
 
 
 
 

 

 
 

 

 

 

 

 

 
 
  

Nutrition and gut microbiota modulation  
as tools for regulating fat accumulation  

in aquaculture fish 
 

Alberto Ruiz Hernández 
 
 
 
 
 

 
 

 
 
 
Aquesta tesi doctoral està subjecta a la llicència Reconeixement- NoComercial – 
SenseObraDerivada  4.0. Espanya de Creative Commons. 
 
Esta tesis doctoral está sujeta a la licencia  Reconocimiento - NoComercial – SinObraDerivada  
4.0.  España de Creative Commons. 
 
This doctoral thesis is licensed under the Creative Commons Attribution-NonCommercial-
NoDerivs 4.0. Spain License.  
 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

                                                    
 

 

 

 

Faculty of Biology 

Department of Cell Biology, Physiology and Immunology 

Doctoral program in Aquaculture 

 
 

 

NUTRITION AND GUT MICROBIOTA MODULATION AS 
TOOLS FOR REGULATING FAT ACCUMULATION IN 

AQUACULTURE FISH 
 

 
Thesis submitted by 

Alberto Ruiz Hernández 

 to qualify for the 

Doctorate degree by the Universitat de Barcelona 
 
 
 

Doctoral candidate 

 
Alberto Ruiz Hernández 

 
 
 
 
 

Director                                        Codirector                                        Tutor 
             Dr. Enric Gisbert Casas                    Dr. Karl B. Andree                  Dr. Isabel Navarro Alvarez 

 

 



 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“The scientific man does not aim at an immediate result. 
He does not expect that his advanced ideas will be readily taken up. 

His work is like that of a planter — for the future. 
His duty is to lay the foundation of those who are to come and point the way.” 

 
Nikola Tesla 
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Abstract 

 
The sustainability concerns, increasing cost, and insufficient availability of fish oil associated 

to aquaculture growth, have led to the search of sustainable alternatives in aquafeeds. 

However, fish oil replacement increases the levels of body fat deposition. An excessive fat 

accumulation in digestive tissues may cause deregulations in nutrient digestion and 

absorption, reduced feed efficiency and growth, as well as negatively affect the organoleptic 

qualities of the fillet. Hence, it is imperative to explore complementary strategies to balance 

fat accumulation when diminishing fish oil content in aquafeeds. This thesis proposes two 

strategies to reduce the levels of fat accumulation in fish: the supplementation of diets with 

additives with digestive and hypolipidemic properties, and the modulation of the gut 

microbial communities through an intestinal microbiota transplant (IMT). To test these 

strategies, gilthead seabream (Sparus aurata), the most important farmed species in the 

Mediterranean, was used as a biological model.  

Under this context, the effect on fat accumulation, and fish health and condition, of three 

different additives was evaluated: i) a blend of bile salts containing sodium cholate, sodium 

deoxycholate, and sodium taurocholate at dietary inclusion levels of 0.06% and 0.12%; ii) a 

combination of capsicum, black pepper, and ginger oleoresins, and cinnamaldehyde (SPICY 

additive) at 0.1% and 0.15% in the diet; and iii) a combination of turmeric, capsicum, black 

pepper, and ginger oleoresins (SO additive) at 0.2% in the diet. Results revealed that the tested 

blend of bile salts at 0.06% in the diet and the SPICY additive at 0.1% and 0.15% promoted 

somatic growth. Additionally, the SPICY additive reduced the values of feed conversion ratio 

at both inclusion levels. Furthermore, the blend of bile salts at 0.12% increased lipid apparent 

digestibility, which was attributed to the higher activity of the bile salt-activate lipase and 

increased secretion of bile salts into the intestine. A higher bile salt-activate lipase activity was 

also observed for the SPICY and SO additives at all the inclusion levels tested. Dietary 

supplementation with the tested additives demonstrated a promising reduction in the levels 

of fat accumulation in the visceral cavity and digestive organs (liver and intestine) without 

compromising the proximate composition of the fillet. Moreover, the three additives 

modulated the local immune response in the intestine, as well as the gut bacterial composition 

in gilthead seabream without affecting the diversity and structure. 

Regarding the IMT, two marine carnivorous fish species that thrive in different environmental 

conditions were selected, Atlantic salmon (Salmo salar) as microbiota's donor, and gilthead 

seabream as recipient. This approach was designed to develop an IMT protocol and to study 

the dynamics of the gut bacterial communities after the IMT and under the influence of 

different dietary treatments. The purpose was further applying this protocol in the gilthead 

seabreams submitted to the above-mentioned nutritional assays to test the reduction in fat 

accumulation levels. However, this assay was not conducted since the microbial modulation 

induced by the tested additives was not robust enough for expecting it to have a determinant 

role in fat accumulation. Nonetheless, the results of the inter-specific IMT provided insight to 
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the paramount role of the diet in shaping the gut microbial communities after an IMT, 

modulating richness, diversity, structure, and composition over time. Unfortunately, many 

experimental factors, such as the high number of individuals typically managed in 

aquaculture, suggest that implementation of IMTs as a reliable strategy in the sector are yet 

remote. 

Results from the current thesis indicated that feed additives are a safe strategy to improve the 

health and condition in farmed fish as well as modulate body fat accumulation without 

affecting the nutritional quality of the fillet. 
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Introduction 
 

 

1. Overview of the state and importance of aquaculture 

 

In the last century, the world has witnessed its fastest population increase ever, growing from 

two billion people in 1930 to eight billion people in 2022 (Taagepera and Nemčok, 2023). 

Despite the slowing growth rate in the last four decades, the world population is expected to 

reach 9.7 billion people by 2050, which would imply an increase in food production of at least 

70% to satisfy the public demand (Galanakis, 2024). Under this framework, a new paradigm 

has emerged: fulfilling the growing demand for food in a sustainable way by decreasing the 

environmental footprint of food production systems. In addition, there was a need to maintain 

and advance socio-economics objectives, including employment opportunities for local 

communities, support of local cultures, equitable profit distribution, quality of life, attention 

to animal welfare, and product quality. Under these concerns, aquaculture has become the 

fastest growing food production sector (Thomas et al., 2021; FAO, 2022). 

According to the last statistics from the Food and Agriculture Organization of the United 

Nations (FAO), in the period of 1990–2020, total world aquaculture expanded by 609% in 

annual output with an average growth rate of 6.7% per year (FAO, 2022). Nowadays, 

aquaculture represents nearly half of the overall production of aquatic animals, reaching an 

estimated value of 88 million tonnes out of 178 million tonnes of total production of aquatic 

animals in 2020. In that year, the total first sale value of the global aquaculture production was 

estimated at USD 265 billion (FAO, 2022). According to FAO and APROMAR estimates, in the 

year 2021, aquaculture production increased to 1,142.5 thousand tonnes in the European Union 

(EU), and Spain was the country with the highest aquaculture production from the EU, 

farming 271,060 tonnes of aquatic organisms (23% of total aquaculture production) 

(APROMAR, 2023). 

Coupled to aquaculture growth, consumption of aquatic animals has significantly increased, 

reaching an amount of 20.5 kg per capita consumption in 2019, with respect to 9.0 kg in 1961. 

In 2020, 89% of total produced aquatic animals (more than 157 million tonnes) were intended 

for human consumption, whereas the remaining 20 million tonnes were mainly used to 

produce fish meal and fish oil (FAO, 2022). The increasing demand and consumption of 

aquatic foods are in line with the well-documented benefits of fish in human nutrition and 

health (Thilsted et al., 2016). In this sense, fish are a very valuable source of bioavailable animal 

protein, essential fatty acids, minerals and vitamins, which are critical for multiple functions, 

and necessary to prevent malnutrition and diseases (Fiorella et al., 2021). Although the pace 

of aquatic food consumption is expected to slow down for the next years due to the 

deceleration of population growth, rising aquatic food prices, and saturated demand in some 

high-income countries, it is projected that by 2030 the amount of aquatic food intended for 
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human consumption will increase by 24 million tonnes with respect to 2020, reaching 182 

million tonnes (FAO, 2022). Under these premises, the development of aquaculture must be 

prioritized during the following years as one of the most sustainable food-producing systems, 

while facing several upcoming challenges, such as disease outbreaks, climatic change 

consequences, or the search for sustainable intensive aquaculture production systems, among 

others (Boyd et al., 2020; FAO, 2022). 
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2. The challenge of fish oil reduction in aquafeeds 

 

In 2030, the total production of fish oil is expected to increase by 13% with respect to 2020 

(FAO, 2022), mainly as a result of aquaculture growth and to the growing popularity of fish 

oil as a nutraceutical supplement for human consumption (Shepherd and Bachis, 2014). 

Consequently, the insufficient production and availability of fish oil, its subsequent increasing 

costs, and the sustainability concerns related to its origin, have brought to the forefront the 

search for other functional and reliable lipid sources that do not compromise the fish and 

consumer requirements of omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs) 

and the sustainability of this sector (Naylor et al., 2021). In this sense, n-3 LC-PUFAs, especially 

eicosapentaenoic acid (EPA; C20:5 n-3) and docosahexaenoic acid (DHA; C22:6 n-3), are 

necessary to ensure an optimal growth, development, health, and reproduction of fish (Ibeas 

et al., 1994; Jaya-Ram et al., 2008; Peng et al., 2014) and to maintain the nutritional quality of 

the fish fillet to human consumers (Tocher, 2009). In addition, EPA and DHA also have many 

health benefits for the human consumer, reducing inflammatory, neural, and heart diseases 

(Horrocks and Yeo, 1999; Campoy et al., 2012), as well as lipid metabolism-related disorders 

(Flachs et al., 2009; Lorente-Cebrián et al., 2013). 

Plant-based oils have undoubtedly been the most widely used alternative to fish oils, with 

palm, soybean, canola/rapeseed, and sunflower oils being the ones most used in aquafeeds 

during the last decades (Turchini et al., 2009; Gunstone, 2011; Mozanzadeh et al., 2021). 

However, it is important to notice that the fatty acid profile varies to a large extent among 

different plant-based oils. In this sense, palm oil is rich in saturated fatty acids (SFAs), with 

concentrations of almost 50% of total fatty acids with respect to a range of 20-30% SFAs in fish 

oil (Turchini et al., 2009; Mozanzadeh et al., 2021). Otherwise, canola/rapeseed oil is rich in 

monounsaturated fatty acids (MUFAs), which account for 62% of total fatty acids, while the 

fish oil levels of MUFAs vary depending on the species of origin, from 25% for anchovy oil 

and menhaden oil to 62% for capelin oil (Turchini and Mailer, 2011; Mozanzadeh et al., 2021). 

On the other hand, soybean and sunflower oils are rich in omega 6 (n-6) PUFAs, with 

concentrations of 51% and 66% respectively, compared to a range of 1.3-5% in fish oils (Brown 

and Hart, 2011; Mozanzadeh et al., 2021). The content of n-3 PUFAs varies between plant-

based oils (7% for soybean oil, 12% for canola/rapeseed oil, and very close to 0% for sunflower 

and palm oils) but it is typically lower than the n-3 PUFA levels of fish oil (12-31%). This 

coupled to the high content of n-6 PUFAs (51% for soybean oil, 20% for canola/rapeseed oil, 

66% for sunflower oil, and 9% for palm oil), leads to lower values for the n-3/n-6 (n-3 

PUFAs/n-6 PUFAs) ratio (0-0.6% for the mentioned plant-based oils vs. 5-24% for fish oil; 

Mozanzadeh et al., 2021). The n-3/n-6 ratio serves as an indicator of health and immune status 

in both fish and humans (Oliva‐Teles, 2012; Carr, 2023). In addition, a pronounced decrease of 

the n-3/n-6 ratio in aquafeeds has been associated to a pro-inflammatory response in the fish 

(Holen et al., 2018). 

Other plant-based oils, which are produced at lower levels and have higher production costs, 

are richer in n-3 PUFAs, such as linseed oil. However, the problem of plant-based oils, 

including linseed oil, is that their content of PUFAs is mainly composed of C18 (and some 

shorter main chain) PUFAs, while the content of LC-PUFAs (including EPA and DHA) is very 
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poor (Turchini et al., 2009). In the particular case of linseed oil, it contains high levels of alpha-

linolenic acid (C18:3 n-3), which is a well-known precursor of EPA and DHA in some groups 

of higher vertebrates (Kartikasari et al., 2012; Stark et al., 2016). Nonetheless, in fish, the 

transcription rate and the activity of the enzymes involved in the metabolism of alpha-

linolenic acid into EPA and DHA are apparently not sufficient to compensate for the n-3 LC-

PUFA deficiencies in the fish fatty acid profile (Turchini et al., 2009). 

Despite the differences in the fatty acid profile of plant-based oils with respect to the above-

mentioned standard values for fish oil, the partial, or even total, substitution of fish oil by 

plant-based oils does not generally compromise the growth and feed performance of the fish 

(Ng et al., 2004; Fonseca‐Madrigal et al., 2005; Mourente and Bell, 2006; Kenari et al., 2011; Reis 

et al., 2014). Nonetheless, the composition of the diet is largely reflected in the fish, resulting 

in imbalances in the fatty acid profile of the whole-body of the fish and edible parts 

(Piedecausa et al., 2007; Fountoulaki et al., 2009; Kenari et al., 2011). In certain cases, it has also 

been reported that the incorporation of plant-based oils in fish diets can entail problems in 

lipid digestibility (Francis et al., 2007; Piedecausa et al., 2007). In addition, the replacement of 

fish oil by plant-based oils often results in physiological disorders, such as dysregulations in 

energy and lipid metabolism, inducing lipogenesis (Panserat et al., 2009; Morais et al., 2012; 

Xu et al., 2022a), accumulation of fat deposits in digestive organs, like the liver (Ruyter et al., 

2006; Fountoulaki et al., 2009; Wassef et al., 2015) and the intestine (Caballero et al., 2002; 

Torrecillas et al., 2017). In terms of immune competence, the incorporation of plant-based oils 

into aquafeeds has also been associated with reduced antioxidant enzyme activities, 

bactericidal activity, and disease resistance against infections, as well as with an induction of 

the pro-inflammatory response (Montero et al., 2010; Tan et al., 2016; Tan et al., 2017). Such 

inflammatory response may be partly induced by the reduction of n-3 LC-PUFAs, which have 

anti-inflammatory effects through regulation of the expression of genes involved in multiple 

signalling pathways, such as the family of peroxisome proliferator-activated receptors (ppar's), 

sterol regulatory element-binding protein-1c (srebp-1c), farnesoid X receptor (fxr), liver X 

receptor (lxr), hepatocyte nuclear factor 4 alpha (hnf4α), and nuclear factor-κB (nfκb) (Jump, 

2004; Zhao et al., 2004). In addition, EPA and DHA can be metabolized into “lipid mediators” 

(or eicosanoids), with anti-inflammatory, vasodilatory, and anti-aggregative effects, while n-6 

LC-PUFAs can generate eicosanoids with pro-inflammatory, vasoconstrictory, and pro-

aggregative effects (Saini and Keum, 2018). Moreover, n-3 LC-PUFAs have well-known 

hypolipidemic and hypocholesterolemic effects (Flachs et al., 2009; Lorente-Cebrián et al., 

2013). 

Another alternative to complement the reduction of dietary fish oil in the aquaculture industry 

are animal-rendered fats, which are widely available and affordable by-products of the meat 

and leather industry, that are attracting a growing interest in the context of circular 

bioeconomy and a much lower carbon footprint than other ingredients specifically produced 

for animal feed manufacturing (EFPRA, 2021). Beef tallow, pork lard, and poultry fat are 

among the most common animal-rendered fats incorporated in the fish diets. The chemical 

properties of animal fats depend on the history (i.e., diet, farming conditions), age, and species 

of the animals used to obtain them (Turchini et al., 2009). Regarding fish health and quality, 

there are some main advantages of using animal-rendered fats in aquafeeds. First, their 

content of n-6 PUFAs is significantly lower than in plant-based oils (3% in beef tallow, 10% in 
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pork lard, 20% in poultry fat). Second, they are overall rich in SFAs and MUFAs (48 and 41% 

in beef tallow, 39 and 44% in pork lard, 29 and 43% in poultry fat, respectively; Mozanzadeh 

et al., 2021). In this sense, SFAs and MUFAs are preferentially catabolized for energy 

production via β-oxidation, which has been shown to spare n-3 LC-PUFAs from catabolism, 

for deposition in the tissues (Henderson, 1996; Trushenski and Lochmann, 2009). Furthermore, 

animal fats have reduced levels of linoleic acid (C18:2 n-6) compared to plant-based oils, which 

is an advantage because C18 PUFAs and specifically linoleic acid, compete with LC-PUFAs 

for tissue deposition (Rombenso et al., 2021). In addition, several studies have shown that 

grow-out feeds with high levels of SFAs and lower levels of C18 PUFA yield fillets with greater 

LC-PUFA content or greater amenability to LC-PUFA restoration (Trushenski et al., 2008, 2011; 

Trushenski, 2009). Nonetheless, the n-3 PUFAs' content of animal-rendered fats is very scarce 

(0.6-1%), resulting in low n-3/n-6 ratios (0-0.2%) (Mozanzadeh et al., 2021). As a result, the 

substitution of fish oil by animal-rendered fats has negative consequences similar to those 

observed when using plant-based oils as a main lipid source, including modifications in the 

fatty acid profile of the fillet (Yun et al., 2013; Xue et al., 2006; Mozanzadeh et al. 2016; Monteiro 

et al., 2018; Campos et al., 2019a), and fat accumulation in the fish fillet and digestive organs 

(Monteiro et al., 2018; Campos et al., 2019a). However, the changes in energy and lipid 

metabolism caused by animal-rendered fats are much less studied than in the case of plant-

based oils. Another problem associated to the use of animal fats is the low digestibility of 

saturated fats (Trushenski et al., 2009). In this sense, when using animal-rendered fats very 

rich in SFAs, such as mammalian fats, at high dietary levels, the lipid digestibility of the diet 

can be compromised (Caballero et al., 2002; Monteiro et al., 2018), but moderate dietary levels 

of such fats (Mozanzadeh et al. 2016; Monteiro et al., 2018) and/or the use of other animal-

rendered fats with lower levels of SFAs, such as poultry fat, do not necessarily affect lipid 

digestibility (Campos et al., 2019a, 2019b). 

Considering the side-effects of the above-mentioned alternatives to fish oil, the blue food 

sector is now at a stage of searching for new nutritional strategies to ensure a more judicious 

use of fish oil while meeting the nutritional requirements of the animal and the consumer. 

Consequently, during the last years, the overall animal and fish feed industries have paid 

attention to the potential development of promising alternative oils rich in n-3-LC-PUFAs 

derived from microalgae (Yaakob et al., 2014), mesopelagic fish (Olsen et al., 2011), 

zooplankton (Vang et al., 2013), single cell microorganisms (Orozco Colonia et al., 2020) and 

genetically modified oilseed crops (Ruiz‐Lopez et al., 2014), among others. However, the low 

supply volumes of these oils and their high production costs, make it difficult to scale up such 

alternatives without expecting prohibitive prices, even higher than those of fish oil (Rombenso 

et al., 2021). Additionally, during the last decades there has existed a widespread public 

rejection of genetically modified organisms, since some people consider them as potential 

threats against the environment and human health (Turchini et al., 2009). A worthwhile 

endeavor needs to be made to optimize the industrial development of some of these 

alternatives at low expenses and to change the public opinion, but nowadays it still seems that 

there is a long way to go to have these novel ingredients widely available to feed formulators. 

