanasov1, Ester Murillo1, Vicente Vives-Peris2, Jiaqi Zhao1, Cuiyun Deng3, Aurelio Gómez-
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SUPPLEMENTARY FIGURES 

Figure S1. Expression analyses of ADC2, SPMS, SAMDC3 and CuAOδ2 in wild-type, coi1-1, myc2, sid2-1, 
eds1-2 and npr1-1 mutants in response to Pst DC3000 (OD600=0.001) and mock (10 mM MgCl2) infiltration 
at 24 h and 48 h of treatment. Expression values are relative to wild-type (mock) treatment and represent the 
mean ± standard deviation from three biological replicates per genotype and treatment. Different letters 
indicate significant differences (p<0.05) according to two-way ANOVA followed by Tukey’s post-hoc test. 
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Figure S2. Determination of polyamine contents in wild-type (wt), coi1-1, myc2, sid2-1, eds1-2 
and npr1-1 mutants in response to Pst DC3000 (OD600=0.001) and mock (10 mM MgCl2) 
infiltration at 0 h, 24 h and 48 h of treatment. Values represent the mean ± standard deviation 
from four biological replicates per genotype. Different letters indicate significant differences 
(p<0.05) according to two-way ANOVA followed by Tukey’s post-hoc test. 
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Figure S3. (A) Determination of polyamine contents in wild-type, adc1-2, adc1-3, adc2-3 and adc2-4 
mutants in response to Pst DC3000 (OD600=0.001) and mock (10 mM MgCl2) infiltration at 0 h, 24 
h and 48 h of treatment. Values represent the mean ± standard deviation from three biological 
replicates per genotype. (B) Determination of Pst DC3000 growth in wild-type, adc1 and adc2 
mutants at 48 h of infiltration. Bacterial numbers are expressed as colony forming units (CFU) per 
cm2 of leaf area. Values are the mean from six biological replicates ± SD. Different letters indicate 
significant differences (p<0.05) according to two-way ANOVA followed by Tukey’s post-hoc test. 
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Figure S4. (A) Principal component analysis (PCA) of RNA-seq gene expression data at 24 h of Pst 
DC3000 (OD600=0.001) and mock (10 mM MgCl2) inoculation in spms and wild-type plants. (B) 
Expression correlation analyses between wild-type (wt) and spms in the ‘wild-type (Pst DC3000) 
only’ sector (genes deregulated only in the comparison between wt Pst DC3000 vs wt mock), 
‘spms (Pst DC3000) only’ sector (genes deregulated only in the comparison between spms Pst 
DC3000 vs wt mock) and ‘spms (mock) only’ sector (genes deregulated only in the comparison 
between spms mock vs wt mock). 
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Figure S5. Basal expression of ADS1, SARD1, CBP60g, PBS3, WRKY46 and PR1 in wild-
type and spms mutant plants determined by qRT-PCR. Expression values are relative to the wild-
type and represent the mean ± standard deviation from three biological replicates per 
genotype. Different letters indicate significant differences (p<0.05) according to two-way 
ANOVA followed by Tukey’s post-hoc test. 
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Figure S6. Root growth inhibition assays in response to MeJA and COR. Wild-type (wt), spms and 
coi1-1 seeds were germinated and grown on vertical plates containing half-strength MS supplemented 
with 1% sucrose and 100 µM methyl jasmonate (MeJA), 1 µM coronatine (COR) or mock (0.1% 
DMSO in water) at 16 h light/8 h dark cycles, 20 – 22 °C and 100–125 μmol photons m–2 s–1 of light 
intensity. Pictures were taken 12 days after germination for the measurement of the primary root 
length. Different letters indicate significant differences (p<0.05) according to two-way ANOVA 
followed by Tukey’s post-hoc test. 
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Figure S7. (A) Principal component analysis (PCA) of the proteomics data in spms and wild-type 
under basal conditions. (B) Correlation analysis between protein abundance and gene expression in 
spms under basal conditions. Values of proteins exhibiting >1.3-fold difference between spms and 
wild-type are shown. 

Figure S8. Root growth phenotypes of 12-day-old wild-type and spms seedlings germinated and 
grown on half-strength MS supplemented with 1 % sucrose and 0.05 µg/ml 2,4-dichlorophenoxyacetic 
acid (2,4-D), 0.2 µg/ml 2,4-dichlorophenoxybutyric acid (2,4-DB) or mock (0.1% DMSO in water). 
Different letters indicate significant differences (p<0.05) according to two-way ANOVA followed by 
Tukey’s post-hoc test. 
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Figure S9. Polyamine levels (Put, putrescine; Spd, spermidine; Spm, spermine) in 10-day-old 
wild-type seedlings at 6 h of treatment with 100 µM Brefeldin A (BFA), 100 µM DTT 
(dithiothreitol) or mock (0.1% DMSO in water). Values represent the mean ± standard deviation 
from four biological replicates per treatment. Different letters indicate significant differences 
(p<0.05) according to two-way ANOVA followed by Tukey’s post-hoc test. 
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