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ABSTRACT: A synthetic approach to a functionalized ABC-tricyclic
framework of calyciphilline A-type alkaloids, a building block toward this
class of alkaloids, is reported. The key synthetic steps involve a radical
cyclization to form the hydroindole system and piperidine ring closure
through a stereocontrolled aldol cyclization. The resulting alcohol allows the
methyl group to be installed in the bowl-shaped azatricyclic structure; this
crucial reaction takes place with configuration retention. The synthesis of
azatricyclic compound I constitutes a formal synthesis of himalensine A.

Calyciphylline A-type Daphniphyllum alkaloids1 feature a
backbone of four rings [6−6−5−7] including a bridged

morphan subunit with one or two additional five-membered
rings fused at the seven-membered ring (Figure 1).

Compounds embodying the compact azatricyclic ABC ring
system, with an all-carbon quaternary center at C-5 and the
methyl group installed at C-18, are valuable building blocks for
the synthesis of calyciphylline-A type alkaloids as well as some
other Daphniphyllum alkaloids. Synthetic precedents for
compounds containing this 1,6-ethanooctahydroindole scaffold
with a suitable substitution pattern and functionalization for

the preparation of calyciphylline-A type alkaloids are
summarized in Scheme 1. The different synthetic method-
ologies used for the last ring closure are as follows. (a) Pd-
catalyzed alkenylation of ketones, a procedure developed in
our research group (Scheme 1a),2 enabled the first synthesis of
the ABC fragment of the target alkaloids3 and was
subsequently used by Gao to achieve himalensine A,4 by
Liang for the synthesis of the ABCE rings of daphenylline,5 and
by Xue and Qin in studies devoted to a substructure of 21-
deoxymacropodumine D.6 A variation was reported by Tang7

in which a Pd-catalyzed oxidative alkenylation using Pd(OAc)2
and Yb(OTf)3 was carried out from an alkene-tethered β-keto
ester. (b) A radical tandem process was developed by Stockdill
(Scheme 1b)8 in which the piperidine B ring was closed by
construction of the morphan nucleus from an aminyl radical
and trapping of the carbon-centered radical formed by an
alkyne. (c) Intramolecular Michael addition from a β-amido
ester to an enone was used intensively by Li (Scheme 1c)9 en
route to the total syntheses of several Daphniphyllum alkaloids.
Also, our group developed a process using a sulfone as a source
of a carbanion to generate the pyrrolidine C ring with
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Figure 1. Representative Daphniphyllum alkaloids embodying the 1,6-
ethanoindole ring (ABC framework; biosynthetic numbering).
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concomitant formation of the stereogenic quaternary car-
bon.10,11

Herein, a new approach to the ABC ring is described, which
differs from the aforementioned synthetic strategies in that an
aldol cyclization is used to achieve the targeted azatricyclic ring
(Scheme 1d). The synthetic route to the ABC ring of
calyciphylline A-type alkaloids embodying suitable funcional-
ization and substituents toward the synthesis of Daphniphyllum
alkaloids is depicted in Scheme 2. Control of the stereo-
chemistry at C8 through a substrate-directable methylation
process would prove to be crucial in this synthetic proposal
(Scheme 3).

Commencing from the easily available ketone 1,12 the
cyclization precursor 2 was accessed via imine formation
followed by trichloroacetylation using the general protocol to
prepare related trichloroenamides,13 which allowed the gram-
scale synthesis of the required polyfunctionalized starting
material. Radical cyclization of trichloroacetamide 214

furnished enelactam 3 (76%), which was diastereoselectively
allylated to provide 4 in which the enelactam function was
chemoselectively reduced to afford octahydroindole 5. It is
worth mentioning that both enelactams 3 and 4 were sensitive
to the hydration process, being prone to undergo partial
evolution to their corresponding hemiaminal (i.e., the 7a-
hydroxylated derivative, Chart 1) whether in an open-air

atmosphere or during a chromatographic process (SiO2).
However, this transformation is reversible, as enelactams 3 and
4, if formed, can be recovered by dehydration under acidic
conditions (see Chart 1 and the Experimental Section). A
double acetal deprotection from 5 provided the keto aldehyde
required to carry out the piperidine ring closure through an
aldol process. The aldol cyclization furnished a separable

Scheme 1. Previous Approaches to the Tricyclic ABC Core
of the Calyciphylline A-Type Alkaloidsa,b

aFunctionalized 3a,8-dimethyl-1,6-ethanohydroindoles (ABC ring of
calyciphylline-A alkaloids). bSystematic numbering is used in the
results, discussion, and Experimental Section.