Thus, in the meantime, complementary strategies need to be explored to mitigate the negative 

impacts of more conventional fish oil alternatives (plant-based oils and animal-rendered fats) 

while guaranteeing the fish health and nutritional quality (Turchini et al., 2009; Tocher, 2015). 
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3. The problem of fat accumulation in fish 

 

Teleost fish accumulate lipids, mainly as triacylglycerides, in multiple tissues and organs, 

including muscle, adipose tissue, liver, pancreas, esophagus, intestine, and brain. The 

preferential storage sites depend on the species, life stage, and on the nutritional and 

physiological condition, but are generally the fillet, liver, and perivisceral and subcutaneous 

adipose tissues (Salmerón, 2018). In this sense, the adipose tissues and fat deposits are 

reservoirs of metabolic energy that contribute to the early development, growth, swimming 

activity, and reproduction of fish (Tocher, 2003). The degree of fat deposition in the tissues 

depends on different mechanisms. In brief, these are mainly: the incorporation into the cells of 

fatty acids which are converted to triacylglycerides (lipogenesis) and stored in the tissues; the 

incorporation of non-lipid substrates that are converted into fatty acids, and then 

triacylglycerides for storage (known as “de novo” lipogenesis); and the metabolization of 

triacylglycerides into fatty acids and glycerol (lipolysis), which can be released into the blood 

or used to obtain energy through β-oxidation (Salmerón, 2018). Such mechanisms underlying 

fat accumulation in fish are regulated by intrinsic (age, genetic background, hormonal factors, 

reproductive cycle) and extrinsic factors (temperature, salinity, water quality, photoperiod, 

dietary composition; Weil et al., 2013). 

The two main reasons of the interest of studying the regulation of fat accumulation in fish are 

1) to study human disorders associated to obesity in zebrafish, as it shares key conserved 

organs and regulatory pathways with humans, and 2) to learn how to control excessive fat 

storage in aquaculture species in order to improve the fish health and production (Salmerón, 

2018). Regarding the second point, although fat deposits can be used for the benefit of the 

animals, the problem comes up when the modulation of the mentioned mechanisms leads to 

a high or an excessive lipid accumulation, which can be detrimental for the fish health and 

welfare (Salmerón, 2018). Indeed, fish condition has been strongly correlated with the levels 

of fat in and around the peritoneal cavity (perivisceral and peritoneal fat, respectively), and 

total fat deposits' content (Grigorakis and Alexis, 2005). Some common frequent examples of 

drivers of high or excessive lipid accumulation are a low level of swimming activity and 

feeding with a diet which does not fulfill the fish nutritional requirements (Gisbert et al., 2008; 

Salmerón, 2018). In this sense, as mentioned in the section “2. The challenge of fish oil reduction 

in aquafeeds”, a typical consequence of the replacement of fish oil by plant-based oils and 

animal-rendered fats in aquafeeds is a high accumulation of fat in fish tissues (Weil et al., 2013). 

The excess of fat accumulation in fish is normally reflected in the liver, since this organ plays 

a major role in lipid metabolism and storage. Some of the morphological disorders attributed 

to an excess of fat in the fish liver are lipid infiltration into the hepatocytes, increased degree 

of vacuolization, hepatocyte swelling, displacement of nuclei and cell organelles towards the 

periphery, nuclei pyknosis, and in some cases even necrosis, which are symptoms usually 

associated to hepatic steatosis or lipoid liver (Gisbert et al., 2008; Fountoulaki et al., 2009; 

Wassef et al., 2015; Monteiro et al., 2018; Van Vo et al., 2020; Figure 1). Such disorders can lead 

to a potential impairment in the liver functions, which, considering its role in lipid, protein 

and carbohydrate metabolism, immunity, digestion, detoxification, elimination of waste 
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products, and vitellogenesis, can have a severe impact on the animal health (Bruslé and 

Gonzàlez i Anadon, 1996). In this regard, some of the reported side-effects of lipoid liver and 

steatosis in fish are anaemia and immunosuppression, with increased susceptibility to 

infections (Weisman and Miller, 2006; Hardy, 2012). 

An excessive amount of fat storage can also be detected in the intestine by changes in the size 

of enterocytes' supranuclear vacuoles (either an excessive enlargement or reduction), 

accumulation of lipid droplets in supranuclear position, apical nuclear displacement, 

shortening of the height of the mucosal folds, and leucocytic infiltration by an engrossment of 

the lamina propria and submucosa, which are signs of fish enteritis or intestinal steatosis 

(Caballero et al., 2002; Kraugerud et al., 2007; Torrecillas et al., 2017; Figure 1). These symptoms 

may also have some negative consequences for the health of the animal, such as variations in 

the gut microbial profile, deregulations in digestive enzyme activities, modifications of the 

immune response, and induction of a pro-inflammatory response, among others (Gu et al., 

2016; Torrecillas et al., 2017; Fuentes-Quesada et al., 2018). In addition, intestinal steatosis may 

result in pathological damages, producing epithelial abrasion, cellular necrosis, and also 

contributing to the inflammatory responses (Gisbert et al., 2008). Besides that, intestinal 

inflammation can deregulate intestinal motility and impair nutrient digestion and absorption, 

resulting in reduced feed efficiency, lower growth, and other physiological disorders (Serna-

Duque and Esteban, 2020). 

 

Figure 1. Histological morphology with hematoxylin eosin staining of cross sections of: A) liver of 
gilthead seabream (Sparus aurata), and B) intestine of rainbow trout (Oncorhynchus mykiss), both fed with 
a fish oil-based diet; C) liver of gilthead seabream with high levels of fat accumulation, induced by 
replacement of fish oil by poultry oil; D) intestine of rainbow trout with high levels of fat accumulation, 
induced by fish oil substitution by a blend of plant-based oils. The arrows signal the enlarged 
supranuclear vacuoles and lipid deposits in the supranuclear position of the enterocytes. Adapted from 
Carvalho et al. (2021) and Caballero et al. (2002), respectively. 



INTRODUCTION 

 

24 
 

In addition to the impact in fish health and welfare, the degree of fat accumulation also affects 

the quality of the edible product by modifying its organoleptic properties, as well as its yield 

and shelf-life considering the higher propensity to rancidity derived from rapid fatty acid 

oxidation (Hsieh and Kinsella, 1989; Salmerón, 2018). Regarding organoleptic properties, the 

peritoneal fat, which remains as part of the edible part of gutted fish, contributes to the general 

taste of the fish (even though it is unknown to what extent). In this sense, lipids themselves 

have a slight taste, but unsaturated fatty acids are autoxidized producing volatile compounds 

which characterize the fish flavour (Grigorakis, 2007). The visual aspect is another key factor 

for the consumer's perception of the product, and it has been demonstrated that an excess of 

perivisceral fat can affect it negatively (Grigorakis, 2007). The colour of the fillet is also related 

to the fat content, resulting in whiter fillets when the levels of lipids are high (Grigorakis et al., 

2003). Regarding odour, the perivisceral fat usually releases a characteristic, strong and 

unpleasant smell (Grigorakis, 2007). Likewise, the texture of the cooked fillets in the mouth is 

also highly dependent on the fat content. While fillets rich in fat tend to be more succulent 

(“juicy”), less fatty fillets are usually drier and more fibrous (Grigorakis, 2007).  

In summary, it is necessary to maintain the fish lipid levels within an optimal range to meet 

the nutritional requirements and quality expectations of consumers, without exceeding these 

limits, since they can have a negative impact on the public perception and reduce the product 

demand and marketability (Salmerón, 2018). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



NUTRITION AND GUT MICROBIOTA MODULATION AS TOOLS FOR 

REGULATING FAT ACCUMULATION IN AQUACULTURE FISH 
 

25 
 

4. Potential strategies to minimize fat accumulation 

 

Under the above-mentioned context, there is a wide range of different strategies aimed at 

regulating fat accumulation in aquaculture fish species, ranging from selective breeding 

programs (Weil et al., 2013) to feeding and dietary management practices (Kaushik, 2013; Naiel 

et al., 2022). An overview of the two strategies proposed in the present thesis to modulate fat 

accumulation in fish and their state-of-the-art is provided below. 

 

4.1 Feed additives 

The supplementation of fish diets with feed additives with emulsifying and digestive 

stimulant properties, and/or which can promote lipid catabolism and inhibit or reduce 

lipogenesis can be a good potential strategy to mobilize and reduce fat deposits, and to 

improve the overall health and condition status of the fish (Hoseinifar et al., 2017). 

4.1.1 Bile salts 

Bile acids are amphipathic molecules (with a hydrophilic and a hydrophobic side) that are 

synthesized in the liver from cholesterol in a multi-enzymatic pathway. Bile acids have a 

steroid nucleus (C19) with side chains ending in a carboxylic acid, or a hydroxyl group, which 

determines the “bile acid” type (C27 bile alcohols (nonacidic), C27 bile acids or C24 bile acids) 

(Hagey et al., 2010; Romano et al., 2020; Figure 2). The C24 bile acids are the most abundant in 

aquaculture fish, excluding Cypriniformes which have mostly C27 bile alcohols (Hagey et al., 

2010). 

There are two main pathways of bile acid synthesis in the liver. The neutral or “classic” 

pathway occurs mainly in the endoplasmic reticulum of the hepatocytes and is the preferential 

pathway of bile acid synthesis. On the other hand, the acidic or “alternative” pathway is 

initiated in the inner membrane of the mitochondria, where the cholesterol content is very low, 

with the cholesterol transport into the mitochondria being a rate limiting step and generating 

low bile acid content (Zhou and Hylemon, 2014). The bile acids synthesized in the liver are 

known as primary bile acids, and these are mainly chenodeoxycholic acid (CDCA) and cholic 

acid (CA). Then, bile alcohols are conjugated with esterified sulphate and bile acids are 

conjugated with taurine or glycine within hepatocytes. The conjugation of bile acids with these 

amino acids results in the formation of membrane-impermeable molecules, which allows them 

to further concentrate in the bile and to reach high concentrations in the lumen of the biliary 

tract and small intestine (Hofmann et al., 2010). Such sulphates of bile alcohols and conjugated 

bile acids are commonly referred to as “bile salts”. According to the available literature, it 

seems that in fish, bile acids are not well conjugated with glycine, so bile salts are normally 

conjugated with taurine in fish species (Vessey et al., 1990; Kim et al., 2015; Kortner et al., 2016). 
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Figure 2. Schematic representation of bile acid synthesis from cholesterol, and their molecular structure. 
Adapted from Hagey et al. (2010) and Romano et al. (2020). 

 

After conjugation, bile salts are transported and stored in the gallbladder until feed intake, 

when a decrease in pH and the presence of fatty acids and/or amino acids induce the secretion 

of the digestive hormone cholecystokinin (CCK), which triggers gallbladder contraction and 

subsequent secretion of bile salts into the intestine (Le et al., 2019; Romano et al., 2020). 

Throughout the intestinal tract, primary bile salts undergo further chemical modifications by 

host bacteria to generate compounds known as secondary bile acids, which are mainly 

deoxycholic acid (DCA) and lithocholic acid (LCA). This process consists of two types of 

enzymatic reactions: deconjugation and dehydroxylation. Bile salt hydrolases (BSHs), 

distributed across most intestinal bacterial phyla, can deconjugate taurine groups (and/or 

glycine depending on the animal species) from bile salts (Joyce and Gahan, 2017). Afterwards, 

deconjugated primary bile acids are metabolized (oxidized and/or epimerized) by 

hydroxysteroid dehydrogenases from colonic bacteria, particularly from members of the 

genera Eubacterium and Clostridium clusters XIVa and XI, forming the secondary bile acids 

(Hofmann et al., 2010; Joyce and Gahan, 2017). Such transformation of primary bile salts by 

the gut microbiota increases the molecule hydrophobicity, which is associated to a higher 

toxicity, but simultaneously counteracts the toxicity that may be generated by accumulation 

of primary bile salts in the intestinal lumen (Schubert et al., 2017). Bile acids are then 

reabsorbed, mainly through the brush borders of distal enterocytes, and transported back 

through the portal vein to the liver in a process known as enterohepatic circulation, to be 

conjugated again and stored in the gallbladder until the next secretion (Hagey et al. 2010; 

Figure 3). Only a very small portion of bile acids is not reabsorbed and is lost through fecal 

excretion, which is replaced by new bile acid synthesis in the liver (Zhou and Hylemon, 

2014).There is some evidence that suggest that in fish a very similar enterohepatic circulation 

occurs as in mammals, such as the presence of transporters involved in bile salt absorption 

and secretion (Ferreira et al., 2014; Murashita et al., 2014; Ellis et al., 2018), the decreasing bile 

acid content along the intestine (Romarheim et al., 2008; Staessen et al., 2022), and the presence 

of glycine-conjugated bile salts in the fish gallbladder after their dietary supplementation 

(Yamamoto et al., 2007; Kortner et al., 2016), among others. 
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Figure 3. Schematic representation of the synthesis and enterohepatic circulation of bile acids (BAs) in 
mammals. Primary BAs (CA: cholic acid, and CA: chenodeoxycholic acid) are synthesized in the 
hepatocytes mainly through the classic pathway, whose first and rate-limiting enzyme is cholesterol 7α-
hydroxylase (CYP7A1), but also to a much lesser extent through the alternative pathway, whose rate-
limiting enzyme is considered oxysterol 7α-hydroxylase (CYP7B1). Then primary BAs are conjugated 
with glycine or taurine (forming the “bile salts” G-CA: glycocholic acid, G-CDCA: 
glycochenodeoxycholic acid, T-CA: taurocholic acid, T-CDCA: taurochenodeoxycholic acid). The bile, 
containing the bile salts, together with cholesterol, bilirubin, phospholipids, water and electrolytes, are 
stored in the gallbladder, until the hormone cholecystokinin (CCK) stimulates gallbladder contraction. 
Then, bile is released into the small intestine via the cystic and the common bile ducts. In the terminal 
ileum and proximal part of the colon, primary bile salts are deconjugated by different bacterial phyla 
containing bile salt hydrolases (BSHs). Throughout the colon, such deconjugated bile acids can be 
dehydroxylated by members of the genera Eubacterium and Clostridium clusters XIVa and XI, forming 
the secondary bile acids. While CA is primarily transformed to deoxycholic acid (DCA), CDCA is 
mainly transformed to lithocholic acid (LCA). The majority of BAs (95%) are reabsorbed, mainly in the 
terminal ileum, by active transport or passive diffusion, and return to the liver through the hepatic 
portal vein, and only 5% BAs are excreted in the feces. A portion of BAs undergo systemic circulation 
to peripheral organs and tissues (i.e., skeletal muscle, adipose tissue) where they can regulate lipid 
metabolism. In the liver, secondary bile acids can also be conjugated into glycodeoxycholic acid (G-
DCA), glycolithocholic acid (G-LCA), taurodeoxycholic acid (T-DCA), taurolithocholic acid (T-LCA). 
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The importance of bile salts lies in the fact that these molecules can enhance lipid digestion 

through different mechanisms. First, the water-soluble nature of (conjugated) bile salts allows 

them to bind to the interface of lipid aggregates, breaking them down into smaller droplets 

(emulsification) with which they form micelles. In addition, emulsification provides a larger 

surface area on which lipases can act hydrolyzing the lipid ester bonds (Romano et al., 2020). 

Furthermore, the binding of bile salts to the interface of lipid droplets causes an orogenic 

displacement of other compounds which may inhibit lipase activity by accumulation on the 

interface (i.e., surfactants, proteins, free fatty acids released by the action of the lipase) 

(Maldonado-Valderrama et al. 2011; Romano et al., 2020). Moreover, bile salts are necessary 

for the activation of the bile salt-activated lipase, which is the most dominant lipase of marine 

fish and exhibits a broad substrate specificity (wax esters, mono-, di- and triacylglycerides, 

phospholipids, ceramides, fat-soluble vitamin esters and cholesteryl esters). Subsequently, bile 

salts play an essential role in the solubilization and absorption of cholesterol, lipids, and fat-

soluble nutrients, such as vitamins A, D, E, K, carotenoids and astaxanthin (Romano et al., 

2020), as well as contributing to the elimination of excess cholesterol and to the excretion of 

lipophilic waste products (i.e., bilirubin, heavy metals, and drug metabolites) (Frisch and 

Alstrup, 2018). 

In addition to their digestive properties, bile salts are also involved in the modulation of the 

gut microbial communities through the antimicrobial properties that they have in some 

microbial species (Ridlon et al., 2014). Furthermore, bile salts can be considered as nutrient 

signalling hormones, by acting as ligands for many cell membrane and nuclear receptors in 

the enterohepatic system, termed as “bile acid-activated receptors”, such as FXR and G 

protein-coupled bile acid receptor 1 (GPBAR1/TGR5) (Zhou and Hylemon, 2014; Fiorucci et 

al., 2021). Through bile acid-activated receptors, bile salts can regulate lipid, cholesterol, 

lipoprotein, glucose, energy metabolism and transport, gut microbial profile, intestinal 

integrity, immune and inflammatory responses, as well as their own biosynthesis, transport, 

and metabolism (Schonewille et al., 2016; Frisch and Alstrup, 2018; Fiorucci et al., 2021; Li et 

al., 2021a). For instance, it has been shown in mammals that the synthesis of primary bile salts 

is regulated by the levels of bile salts in the liver by LXR and intestinal FXR (Romano et al., 

2020; Figure 4). In this sense, LXR is activated in response to high levels of oxysterols, which 

are products of cholesterol metabolism, and acts as a heterodimer complex with retinoid X 

receptor (RXR) to activate the transcription of cytochrome P450 cholesterol 7α-hydroxylase 

(cyp7a1) (Frisch and Alstrup, 2018). Also known as cholesterol 7α-monooxygenase, CYP7A1 is 

the first and rate-limiting enzyme in the classic bile acid synthesis pathway, exclusively 

expressed in the endoplasmic reticulum of hepatocytes (Chiang and Ferrel, 2020). On the other 

hand, FXR is activated by high levels of bile salts, and results in the transcription of a small 

heterodimer partner (shp), which interacts with the transcription factors α-fetoprotein 

transcription factor (FTF) and HNF4α to inhibit the expression of cyp7a1. Similarly, high levels 

of bile acids in the enterocytes activate intestinal FXR, which stimulates the fibroblast growth 

factor 15/19 (FGF15/19). Then, FGF15/19 reaches the liver though portal vein circulation and 

binds to a specific receptor inducing signalling pathways, such as mitogen-activated protein 

kinase (MAPK) signalling, which in the last term inhibit the trans-activation of cyp7a1 (Chiang 

and Ferrel, 2020; Romano et al., 2020; Figure 4). Very conserved mechanisms of bile acid 

synthesis can be expected in fish with respect to those from mammals since recent studies in 
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fish have shown many similarities on the regulation and functionality of some of the 

components involved in the above-mentioned pathways (Kortner et al., 2013; Kortner et al., 

2014; Wen et al., 2021). 

 

Figure 4. Enterohepatic regulation of primary bile acid synthesis through regulation of cytochrome P450 
cholesterol 7α-hydroxylase (cyp7a1) trans-activation. Abbreviations: BA: bile acids; CYP7A1: cholesterol 
7α-hydroxylase; FGF19: fibroblast growth factor 19 (in humans; FGF15 is the analogue in other 
mammals); FTF: fetoprotein transcription factor; FXR: farnesoid X receptor; HNF4α: hepatocyte nuclear 
factor 4α; LXR: liver X receptor; MAPK: mitogen-activated protein kinase; RXR: retinoid X receptor; 
SHP: small heterodimer partner. Adapted from Romano et al. (2020). 

 

In the poultry industry, the supplementation of the diet with bile acids has been used as a 

reliable strategy to counteract fat digestibility problems in broiler chicks (Arshad et al., 2021). 