Scheme 2. Synthesis of the ABC Azatricyclic Ring of Calyciphylline A-Type Alkaloids

Scheme 3. Formal Synthesis of Himalensine A

Chart 1
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diastereomeric mixture (9:1) with 90% overall yield. At the
time, the stereochemical course of the aldol process was not
evident from the NMR data of the isolated azatricyclic ketols 7
and epi-7.

At this point, for the sake of efficiency, a modified protocol
for rapid access to compound 7 was evaluated. Thus, a
chromatography-free, four-step sequence for the transforma-
tion of enelactam 3 to azatricyclo 7 was tested. Bypassing the
purification step of intermediate compounds avoided the
expense of chromatography, but the overall yield was lower
(30% [see SI] versus 47%), and the process was only
moderately less time consuming than the one reported in
Scheme 2.

At this stage, it was not possible to establish the
configuration of the stereogenically formed C-8 in aldol 7 as
the well-precedented nonchair conformation in the piperidine
ring of this type of azatricyclic compounds makes it difficult to
correlate the coupling constants of protons in the 1H NMR
spectrum with their spatial arrangement. The configuration
could not be conclusively determined by the NOESY spectrum
of 7.

We then investigated the origin of the stereoselectivity by
means of DFT calculations.15 Although the two alcohol
epimers at C-8 were isolated in a 9:1 ratio, the calculations
showed that the stability difference between both isomers (7
and epi-7) is negligible, less than 0.1 kcal/mol (Figure 2),

which strongly indicates the absence of equilibrium between 7
and epi-7 in the reaction conditions.16 We thus hypothesized
that the stereochemical course of the aldol reaction promoted
by the Brønsted acid is not the result of thermodynamic
control, as previously thought. Instead, it can be rationalized by
the kinetic preference in the approach of the enol to the
aldehyde during the transition states of the reaction. To
confirm the kinetic control, we analyzed the structures of the
model attack of the ketone enol to the aldehyde in 6 in the
presence of a p-TsOH molecule. Our model shows that the
aldehyde group preferentially adopts a disposition that favors
an attack from the Si face of the carbonyl group (TS1, Figure
2), which is 2.3 kcal/mol lower in energy than the Re approach
(epi-TS1), disfavored by steric and electronic factors.

Activation of the aldehyde presumably results in the dipole
minimized orientation17 of the dicarbonyl unit, which can then
be attacked by the tethered enol via the lower energy
intermediate, thus providing 7. The reaction is hence
exothermic by more than 12 kcal/mol, corroborating the
nonreversibility of the process in acidic conditions.

The DFT-based proposal for the relative configuration of
cyclic alcohol 7 was confirmed after its transformation to
tosylate 8, whose configuration and hence that of its precursor
(i.e., ketol 7) at C-8 was ascertained by X-ray crystallography
(Figure 3). The X-ray structure of compound 8 proved that the

tosylate substituent at C-8 is cis to the bridged hydrogen atom
at C-6 and occupies a pseudoequatorial position in the crystal
that reflects the boat form of the morphan substructure and
ensures the relative configuration of ketol 7. Interestingly, it
should be noted that in the related aldol process leading to a
bicyclic morphan compound,18 in which the bicyclic system
allows a chair−chair conformation, a reverse diastereoselectiv-
ity was observed for the keto-tethered aldehyde cyclization
using the same reaction conditions.19

The last step in the synthesis of the targeted azatricycle 9
was the installation of the methyl group at C-8 with the correct
relative configuration. Gratifyingly, the Me2CuLi formed in situ
by treatment of MeLi with CuI led to a chemo- and
diastereoselective reaction in which the tosylate group was
substituted by a methyl with retention of configuration.20 In
methodological studies, the possibility of configuration
retention is sometimes observed, and a speculative mechanism
involving radical species has been proposed.21 In natural
product synthesis, there are few examples of a tosylate/
sulfonate group being replaced by an alkyl or aryl group with
stereochemical retention, and the displacement mechanism
usually involves the participation of a neighboring group.22

Alternatively,23 if tosylate 8 undergoes a β-elimination
involving a bridgehead enone formation,24 a conjugate
addition of Me2CuLi upon the enone would be the origin of
the diastereoselective formation of compound 9.

The stereochemical assignment was unequivocally estab-
lished considering that the spectroscopic data of the resulting
compound 9 were identical in all respects to those reported by
Gao for this compound structure25 en route to his recent total
synthesis of himalensine A. Thus, the stereoselectively formed
azatricycle 9 showed the same relative configuration in its five
stereogenic centers as in all calyciphylline A-type alkaloids
embodying this azatricyclic scaffold.

In summary, concise access to 1,6-ethanoperhydroindole
azatricycle 9 (i.e., I) has been accomplished, thereby providing
a formal synthesis of himalensine A4,26 The whole process
requires 10 reaction steps and provides compound 9 in an

Figure 2. DFT calculations of the aldol cyclization of 6: si-face attack
(TS1) and re-face attack (epi-TS1) at the M06-2X/6-311++G(d,p)
(IEFPCM, benzene) level. Energies are given in kcal/mol.

Figure 3. X-ray of tosylate 8.
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overall yield of 8%. The synthesis, based on an intramolecular
aldol process, is a new approach to the ABC ring system for the
calyciphylline A-type subset of Daphniphyllum alkaloids.

■ EXPERIMENTAL SECTION
General. All reactions were carried out under an argon atmosphere

with dry, freshly distilled solvents under anhydrous conditions. All
product mixtures were analyzed by thin-layer chromatography using
TLC silica gel plates with a fluorescent indicator (λ = 254 nm).
Analytical thin-layer chromatography was performed on SiO2 (Merck
Silica Gel 60 F254), and the spots were located by a UV light and/or a
1% KMnO4 aqueous solution or hexachloroplatinate reagent.
Chromatography refers to flash chromatography and was carried
out on SiO2 (Carlo Erba 60A, 35−70 μ) or on Al2O3 (neutral
aluminum oxide, 0.063−0.2 mm). Drying of the organic extracts
during the reaction workup was performed over anhydrous Na2SO4.
Chemical shifts of the 1H and 13C NMR spectra are reported in ppm
downfield (δ) from Me4Si (δ 0.00) and CDCl3 (δ = 77.00),
respectively. All NMR data assignments are supported by gCOSY and
gHSQC experiments. HRMS were obtained with an LC/MSD-TOF
spectrometer (Agilent Technologies, ESI-MS).

2,2,2-Trichloro-N-(2,2-diethoxyethyl)-N-(2-methyl-4-oxocy-
clohex-1-enyl)acetamide Ethylene Acetal (2). 2-Methylcyclohex-
ane-1,4-dione monoethylene acetal (1,12 3.20 g, 18.7 mmol) and
aminoacetaldehyde diethyl acetal (2.7 mL, 18.7 mmol) were dissolved
in toluene (45 mL) and placed under Dean−Stark conditions for 4 h.
A solution of trichloroacetyl chloride (2.3 mL, 20.6 mmol, 1.1 equiv)
in toluene (20 mL) was cooled to 0 °C, and the above solution
containing the imine was added dropwise. The reaction was stirred at
room temperature for 1 h and cooled to 0 °C, and a solution of NEt3
(7.8 mL, 56.2 mmol) in toluene (45 mL) was added. After being
stirred for 2 h at room temperature, an aqueous Na2CO3-saturated
solution (70 mL) was added, and the mixture was stirred for 1 h and
extracted with Et2O (3 × 50 mL). The organics were combined,
dried, concentrated, and purified by chromatography (hexane:EtOAc,
9.5:0.5 → 1:1) to afford compound 2 (5.07 g, 67%) as a colorless oil.
IR (neat) 2975, 2932, 1716, 1672, 1375, 1127, 1060, 822 cm−1; 1H
NMR (400 MHz, CDCl3) δ 4.88 (dd, J = 6.4, 3.2 Hz, 1H, CH), 4.00
(dd, J = 13.8, 2.0 Hz, 1H, NCH2), 4.00−3.94 (m, 4H, OCH2), 3.82−
3.68 and 3.65−3.49 (2 m, 2H each, OCH2CH3), 3.11 (dd, J = 13.8,
6.6 Hz, 1H, NCH2), 2.68 (m, 1H, H-5), 2.51 (m, 1H, H-5), 2.31 and
2.20 (2 d, J = 18.0 Hz, 1H each, H-3), 1.80 (m, 2H, H-6), 1.62 (s, 3H,
Me), 1.21 (t, J = 7.0 Hz, 6H, CH3); 13C{1H} NMR (101 MHz,
CDCl3) δ 161.4 (CO), 133.4 (C-1), 131.3 (C-2), 107.1 (C-4), 99.2
(CH), 64.5 and 64.4 (OCH2), 63.9 and 63.2 (OCH2CH3), 56.9
(NCH2), 41.0 (C-3), 31.4 (C-5), 28.4 (C-6), 20.2 (Me), 15.3 and
15.2 (CH3); HRMS (ESI-TOF) m/z [M + H]+ calcd for
C17H27Cl3NO5 430.0955, found 430.0963.