In this sense, young birds have a very poor capacity to produce and secrete bile salts and 

lipases until maturation of their gastrointestinal tract at 10-14 days of age, which usually leads 

to low lipid digestion and absorption, decreased feed utilization and growth performance 

(Siyal et al., 2017). The supplementation of broiler diets with bile acids enhances their growth 

and feed utilization, increases lipid digestibility, up-regulates genes involved in lipolysis and 

down-regulates lipogenesis, decreases the levels of triglycerides, cholesterol and free fatty 

acids in serum, reduces the accumulation of hepatic and abdominal fat, and improves the 

carcass quality (Alzawqari et al., 2016; Lai et al., 2018; Ge et al., 2019; Geng et al., 2022; Hu et 

al., 2024). In laying hens, besides having similar effects to the above-mentioned ones, dietary 

bile acid supplementation can reduce their mortality, and improve egg production and quality 

(Yang et al., 2022; Sun et al., 2023). Many studies in the swine industry have also demonstrated 

the potential of bile acids as feed supplements in improving the growth and feed performance, 

lipid digestibility and metabolism, and antioxidant capacity in pigs (Cao et al., 2021; Song et 

al., 2021; Liu et al., 2022a; Qin et al., 2023). In addition, bile acid supplementation in piglet diets 
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can also modify their gut microbial profile, promoting the growth of bacteria beneficial to 

health and reducing the abundance of potential pathogens, and can ameliorate the intestinal 

barrier function and immune response, alleviating the symptoms of disorders such as 

intrauterine growth retardation and reducing incidence of diarrhea (Song et al., 2021; Liu et 

al., 2022a; Qin et al., 2023). Similarly, some works have reported that bile acid supplementation 

induces a higher antioxidant capacity and lipoprotein lipase activity in dairy cows (Chen et 

al., 2024), and modifies the gut microbial communities and improves the milk's yield and fatty 

acid composition in dairy goats (Yin et al., 2024). 

In the aquaculture sector, several growth and health performance benefits have also been 

attributed to bile salt supplementation. For instance, an improved growth performance and 

feed efficiency has been demonstrated in many species when supplementing bile salts in their 

diets, including turbot (Scophthalmus maximus; Gu et al., 2017), rainbow trout (Oncorhynchus 

mykiss; Iwashita et al., 2008), striped catfish (Pangasianodon hypophthalmus; Adam et al., 2023), 

yellow catfish (Pelteobagrus fulvidraco; Yao et al., 2022), large yellow croaker (Larimichthys 

crocea; Ding et al., 2020), Chinese perch (Siniperca chuatsi; Zhang et al., 2022a), among many 

other species (Appendix 1). In addition, it is well-demonstrated that supplementation of bile 

salts in fish promotes lipid metabolism (Zhou et al., 2018a; Jin et al., 2019; Ding et al., 2020; Xu 

et al., 2022b; Gao et al., 2023) and enhances lipid digestibility (Gu et al., 2017; Jiang et al., 2018; 

Wang et al., 2022; Xu et al., 2022b; Gao et al., 2023). Consequently, bile salts can reduce the 

lipid content of the whole-body (Jiang et al., 2018; Zhou et al., 2018a) and liver (Ding et al., 

2020; Xu et al., 2022b; Zhang et al., 2022a), decreasing accumulation of lipid droplets (Yin et 

al., 2021; Xu et al., 2022b; Zhang et al., 2022a), and prevent or reduce inflammation in the gut 

(Iwashita et al., 2009; Kortner et al., 2016). Furthermore, bile salts can enhance the fish 

antioxidant status and improve their immune response (Jin et al., 2019; Li et al., 2021b; Wang 

et al., 2022; Zhang et al., 2022a). Some studies have also shown evidence of a microbial 

modulation towards an improved health status by bile salts (Zhou et al., 2018a; Li et al., 2021b; 

Zhang et al., 2022a).  

4.1.2 Spices and their active principles 

Spices are dried seeds, fruits, roots, barks or flowers of a plant or an herb which have been 

traditionally used in the culinary sector to give a special flavour, taste, aroma, and colour to 

the food. These food adjuncts have also preservative properties, being initially used to retain 

the freshness of the cooked food (Sachan et al., 2018). In addition, spices have been effectively 

used in the indigenous systems of medicine of India and many other countries due to their 

well-recognized medicinal properties, including their tonic, carminative, stomachic, diuretic, 

and antispasmodic effects. Due to their wide range of therapeutic and prophylactic 

applications, nowadays spices have a worldwide application as nutraceuticals, to prevent 

and/or reduce obesity, diabetes and even carcinogenesis among other uses (Platel and 

Srinivasan, 2004; Srinivasan, 2005). During the past four decades, several studies have also 

shown beneficial physiological effects of spices in animals, such as stimulation of lipid 

metabolism, digestive, anti-diabetic, antioxidant, and anti-inflammatory potential (Srinivasan, 

2005). In this sense, spices are a good source of phytogenics, also termed phytobiotics, defined 

as environmentally friendly plant-derived bioactive compounds used as functional feed 
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additives that show positive effects on animal growth and health (Firmino et al., 2021a). Such 

bioactive compounds (or active principles) are plant secondary metabolites usually present as 

mixtures, mainly containing phenolic compounds and terpenes that are chemically 

characterized by their aromatic rings (Christaki et al., 2020). Hence, the growth- and health-

promoting benefits of spices on the animal depend on the variability and complexity of the 

mixture of bioactive compounds, their source, level of dietary incorporation, 

pharmacokinetics, and their synergistic effects (Firmino et al., 2021a). 

Plant bioactive compounds can be isolated and concentrated through many plant extraction 

methods, which determines the type of plant extract (i.e., dried powder, essential oil, or 

oleoresin; Gupta et al., 2012). Regarding their mechanism of action in lipid metabolism, many 

studies in mammals have suggested that the active principles of spices may activate the 

Transient Receptor Potential Vanilloid 1 (TRPV1). In turn, this receptor may affect 

mitochondrial functions, such as the inhibition of oxidative phosphorylation, accumulation 

and retention of calcium ions, and stimulation of ATPase activity, resulting in thermogenesis, 

fat oxidation, and energy expenditure (Westerterp-Plantenga et al., 2006; Nilius and 

Appendino, 2013). Similarly, it has been proposed a similar activation of Transient Receptor 

Potential (TRP) cation channels by bioactive phytogenic compounds in fish (Firmino et al., 

2021a). However, some of the mechanisms underlying the effects of spices in fish may be 

different due to their physiological and metabolic differences with mammals (i.e., the vast 

majority of fish species are ectothermic, so their energy expenditure is not regulated by 

thermogenesis; Van de Pol et al., 2017) and still needs to be studied in depth in fish. 

Under the wide range of spices which have to date been tested in humans and in the livestock 

industry, this thesis is focused on the evaluation of the following combinations of spices and 

active principles (whose importance is individually described below): 

1) capsicum, black pepper, and ginger oleoresins, and cinnamaldehyde. 

2) turmeric, capsicum, black pepper, and ginger oleoresins. 

 

The term capsicum is employed to designate the fruit of Capsicum spp., also known as “chilli 

pepper”, “hot red pepper”, “red chile”, “paprika”, “tabasco” or “cayenne” depending on the 

species and variety of pepper. Capsicum spp. are typically annual flowering plants of the 

Solanaceae family, even though in tropical and subtropical areas some species from this genus 

may be grown as perennials. It was originated in Central and South America, and nowadays 

is cultivated worldwide, with the mayor producers being India, China, Pakistan, South Korea, 

Mexico, and Bangladesh, among many others (Thampi et al., 2003). Capsicum has been 

extensively used for medicinal purposes due to its wide range of health benefits from the 

Mayan civilization to the present day, when it is still used by the pharmaceutical industry as 

a counter-irritant balm (Zachariah and Gobinath, 2008). It has been used to treat sore throat, 

toothache, cough, stomach pain, rheumatism, parasitic infections, and wound healing 

(Singletary, 2011). Capsaicinoids are the main active principles of capsicum (0.2-2%) and they 

give to the spice its bite and pungent taste. The predominant capsaicinoids are the alkaloid 

capsaicin (50-70% of total capsaicinoids; Figure 5) and dihydrocapsaicin (20-25%). 
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Capsaicin, and consequently capsicum, has antioxidant, anti-inflammatory, antiplatelet, and 

antimicrobial effects, as well as hypolipidemic, hypoglycemic, and hypocholesterolemic 

activities (Jiang, 2019). In humans, capsaicinoid supplementation has been shown to decrease 

the levels of body fat (Rogers et al., 2018). Similarly, in obese mice fed with a high-fat diet, 

capsicum has been reported to inhibit adipogenesis, to reduce the size of lipid droplets, and to 

attenuate hepatic steatosis by suppressing lipogenesis, fatty acid oxidation, and 

gluconeogenesis (Kim et al., 2017a). On the other hand, under normal conditions,, capsicum 

often promotes fatty acid oxidation in mammals (Westerterp-Plantenga et al., 2006). Regarding 

the livestock industry, capsicum supplementation in pig diets enhances the growth 

performance, digestive enzyme activities, antioxidant capacity, anti-inflammatory response, 

and gut microbial modulation (Long et al., 2021). An improved growth performance, feed 

utilization, antioxidant capacity, and immune response was also observed in rabbits when 

supplementing their diets with capsicum (Elwan et al., 2020). Similarly, capsicum has also 

positive effects in broilers, in terms of growth performance, antioxidant status, immune 

function, and meat quality (Liu et al., 2021a). A similar enhanced growth performance and 

feed efficiency has also been reported in a few fish species using dietary inclusion of capsicum, 

particularly in Nile tilapia (Oreochromis niloticus; Ibrahim et al., 2024) and rainbow trout 

(Yılmaz et al., 2024) (Appendix 2). The majority of fish studies testing this spice have 

successfully been devoted to showcasing its potential to improve the coloration of fillets 

(Yılmaz and Ergün, 2011; Talebi et al., 2013; Yılmaz et al., 2013a; Yanar et al., 2016; Yigit et al., 

2021) and sensory characteristics, such as taste, flavour and appearance, from the consumer's 

point of view (Yanar et al., 2016). Furthermore, an improved digestive capacity, antioxidant, 

and immune response has been demonstrated in Nile tilapia (Ibrahim et al., 2024), and an 

ameliorated immune resistance has also been suggested in rainbow trout (Talebi et al., 2013) 

when supplementing their diets with capsicum. 

 

Figure 5. Molecular structure of capsaicin, the main bioactive compound of capsicum (Capsicum spp.). 

 

Black pepper (Piper nigrum) is a perennial evergreen flowering vine belonging to the 

Piperaceae family which is usually cultivated for its fruit, known as the peppercorn, that is 

then dried and used as a spice. This plant is native to South India and to date is extensively 

cultivated in tropical regions of the Asia-Pacific region, being the most popular and the most 

widely used spice in the world, collectively termed as the “Black Gold” and the “King of 

Spices” (Ravindran and Kallupurackal, 2012). This spice is used as a traditional medicine in 

India, Sri Lanka, and other parts of South and Southeast Asia, to help mitigate the symptoms 

of asthma, bronchitis, cough, flu, colds, chills, fever, rheumatism, muscular aches and 
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digestive disorders (Chopra and Nayar, 1956; Ravindran and Kallupurackal, 2012). Black 

pepper oleoresin has two main components: the volatile oil (0.6-2.6%), which provides its 

characteristic aromatic flavour (Parthasarathy et al., 2007), and the piperine (5-9%), its major 

bioactive constituent and the main pungency principle (Jiang, 2019; Figure 6). It contains also 

other minor bioactive components, such as alkamides, piptigrine, wisanine, and dipiperamide. 

Piperine has been demonstrated to have antioxidant, anti-inflammatory, antiallergic, and 

analgesic activities in mammals (Jiang, 2019). Some works have demonstrated that black 

pepper supplementation can improve animal growth, feed utilization, and meat quality in 

some mammals, including swine (Sampath et al., 2020), and poultry (Al-Kassie et al., 2011; 

Sugiharto et al., 2020). On the other hand, the effect of black pepper and its main active 

principle in mammalian digestion is not very clear because while some studies have shown 

that black pepper can enhance gastric acid and bile acid secretion in mammals, reducing their 

feed transit time (Srinivasan, 2007), other works have shown no such effects when 

supplementing rat diets with piperine (Platel and Srinivasan, 2004; Srinivasan, 2005). 

Concerning the aquaculture sector, growth promoting effects of black pepper and piperine 

have also been observed in some fish species, such as rohu (Labeo rohita; Ullah et al., 2021), 

common carp (Cyprinus carpio; Giri et al., 2023), and olive flounder (Paralichthys olivaceus; 

Malintha et al., 2023). Moreover, black pepper and piperine can improve the feed efficiency of 

common carp (Giri et al., 2023), olive flounder (Malintha et al., 2023), and rainbow trout (Stoev 

and Zhelyazkov, 2021). Some fish studies have shown improved digestive activities, including 

lipase activity (Giri et al., 2023), and a reduced whole-body lipid content (El-Houseiny et al., 

2019). Many of these studies agreed that black pepper and its main active principle can 

improve the fish immune status and disease resistance (El-Houseiny et al., 2019; Wojno et al. 

2021; Giri et al., 2023; Malintha et al., 2023; Ullah et al., 2021). 

 

 

Figure 6. Molecular structure of piperine, the main bioactive compound of black pepper (Piper nigrum). 

 

Ginger (Zingiber officinale) is an herbaceous perennial deciduous flowering plant from the 

Zingiberaceae family. The whole plant is refreshingly aromatic, but the consumed part of the 

plant is the rhizome, which is the horizontal stem of the plant that sends out the roots. Ginger 

was originated in South-East Asia, probably in India, and nowadays is extensively cultivated 

in tropical areas, from Asia to Africa and the Caribbean (Mohammad and Hamed, 2012; 

Vasala, 2012). The ginger rhizome (colloquially known as “ginger root” or just “ginger”) is not 
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only widely used for culinary purposes as a spice, but also has had a prominent role in 

Chinese, Indian, and Japanese medicine since ancient times (Grant and Lutz, 2000). It is used 

to prevent and treat stomachache, nausea, vomiting, diarrhea, toothaches, rheumatism, 

cholera, motion sickness, and hemorrhage (Adewale et al., 2021). The nutritional and 

nutraceutical advantages of ginger are due to the diverse range of bioactive compounds it 

contains, which can be classified into three classes: volatile oils, and the non-volatile 

compounds, gingerol, and diarylheptanoids. Ginger volatile oils are mainly composed of 

terpenoids, especially monoterpenes and sesquiterpene hydrocarbons, which provide its 

unique aromatic smell (Shaukat et al., 2023). Gingerols (1-3%) are non-volatile molecules 

containing a 3-methoxy-4-hydroxyphenyl group connected to fatty acids, and depending on 

the fatty acids to which they connect, gingerols can be subsequently classified into gingerol, 

shogaol, zingerone, paradol, gingerdione, and gingerdiol (Liu et al., 2019; Figure 7). These 

active compounds are the responsible of the distinctive pungent odours and flavours of ginger 

spice. There are other minor bioactive compounds which can also be found in ginger extracts, 

known as diarylheptanoids. They contain 1,7-disubstituted phenyl groups and heptane 

skeletons, they can be divided into linear and cyclic diphenyl heptane compounds and are 

characterized by its antioxidant and anti-inflammatory activities (Liu et al., 2019). 

Ginger and its bioactive compounds have anti-inflammatory, antioxidant, antimicrobial, 

antiplatelet, antihypertensive, antiglycation, antidiabetic, hypoglycemic, hypolipidemic and 

hypocholesterolemic effects in mammals (Jiang, 2019; Shaukat et al., 2023). Some of such effects 

have also been found in poultry, including their antioxidant and antimicrobial activities, as 

well as an enhancement in the laying rate and performance, and egg quality (Abd El-Hack et 

al., 2020). Additionally, decreased meat lipid levels, and increased tenderness and pH in the 

broiler meat have been observed under ginger supplementation (Abd El-Hack et al., 2020). 

Similarly, in rabbits, improved meat quality, in terms of pH, colour, and decreased lipid 

oxidation, have been reported when supplementing their diets with ginger (Mancini et al., 

2018). Furthermore, several studies have demonstrated the efficiency of ginger in promoting 

weight loss in obese humans (Jiang, 2019). In this sense, reduced levels of adipose tissue in 

Japanese quails have also been observed under supplementation of ginger (Coturnix japonica) 

(Herve et al., 2019), and in rats by inclusion of the active principle zingerone (Han et al., 2008). 

In several fish species, an improved growth and feed performance have been reported when 

supplementing the fish diets with ginger, such as Asian sea bass (Lates calcarifer; Talpur et al., 

2013), rohu (Sukumaran et al., 2016), common carp (Fazelan et al., 2020; Mohammadi et al., 

2020), striped catfish (Ashry et al., 2023), and rainbow trout (Aqmasjed et al., 2023) (Appendix 

2). In addition, as in higher vertebrates, a few works in fish have hinted hypolipidemic effects 

of ginger, such as reduced levels of lipids, triglycerides, and cholesterol in Asian sea bass 

(Talpur et al., 2013), increased lipase activity in striped catfish (Ashry et al., 2023), and 

decreased carcass lipid content in rainbow trout (Mohammadi et al., 2020). Ginger 

supplementation in fish usually results in an improved immune response, coupled to an 

increased bactericidal activity (Talpur et al., 2013; Fazelan et al., 2020; Sukumaran et al., 2016; 

Ashry et al., 2023). Indeed, Ashry et al. (2023) reported a reduction in the abundance of Vibrio 

spp. and fecal coliforms in striped catfish intestine after ginger dietary supplementation. 
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Figure 7. Molecular structure of the main bioactive compounds of ginger (Piper nigrum). Adapted from 
Shaukat et al. (2023). 

 

Turmeric (Curcuma longa), also known as “haridra” or “haldi”, is an herbaceous perennial 

evergreen flowering plant belonging to the ginger family, Zingiberaceae. Turmeric spice is 

known as the “Golden Spice” because of its attractive yellow pigmentation and is obtained 

from the plant rhizomes. This plant is widely cultivated in Asia, mostly in India and China, 

and it had its origin in South-East Asia, probably India, since first reports of turmeric usage 
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dates back nearly 4,000 years to the Vedic culture in India, where it was already used as a 

culinary spice and had a religious significance (Prasath et al., 2018). Since then, turmeric has 

been extensively utilized in traditional medicine practices in India, Pakistan, and Bangladesh, 

as a household remedy for biliary and hepatic disorders, diabetic wounds, anorexia, coryza, 

cough, rheumatism, and sinusitis, among other diseases (Rathaur et al., 2012; Verma et al., 

2018). Similar to the above-mentioned spices, the main components of turmeric oleoresin are 

volatile oils (up to 5%) and non-volatile compounds, including diarylheptanoids, such as 

curcuminoids (2-9%). Volatile oils provide the spice’s aroma and smell, while curcuminoids 

contribute to its colour (Prasath et al., 2018). There are four main groups of curcuminoids 

which can be found in turmeric: curcumin, demethoxycurcumin, bisdemethoxycurcumin, and 

tetrahydrocurcumin. 