1-(2,2-Diethoxyehtyl)-3a-methyl-1,3a,4,6-tetrahydro-2H-in-
dole-2,5(3H)-dione Monoethylene Acetal (3). A solution of 2
(7.77 g, 17.9 mmol) in benzene (200 mL) was heated to 80 °C with a
heating block, and a solution of AIBN (1.46 g, 8.95 mmol) and
Bu3SnH (17 mL, 62.7 mmol) in benzene (20 mL) was added over 3 h
using a syringe pump. The reaction was stirred for an additional hour
at this temperature, cooled, and concentrated. The residue was
purified by chromatography (hexane:EtOAc, 1:0 → 4:1) to give 3 as a

colorless oil (4.14 g, 71%). In some runs, a small quantity of 3′ was
isolated (less than 5%) as a colorless oil.27

Compound 3: IR (neat) 2975, 2885, 1726, 1686, 1118, 1067 cm−1;
1H NMR (400 MHz, CDCl3) δ 4.90 (t, J = 4.0 Hz, 1H, H-7), 4.72
(dd, J = 6.2, 5.0 Hz,1H, CH), 4.03−4.00 and 3.95−3.87 (2 m, 2H
each, OCH2), 3.78 (dd, J = 14.0, 6.4 Hz, 1H, NCH2), 3.74−3.66 and
3.55−3.47 (2 m, 2H each, OCH2CH3), 3.36 (dd, J = 14.0, 5.0 Hz, 1H,
NCH2), 2.50 (br t, J = 3.7 Hz, 2H, H-6), 2.31 and 2.27 (2d, J = 16.4
Hz, 1H each, H-3), 2.04 and 1.85 (2 d, J = 13.4 Hz, 1H each, H-4),
1.30 (s, 3H, Me), 1.19 and 1.17 (2 t, J = 7.0 Hz, 3H each, CH3);
13C{1H} NMR (101 MHz, CDCl3) δ 174.0 (C-2), 145.8 (C-7a),
108.6 (C-5), 98.8 (CH), 94.5 (C-7), 64.4 and 63.7 (OCH2), 62.5 and
62.1 (OCH2CH3), 46.7 (C-3), 43.3 (C-4), 42.4 (NCH2), 37.5 (C-
3a), 35.1 (C-6), 25.6 (Me), 15.2 and 15.2 (CH3); HRMS (ESI-TOF)
m/z [M + H]+ calcd for C17H28NO5 326.1967, found 326.1975.

Compound 3′: IR (neat) 3405, 2973, 2937, 1705, 1424, 1070
cm−1; 1H NMR (400 MHz, CDCl3) δ 4.63 (dd, J = 7.7, 2.8 Hz, 1H,
CH), 3.98−3.85 (m, 5H, OCH2, NCH2), 3.82 (dq, J = 9.3, 7.1 Hz,
1H, OCH2), 3.76−3.63 (m, 2H, OCH2), 3.51 (dq, J = 9.3, 7.1 Hz,
1H, OCH2), 2.92 (dd, J = 14.6, 7.7 Hz, 1H, NCH2), 2.39 and 2.14
(2d, J = 16.0 Hz, 1H each, H-3), 2.10−1.96 (m, 2H, H-7), 1.65 (m,
1H, H-6), 1.66 and 1.55 (2d, J = 14.2 Hz, 1H each, H-4), 1.38 (td, J =
12.8, 4.0 Hz, 1H, 1H-6), 1.25 (t, J = 7.1 Hz, 3H, CH3), 1.24 (s, 3H,
Me), 1.23 (t, J = 7.2 Hz, 3H, CH3). 13C{1H} NMR (101 MHz,
CDCl3) δ 175.8 (C-2), 107.6 (C-5), 100.0 (CH), 90.3 (C-7a), 64.4
(OCH2), 64.2 (OCH2CH3), 64.0 (OCH2), 63.7 (OCH2CH3), 44.7
(C-3), 43.3 (C-4), 42.1 (NCH2 and C-3a), 30.8 (C-6), 29.1 (C-7),
20.4 (Me), 15.4 and 14.8 (CH3). HRMS (ESI-TOF) m/z [M + H −
H2O]+ calcd for C17H28NO5 326.1967, found 326.1965.