Curcumin is the main active principle of turmeric, responsible for the spice’s yellow colour 

and of many of its therapeutic applications (Jiang, 2019; Figure 8). In this sense, since curcumin 

is also a diarylheptanoid, it has antioxidative and anti-inflammatory properties, as well as 

antimicrobial, hypocholesterolemic, hypoglycemic, antidiabetic, hypotensive, antithrombotic, 

hepatoprotective and antimutagenic effects (Prasath et al., 2018; Jiang, 2019). Some studies in 

pigs, lambs, and broiler chickens have shown that turmeric supplementation can improve 

their growth performance, feed utilization (Rajput et al., 2013; Alagbe et al., 2017; Odhaib et 

al., 2021; Recharla et al., 2021), and antioxidant capacity (Khan et al., 2012; Molosse et al., 2019; 

Zhang et al., 2020). In broilers, it also promotes lipid metabolism, reduces abdominal fat 

accumulation, enhances egg production and quality, and induces an immunomodulatory 

response (Khan et al., 2012; Rajput et al., 2013). Several works have shown an improved growth 

and feed performance in different fish species under turmeric or curcumin supplementation, 

including gilthead seabream (Sparus aurata; Ashry et al., 2021), crucian carp (Carassius auratus; 
Jiang et al., 2016), grass carp (Ctenopharyngodon Idella; Ming et al., 2020), rainbow trout (Yonar 

et al., 2019), and Nile tilapia (Diab et al., 2014) (Appendix 2). Similar to broilers, hypolipidemic 

effects of turmeric and curcumin have also been reported in fish (Jiang et al., 2016; Ji et al., 

2021), resulting in reduced body lipid content (El-Houseiny et al., 2019; Wojno et al., 2021; 

Wang et al., 2023). Several studies have also demonstrated an improvement in the antioxidant 

status, as well as immune response and disease resistance, when supplementing aquafeeds 

with this spice or its active principle (Abdel‐Tawwab and Abbass, 2017; Yonar et al., 2019; 

Ming et al., 2020). 

 

Figure 8. Molecular structure of curcumin, the main bioactive compound of turmeric (Curcuma longa). 
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Cinnamaldehyde is the main active principle which can be obtained from the bark oil of the 

cinnamon tree (Cinnamomum zeylanicum or Cinnamomum verum) (Figure 9). Cinnamon is a 

bushy perennial evergreen flowering tree from the Lauraceae family native to Sri Lanka and 

South India, and it is mostly cultivated in South-East Asia, China, Australia, and South 

America. In this case, the most collectively valued part of the tree is the bark, which is not only 

used for cooking and beverages, but also in traditional medicine for treating toothache, soothe 

stomach irritation and urinary infections (Jakhetia et al., 2010; Thomas and Kuruvilla, 2012). 

Cinnamaldehyde has shown antioxidant, anti-inflammatory, antibacterial, antifungal, 

antiplatelet, antidiabetic, hypoglycemic and hypolipidemic properties in mammals (Jiang, 

2019). In this sense, supplementation of cinnamaldehyde in mouse diets down-regulates genes 

involved in lipid synthesis and reduces visceral adiposity (Neto et al., 2020). Similarly, in 

finishing pigs, dietary cinnamaldehyde supplementation leads to decreased backfat thickness 

and intramuscular fat levels, as well as improving their growth performance, meat quality, 

antioxidant capacity, and immune status (Luo et al., 2020). In some studies in broiler chickens, 

positive effects of cinnamaldehyde have also been reported on their growth and feed 

utilization, lipid digestibility, cecal microbiota composition, and a lower incidence of enteritis, 

coccidiosis, and mortality (Yang et al., 2020; Yang et al., 2021). Growth and feed efficiency 

promoting effects have been also reported for fish, including tongue sole (Cynoglossus 

semilaevis; Wang et al., 2021a), fat greenling (Hexagrammos otakii; Gu et al., 2022), grass carp 

(Zhou et al., 2020), and Nile tilapia (Abd El-Hamid et al., 2021) (Appendix 2). Cinnamaldehyde 

also stimulates fish lipid digestion, as indicated by the higher lipase activity (Zhou et al., 2020; 

Wang et al., 2021a) reduced apparent lipid digestibility, and regulation of lipid metabolism-

related gene expression (Gu et al., 2021). The antioxidant capacity and immunity are also 

enhanced under cinnamaldehyde dietary supplementation (Abd El-Hamid et al., 2021; Wang 

et al., 2021a; Amer et al., 2018; Gu et al., 2022). Additionally, the supplementation of tongue 

sole diets with cinnamaldehyde has been shown to increase the abundance of genera 

containing probiotic bacteria in the fish gut (Wang et al., 2021a). 

 

Figure 9. Molecular structure of cinnamaldehyde, the main bioactive compound of cinnamon 
(Cinnamomum zeylanicum or Cinnamomum verum). 

 

Despite the multiple range of beneficial effects of spices individually, it is well-known that 

combining spices can led to a combined and/or synergetic impact with a much higher 

potential on the animal health. For instance, spices with an individual mid-low effect on bile 

acid secretion and bile flow rate in rats, such as capsaicin, ginger and the active principle 

curcumin, have been shown to result in a strong stimulation of bile acid secretion and much 

higher bile flow rate when combined together and with other spices (Platel and Srinivasan, 
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2004). Similarly, in fish the combined effect of some of the above-mentioned spices has led to 

better health or physiological performance results than the spices separately. As an example, 

greater lipid content reduction and immunostimulatory effects have been observed in African 

catfish (Clarias gariepinus) when combining black pepper and turmeric than when only 

supplementing the diets with turmeric (El-Houseiny et al., 2019). Furthermore, an improved 

growth performance, higher protein content, and an enhanced antioxidant and immune status 

have been reported in rainbow trout when supplementing its diets with a combination of 

ginger and curcumin rather than with each compound individually (Aqmasjed et al., 2023). 

The first of the spices' combinations evaluated in the present thesis (containing capsicum, 

black pepper, and ginger oleoresins, and cinnamaldehyde) have already been tested in broiler 

chickens (Herrero-Encinas et al., 2023). The results of supplementing broiler diets with such 

combination of spices were an improved growth performance during the first 7 days, a higher 

gross energy and dry matter digestibility, and a potential enhancement of the antioxidant 

activity (Herrero-Encinas et al., 2023). This makes these spice combinations perfect candidates 

to be tested on other vertebrates with the aim of improving their performance and general 

health, as well as unraveling their effects on the regulation of lipid metabolism and fat storage. 

 

4.2 Intestinal microbiota modulation: microbial transplantation 

Gut microbiota plays a major role in animal health, having developed a multitude of close and 

often highly mutualistic relationships with the host throughout million years of co-evolution. 

Thus, both microbiota and host can be considered as a single unit known as a "holobiont" 

(Postler and Ghosh, 2017). Indeed, the intestinal microbiota can contribute to multiple 

functions in the host, such as feed digestion, nutrient metabolism, energy homeostasis, 

mucosal integrity, intestinal barrier function, immune system modulation, neuronal 

development, and endocrine system modulation, among many others (Forsythe, 2013; Mills et 

al., 2019). 

The key role of the microbiota on the host health is clearly reflected under conditions of 

dysbiosis, which may be defined as a pronounced imbalance in the composition, diversity 

and/or function of bacteria that usually compromises the host health, leading to digestive and 

systemic diseases, and even promoting chronic pathologies, such as atherosclerosis and 

obesity (Postler and Ghosh, 2017; Mills et al., 2019). Inversely, an induced modulation of the 

intestinal microbiota can also improve the host health. For instance, many bacterial species 

from the phylum Firmicutes, including members of the Lactobacillaceae, Ruminococcaceae 

and Lachnospiraceae families, can metabolize complex carbohydrates which are not digestible 

for the host into short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate 

(Fusco et al., 2023). Apart from being an energy source, these SCFAs promote a multiple range 

of health benefits in mammals, such as promotion of an anti-inflammatory response, improved 

intestinal integrity and barrier functions, mineral solubilization, prevention of accumulation 

of toxic metabolites, and increased nutrient digestibility and absorption (Sekirov et al., 2010; 

Ikeda-Ohtsubo et al., 2018; Dawood, 2021). They also have a role on lipid, cholesterol, and 

glucose metabolism, can induce fatty acid oxidation, and reduce lipid storage in liver and 

muscle, as well as modulating feed intake by suppressing the appetite via the gut-brain axis 
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(Canfora et al., 2015; Deleu et al., 2021). On the other hand, some studies have suggested that 

acetate and propionate attenuate intracellular lipolysis in adipose tissue and increase 

adipogenesis (Canfora et al., 2015), so the effect of SCFAs may depend on the tissue where 

they act and on the specific fatty acid type. Considering the above, the role of Firmicutes in 

animal health is undoubtedly essential, so it is not strange that the Firmicutes/Bacteroidetes 

ratio is widely used as a marker of weight gain in mammals and as a marker of intestinal 

dysbiosis in fish (Naya-Català et al., 2021a). The differential significance of this ratio between 

mammals and fish is normal considering the great variability in the composition and 

associated functionality of the microbiota among different species (Ikeda-Ohtsubo et al., 2018; 

Figure 10). More extreme is the case of the ratio Bacteroidetes/Proteobacteria, which in 

humans and mice decreases upon inflammation, while in fish increases with inflammation 

(Brugman et al., 2018). 

 

Figure 10. Overview of the variations in bacterial composition among different animal parts and species, 
in swine, cattle, poultry, and fish. Adapted from Ikeda-Ohtsubo et al. (2018). 



INTRODUCTION 

 

40 
 

The above-mentioned information were just a few examples of the important role of the 

microbiota in animal health and of the close relationships between host and microbiota. 

Consequently, many strategies to improve the animal health and condition through gut 

microbial modulation have to date been tested and developed, including quorum quenching, 

antimicrobial peptides, feed supplementation with exogenous enzymes, probiotics, prebiotics 

or synbiotics, and fecal (FMTs) or intestinal (IMTs) microbial transplants (Cheng et al., 2014; 

Figure 11). 

 

 

Figure 11. Representation of the main strategies which have been tested in humans and animals from 
the livestock industry to improve their health through induced modifications of the gut microbial 
communities. 

 

Among the above-mentioned strategies to modulate intestinal microbiota, FMTs (and IMTs) 

have recently gained attention, since they have generally a longer-lasting effect and do not 

require a continuous supply, even though it is sometimes more effective to repeat the 

transplantation over time (Hasan and Yang, 2019). The concept of FMT generally refers to the 

transference of the microbiota associated to fecal matter (or intestinal content, in the case of 

IMTs) from a healthy donor into the gastrointestinal tract of a diseased recipient in order to 

colonize the gut of the recipient or modify its microbiota to improve the recipient's health 

(Gupta et al., 2016). Traditionally, FMT have been used in humans to treat Clostridium difficile 

infection, and experimentally tested to treat inflammatory bowel disease, obesity and 

metabolic syndrome, and functional gastrointestinal disorders (Gupta et al., 2016). In addition, 

FMTs and IMTs have also been used with production purposes in the livestock industry. In 

this sense, microbial transplantations have been shown to be a good strategy to improve 
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growth and feed performance in ruminants, through ruminal transfaunation, which is the 

transplant of the ruminal content (Pounden and Hibbs, 1949; Ribeiro et al., 2017), as well as in 

swine (Hu et al., 2018) and, in poultry (Siegerstetter et al., 2018). Like in humans, microbial 

transplants have also been applied to other vertebrates with therapeutic uses, in order to 

alleviate and prevent disorders and infections, such as horses (Mullen et al., 2018), ruminants 

(DePeters and George, 2014), pigs (Niederwerder et al., 2018), chicks (Rantala and Nurmi, 

1973), dogs (Pereira et al., 2018), and cats (Furmanski and Mor, 2017), among other animals. 

Although FMTs are still far away from being a routine clinical procedure to reduce body 

weight in obese and metabolic diseased humans due to their lack of efficiency in recent trials 

(Dalby, 2023), there are also some works which have shown promising prospects in this 

application (Hu et al., 2023). Otherwise, an experimental IMT performed between obese mice 

and germ-free mice resulted in increased body fat levels in the receiving individuals, 

associated to a higher Firmicutes/Bacteroidetes ratio and higher capacity for energy extraction 

(Turnbaugh et al., 2006). In this sense, multiple FMTs in mice have demonstrated the 

deleterious effect of the gut microbiota from aged donors when transplanted into younger 

mice, leading to obesity and increased fat body mass, as well as higher insulin levels, systemic 

inflammation, and neurodegeneration; while the inverse health effects are observed when 

transplanting the fecal microbiota from young donors into old individuals (Yan et al., 2023). 

In addition, inter-species FMTs from lean humans into germ-free mice have resulted in lower 

body weight and reduced fat deposition than germ-free mice transplanted with the microbiota 

of obese humans (Ridaura et al., 2013; Tremaroli et al., 2015). Similar results have been 

observed when performing FMT from two different breeds of pigs (“lean” and “obese”) into 

germ-free mice (Yang et al., 2018). In that case, mice transplanted with the “obese” microbiota 

exhibited an elevated Firmicutes/Bacteroidetes ratio, an up-regulated expression of genes 

involved in the lipogenic pathway, and higher hepatic fat deposition with respect to those 

transplanted with the “lean” microbiota, even though no discernible differences in adipocyte 

morphology and fat deposition were found in the abdominal adipose tissue (Yang et al., 2018). 

Some studies in poultry have shown no obvious effects on growth and fat accumulation 

modulation (Song et al., 2023). On the other hand, other works have shown that performing 

FMTs from adult chickens, with high body weight, into younger chickens, resulted in an 

increased body weight and an up-regulation of the hepatic fat metabolism, including genes 

involved in lipid synthesis, catabolism, and transport (Zhang et al., 2022b). These ideas suggest 

that IMTs and FMTs might be good tools, yet under development, to modulate body fat levels 

in vertebrates, at least in the livestock industry, for potentially improving their growth, health, 

overall condition, and ultimately production. 

 

 

 

 

 

 



INTRODUCTION 

 

42 
 

5. Hypothesis and object of study 

 

5.1 Hypothesis 

Based on the hypolipidemic, antioxidant, immunostimulant, and growth-promoting 

properties of bile salts, and spices like capsicum, black pepper, ginger, turmeric, and 

cinnamaldehyde, and considering the important role of the gut microbiota on lipid 

metabolism and the demonstrated efficiency of intestinal microbiota transplants on reducing 

and preventing health disorders in higher vertebrates, the hypothesis of the present thesis is 

established: 

It is possible to reduce fat accumulation and consequently improve the general health and 

condition of aquaculture fish through the supplementation of aquafeeds with additives with 

hypolipidemic properties (bile salts; a combination of capsicum, black pepper, and ginger 

oleoresins, and cinnamaldehyde; and a combination of turmeric, capsicum, black pepper, and 

ginger oleoresins) and by performing an intestinal microbiota transplant from fish with a lean 

phenotype to fish with a fatter condition. 

 

5.2 Object of study: gilthead seabream (Sparus aurata) 

In order to evaluate the efficiency of the above-mentioned strategies in the fish performance, 

reduction of fat accumulation, and general health-promoting effects, the species gilthead 

seabream (Sparus aurata; Figure 12) was selected as the object of study of the present thesis. 

The main reasons for selecting gilthead seabream were mainly that: 1) despite containing 

moderate levels of fat accumulation under typical wild and culture conditions, the body 

adiposity of this well-studied species can be largely modulated by the diet composition, 

particularly by the lipid source used (Houston et al., 2017); and 2) for its importance in the 

current worldwide and European aquaculture industry, explained below. In this context, 

assessing the proposed strategies to reduce fat accumulation in an important aquaculture 

species, represents a significant advantage over other existing fish models such as zebrafish, 

from a production and economic value perspective, as it brings the strategies evaluated herein 

closer to the market, facilitating and accelerating the transfer of results to the industry. 

Gilthead seabream can be found in the Mediterranean Sea and along the coasts of the Eastern 

Atlantic, ranging from Great Britain to Senegal, and rarely in the Black Sea. Due to its 

euryhaline and eurythermal nature, this species from the Sparidae family inhabits both marine 

and brackish water environments, including coastal lagoons and estuarine areas, especially 

during the early stages of its life cycle. Born in the open sea between October and December, 

juveniles usually migrate in early spring towards sheltered coastal waters, characterized by 

their abundant trophic resources and milder temperatures. This species is highly sensitive to 

low temperatures, with a lower lethal limit of 4 °C. Consequently, in late autumn, they return 

to the open sea, where adult fish breed. Gilthead seabream is a benthopelagic fish and in the 

open sea, it is commonly found in rocky areas and seagrass meadows, and on sandy bottoms. 
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Young individuals tend to stay in relatively shallow areas (up to 30 m), but adults may be 

found to 150 m depth (FAO, 2024). Regarding feeding habits, gilthead seabream is mainly 

carnivorous, having a diet largely based on molluscs, crustaceans, and small fish in the wild, 

even though it is accessorily herbivorous. In terms of reproductive biology, this species 

exhibits protandrous hermaphroditism, reaching sexual maturity as males during the first two 

years (20-30 cm) and the turning into females at the second or third year of life (33-40 cm). 

Females are batch spawners capable of laying 20,000-80,000 eggs daily for a period of up to 4 

months. Spawning naturally takes place from December to April, with water temperatures of 

13-17 ºC (Basurco et al., 2011). 

 

 

Figure 12. Gilthead seabream (Sparus aurata). 

 

Concerning aquaculture, this sparid species can be farmed in extensive and semi-intensive 

systems, in coastal ponds and lagoons, or in intensive farming systems, in land installations 

and sea cages. Commercially acceptable size can range from 250 g to over 1.5 kg. The duration 

of the culture period varies based on location and water temperature. Generally, it takes 

between 18 and 24 months to reach 400 g from hatched larvae. Farmed gilthead seabreams are 

fed commercial diets that usually consist of extruded pellets containing around 45–50% 

protein and 20% lipid levels. The main ingredients used in commercial diets have traditionally 

been fishmeal and fish oil, but due to their limited availability and increasing costs, aquafeed 

manufacturers are currently incorporating alternative and sustainable sources into marine fish 

diets (Basurco et al., 2011). In terms of production, gilthead seabream is one of the most farmed 

finfish species in marine and coastal aquaculture worldwide, with more than 282 thousand 

tonnes produced during 2020 (FAO, 2022). In Europe and the rest of the Mediterranean area, 

it reached a production of 320,630 tonnes in 2022, with Spain being the fifth country (after 

Turkey, Greece, Egypt, and Tunisia) with the highest production of gilthead seabream (8,932 

tonnes in 2022) (APROMAR, 2023; Figure 13). 
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Figure 13. Distribution of aquaculture production of gilthead seabream (Sparus aurata) in the 
Mediterranean area in 2022 in volume (tonnes, “t”) and value (million euros). The symbol % in the map 
indicates percentage of total aquaculture production of gilthead seabream. Adapted from APROMAR, 
2023.
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Objectives 
 

 

The general objective of the present thesis is to promote the reduction of fat 

accumulation in gilthead seabream (Sparus aurata) through the supplementation of its 

diets with a blend of bile salts (sodium cholate, sodium deoxycholate, and sodium 

taurocholate hydrate) and two different combinations of spices (capsicum, black 

pepper, and ginger oleoresins, and cinnamaldehyde; and turmeric, capsicum, black 

pepper, and ginger oleoresins), as well as testing the feasibility of performing an 

intestinal microbiota transplant (IMT) from Atlantic salmon (Salmo salar) to gilthead 

seabream and its effect on gut microbial modulation. 

 

The specific objectives are: 

 To study the effect of the tested feed additives in key performance indicators 

(KPIs) associated to growth and feed performance in gilthead seabream.. 

 To evaluate the potential of the tested feed additives in reducing fat 

accumulation in gilthead seabream, through the study of the fillet and liver proximate 

composition, fatty acid profile, histomorphology of digestive tissues, and biomarkers 

related to lipid metabolism. 

 To unravel the role of the tested feed additives in the regulation of the immune 

status in gilthead seabream, through the study of a selected set of biomarkers linked 

to epithelial integrity, barrier function, and immune response. 

 To develop a methodological procedure to perform an IMT from Atlantic 

salmon (Salmo salar) to gilthead seabream, as a conceptual approach for future IMTs 

aimed at reducing fat accumulation through modulation of fish gut microbial 

communities. 