3-Allyl-1-(2,2-diethoxyehtyl)-3a-methyl-1,3a,4,6-tetrahy-
dro-2H-indole-2,5(3H)-dione Monoethylene Acetal (4). A
solution of lactam 3 (524 mg, 1.6 mmol) was cooled to −78 °C,
and a solution of LHMDS in THF (1 M, 2.08 mL) was added
dropwise. After being stirred for 30 min at −78 °C, allyl bromide
(0.29 mL, 3.2 mmol) was added. The reaction was left to reach room
temperature over 2 h, quenched with a NH4Cl-saturated solution (50
mL), and extracted with Et2O (3 × 20 mL). The organics were dried
and purified by chromatography (Al2O3, hexane:EtOAc 9:1) to give 4
(674 mg, 85%) as a colorless oil: IR (neat) 2975, 1724, 1684, 1406,
1340, 1128, 1069 cm−1; 1H NMR (400 MHz, CDCl3) δ 5.87−5.75
(m, 1H, �CH), 5.06 (d, J = 16.4 Hz, 1H, �CH2 H-trans), 5.03 (d, J
= 9.2 Hz, 1H, �CH2 H-cis), 4.93 (t, J = 3.6 Hz, 1H, H-7), 4.71 (dd, J
= 6.4, 4.8 Hz, 1H, CH), 4.04−4.01 and 3.99−3.87 (2 m, 2H each,
OCH2), 3.76−3.62 (m, 3H, OCH2CH3 and NCH2), 3.58−3.48 (m,
2H, OCH2CH3), 3.44 (dd, J = 14.0, 4.8 Hz, 1H, NCH2), 2.47 (d, J =
3.8 Hz, 2H, H-6), 2.32−2.14 (m, 3H, 3-CH2 and H-3), 2.01 and 1.74
(2 d, J = 13.4 Hz, 1H each, H-4), 1.32 (s, 3H, Me), 1.18 (2 t, J = 7.0
Hz, 3H each, CH3); 13C{1H} NMR (101 MHz, CDCl3) δ 176.5 (C-
2), 144.5 (C-7a), 135.3 (�CH), 116.7 (�CH2), 108.7 (C-5), 98.8
(CH), 95.4 (C-7), 64.5 and 63.6 (OCH2), 62.5 and 62.2
(OCH2CH3), 54.0 (C-3), 42.6 (NCH2), 40.6 (C-3a), 37.7 (C-4),
35.0 (C-6), 32.8 (3-CH2), 27.8 (Me), 15.2 (CH3). HRMS (ESI-
TOF) m/z [M + H]+ calcd for C20H32NO5 366.2280, found
366.2289.
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When the crude reaction mixture was chromatographed using SiO2
(hexane:EtOAc, 9:1) the hydrated compound 4′ was isolated in 69%
yield.27

(3RS,3aSR,7aSR)-3-Allyl-1-(2,2-diethoxyehtyl)-3a-methyl-
hexahydro-2H-indole-2,5(3H)-dione Monoethylene Acetal (5).
To a solution of lactam 4 (472 mg, 1.29 mmol) in AcOH (2.2 mL)
was added NaCNBH3 (162 mg, 2.58 mmol) portionwise, and the
reaction mixture was stirred at room temperature for 2.5 h. MeOH
was added, and after an additional 15 min of stirring, the mixture was
concentrated; the residue was taken up in CH2Cl2, quenched with
15% NaOH, and extracted with CH2Cl2 (4 × 20 mL). The combined
organics were dried, concentrated, and purified by chromatography
(hexane:EtOAc, 1:0 → 1:1) to provide compound 5 (328 mg, 69%)
as a colorless oil. IR (neat) 2973, 2880, 1692, 1126, 1092, 1063 cm−1;
1H NMR (400 MHz, CDCl3) δ 6.01−5.90 (m, 1H, �CH), 5.11 (ddt,
J = 17.0, 0.8, 1.6 Hz, 1H, �CH2 H-trans), 5.01 (ddt, J = 10.4, 1.6, 1.6,
1H, �CH2 H-cis), 4.58 (dd, J = 6.6, 4.4 Hz, 1H, CH), 3.96−3.85 (m,
5H, NCH2, OCH2) 3.72, 3.69, 3.56, and 3.48 (4 dq, J = 9.4, 7.0 Hz,
1H each), 3.30 (t, J = 3.0 Hz, 1H, H-7a), 2.85 (dd, J = 14.2, 6.4 Hz,
1H, NCH2), 2.60−2.50 (m, 1H, 3-CH2), 2.20−2.04 (m, 3H, 3-CH2,
1H-7, H-3), 1.89 (ddt, J = 15.4, 14.4, 3.6 Hz, 1H, H-7ax), 1.51 (dq, J
= 13.4, 3.2 Hz, 1H, H-6), 1.48 and 1.39 (2 d, J = 14.8 Hz, 1H each, H-
4), 1.36 (dd, J = 13.4, 3.4 Hz, 1H, H-6), 1.27 (s, 3H, Me), 1.20 and
1.18 (2t, J = 7.0 Hz, 3H each, CH3); 13C{1H} NMR (101 MHz,
CDCl3) δ 176.9 (C-2), 137.6 (�CH), 115.7 (�CH2), 108.2 (C-5),
100.7 (CH), 64.5 and 63.7 (OCH2), 63.5 and 62.8 (OCH2CH3), 60.8
(C-7a), 54.9 (C-3), 42.5 (NCH2), 42.0 (C-3a), 36.5 (C-4), 28.8 (3-
CH2), 28.4 (C-6), 22.9 (Me), 19.8 (C-7), 15.4 and 15.3 (CH3);
HRMS (ESI-TOF) m/z [M + H]+ calcd for C20H34NO5 368.2437,
found 368.2447.