 To study the modulation of gilthead seabream gut microbial communities by 

the feed additives and the IMT, by evaluating the diversity, structure, and composition 

of the gut microbiota. 
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Discussion 
 

The present doctoral thesis aims to propose different strategies to reduce fat accumulation in 

fish and subsequently improve the animal health and condition, using gilthead seabream 

(Sparus aurata) as a biological model. Two different kinds of strategies were proposed: i) the 

supplementation of the fish diets with feed additives that possess digestive and hypolipidemic 

properties; and ii) the regulation of the gut microbial communities through an intestinal 

microbiota transplant. Under this context, the efficiency of a blend of bile salts on improving 

fish performance, lipid digestion, promoting lipid catabolism, and reducing the levels of fat 

accumulation was evaluated (Chapter I; Ruiz et al., 2023a), as well as its modulatory effects on 

the gut microbial communities and the host's immune response (Chapter II; Ruiz et al., 2023b). 

Furthermore, the efficiency of a combination of capsicum, black pepper, and ginger oleoresins, 

and cinnamaldehyde (denoted as “SPICY feed additive”; Chapter III; Ruiz et al., 2023c) and of 

a combination of turmeric, capsicum, black pepper, and ginger oleoresins (denoted as “SO 

feed additive”; Chapter IV; Ruiz et al., 2024a) was also assessed in gilthead seabream 

considering the above-mentioned parameters. To test the above-mentioned additives, a basal 

diet was manufactured with low levels of fish oil (3% in the diet) and poultry fat as the main 

lipid source (8% in the diet) in order to promote body adiposity. Regarding the intestinal 

microbiota transplant, although its efficiency in reducing fat accumulation was not tested in 

this thesis since the use of different feed additives did not allow us to identify a particular 

bacterial profile associated to lower body adiposity, we proposed a first methodological 

approach and studied its applicability in terms of success in the intended microbial 

modulation, as well as the role that the diet plays in shaping the gut microbial communities 

after the transplant (Chapter V; Ruiz et al., 2024b). In this section, the main results of these five 

studies will be evaluated together and comparing them to relevant works of fish nutrition 

literature to facilitate an overview of the importance of the advances made in this thesis. 
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1. Effect of the blend of bile salts and combinations of spices on fish 

performance 

 

Animal growth is generally associated with a good health status and indicates a proper 

fulfilment of nutritional requirements (Lupatsch et al., 1998; Breck, 2014). In addition, animal 

growth is a key indicator of productivity and economic viability to be considered when 

evaluating feed formulations in the blue food sector (Tsikliras and Polymeros, 2014). In the 

present thesis, three different types of dose-response effects in gilthead seabream growth were 

observed regarding the specific additives tested. 

In the case of the blend of bile salts (equal parts of sodium cholate and sodium deoxycholate, 

and sodium taurocholate hydrate in a proportion of 30/70), we observed a dose-dependent 

quadratic response, with the highest final body weight (BWf) values observed when 

supplementing the diet with a dose of 0.06% of total dietary levels (BS0.06%), and intermediate 

values with a dose of 0.12% (BS0.12%). The same dose-dependent response was observed for the 

final standard length (SLf) and specific growth rate (SGR) (Chapter I; Ruiz et al., 2023a). In 

consistency with our results, previous studies have also shown a similar quadratic dose-

response effect when supplementing bile salts in fish diets, with the highest growth rate 

observed at the intermediate inclusion levels tested (Appendix 1). For instance, Ding et al. 

(2020) reported an increased growth of large yellow croaker (Larimichthys crocea) when 

supplementing its diets with bovine bile salts at an inclusion level of 0.03%, but not at 0.015 

nor 0.045%. Similarly, Yu et al. (2019) reported an increased fish growth when including a 

blend of bile acids at 0.03% in largemouth bass (Micropterus salmoides), but not at lower (0.008, 

0.016, 0.024%) nor higher (0.06%) inclusion levels. In hybrid grouper (Epinephelus fuscoguttatus 

♀ × E. lanceolatus ♂), no effects in growth performance were observed when using a dietary 

supplement of sodium taurocholic acid at 0.03, 0.06, 0.12, and 0.15%, but this bile salt had a 

positive growth effect at 0.09% (Xu et al., 2022b). In leopard coral grouper (Plectropomus 

leopardus), a similar significant increase in growth, in terms of BWf, SGR, and weight gain rate 

(WGR), was observed when supplementing its diet with a blend of porcine bile acids at 0.3% 

(Gao et al., 2023). However, the former authors reported that only at an inclusion level of 0.45% 

was a significant increase in SGR observed, though without an effect on BWf and WGR with 

respect to the control diet, while at 0.15 and 0.6% the porcine bile acid blend did not have any 

positive effect on fish growth (Gao et al., 2023). Several of these studies concluded that the 

optimal inclusion levels of bile salts in fish diets depends on the fish species and on the type 

of bile acids (Yu et al., 2019; Xu et al. 2022b). A deficiency or an overdose of bile acids with 

respect to the species-specific optimum range can even compromise the growth of the fish 

(Jiang et al., 2018; Adam et al., 2023; Gao et al., 2023). In this sense, Jiang et al. (2018) reported 

that the dietary supplementation of genetically improved farmed tilapia (GIFT; Oreochromis 

niloticus) diets with bile acids at an inclusion level of 0.005 and 0.015% improved the fish 

growth. On the other hand, the former authors observed that at higher supplementation levels, 

the bile acid blend did not promote (at 0.045%), and even decreased (at 0.135%) the fish growth 

in terms of WGR (Jiang et al., 2018). 
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Apart from the above mentioned studies in which a dose-dependent quadratic response is 

observed, the positive effects of bile salts and bile acids on fish growth performance have been 

well-demonstrated in a wide range of fish species. Some of such species are rainbow trout 

(Oncorhynchus mykiss; Yamamoto et al., 2007; Iwashita et al., 2008), turbot (Scophthalmus 

maximus; Gu et al., 2017), tongue sole (Cynoglossus semiliaevis; Li et al., 2021b; Wang et al., 2022), 

grass carp (Ctenopharyngodon idella; Zhou et al., 2018a), Chinese perch (Siniperca chuatsi; Zhang 

et al., 2022a), yellow catfish (Pelteobagrus fulvidraco; Yao et al., 2022), and striped catfish 

(Pangasianodon hypophthalmus; Adam et al., 2023). However, controversial results on the effects 

of bile salt supplementation on fish growth have been found. For instance, some works have 

shown an absence of improvement when dietary bile acids/salts have been supplemented in 

the diets of rainbow trout (Iwashita et al., 2009), largemouth bass (Yin et al., 2021), large yellow 

croaker (Li et al., 2023), and black seabream (Acanthopagrus schlegelii; Jin et al., 2019). 

Apart from the composition of the blend of bile salts, and dietary inclusion levels, many factors 

may influence the effect of bile salts on fish performance, including the feeding period, and 

the diet composition (Gu et al., 2017; Zhang et al., 2022a). Among these factors, the diet 

composition and bile salt inclusion levels seem to be main drivers, as demonstrated by Bhusare 

et al. (2023). In brief, the former authors reported that in fish fed a diet containing 38% crude 

protein and 8% crude lipids, cholic acid improved growth at inclusion levels of 0.05 and 0.1%, 

while when feeding the fish with a diet with 35% crude protein and 11% crude lipids, only the 

inclusion level of 0.05% showed a positive effect on growth. On the other hand, the former 

authors also observed that neither of the tested inclusion levels (0.05 nor 0.1%) had any effect 

on tilapia growth when feeding with 32% crude protein and 14% crude lipids. In addition, 

Kortner et al. (2016) observed a growth dependency with respect to the dietary protein source 

and to the type of bile salts used in Atlantic salmon (Salmo salar). In this study, when a diet 

with partial fishmeal replacement by soy and pea protein concentrates (41% crude protein and 

30% crude lipids) was supplemented with sodium taurocholate at 1.8% inclusion, no effects 

on growth were observed, while when supplementing the same diet with bovine bile salts (not 

specified) at 1.8% a decrease in growth was observed. On the other hand, when feeding 

Atlantic salmon with a diet with the same proximate composition but with higher fishmeal 

levels and partial fishmeal replacement by soy protein, the inclusion of bovine bile salts at 

1.8% had no effects on the fish growth (Kortner et al., 2016). 

Overall, many reasons have been suggested for the improvement in fish growth observed 

upon dietary supplementation with bile salts, such as an increased feed intake and feed 

utilization efficiency, an optimized lipid digestion, and an enhancement in fish lipid 

metabolism and antioxidant status (Yu et al., 2019; Ding et al., 2020; Gao et al., 2023). Similarly, 

deficiencies in bile acid content have been associated to low lipid digestion and a consequent 

decrease in growth performance (Gao et al., 2023). On the other hand, considering that bile 

acids are absorbed in the intestine and metabolized in the liver and intestinal tract (Romano et 

al., 2020), their high levels may be toxic for the hepatocytes, leading to impaired liver function, 

formation of gallstones, and depressed growth (Adam et al., 2023; Jiang et al., 2018), as well as 

for the enterocytes, damaging the intestinal tissue, impairing its function (Yao et al., 2022). 

Concerning the first combination of spices tested in this thesis, known as SPICY, which 

contained a mixture of capsicum, black pepper, ginger, and cinnamaldehyde, a dose-
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dependent plateau response was observed in terms of growth performance indicators. In 

particular, at an inclusion level of 0.1% (SPICY0.1%) an improvement in BWf and SGR was 

observed, which was maintained at 0.15% (SPICY0.15%; Chapter III; Ruiz et al., 2023c). To date, 

this combination of spices has already been tested in 1-day-old male chicks at a dietary 

inclusion level of 0.025%, showing an improved growth performance in terms of BW at 7 days 

of age (Herrero-Encinas et al., 2023). However, no differences in growth performance were 

observed from 14 days of age on with respect to chicks fed the basal diet without the SPICY 

supplementation (Herrero-Encinas et al., 2023). In a recent study, we have tested the same 

combination of spices at inclusion levels of 0.05, 0.1 and 0.15%, in gilthead seabream fed with 

a diet that included partial fish oil replacement by mammalian-rendered fat (45% substitution; 

Ruiz et al., 2024c). In that study, we observed no changes in growth with respect to the group 

of fish fed the basal diet over time (from 29 to 112 days). This indicates that the effect of spices 

on fish growth may depend on the dietary lipid source and/or on the age of the fish, since in 

that study gilthead seabreams had a BWi of 85 ± 4 g (Chapter IV; Ruiz et al., 2024a), and in the 

trial included in the present thesis (Chapter III; Ruiz et al., 2023c) their BWi was of 44 ± 4 g. On 

the other hand, the second tested combination of spices, denoted as the SO additive, which 

contains turmeric, capsicum, black pepper, and ginger and was only tested at a dietary 

inclusion level of 0.2%, caused no changes in any of the growth performance indicators 

measured (Chapter IV; Ruiz et al., 2024a). 

Apart from the above-mentioned study supplementing the SPICY feed additive in a gilthead 

seabream diet with partial fish oil replacement by mammalian-rendered fat (Ruiz et al., 2024c), 

there are no other studies evaluating the combined effects of the spices evaluated herein in 

fish. However, the effects of capsicum, black pepper, ginger, turmeric (or their active 

principles), and cinnamaldehyde on growth performance, have been individually evaluated 

(Appendix 2). Regarding the three spices common to both tested combinations (capsicum, 

black pepper, and ginger), different results have been found since several factors, such as the 

fish species, feeding period, additive composition (the spices or their active principles), and 

the dietary inclusion level of the additive have not been applied universally to enable 

comparison (Appendix 2). 

For capsicum, many studies have shown no effects on growth in perciform fish, including blue 

streak hap (Labidochromis caeruleus; Yılmaz and Ergün, 2011), jewel cichlid (Hemichromis 

guttatus; Yigit et al., 2021), gilthead seabream (Wassef et al., 2010), and Mozambique tilapia 

(Oreochromis mossambicus; Yılmaz et al., 2013a). Nonetheless, Ibrahim et al. (2024) reported an 

improved growth in Nile tilapia (Oreochromis niloticus) when diets were supplemented with 

capsicum at inclusion levels of 0.04, 0.08, and 0.16%. It is important to note that the above-

mentioned studies in perciform fish diets used much higher dietary inclusion levels (0.3-15%; 

Wassef et al., 2010; Yılmaz and Ergün, 2011; Yılmaz et al., 2013a; Yigit et al., 2021) than Ibrahim 

et al. (2024), which may be the cause of the absence of effects on fish growth. Similar to 

perciform fish, capsicum dietary dosage also seems to be a paramount factor influencing the 

growth of salmoniform fish, as demonstrated by Yılmaz et al. (2024). These authors observed 

that the BWf, WGR and SGR of rainbow trout increased when including a capsicum oleoresin 

at 0.7 and 1.4% in the diet, but not at 2.1 and 2.8% inclusion levels. In addition, Yanar et al. 

(2016) showed no improvement on rainbow trout growth over time (20, 40, 60, and 80 days) at 

inclusion levels of 0.5, 2, and 4.4%. On the other hand, Talebi et al. (2013) found an amelioration 
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in rainbow trout BW and total length (TL) when capsicum was incorporated to the diet at 

lower inclusion levels (0.003, 0.004, and 0.006%), which was maintained in all the tested 

feeding times (20, 40, and 60 days). The former authors suggested that the absence of effect 

reported in some studies at high capsicum doses, may be due to the high levels of cellulose in 

some extracts (21-24% in Yanar et al., 2016), which is non digestible by the host and can 

negatively affect fish growth (Talebi et al., 2013). On the other hand, Yılmaz and Ergün (2011) 

stated that the absence of effect of capsicum at high doses in fish may be likely due to the 

higher concentrations of antinutritional factors, such as excessive pungency, tannin, and 

saponin contents. 

Similar to capsicum, the effect of black pepper on the growth of many fish species depends on 

its dietary inclusion levels, having an optimum range which varies among species. Indeed, 

according to the existing literature, the optimum range of black pepper is of 1-2% in rohu 

(Labeo rohita; Ullah et al., 2021), while for piperine (the main active principle of black pepper) 

the optimum range is of 0.1-0.4% in common carp (Cyprinus carpio; Giri et al., 2023), and 0.05-

0.075% in olive flounder (Paralichthys olivaceus; Malintha et al., 2023). No effects on growth in 

such fish species were observed at higher nor lower inclusion levels (Wojno et al., 2021; Giri et 

al., 2023; Malintha et al., 2023; Ullah et al., 2021), even compromising weight gain (WG) in 

common carp when black pepper was supplemented at 0.02% (Wojno et al., 2021). On the other 

hand, El-Houseiny et al. (2019) and Stoev and Zhelyazkov (2021) did not find differences in 

growth performance when using a dietary supplement of black pepper at 0.1% in African 

catfish (Clarias gariepinus) and rainbow trout, respectively.  

Regarding ginger, most studies have shown positive results on the growth of different fish 

species, such as Asian sea bass (Lates calcarifer; Talpur et al., 2013), rohu (Sukumaran et al., 

2016), common carp (Fazelan et al., 2020; Mohammadi et al., 2020), striped catfish (Ashry et 

al., 2023), and rainbow trout (Aqmasjed et al., 2023). For instance, the study of Sukumaran et 

al. (2016) demonstrated that the effect of ginger on fish growth may be influenced by the 

duration of feeding and dietary inclusion levels. Indeed, while no amelioration on rohu 

growth was reported when supplementing ginger at 0.6% for 30 days, an improved WG, WGR 

and SGR were observed at 60 days. In addition, the former authors reported that while at 

higher inclusion levels (0.8 and 1%) the positive effect of ginger on growth was maintained, 

no effects were observed at lower inclusion levels (0.2 and 0.4%) (Sukumaran et al., 2016). 

Conversely, no beneficial effects in growth were observed under supplementation of Nile 

tilapia diets with ginger at 0.5 and 1%, while a diminishment in growth was observed at an 

inclusion of 1.5% (Brum et al., 2017). 

The fourth component of the SPICY feed additive, cinnamaldehyde, is the main active 

principle of cinnamon, and has shown growth-promoting effects on many fish species, 

including tongue sole (Wang et al., 2021a), fat greenling (Hexagrammos otakii; Gu et al., 2022), 

grass carp (Zhou et al., 2020), and Nile tilapia (Abd El-Hamid et al., 2021). On the other hand, 

Amer et al. (2018) found no differences in Nile tilapia growth when supplementing its diets 

with cinnamaldehyde. The differential effect reported in the works of Amer et al. (2018) and 

Abd El-Hamid et al. (2021) may be due to the distinct feeding period (75 days vs. 12 weeks, 

respectively), additive format (essential oil vs. nanoemulsion, respectively), and/or dietary 

inclusion level (0.105, 0.210% vs. 0.01, 0.02, 0.03%, respectively). 
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Growth promoting effects of turmeric and curcumin (the main active principle of turmeric) 

have also been observed in different fish species, such as common carp (Abdel‐Tawwab and 

Abbass, 2017), grass carp (Ming et al., 2020), rainbow trout (Yonar et al., 2019), and Nile tilapia 

(Diab et al., 2014). On the other hand, Wojno et al. (2021) observed no effect on the fish growth 

when supplementing the diets of common carp with 0.02% turmeric. The different effect with 

respect to the work of Abdel‐Tawwab and Abbass (2017) may be attributed to the different 

feeding period (10 weeks in Abdel‐Tawwab and Abbass, 2017 vs. 40 days in Wojno et al., 2021), 

diet composition (9% crude protein + 4% crude lipids vs. 53% crude protein + 7% crude lipids), 

turmeric origin and format (powder, from a local market in Egypt vs. unknow format, from 

the company Verdure Sciences in Indiana, U.S.A.), and inclusion levels (0.1-0.5% vs. 0.02%, 

respectively). The results of many fish studies suggest that, as with many spices, one of the 

determinants of the efficiency of turmeric on growth performance is the dosage used. For 

instance, for gilthead seabream, curcumin was shown to be effective at a dietary inclusion 

higher than 2% (2-3%; Ashry et al., 2021); for largemouth bass, at 1%, but not at 0.5% (Wang et 

al., 2023); and for crucian carp, at 0.5%, but not at 0.1% (Jiang et al., 2016). In large yellow 

croaker, turmeric improved the growth at a dietary inclusion level of 0.04%, but not at lower 

(0.02%) and higher (0.06%) inclusion levels (Ji et al., 2021). 

Overall, many studies have attributed the growth-promoting effects of capsicum, black 

pepper, ginger, turmeric, and cinnamaldehyde to an enhanced feed utilization, increased 

nutrient digestion and absorption, and a positive modulation of the gut microbiota that leads 

to an improved health status (El-Houseiny et al., 2019; Zhou et al., 2020; Ashry et al., 2021; 

Aqmasjed et al., 2023; Ashry et al., 2023; Ibrahim et al., 2024; Malintha et al., 2023), which is in 

line with the results observed in the present thesis. In addition, the growth-supporting effect 

of turmeric may be associated to the enhancement of the immune and antioxidant systems, 

and anti-stress properties of curcumin (Ming et al., 2020; Aqmasjed et al., 2023). Considering 

that the SPICY feed additive was able to improve the growth in gilthead seabream (Chapter 

III; Ruiz et al., 2023c), the reasons why the SO feed additive did not have an effect on growth 

performance (Chapter IV; Ruiz et al., 2024a) might be associated to the absence of 

cinnamaldehyde. Furthermore, although turmeric, capsicum, black pepper, and ginger have 

growth promoting effects when administered individually, their combined impact is 

unpredictable. Chowdhury et al. (2021) reported that the supplementation of turmeric, ginger, 

and garlic in rohu worsened the metabolic enzyme activities, feed utilization, and growth 

performance of rohu; meanwhile, the pairwise combinations of turmeric and ginger, turmeric 

and garlic, and ginger and garlic had a positive effect in lipase and metabolic activities, and 

feed and growth performance. In this sense, the combination of certain spices can lead to a 

reduced growth performance due to the antagonistic effect of their active principles 

(Parasuraman et al., 2014). In the case of the SO feed additive, it did not produce an adverse 

effect on the growth of gilthead seabream, but a null effect, which may be associated to the 

absence of changes in feed utilization, while the SO additive positively affected the fish lipid 

metabolism, fat deposition, immune status, and composition of the gut microbiota (Chapter 

IV; Ruiz et al., 2024a). In summary, the bioactive compounds present in phytogenic additives, 

their proportions, interactions, origin and type of processing influence the effect of the feed 

additive on fish growth and health (Chowdhury et al., 2021; Firmino et al., 2021a). 
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Concerning feed performance, none of the tested additives influenced the feed intake of 

gilthead seabream, even though an increased feed consumption could have been expected 

based on the attractant properties of the additives used. In this sense, bile salts have a high 

olfactory sensitivity in fish (Buchinger et al., 2014), and can act as a taste stimulus in some 

species, such as channel catfish (Ictalurus punctatus; Rolen and Caprio, 2008) and Mexican 

cavefish (Astyanax fasciatus; Kasumyan and Vinogradskaya, 2019). However, in other fish 

species, like Nile tilapia, silver dollar (Metynnis argenteus), green swordtail (Xiphophorus 

helleri), and roach (Rutilus rutilus), bile salts have neutral or aversive effect on fish taste 

response (Kasumyan and Vinogradskaya, 2019). Moreover, ginger contains gingerol, which 

increases the feed palatability for the fish (Ashry et al., 2023). Some studies have also suggested 

that curcumin and cinnamaldehyde may also be used as feed attractants in fish to increase 

their feed intake due to their attractive flavours (Alagawany et al., 2021; Gu et al., 2022). 

Furthermore, it has been demonstrated that capsicum is a very good feed attractant for 

whiteleg shrimp (Litopenaeus vannamei; Kawamura et al., 2019), but this feature has not been 

reported for fishes so far. Thus, the absence of effect of the tested additives on the feed intake 

may be due to their low dietary inclusion levels, or the presence of other ingredients in diets 

(i.e., protein hydrolysates) that had a more prevalent effect on diet palatability (Hattori et al., 

2021). 

Regarding feed utilization, it has been demonstrated that bile salts, at certain dietary 

concentrations, are able to reduce feed conversion rate (FCR) values in different fish species 

like the hybrid grouper (at 0.09%; Xu et al., 2022b), Chinese perch (at 0.09%; Zhang et al., 

2022a), striped catfish (0.025-0.150%; Adam et al., 2023), and yellow catfish (at 0.06%; Yao et 

al., 2022), and/or to increase feed efficiency ratio (FER) values, as in turbot (at 0.5%; Gu et al., 

2017), and rainbow trout (1.0-1.5%; Yamamoto et al., 2007; Iwashita et al., 2008) (Appendix 1). 

However, when the dietary inclusion levels of bile salts exceed or do not reach an optimum 

range, they may have null or even negative effects on feed utilization parameters, as 

exemplified by Jiang et al. (2018). The former authors reported that while feed efficiency (FE) 

values were improved at a 0.015% inclusion of a blend of bile salts in GIFT tilapia diets, FE 

values did not change at relatively lower (0.005%) or higher levels (0.045%) with respect to the 

basal feed. Meanwhile, at much higher levels (0.135%), FE was compromised. In addition, the 

proximate composition of the diet also influences the potential effect of bile salts on feed 

utilization. This was shown in the study by Bhusare et al. (2023), where it was reported that in 

GIFT tilapia diets supplemented with 0.05 and 0.1% cholic acid, there was an improved FCR 

when decreasing the dietary crude protein to 32% and increasing crude lipids to 14%. 

Furthermore, in some studies with the same species, controversial results have been found. In 

this sense, while Ding et al. (2020) reported lower FCR values in large yellow croaker when 

diets were supplemented with bile salts at 0.015, 0.03, and 0.045%, Li et al. (2023) found no 

changes at 0.03 nor at 0.12% dietary inclusion levels, and improved FCR values were only 

observed at 0.06% inclusion. This may suggest that the optimum inclusion range of bile salts 

for a species may vary regarding the differential diet composition (45% crude protein + 18% 

crude lipids vs. 42% crude protein + 12% crude lipids) and/or the different composition and 

origin of bile salts due to the wide range of bile salts used in different studies (unknow 

composition, bovine bile salts vs. hyodeoxycholic acid, hyocholic acid, chenodeoxycholic acid, 

unknow origin, respectively). 
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The above-mentioned factors (diet composition, bile salt composition, origin, and inclusion 

levels) may be the reasons for the absence of effect of bile salts reported in some works in 

leopard coral grouper (Gao et al., 2023), black seabream (Jin et al., 2019), largemouth bass (Yu 

et al., 2019; Yin et al., 2021), and grass carp (Zhou et al., 2018a). In line with these studies, in 

our case, we also did not observe significant changes in the fish FCR values, even though there 

was a numerical trend towards a decrease with the increasing inclusion levels of bile salts (0% 

bile salts: 1.21 ± 0.05, 0.6%: 1.19 ± 0.05; 0.12%: 1.16 ± 0.03; Chapter I; Ruiz et al., 2023a). 

However, this downward trend in FCR was probably not the cause of the growth-promoting 

effect of bile salts observed in our study, rather than the effect of bile salts on fish lipid 

metabolism and health status (Chapter I; Ruiz et al., 2023a; Chapter II; Ruiz et al., 2023b). 

From the two tested combinations of spices, only the SPICY feed additive was able to improve 

FCR in gilthead seabream at an inclusion level of 0.1%, while intermediate FCR values were 

observed at 0.15% inclusion (Chapter III; Ruiz et al., 2023c; Chapter IV; Ruiz et al., 2024a). The 

success of the SPICY feed additive on reducing FCR values was probably mainly due to its 

content of ginger and cinnamaldehyde. In this sense, positive results on FE have been observed 

in several fish species under dietary supplementation with ginger, including Asian sea bass 

(Talpur et al., 2013), rohu (Sukumaran et al., 2016), common carp (Fazelan et al., 2020; 

Mohammadi et al., 2020), striped catfish (Ashry et al., 2023), and rainbow trout (Aqmasjed et 

al., 2023) (Appendix 2). Similarly, cinnamaldehyde has shown positive effects on FE on most 

of the fish species in which it has been tested, such as tongue sole (Wang et al., 2021a), fat 

greenling (Gu et al., 2022), grass carp (Zhou et al., 2020), and Nile tilapia (Abd El-Hamid et al., 

2021). On the other hand, the effect of capsicum on most fish species was rather neutral, as was 

the case in blue streak hap (Yılmaz and Ergün, 2011), jewel cichlid (Yigit et al., 2021), gilthead 

seabream (Wassef et al., 2010), Mozambique tilapia (Yılmaz et al., 2013a), and rainbow trout 

(Talebi et al., 2013; Yanar et al., 2016). Positive effects of capsicum on FE have only been 

reported in a few studies like those of Ibrahim et al. (2024) in Nile tilapia, and Yılmaz et al. 

(2024) in rainbow trout. Controversial results among studies have been found for black 

pepper, showing potential to ameliorate FCR values in common carp (Giri et al., 2023), and 

rainbow trout (Stoev and Zhelyazkov, 2021). However, other studies have shown that dietary 

supplementation of black pepper or piperine did not always result in FCR changes (Malintha 

et al., 2023), and could even compromise FE values under certain experimental conditions. 

That was the case of Ullah et al. (2021), which observed an increase in FCR values when 

supplementing rohu diets with high concentrations (1, 2, and 3%) of black pepper, and of 

Wojno et al. (2021), who also reported higher FCR values when supplementing common carp 

diets with 0.02% piperine compared to the basal diet, while no changes were observed when 

the diet was supplemented with the same concentration of black pepper. 

The absence of effects on feed utilization of the SO feed additive in gilthead seabream (Chapter 

IV; Ruiz et al., 2024a) was probably a combined consequence of: 1) the presence of capsicum 

and black pepper as the main components of the SO feed additive, which had little or no effects 

on fish FE, as discussed above; 2) the possible antagonistic effect of different bioactive 

compounds from the spices included in the additive (Parasuraman et al., 2014); and 3) the 

relatively low inclusion levels of turmeric in the feed in comparison to the inclusion levels 

indicated in available literature. Regarding this last point, Ashry et al. (2023) observed that the 

optimum inclusion range of curcumin to improve FCR in gilthead seabream was between 2.5 
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and 3.0%; while at lower inclusion levels, FCR values did not vary (2%) or even increase (1.5%). 

Although in other fish species lower levels of inclusion of turmeric have been shown to 

enhance feed utilization, as was the case with crucian carp (0.1-0.5%; Jiang et al., 2016) and 

grass carp (0.02-0.08%; Ming et al., 2020), positive results have also been reported at relatively 

high inclusion levels in rainbow trout (1-4%; Yonar et al., 2019), and Nile tilapia (1-2%; 

Aqmasjed et al., 2023). Otherwise, some works have found no differences in feed utilization 

regardless the difference in inclusion levels tested of turmeric or curcumin, as reported for 

largemouth bass (Wang et al., 2023) and common carp (Abdel‐Tawwab and Abbass, 2017; 

Wojno et al., 2021). Overall, this indicates that if higher inclusion levels of turmeric had been 

tested, we might have observed an improved feed performance in gilthead seabream. 

However, the composition of the SO feed additive and inclusion level tested within this thesis 

were selected based on the close composition and inclusion levels used for the SPICY feed 

additive in our previous trial (Chapter III; Ruiz et al., 2023c), and probably, a higher turmeric 

inclusion would have influenced the beneficial effects of the SO additive observed for lipid 

metabolism, immune status, and gut microbial modulation, which will be discussed in the 

next sections of this thesis. 
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2. Dietary modulation of the blend of bile salts and combinations of 

spices on lipid digestion, metabolism, and accumulation 

 

As reviewed in the Introduction section, the replacement of fish oil by alternative ingredients 

often results in disorders related to lipid metabolism, increasing fat accumulation in digestive 

organs, including the liver (Fountoulaki et al., 2009; Wassef et al., 2015; Monteiro et al., 2018) 

and the intestine (Caballero et al., 2002; Torrecillas et al., 2017), which subsequently can result 

in physiological disorders. For instance, fat accumulation in digestive organs can deregulate 

nutrient metabolism, digestion, and absorption (Serna-Duque and Esteban, 2020), and 

compromise the immune status of the fish (Weisman and Miller, 2006). In addition, 

accumulation of perivisceral fat can negatively affect the flesh quality, by going rancid and 

producing an unpleasant smell, causing consumer rejection (Hsieh and Kinsella, 1989; 

Grigorakis, 2007). Thus, many efforts have been made in the aquaculture industry to keep fish 

lipid levels within an ideal range to fulfill consumer nutritional needs and quality standards 

(Salmerón, 2018). One of the main objectives of the present thesis was to reduce fat 

accumulation through the supplementation of the tested additives on gilthead seabream diets. 

In view of the histomorphological results from the liver and intestine, the three tested 

additives were able to reduce the levels of fat deposits in the liver and intestine, as well as the 

perivisceral fat index (PVFI) values (Chapter I; Ruiz et al., 2023a; Chapter III; Ruiz et al., 2023c; 

Chapter IV; Ruiz et al., 2024a). One of the most striking observations in the present thesis was 

the differential dose-response found among distinct tissues regarding fat accumulation. In this 

sense, in the liver, the effect of the blend of bile salts and of the SPICY feed additive on reducing 

hepatic fat accumulation was much more marked at the lowest concentration tested (0.06% 

and 0.1%, respectively); while at higher concentrations (0.12% and 0.15%, respectively), the 

number of individuals with large hepatic lipid accumulation were only slightly decreased with 

respect to the control group. Similarly, the values of the PVFI were significantly reduced under 

supplementation of gilthead seabream diets with the blend of bile salts and the SPICY additive 

at inclusion levels of 0.06 and 0.1% respectively, while at higher inclusion levels, PVFI values 

were intermediate. On the other hand, in the intestine, such additives were highly effective in 

reducing fat deposit accumulation at both inclusion levels tested, but especially at the highest 

levels (0.12% and 0.15%, respectively). The distinct dose-response observed in the distinct 

tissues may be attributed to the variations in the enzymatic activities involved in lipid 

digestion and metabolism among tissues, as well as to the molecular mechanisms underlying 

lipid metabolism inherent to each tissue. In this sense, the activity of the bile salt-activated 

lipase was much higher in the anterior intestine than in the pyloric caeca (Chapter I; Ruiz et 

al., 2023a; Chapter III; Ruiz et al., 2023c; Chapter IV; Ruiz et al., 2024a). In addition, previous 

studies have reported that the enzyme lipoprotein lipase (LPL) has a high activity in the liver 

and mesenteric adipose tissue of gilthead seabream (Saera-Vila et al., 2005), while LPL activity 

is almost non-existent in the fish intestine (Feng et al., 2014). Further, while a higher effect of 

bile acids could be expected in the enterocytes due to the well-known role of the fish intestine 

in bile acid absorption (Romano et al., 2020), the gene expression results of fish liver suggested 

some counter-regulatory mechanism regarding bile salt and lipid metabolism to balance their 
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levels, as will be further discussed below. The SO feed additive, which was only assessed at 

an inclusion level of 0.2%, usefully reduced the levels of perivisceral fat and the accumulation 

of fat deposits in the liver and intestine as well, being especially effective in the intestine. In 

addition, only the supplementation of gilthead seabream diet with the SO feed additive was 

able to reduce the levels of lipids in the liver with respect to the fish fed the control diet 

(Chapter IV; Ruiz et al., 2024a). 

In agreement with the results of the present thesis, supplementation of bile salts in aquafeeds 

usually leads to a decrease in hepatic lipid accumulation, which is evinced by the reduction in 

the number and size of hepatic vacuoles and lipid droplets in the liver, as demonstrated in 

black seabream (Jin et al., 2019), largemouth bass (Yin et al., 2021), hybrid grouper (Xu et al., 

2022b), yellow catfish (Yao et al., 2022), and Chinese perch (Zhang et al., 2022a). On the other 

hand, similar to what was observed for key performance indicators associated with growth 

and feed performance in some fish species, at high inclusion levels bile salts may not be as 

effective (or even harmful) in reducing hepatic fat accumulation. This was the case of Jiang et 

al. (2018), which found an increase in hepatic vacuolization and hepatocyte nuclear migration 

under dietary supplementation of a blend of bile salts at an inclusion level of 0.14% in GIFT 

tilapia. Regarding the intestine, some fish studies have also shown reduced levels of fat 

accumulation in the enterocytes under dietary supplementation of bile salts, marked by a 

reduced vacuolization, central nuclear position, enlargement of the mucosal folds, and 

decreased leukocyte infiltration. This was the case of rainbow trout (Yamamoto et al., 2007; 

Iwashita et al., 2008; Iwashita et al., 2009) and largemouth bass (Yin et al., 2021). 

Despite the diminishment in fat deposits in the liver and intestine of gilthead seabream when 

diets were supplemented with bile salts, no significant differences in the proximate 

composition of the liver and fillet were found in our study (Chapter I; Ruiz et al., 2023a). On 

the other hand in some fish diets, supplementation with bile salts at different concentrations 

reduced levels of lipids in the liver of GIFT tilapia (Jiang et al., 2018), grass carp (Zhou et al., 

2018a), largemouth bass (Yu et al., 2019), large yellow croaker (Ding et al., 2020), hybrid 

grouper (Xu et al., 2022b), and Chinese perch (Zhang et al., 2022a), and in the muscle of GIFT 

tilapia (Jiang et al., 2018), large yellow croaker (Ding et al., 2020), and hybrid grouper (Xu et 

al., 2022b). Reduced lipid contents in whole-body proximate composition have also been 

found under bile salt supplementation in GIFT tilapia (Jiang et al., 2018; Bhusare et al., 2023) 

and leopard coral grouper (Gao et al., 2023), while the whole-body lipids levels have been 

shown to increase in turbot (Gu et al., 2017) and largemouth bass (Yu et al., 2019). Nonetheless, 

in the present thesis we did not evaluate the fish whole-body proximate composition. 

As explained above, in the fish nutrition literature regarding the inclusion of spices in 

aquafeeds, the majority of studies have been devoted to evaluating the effect of spices on the 

fish growth and feed performance. Only a few studies have focused on the modulation of the 

levels of fat accumulation, though in these controversial results were obtained. For instance, 

in gilthead seabream, capsicum dietary supplementation did not influence the muscle lipid 

content (Wassef et al., 2010). Conversely, dietary inclusion of capsicum increased the whole-

body content of lipids in Mozambique tilapia (Yılmaz et al., 2013a), and the levels of hepatic 

fat accumulation in jewel cichlid (Yigit et al., 2021). However, it is important to remember the 

high dietary inclusion levels of capsicum in these assays (3-15% in Yigit et al., 2021; 0.7-2.8% 
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in Yılmaz et al., 2013a), which can be detrimental, but at lower concentrations may have health-

promoting effects (Guldiken et al., 2018). Contradictory results among species have also been 

obtained for black pepper supplementation, which has been shown to decrease the whole-

body content of lipids in African catfish (El-Houseiny et al., 2019), while no differences were 

found in common carp (Wojno et al., 2021). On the other hand, the former authors reported 

that dietary supplementation of piperine rather than black pepper, increased common carp 

whole-body content of lipids (Wojno et al., 2021). In rohu, an increase in the levels of fat in the 

fillet was also reported under black pepper dietary supplementation (Ullah et al., 2021). 

Concerning ginger dietary supplementation, Mohammadi et al. (2020) reported decreased 

whole-body lipid levels in common carp, while in rainbow trout no differences with respect 

to fish fed the basal diet were found (Aqmasjed et al., 2023). On the other hand, Ashry et al. 

(2023) found a higher carcass lipid content in striped catfish when diets were supplemented 

with 1.5% ginger, but not at 0.5 and 1% (Fazelan et al., 2020). 

Regarding turmeric and curcumin, some studies have reported a reduction in the lipid content 

in the liver, as shown in large yellow croaker (Ji et al., 2021), or in the whole-body in common 

carp (Wojno et al., 2021). Other studies have reported no effect from turmeric nor curcumin 

supplementation on the lipid content in carcass in gilthead seabream (Ashry et al., 2023), nor 

in the whole-body in crucian carp (Jiang et al., 2016), common carp (Abdel‐Tawwab and 

Abbass, 2017), rainbow trout (Aqmasjed et al., 2023), and largemouth bass (Wang et al., 2023). 

Cinnamaldehyde dietary supplementation usually does not influence the fish lipid content in 

muscle and whole-body, as demonstrated in fat greenling (Gu et al., 2022), and Nile tilapia 

(Amer et al., 2018), respectively. 

The combination of spices may enhance their potential to reduce lipid accumulation in the fish 

body, as happened in rohu when diets were supplemented with ginger and turmeric 

(Chowdhury et al., 2021). Similar findings were reported in African catfish under dietary 

supplementation of black pepper and turmeric (El-Houseiny et al., 2019). Nonetheless, other 

studies have shown no changes in lipid levels when combining some of such spices, as it was 

the case for ginger and curcumin in rainbow trout (Aqmasjed et al., 2023). In line with the 

results observed in the present thesis, when in our previous assay we supplemented the SPICY 

feed additive at 0.1 and 0.15% in a diet with partial fish oil replacement by mammalian-

rendered fat, we observed a decrease in fat deposit accumulation in the liver, in addition to a 

reduction in fillet lipid levels (Ruiz et al., 2024c).  