(3RS,3aSR,7aSR)-3-Allyl-1-(2-oxoethyl)tetrahydro-1H-in-
dole-2,5(3H,6H)dione (6). A solution of 5 (259 mg, 0.7 mmol) in
10% HCl:THF (1:4, 14 mL) was stirred overnight at room
temperature. The mixture was diluted with water (10 mL) and
extracted with CH2Cl2 (3 × 15 mL). The combined organic extracts
were dried, concentrated, and purified by chromatography (hex-
ane:EtOAc, 3:1) to provide aldehyde 6 as a colorless oil (172 mg,
98%). IR (neat) 3404, 2934, 1716, 1686, 1430, 1059 cm−1; 1H NMR
(400 MHz, CDCl3) δ 9.65 (s, 1H, CHO), 5.90 (dddd, J = 17.1, 10.1,
8.7, 5.2 Hz, 1H, �CH), 5.14 (d, J = 17.1 Hz, 1H, �CH2 H-trans),
5.07 (d, J = 10 Hz, 1H, �CH2 H-cis), 4.56 and 3.94 (2 d, J = 18.9 Hz,
1H each, NCH2), 3.57 (t, J = 3.6 Hz, 1H, H-7a), 2.66 (dm, J = 15.0
Hz, 1H, 3-CH2), 2.50−2.44 (m, 2H, H-3, H-4), 2.35−2.25 and 2.22−
2.20 (m, 1H, H-6), 2.19 (dtd, J = 14.6, 4.3, 1.8 Hz, 1H, H-6), 2.17−
2.05 (m, 4H, 3-CH2, H-4, H-7), 1.24 (s, 3H, Me); 13C{1H} NMR
(101 MHz, CDCl3) δ 209.3 (CHO), 195.9 (C-5), 176.6 (C-2), 136.2
(�CH), 116.8 (�CH2), 60.5 (C-7a), 52.9 (C-3), 50.6 (NCH2),
45.7 (C-3a), 44.6 (C-4), 35.1 (C-6), 29.5 (CH2−3), 23.9 (Me), 23.4
(C-7); HRMS (ESI-TOF) m/z [M + H]+ calcd for C14H20NO3
250.1443, found 250.1451.

(3RS,3aSR,6SR,7aSR,8RS)-3-Allyl-8-hydroxy-3a-methyltetra-
hydro-6,1-ethanoindole-2,5(3H,6H)-dione (7). A solution of
compound 6 (172 mg, 0.93 mmol) and pTsOH·H2O (180 g, 0.93
mmol) in benzene (10 mL) was heated to reflux with a heating block
for 15 min. The mixture was cooled to room temperature, and after
the addition of water, it was extracted with CH2Cl2 (3 × 20 mL) and
CHCl3:i-PrOH (4:1, 2 × 15 mL). The combined organic extracts
were concentrated and purified by chromatography (CH2Cl2:EtOAc
9.5:0.5 → CH2Cl2:MeOH 9.5:0.5) to obtain 7 as a solid (141 mg,
82%) and subsequently epi-7 (16 mg, 9%).