None of the additives tested in this thesis altered the proximate macronutrient composition 

nor the fatty acid profile of the fish fillets. However, there was a significant increase in the 

docosahexaenoic acid (C22:6 n-3; DHA) / eicosapentaenoic acid (C20:5 n-3; EPA) ratio when 

the diet was supplemented with the SPICY additive at an inclusion level of 0.1%, which was 

linked to a numerical non-significant increase in DHA and decrease in EPA levels in gilthead 

seabream fillet (Table 1). This was in line with the increase in DHA, and consequently n-3 LC-

PUFA, contents observed in the liver under the dietary SPICY supplementation, even though 

such an increase in fatty acids was only significant at an inclusion level of 0.15%. In this sense, 

animal fats (such as poultry fat in this case) are high in SFAs and MUFAS, which are 

preferentially oxidized to produce energy in fish, sparing LC-PUFA from catabolism and 

increasing their availability and tissue deposition (Henderson, 1996; Fonseca‐Madrigal et al., 
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2005; Trushenski and Lochmann, 2009). Regarding the well-demonstrated stimulatory role of 

spices on fatty acid oxidation in mammals (Westerterp-Plantenga et al., 2006), which may also 

be extrapolated to fish as discussed below, the SPICY additive may have potentiated the 

preferential oxidation of SFAs and MUFAs over LC-PUFAs. Among LC-PUFAs, many studies 

have pointed to a preferential deposition of DHA over EPA and most n-3 LC-PUFAs, which 

may be the reason of the increase in DHA levels in the liver, and DHA/EPA ratio in fillets. In 

addition, part of the content of EPA and other n-3 PUFAs may be metabolized into DHA to 

help meet the fish requirements (Coccia et al., 2014; Emery et al., 2016; Morais et al., 2020). The 

DHA/EPA ratio values of the fillets of fish fed the SPICY0.1% diet (1.37 ± 0.08) were closer to 

the values of farmed gilthead seabream juveniles fed a fish oil-based diet (1.45-2.04) reported 

in previous works (Lenas et al., 2011; Ruiz et al., 2024c) than in fish fed the control diet (1.23 ± 

0.03) that was rich in SFAs and MUFAs. However, other studies have reported much lower 

DHA/EPA ratios for the same fish species fed with fish oil-based diets (i.e., 0.56-081; Izquierdo 

et al., 2005; Fountoulaki et al., 2009; Benedito-Palos et al., 2010). 

Considering the wide range of DHA/EPA values reported in different studies, it is difficult to 

interpret the results of DHA/EPA ratio in terms of improvement in nutritional quality. In any 

case, apart from the increase in the DHA/EPA values observed in fish fed the SPICY0.1% diet, 

no other differences were observed in the fatty acid profile of the fillet, nor in the n-6/n-3 ratio. 

In addition, there were no differences in the indices of atherogenicity (IA), thrombogenicity 

(IT), and hypocholesterolemic/ hypercholesterolemic fatty acids' ratio (h/H) in the fillets 

among different dietary treatments (Table 1). These indices evaluate the nutritional quality of 

the lipid fraction from the edible flesh for the consumer (Chen and Liu, 2020). The IA indicates 

the relationship between the sum of the main SFAs, which are considered pro-atherogenic, 

which favour the adhesion of lipids to cells of the circulatory system, and the sum of 

unsaturated fatty acids, which are considered anti-atherogenic. The IT is denoted as the 

relationship between the pro-thrombogenic and anti-thrombogenic fatty acids, and this index 

indicates the amenability to clot formation in blood vessels. The h/H characterizes the 

relationship between hypocholesterolemic and hypercholesterolemic fatty acids (Chen and 

Liu, 2020). However, one critical point of the IA and IT indices is the consideration of n-6 

PUFAs as anti-atherogenic and anti-thrombogenic agents, since recent studies have 

demonstrated that n-6 PUFAs produce eicosanoids with pro-inflammatory, vasoconstrictory, 

and pro-aggregatory properties (Saini and Keum, 2018). Nonetheless, the values obtained for 

the IA and IT, which were similar among all dietary treatments, were far below the limits 

considered harmful for the consumer’s health (1.0; Marques et al., 2022), and within the value 

range considered as beneficial for human health (below 0.5; Bazarsadueva et al., 2021). 

Regarding the h/H ratio, the values of all gilthead seabream dietary groups were maintained 

within the ordinary value range of fish, ranging from 1.54 to 4.83 (Chen and Liu, 2020; 

Bazarsadueva et al., 2021). Overall, these results suggest that the tested additives were able to 

reduce the fat accumulation in digestive organs (liver and intestine) and in the visceral cavity 

without compromising the proximate composition nor the nutritional quality indices of the 

fish fillets, which is an advantage considering that their organoleptic properties, including 

general taste and flavour, are largely attributed to the content of fat in the edible part 

(Grigorakis et al., 2003). 
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Table 1. Nutritional quality markers of the fillet fatty acid profile in gilthead seabream (Sparus aurata) 
fed the control diet and the diets supplemented with bile salts at an inclusion level of 0.06% (BS0.06%) 
and 0.12% (BS0.12%), a combination of capsicum, black pepper, and ginger oleoresins, and 
cinnamaldehyde at 0.1% (SPICY0.1%) and 0.15% (SPICY0.15%), and a combination of turmeric, capsicum, 
black pepper, and ginger oleoresins at 0.2% (SO). 

 Control BS0.06% BS0.12% SPICY0.1% SPICY0.15% SO 

DHA / EPA 1.23 ± 0.03a 1.21 ± 0.04a 1.24 ± 0.04a 1.37 ± 0.08b 1.28 ± 0.06ab 1.28 ± 0.05ab 

EPA + DHA 53.24 ± 5.08 51.33 ± 2.25 56.14 ± 4.13 53.41 ± 1.62 54.07 ± 8.50 54.10 ± 4.55 

n-6 / n-3 1.97 ± 0.18 2.09 ± 0.08 1.94 ± 0.14 1.99 ± 0.06 2.01 ± 0.29 1.97 ± 0.14 

IA 0.32 ± 0.02 0.32 ± 0.01 0.32 ± 0.01 0.32 ± 0.02 0.32 ± 0.01 0.31 ± 0.01 

IT 0.38 ± 0.03 0.38 ± 0.01 0.37 ± 0.01 0.38 ± 0.01 0.38 ± 0.03 0.37 ± 0.01 

h / H 2.28 ± 0.07 2.31 ± 0.06 2.31 ± 0.06 2.29 ± 0.12 2.31 ± 0.07 2.35 ± 0.03 

Values are represented as mean ± SD (n = 4 tanks per dietary group) and differences among groups 
(one-way ANOVA; P ≤ 0.05) are indicated by the different superscript letters. Abbreviations: DHA: 
docosahexaenoic acid; EPA: eicosapentaenoic acid; n6/n3: omega 6 to omega 3 polyunsaturated fatty 
acids' ratio; IA: index of atherogenicity; IT: index of thrombogenicity; h/H: hypocholesterolemic/ 
hypercholesterolemic fatty acids' ratio. 

 

The mechanisms underlying the reduction of fat accumulation in gilthead seabream observed 

in this thesis, and in previous studies, may vary depending on the nutritional strategy and 

type of additive tested. Regarding bile salts, when they are secreted from the gallbladder into 

the proximal part of the intestine, they can bind to the interface of lipid aggregates through 

their hydrophobic regions (steroid rings and angular methyl groups), emulsifying them into 

small lipid droplets (Maldonado-Valderrama et al., 2011). Lipid emulsification also allows for 

the formation of mixed micelles, which are structures composed of bile salts, cholesterol, 

phospholipids, and lipid digestion products, such as fatty acids and monoglycerides, 

facilitating their transport in the aqueous medium of the digestive tract, and the posterior 

absorption of lipids and cholesterol through the intestinal epithelium (Carey and Small, 1970). 

Additionally, the binding of bile salts to the interface of lipid aggregates allows a higher 

activity of lipases produced by the exocrine pancreas, particularly bile salt-activated lipases, 

since it causes an orogenic displacement of other compounds adhered to the interface (i.e., 

surfactants, proteins, free fatty acids). Additionally, the emulsification of lipid aggregates into 

smaller lipid droplets increases the surface area on which lipases can act (Romano et al., 2020). 

Bile salts also contribute to the activation of the bile salt-activated lipase, which is the most 

dominant lipase of marine fish and can hydrolyze a wide range of substrates (wax esters, 

mono-, di- and triacylglycerides, phospholipids, ceramides, fat-soluble vitamin esters and 

cholesteryl esters) (Tocher, 2003; Romano et al., 2020). 

Taking into account the above-mentioned ideas, the inclusion of bile salts in aquafeeds may 

have hypolipidemic effects through an increased concentration of bile salts in the intestine, 

which promote higher lipid digestion and absorption rates, and through an increased activity 

of the bile salt-activated lipase. In this sense, many studies in fish have shown that dietary bile 

salt supplementation leads to an increase bile acid content in the fish intestine and/or 
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gallbladder, suggesting an efficient absorption of supplemented bile salts into the 

enterohepatic circulation, as demonstrated in rainbow trout (Yamamoto et al., 2007; Iwashita 

et al., 2008; Iwashita et al., 2009), Atlantic salmon (Kortner et al., 2016), and turbot (Gu et al., 

2017). On the other hand, Yao et al. (2022) found a decreased content of whole-body bile acids 

in yellow catfish. However, in the former assay, the diet was supplemented with glycocholic 

acid (G-CA), which is not a typical endogenous bile salt in fish, since bile salts are normally 

conjugated with taurine in fish (Kim et al., 2015; Kortner et al., 2016). Thus, Yao et al. (2022) 

suggested that, even though G-CA was able to enter the enterohepatic circulation as indicated 

by the bile salt profile changes, such bile salt promoted a higher excretion of bile acids. 

In our results, we did not observe significant alterations in the concentration of total bile salts 

following their supplementation in gilthead seabream diet due to the high dispersion among 

samples, but the numerical mean value of total bile salts in the anterior intestine showed a 

tendency to increase with increasing doses of supplemented bile salts in the diet (Chapter I; 

Ruiz et al., 2023a). Nonetheless, we reported a dose-dependent modulation of the bile salt 

profile, with a significant increase in the levels of taurodeoxycholic acid (T-DCA) in the 

anterior intestine and gallbladder in fish fed the BS0.12% diet, with respect to the control group. 

The tested blend of bile salts was composed of a mixture of equal parts of sodium cholate (CA) 

and sodium deoxycholate (DCA), and sodium taurocholate (T-CA) hydrate in a proportion of 

30/70. Thus, the increase in T-DCA may be attributed to the metabolization of CA 

(dehydroxylation) and T-CA (deconjugation and dehydroxylation) into DCA by the intestinal 

microbiota, and to the conjugation of reabsorbed and supplemented CA with taurine in the 

liver (Schubert et al., 2017; Romano et al., 2020). On the other hand, while the two primary bile 

salts T-CA and taurochenodeoxycholic acid (T-CDCA) were maintained at basal levels in the 

anterior intestine, we observed a linear decrease of T-CDCA levels in the gallbladder. Such 

decrease may be a response to a differential absorption rate of bile acids caused by the higher 

content of T-DCA in the intestine, and/or to a lower synthesis of T-CDCA in the liver. In this 

sense, Pandak et al. (2002) showed in an in vitro study that addition of T-DCA and T-CA into 

rat hepatocytes inhibited the activity of oxysterol 7α-hydroxylase (CYP7B1), which is the rate-

limiting enzyme of the alternative pathway of bile acid synthesis. In addition, taurine is the 

amino acid with which bile acids are typically conjugated in fish, so its reduced availability 

can lead to a limited synthesis of conjugated bile salts (Kim et al., 2015). Supporting these 

hypotheses, and in line with the results of the present thesis, many works have shown a 

decrease in the content of T-CDCA in the gallbladder when supplementing T-CA in fish diets, 

as demonstrated in rainbow trout (Iwashita et al., 2008; Iwashita et al., 2009) and Atlantic 

salmon (Kortner et al., 2016). Similar results have also been found with a mixture of bile salts 

of bovine origin, as shown in rainbow trout (Yamamoto et al., 2007; Iwashita et al., 2008) and 

Atlantic salmon (Kortner et al., 2016). 

In terms of digestibility, supplementation of bile salts in fish diets usually improves the activity 

of lipolytic digestive enzymes. In particular, improved lipoprotein lipase, hepatic lipase, and 

total lipase activities were observed in the livers of GIFT tilapia (Jiang et al., 2018) and large 

yellow croaker (Ding et al., 2020) fed diets supplemented with bile salts. Similarly, a higher 

lipase activity has been observed in the livers of tongue sole (Wang et al., 2022) and hybrid 

grouper (Xu et al., 2022b) under dietary bile salt supplementation. The induction of a higher 

lipase activity by dietary bile salt supplementation is also evident in the fish intestine, as was 
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the case in turbot (Gu et al., 2017), GIFT tilapia (Jiang et al., 2018; Bhusare et al., 2023), tongue 

sole (Li et al., 2021b), and leopard coral grouper (Gao et al., 2023). A higher lipoprotein lipase 

activity was also measured in the intestine of GIFT tilapia fed with a diet supplemented with 

bile salts (Jiang et al., 2018). In addition, dietary bile salt supplementation has also been 

reported to stimulate the activity of other digestive enzymes, such as amylase and protease in 

tongue sole (Li et al., 2021b; Wang et al., 2022), and trypsin in Atlantic salmon (Kortner et al., 

2016) and leopard coral grouper (Gao et al., 2023). 

In our study, we did not observe a significant improvement of total alkaline protease and α-

amylase activities by the addition of bile salts, at least in the pyloric caeca, nor in the anterior 

intestine of gilthead seabream (Chapter I; Ruiz et al., 2023a). However, the activity of the bile 

salt-activated lipase in the anterior intestine increased with escalating doses of supplemented 

bile salts, being significantly higher at 0.12% inclusion. In this sense, since the anterior intestine 

is the main site of lipid digestion and absorption, as in higher vertebrates, in fish the highest 

lipase activity along the gastrointestinal tract is found in the proximal part (González-Félix et 

al., 2018; Chapter I; Ruiz et al., 2023a), so the enzymatic activity might be more susceptible to 

be stimulated in this region. Kurtovic et al. (2010) observed that when testing the effect of 

different types of bile acids (DCA, CA, T-CA) on the lipase activity in Chinook salmon 

(Macruronus novaezelandiae), the highest activity was induced by T-CA, which is the main 

component (70%) of the blend of bile salts that we tested in gilthead seabream. These results 

were partly in line with those of Iijima et al. (1998), which evaluated the effect of the same 

types of bile acids on the activity of purified bile salt-activated lipase from red seabream 

(Pagrus major) using different substrates (p-nitrophenyl myristate and triolein). Iijima et al. 

(1998) reported the highest lipase activity in response to T-CA when the substrate was p-

nitrophenyl myristate, which is the most commonly used substrate to measure lipase activity 

(Nolasco-Soria et a., 2023) and the one used in our assay. On the other hand, these authors 

observed a higher lipase activity for CA with triolein as a substrate, which was also present in 

our blend of bile salts, but it is less commonly used as a substrate (Nolasco-Soria et al., 2023). 

Considering the above-mentioned results, the 50% numerical increase in T-CA content 

(although not statistically significant) in the anterior intestine of gilthead seabream fed the 

BS0.12% diet, with respect to the control group, may be the cause of the higher activity reported 

for bile salt-activated lipase. The extent to which the increase in T-DCA levels also contributed 

to the increased activity of bile salt-activated lipase cannot be determined, since the presence 

of this type of bile salt was not tested in the mentioned studies. The increased lipase activity 

was in line with the improved values of apparent digestibility coefficient (ADC) of lipids 

observed in gilthead seabream fed the BS0.12% diet, in concordance with the enhancement in 

lipid ADC values also observed in previous studies with rainbow trout (Yamamoto et al., 2007; 

Iwashita et al., 2008) and turbot (Gu et al., 2017) when supplementing their diets with T-CA or 

bovine bile salts. 

Concerning the use of spices, their effect on modulation of body adiposity in mammals has 

been mainly attributed to an improved lipid digestion, induced by an increased bile acid 

synthesis and stimulation of digestive enzymatic activity (Platel and Srinivasan, 2004; 

Srinivasan, 2005). Spices not only increase bile acid synthesis, but they are also able to increase 

the rate of their secretion, gastrointestinal flow, and intestinal reabsorption (Platel and 
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Srinivasan, 2004). To our knowledge, apart from the studies included in this thesis (Chapter 

III; Ruiz et al., 2023c; Chapter IV; Ruiz et al., 2024a), the fish bile salt profile has not been 

previously evaluated in extant studies of fish diets supplemented with spices. Nonetheless, 

Yılmaz et al., (2013b) reported an increase in bile somatic index values when European sea 

bass (Dicentrarchus labrax) diets were supplemented with the spice thyme (Thymus vulgaris) or 

the herbs rosemary (Rosmarinus officinalis) and fenugreek (Trigonella foenum graecum), 

indicating an increased bile flow rate and bile acid quantity. On the other hand, the 

combinations of spices tested in this thesis did not produce any significant change in the bile 

salt profile of the gallbladder and the anterior intestine in gilthead seabream (Chapter III; Ruiz 

et al., 2023c; Chapter IV; Ruiz et al., 2024a). However, this was partly due to the high deviation 

found among samples and to the low number of samples (n = 4), since sample pools from each 

fish tank were made to provide assurance that enough content was obtained to perform the 

bile acid profile analyses. In any case, a non-significant numerical increase in the mean values 

of total bile acids of 37% and 54% was observed in the anterior intestine of gilthead seabream 

fed the SPICY0.1% and SO diets, respectively, with respect to their congeners fed the control 

diet. A noteworthy finding was that in fish fed the diets supplemented with the two 

combinations of spices, as well as in the control group, the only bile salts detected were T-CA 

and T-CDCA. Therefore, considering that CA and CDCA are the predominant and often the 

only bile acids found in the bile salt profile of Perciform fish (Hagey et al., 2010), the observed 

numerical increase in the gallbladder and anterior intestine suggests that the synthesis and 

conjugation of these two primary bile acids were increased under the SPICY and SO dietary 

supplementation. 

Supporting the hypothesis that in fish, as in mammals, fat accumulation can be reduced 

through a higher digestive ability, some studies have demonstrated an improved enzymatic 

activity in fish fed with diets supplemented with the spices tested in this thesis. Indeed, higher 

activities of protease and amylase have been reported in the anterior intestine of Nile tilapia 

under dietary capsicum supplementation (Ibrahim et al., 2024). Regarding black pepper, 

higher activities of intestinal lipase, protease, and amylase have been found when 

supplementing piperine in the diet of common carp (Giri et al., 2023). In relation to this, even 

though Malintha et al. (2023) did not measure digestive enzyme activities, they reported 

higher dry matter and protein ADC values when including piperine at low inclusion levels 

(up to 0.075% and up to 0.05%, respectively) in olive flounder. Ginger dietary supplementation 

has also been proven to increase lipase, protease, and amylase activities in the intestine of 

striped catfish (Ashry et al., 2023). Additionally, curcumin has been shown to be capable of 

modulating the fish digestive enzyme activities. Jiang et al. (2016) reported an increase in the 

activities of lipase and trypsin in the hepatopancreas and intestine, as well as in amylase 

activity in the hepatopancreas of crucian carp. Undoubtedly, among the spices and active 

principles tested, cinnamaldehyde is the one that has most often been shown to individually 

be able to improve the digestive capacity of fish. In this sense, increased lipase and pepsin 

activities were reported in the digestive tract of fat greenling when diets were supplemented 

with cinnamaldehyde, even though no differences in amylase activity were found (Gu et al., 

2022). The former authors also found higher values of lipid, protein, and dry matter ADCs. In 

grass carp under dietary supplementation of cinnamaldehyde, an enhancement of the 

activities of lipase, amylase, chymotrypsin, and trypsin was observed in the hepatopancreas 
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and intestine (Zhou et al., 2020). Similarly, Abd El-Hamid et al. (2021) showed that 

supplementing Nile tilapia diets with a cinnamaldehyde nanoemulsion increased the activities 

of lipase, protease, and amylase in the intestine. On the other hand, Wang et al. (2021a) studied 

the effect of cinnamaldehyde on the activities of digestive enzymes along different intestinal 

regions of tongue sole. The latter authors observed a higher protease activity only in the 

anterior intestine, while a higher amylase activity was found in both anterior and mid 

intestine. On the other hand, a higher lipase activity was observed along the entire intestine of 

tongue sole when the diet was supplemented with cinnamaldehyde. Some of such spices or 

their active principles may have synergistic and complementary effects, which may enhance 

the overall effectiveness of spices in combination (Parasuraman et al., 2014). For instance, 

higher activities of lipase, protease, and amylase have been observed in the intestine of rohu 

under dietary supplementation with ginger and turmeric (Chowdhury et al., 2021). 