Compound 7: mp 100−103 °C; IR (neat): 3407, 2925, 1705,
1451, 1423, 1125, 1063, 1044 cm−1; 1H NMR (400 MHz, CDCl3) δ
5.89 (dddd, J = 17.0, 10.1, 8.9, 5.2 Hz, 1H, �CH), 5.14 (ddt, J = 17,
0.8, 0.8 Hz, 1H, �CH2 H-trans), 5.04 (ddt, J = 10.1, 0.8, 0.8 Hz, 1H,
�CH2 H-cis), 4.67 (t, J = 8.1 Hz, 1H, H-8), 4.30 (dd, J = 13.8, 8.6
Hz, 1H, H-9eq), 3.71 (d, J = 5.6 Hz, 1H, H-7a), 2.72 (br s, 1H, OH),
2.63−2.53 (m, 1H, 3-CH2) 2.55 (dd, J = 13.8, 7.2 Hz, 1H, H-9ax)
2.44 (d, J = 14.8 Hz, 1H H-4), 2.40 (ddd, J = 14.6, 5.7, 1.3 Hz, 1H, H-
7), 2.35−2.30 (m, 2H, H-3, H-6), 2.13 (d, J = 14.8 Hz, 1H, H-4),
2.15−2.05 (m, 2H, H-7, 3-CH2), 1.29 (s, 3H, Me); 13C{1H} NMR
(101 MHz, CDCl3) δ 210.0 (C-5), 174.6 (C-2), 136.5 (�CH), 116.4
(�CH2), 72.0 (C-8), 60.2 (C-7a), 50.2 (C-3), 49.0 (C-6), 47.5 (C-
3a), 44.2 (C-4), 41.0 (C-9), 29.7 (3-CH2), 24.2 (Me), 18.8 (C-7).
HRMS (ESI-TOF) m/z: [M + H]+ calcd for C14H20NO3 250.1440,
found 250.1438.

Compound epi-7: IR (neat) 3420, 2923, 1688, 1423, 1077, 909
cm−1; 1H NMR (400 MHz, CDCl3) δ 5.97−5.87 (m, 1H, �CH),
5.15 (d, J = 17.2 Hz, 1H, �CH2 H-trans), 5.06 (d, J = 10.4 Hz, 1H,
�CH2 H-cis), 4.22 (t, J = 6.4 Hz, 1H, H-8), 4.05 (dd, J = 14.8, 1.2
Hz, 1H, H-9eq), 3.52 (d, J = 5.6 Hz, 1H, H-7a), 3.11 (dd, J = 14.8, 6.6
Hz, 1H, H-9ax), 2.67 (dddt, J = 14.8, 6.4, 5.2, 2.0 Hz, 1H, 3-CH2),
2.54 (t, J = 6.0 Hz, 1H, H-6), 2.48 (d, J = 14.4 Hz, 1H, H-4), 2.35
(ddd, J = 8.2, 6.6, 1.2 Hz, 1H, H-3), 2.28 (dd, J = 14.8, 5.2 Hz, 1H, H-
7), 2.16 (d, J = 14.4 Hz, 1H, H-4), 2.19−2.12 (m, 1H,3-CH2), 1.75
(ddd, J = 14.8, 5.9, 1.2 Hz, 1H, H-7), 1.31 (s, 3H, Me); 13C{1H}
NMR δ 215.9 (C-5), 174.6 (C-2), 136.4 (�CH), 116.5 (�CH2),
76.6 (C-8), 59.0 (C-7a), 50.4 (C-3), 47.9 (C-3a), 45.0 (C-4), 44.3
(C-9), 41.7 (C-6), 29.9 (CH2−3), 23.4 (Me), 23.0 (C-7); HRMS
(ESI-TOF) m/z [M + H]+ calcd for C14H20NO3 250.1440, found
250.1435.
Compound 8. To a cooled (0 °C) stirred solution of tricyclic

alcohol 7 (89.4 mg, 0.36 mmol) in CH2Cl2 (2.6 mL) was sequentially
added TsCl (205 mg, 1.08 mmol), Et3N (40 μL, 0.54 mmol), and
DMAP (110 mg, 0.90 mmol), and the reaction was stirred at room
temperature overnight. After quenching with NaHCO3, the mixture
was extracted with CH2Cl2 (4 × 10 mL); the combined organics were
dried, filtered, concentrated, and purified by chromatography
(CH2Cl2:EtOAc, 1:0 → 9.5:0.5) to afford 8 (126 mg, 87%) as a
white solid.

Mp 70−71 °C. IR (neat) 2959, 1711, 1698, 1415, 1362, 1177, 910
cm−1; 1H NMR (400 MHz, CDCl3) δ 7.81 and 7.37 (2d, J = 8.4 Hz,
2H each, Ts), 5.85 (dddd, J = 17.0, 10.0, 8.8, 5.2 Hz, 1H, �CH),
5.12 (dm, J = 17.0 Hz, 1H, �CH2 H-trans), 5.06 (ddt, J = 8.7, 7.0,
1.5 Hz, 1H, H-8), 5.04 (dm, J = 10.0 Hz, 1H, �CH2 H-cis), 4.23 (dd,
J = 14.4, 9.0 Hz, H-9), 3.69 (br d, J = 5.6 Hz, 1H, H-7a), 2.68 (dd, J =
14.4, 7.0 Hz, H-9), 2.59 (br d, J = 5.0 Hz, 1H, H-6), 2.57−2.52 (m,
1H, 3-CH2), 2.46 (s, 3H, Me-Ts), 2.41 (d, J = 14.4 Hz, 1H, H-4),
2.36 (ddd, J = 15.0, 5.8, 1.4 Hz, 1H, H-7), 2.28 (dd, J = 8.4, 6.5 Hz,
1H, H-3), 2.17 (ddd, J = 15.0, 4.8, 1.4 Hz, H-7), 2.11 (d, J = 14.4 Hz,
1H, H-4), 2.09−2.04 (m, 1H, 3-CH2), 1.27 (s, 3H, Me); 13C{1H}
NMR (101 MHz, CDCl3) δ 206.9 (C-6), 174.6 (C-2), 145.5, 132.6,
130.2, and 128.0 (Ph), 136.2 (�CH), 116.6 (�CH2), 79.7 (C-8),
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59.6 (C-7a), 49.9 (C-3), 47.9 (C-3a), 45.6 (C-6), 43.8 (C-4), 38.6
(C-9), 29.5 (CH2−3), 24.0 (Me), 21.7 (Me-Ts), 19.0 (C-7); HRMS
(ESI-TOF) m/z [M + H]+ calcd for C21H26NO5S 404.1532, found
404.1537.
(3RS,3aSR,6SR,7aSR,8RS)-3-Allyl-3a,8-dimethyltetrahydro-

6,1-ethanoindole-2,5(3H, 4H)-dione (9). To a suspension of CuI
(213 mg, 1.11 mmol) in Et2O (4.0 mL) was added dropwise a MeLi
solution (1.6 M in Et2O, 1.26 mL) at −20 °C. The reaction was
warmed to 0 °C, and after stirring for 30 min, a solution of tosylate 8
(45.1 mg, 0.11 mmol) in a 9:1 mixture of Et2O-THF (5 mL) was
added dropwise via a cannula. The stirring was prolonged for 1 h 30
min, an Na2CO3 aqueous saturated solution was added, and the
mixture was extracted with Et2O (4 × 10 mL). The combined organic
extracts were dried over Na2SO4, filtered, and concentrated under
vacuum to afford the crude product, which was purified by
chromatography (hexane:EtOAc, 4:1→ 7:3) to obtain tricycle ring
9 (14 mg, 51%) as a white solid.

Mp 95−97 °C. IR (neat) 2957, 1708, 1691, 1423, 1290, 911 cm−1.
The NMR data were identical with those previously reported by
Gao:4 1H NMR (400 MHz, CDCl3) δ 5.95−5.85 (m, 1H, �CH),
5.15 (d, J = 16.8 Hz, 1H, �CH2 H-trans), 5.03 (d, J = 9.8 Hz, 1H, �
CH2 H-cis), 4.02 (dd, J = 13.6, 8.8 Hz, 1H, H-9), 3.66 (t, J = 3.0 Hz,
1H, H-7a), 2.91 (tq J = 8.8, 6.4 Hz, 1H, H-8), 2.62 (dm, J = 15.0 Hz,
1H, 3-CH2), 2.47 (d, J = 14.4 Hz, 1H, H-4), 2.32 (dd, J = 8.4, 6.4 Hz,
1H, H-3), 2.21 (dd, J = 13.6, 9.0 Hz, 1H, H-9), 2.14 (d, J = 14.4 Hz,
1H, H-4), 2.17−2.09 (m, 3H, H-7 and 3-CH2), 1.93 (t, J = 3.1 Hz,
1H, H-6), 1.28 (s, 3H, 3a-Me), 1.01 (d, J = 6.8 Hz, 3H, 8-Me);
13C{1H} NMR (101 MHz, CDCl3) δ 213.0 (C-5), 174.2 (C-2), 136.7
(�CH), 116.3 (�CH2), 60.2 (C-7a), 50.4 (C-3), 47.3 (C-3a), 46.0
(C-6), 44.4 (C-4), 40.6 (C-9), 36.6 (C-8), 30.0 (3-CH2), 24.4 (3a-
Me), 19.6 (C-7), 17.8 (8-Me); HRMS (ESI-TOF) m/z [M + H]+
calcd for C15H22NO2 248.1651, found 248.1660.
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