Similarly, despite not registering changes in lipid ADC values, we observed a significantly 

higher activity of bile salt-activated lipase in the anterior intestine when supplementing 

gilthead seabream diets with the SPICY and SO feed additives (Chapter III; Ruiz et al., 2023c; 

Chapter IV; Ruiz et al., 2024a). These results suggest that the hypolipidemic effect of spices in 

gilthead seabream may be largely caused by the stimulation of bile salt-activated lipase by the 

active principles of the spices and/or by potentially increased secretion of bile salts. However, 

modulation of fat levels in fish tissues is a complex mechanism (Salmerón, 2018), and thus, the 

reduction in fat accumulation cannot solely be attributed to an enhanced intestinal digestion, 

but also to the mechanisms underlying the regulation of lipid metabolism. Therefore, this 

thesis also aimed to investigate gene expression in the liver, which is the primary organ 

involved in lipid metabolism (Bruslé and Gonzàlez i Anadon, 1996), focusing on genes 

associated with lipid metabolism and oxidative status.  

As explained in the Introduction section, there are three main mechanisms underlying the 

modulation of fat accumulation in fish tissues, which are the conversion of fatty acids into 

triacylglycerides (lipogenesis) and cell storage; the metabolization of non-lipid substrates into 

fatty acids and then triacylglycerides for storage (known as de novo lipogenesis); and the 

catabolism of triacylglycerides into fatty acids and glycerol (lipolysis), which are then oxidized 

to generate energy or released into the blood stream (Salmerón, 2018). Attending to our results 

of hepatic gene expression in gilthead seabream (Chapter I; Ruiz et al., 2023a; Chapter III; Ruiz 

et al., 2023c; Chapter IV; Ruiz et al., 2024a), only two out of the 44 genes included in the PCR-

array were similarly regulated by the three tested additives. Such genes were lpl, which was 

down-regulated, and fatty acid synthase (fasn), which was up-regulated under 

supplementation of the three additives with respect to the control group. 

In context, fatty acids can be incorporated into the cells as free fatty acids, which are 

transported by albumin, or can be obtained by the enzymatic hydrolysis of triacylglycerides 

from chylomicrons, very low-density lipoproteins, and to a lesser extent, low-density 

lipoproteins circulating in the plasma (Proença et al., 2014). The hydrolysis of triacylglycerides 

from such lipoproteins is carried out by LPL, releasing glycerol and free fatty acids, which are 

incorporated into the cells, where they are reconverted to triacylglycerides and stored as an 

energy reservoir (Salmerón, 2018). Thus, the down-regulation of lpl may favour a reduced fat 

deposition in digestive organs, and may be the cause of the reduced PVFI values in gilthead 
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seabream when the diet was supplemented with the three tested additives. On the other hand, 

FASN metabolizes acetyl-CoA and malonyl-CoA into palmitic acid (C16:0). The up-regulation 

of fasn may be a counter-regulatory mechanism to maintain stable levels of fatty acids in the 

liver through de novo fatty acid synthesis, in the context of the presumably lower incorporation 

of fatty acid synthesis associated to the lpl down-regulation. In this sense, inverse dynamics in 

the expressions of lpl and fasn have already been observed in previous studies like those 

conducted in Nile tilapia (Tian et al., 2013), silver pomfret (Pampus argenteus; Peng et al., 2017), 

and spotted seabass (Lateolabrax maculatus; Huang et al., 2018). 

No other differentially regulated genes were shared among fish fed the blend of bile salts and 

any of the tested combination of spices. Indeed, aside from these two genes, hydroxyacyl-CoA 

dehydrogenase (hadh) and farnesoid X receptor (fxr) were the only differentially regulated 

genes in the liver of gilthead seabream under dietary supplementation of bile salts (Chapter I; 

Ruiz et al., 2023a). The down-regulation of hadh, which encodes for an enzyme involved in β-

oxidation, may be in line with the presumably lower entrance of fatty acids into cells associated 

to the lower lpl expression. Regarding FXR, this is a nuclear receptor belonging to the 

superfamily of ligand-activated transcription factors predominantly expressed in tissues 

involved in bile acid homeostasis, such as the liver, and intestine (Kuipers et al., 2004). This 

type of nuclear pleiotropic receptor is involved in several biological processes, such as the 

metabolism of bile acids, lipids, proteins, and carbohydrates, energy homeostasis, nutrient 

uptake, immunity, bone formation and remodeling, and, indirectly, in shaping the gut 

microbial communities (Schubert et al., 2017; Zheng et al., 2017; Chiang and Ferrell, 2022). The 

main agonist of FXR is the primary bile acid CDCA, so the decreased levels of T-CDCA that 

we observed in the gallbladder of gilthead seabream when supplementing the diet with the 

blend of bile salts may be the reason for such reduced fxr expression. However, the expression 

of cholesterol 7α-hydroxylase (cyp7a1), which is negatively regulated by activated FXR 

(Romano et al., 2020), did not exhibit significant differences, indicating that the differential 

expression of fxr was not correlated with an alteration in the synthesis rate of bile acids via the 

classic pathway (Introduction, Figure 3). 

Regarding the two combinations of spices tested, fish fed the diets supplemented with the 

SPICY and SO additives also shared two other up-regulated genes, the elongation of very long 

chain fatty acids 6 (elovl6) and the stearoyl-CoA desaturase 1b (scd1b). The enzymes encoded 

by these genes are involved in de novo fatty acid synthesis, and can use as a substrate palmitic 

acid, the end product of FASN, so the up-regulation of elovl6 and scd1b, may be a response to 

a presumably higher FASN activity, accelerating the transformation of palmitic acid into other 

fatty acids and avoiding their accumulation. In this sense, ELOVL6 elongates saturated (SFAs) 

and monounsaturated (MUFAs) fatty acids. Among others, this enzyme catalyzes the 

conversion of palmitic acid into stearic acid (C18:0) (Sampath and Ntambi, 2005; Matsuzaka 

and Shimano, 2009). Therefore, the increased levels of stearic acid found in the liver of gilthead 

seabream fed the SO diet with respect to fish fed the control diet may be attributed to the up-

regulation of elovl6 (Chapter IV; Ruiz et al., 2024a). On the other hand, SCD1B transforms 

palmitic and stearic acids into palmitoleic (C16:1 n-7) and oleic (C18:1 n-9) acids, respectively 

(Ntambi and Miyazaki, 2004). Although palmitoleic acid can act as a lipokine reducing 

lipogenic activity and fat accumulation (Bermúdez et al., 2022), and oleic acid has also been 

shown to regulate lipid metabolism in mammals (García-Escobar et al., 2008), there were no 
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significant differences in the levels of such fatty acids in the liver of gilthead seabream when 

supplementing the diet with the SPICY and SO additives (Chapter III; Ruiz et al., 2023c; 

Chapter IV; Ruiz et al., 2024a). 

The SPICY feed additive also led to a change in the expression of peroxisome proliferator-

activated receptor β (pparβ) and cholesterol 7α-hydroxylase (cyp7a1). Although the role of 

PPARβ is not completely unraveled in fish, nor in mammals, it has been suggested that it may 

induce the transactivation of genes involved in fatty acid oxidation (Wang et al., 2003). In 

addition, their ligands are likely fatty acids (Wang et al., 2003; Kidani and Bensinger, 2012), so 

the down-regulation of pparβ may indicate a reduced fatty acid oxidation in relation to the 

putative lower entrance of fatty acids in cells as indicated by lpl down-regulation. In relation 

to CYP7A1, it is the first and rate-limiting enzyme of the classic bile acid synthesis pathway 

(Introduction, Figure 3), which is the pathway that generates the major content of primary bile 

acids (Zhou and Hylemon, 2014; Chiang and Ferrel, 2020). Thus, the up-regulation of cyp7a1 

may indicate a higher bile acid synthesis and subsequent secretion into the intestine, in line 

with the numerical increase reported in the anterior intestine in fish fed the SPICY0.1% diet. 

Considering the above-mentioned important role of bile salts in lipid emulsification and 

stimulation of digestive enzyme activities (Maldonado-Valderrama et al., 2011; Romano et al., 

2020), the expected higher bile acid synthesis and secretion may be the reasons for the reduced 

fat accumulation found in the liver, intestine, and visceral cavity in gilthead seabream when 

the diet was supplemented with the SPICY additive (Chapter III; Ruiz et al., 2023c). 

Regarding the SO additive, apart from the shared regulation of lpl, fasn, elovl6, and scd1b with 

the SPICY additive, the supplementation of gilthead seabream diet with turmeric, capsicum, 

black pepper, and ginger oleoresins, also modulated the expression of the hepatocyte nuclear 

factor 4 alpha (hnf4α), sterol regulatory element-binding protein 2 (srebp2), citrate synthase (cs), 

and peroxiredoxin 5 (prdx5). To give context, the enzyme HNF4α is involved in the 

transcriptional regulation of multiple biological pathways, including bile acid synthesis and 

conjugation, lipid homeostasis, gluconeogenesis, ureagenesis, cell adhesion, proliferation, and 

apoptosis, among other functions (Yeh et al., 2019). In mammals, HNF4α is involved in the 

transactivation of CYP7A1 (Romano et al., 2020). However, regardless of the up-regulation of 

hnf4α, the expression of cyp7a1 remained stable in fish fed the SO diet with respect to those fed 

the control diet (Chapter IV; Ruiz et al., 2024a). This may indicate that in this case, this enzyme 

would be involved in the regulation of other metabolic processes different to bile acid 

metabolism due to its pleiotropic profile or, otherwise, it may reflect that gene expression and 

enzyme activity are not always correlated, such as in cases where activities are controlled post-

transcriptionally or post-translationally. On the other hand, srebp2 up-regulation may be in 

line with a higher bile acid synthesis. Many studies in mammals have pointed out that hepatic 

SREBP enzymes, especially SREBP2, are activated in response to a reduction in cholesterol 

content (Sato, 2010). Regarding fish, previous studies in rainbow trout (Zhu et al., 2018) and 

Atlantic salmon (Leaver et al., 2008; Kortner et al., 2013; Gu et al., 2014) have also shown an 

up-regulation of srebp2 when feeding with a plant-based diet, which has been attributed to the 

lower dietary cholesterol levels. In addition, Zhu et al. (2020) suggested that SREBP2 is 

involved in the homeostasis of cholesterol in rainbow trout, by promoting its hepatic synthesis. 

Thus, the up-regulation of srebp2 that we observed in gilthead seabream liver when the diet 

was supplemented with the SO feed additive may be a mechanism to maintain stable levels of 
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hepatic cholesterol in response to a higher metabolization rate of cholesterol into primary bile 

acids.  

Concerning the regulation of lipid metabolism, CS is a key mitochondrial enzyme involved in 

the Krebs cycle which converts the products of fatty acid oxidation, oxalacetate and acetyl-

CoA, into citrate (Akram, 2014). Consequently, cs up-regulation may be attributed to a higher 

β-oxidation of fatty acids to produce energy, since many spices, such as capsicum (used in the 

present thesis), have been shown to promote lipid oxidation in mammals (Westerterp-

Plantenga et al., 2006). In spite of cs up-regulation, none of the genes which encode enzymes 

from the electron transport chain [NADH-ubiquinone oxidoreductase chain 2 (nd2), NADH-

ubiquinone oxidoreductase chain 5 (nd5) nor cytochrome c oxidase subunit I (coxi)] showed a 

differential regulation among fish fed these diets. On the other hand, some of the active 

principles present in the SO additive, such as curcumin, as well as capsaicin, have antioxidant 

properties in mammals (Srinivasan, 2005). Since PRDX5 is an antioxidant enzyme which 

scavenges reactive oxygen species (ROS) (Kim et al., 2018), it may be speculated that the down-

regulation of prdx5 that we found in gilthead seabream fed the SO diet was a response to a low 

generation of ROS in fish hepatocytes, but further research would be needed to confirm this 

hypothesis. Overall, these findings illustrate the complexity of the molecular mechanisms 

orchestrating the regulation of lipid metabolism under spice supplementation, indicating that 

deciphering the molecular and physiological mechanisms underlying lower fat accumulation 

found under current experimental conditions deserves further attention by means of in vitro 

studies, and holistic transcriptomic and proteomic approaches. 

Additionally, to determine whether the regulation of lipid and bile salt metabolisms induced 

by the tested additives persisted over time, the expression of the same array of genes was 

evaluated after a 48 hour fasting period. At this time, the regulation induced by the BS0.06% and 

SPICY0.1% diets were attenuated, and a transient effect associated to their dietary 

administration was observed. In particular, only prdx5 was differentially expressed when 

supplementing the diet with the blend of bile salts at 0.06% (Chapter I; Ruiz et al., 2023a), 

which also showed a similar up-regulation in fish fed the SPICY0.1% (Chapter III; Ruiz et al., 

2023c) and SO diets (Chapter IV; Ruiz et al., 2024a). Among the many roles of PRDX5 defined 

in mammals, it is remarkable that it can also prevent and alleviate adipogenesis and hepatic 

fat accumulation by promoting fatty acid oxidation and reducing lipogenesis through the 

regulation of ROS levels (Kim et al., 2018; Kim et al., 2020). In gilthead seabream the 

supplementation of the diet with the SPICY feed additive at 0.1% also induced an up-

regulation of sterol regulatory element-binding protein 1 (srebp1) (Chapter III; Ruiz et al., 

2023c), which has been shown to promote de novo fatty acid synthesis in many fish species, 

including zebrafish (Danio rerio), large yellow croaker, Japanese seabass (Lateolabrax japonicus), 

and gilthead seabream (Xie et al., 2021). Thus, in Ruiz et al. (2023c; Chapter III) the up-

regulation of srebp1 in 48 h fasted-gilthead seabreams fed the SO diet with respect to their 

control congeners, may be attributed to an attempt to restore hepatic lipid levels after food 

deprivation. 

On the other hand, the 48-h fasting period enhanced the modulation of genes involved in bile 

salt and lipid metabolism induced by the SO feed additive (Chapter IV; Ruiz et al., 2024a). In 

this sense, apart from prdx5, there was a differential expression of fifteen genes in fish fed the 
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SO diet with respect to those fed the control diet. Among these genes, it was interesting to 

observe an up-regulation of fxr and liver X receptor α (lxrα), which regulate bile acid synthesis 

through the expression of cyp7a1. As mentioned in the Introduction section of this thesis, FXR 

is activated by high levels of bile acids and triggers the transcription of a small heterodimer 

partner (shp), which interacts with the transcription factors α-fetoprotein transcription factor 

(FTF) and HNF4α, avoiding cyp7a1 expression. On the other hand, cyp7a1 expression can be 

suppressed through the heterodimer complex formed by retinoid X receptor (RXR) and LXR. 

The activity of LXR is promoted by high levels of oxysterols, which are products of cholesterol 

metabolism (Frisch and Alstrup, 2018; Romano et al., 2020). In line with the expression results, 

considering the antagonistic role of FXR and LXR, the up-regulation of both genes may result 

in an equilibrium that did not modify cyp7a1 expression with respect to the control diet. 

Controversial results were also observed for two genes involved in de novo fatty acid synthesis: 

elongation of very long chain fatty acids 1 (elovl1), which was down-regulated, and elongation 

of very long chain fatty acids 4 (elovl4), which was up-regulated. In teleost fish, ELOVL4 is 

involved in the elongation of C18 to C20 PUFAs, resulting in PUFAs with a main chain of up 

to 36 carbons. Among other functions, the role of ELOVL4 in the biosynthesis of n-3 LC-

PUFAs, such as DHA from EPA and docosapentaenoic acid (C22:5 n-3) (Xie et al., 2021), is of 

utmost importance considering the growth- and health-promoting effects of n-3 LC-PUFAs in 

fish (Ibeas et al., 1994; Peng et al., 2014). On the other hand, ELOVL1 is believed to be involved 

in the elongation of C14 to C20 SFAs, MUFAs, and PUFAs in fish (Xie et al., 2021). The inverse 

regulation of elovl1 and elovl4 may be a long-term mechanism of the spices to maintain or 

increase the levels of n-3 PUFAs in the liver of fasted animals, but further studies are needed 

to confirm this hypothesis. 

The effect of the SO additive on the regulation of fatty acid oxidation was very obvious. In this 

sense, in 48 h fasted-fish which were fed the SO diet, there was an up-regulation of pparβ in 

comparison to those fed with the control diet. As already explained in mammals, PPARβ 

promotes the expression of genes involved in fatty acid oxidation (Wang et al., 2003). In the 

study of Wang et al. (2003), one of the genes up-regulated in the brown adipose tissue of mouse 

under activation of PPARβ was carnitine palmitoyltransferase 1B (cpt1β). This is in line with 

the up-regulation of carnitine palmitoyltransferase 1A (cpt1α) that we found in 48 h fasted-

gilthead seabream fed with the SO diet. In this sense, CPT1α and CPT1β are localized in the 

outer membrane of the mitochondria and catalyze the transport of acyl-CoA from the cytosol 

into the intermembrane space, transforming acyl-CoA into acyl-carnitine. Then, acyl-carnitine 

is transported to the mitochondrial matrix and converted back to acyl-CoA, which undergoes 

β-oxidation (Weil et al., 2013; Wang et al., 2021b). Despite the absence of differences in 

hydroxyacyl-CoA dehydrogenase (hadh), which is involved in the oxidation of fatty acids, the 

up-regulation of cs may indicate an increased flux of acetyl-CoA to the Krebs cycle, leading to 

a higher generation of FADH2 and NADH + H+ (Akram, 2014). In line with that, there was also 

an up-regulation of NADH-ubiquinone oxidoreductase chain 2 (nd2) and NADH-ubiquinone 

oxidoreductase chain 5 (nd5), which are part of the mitochondrial electron transport chain, 

where FADH2 and NADH + H+ are used to generate energy in the form of ATP (Nolfi-

Donegan et al., 2020). Overall, these results indicated that the SO feed additive may promote 

fatty acid oxidation as an energy source in 48 h fasted-fish to maintain the proper functioning 

of physiological processes despite the absence of feed. 
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In summary, these results evinced that the tested SO feed additive, which contains turmeric, 

capsicum, black pepper, and ginger, reduces fat accumulation in 48 h fasted-gilthead seabream 

through similar mechanisms to those observed in higher mammals, by stimulating bile acid 

secretion, bile salt-activated lipase activity, and through promotion of fatty acid oxidation 

(Platel and Srinivasan, 2004; Srinivasan, 2005; Westerterp-Plantenga et al., 2006). Regarding 

the blend of bile salts and the SPICY feed additive composed of capsicum, black pepper, 

ginger, and cinnamaldehyde, it is difficult to establish the molecular mechanisms of action that 

regulate lipid metabolism due to the limited number of genes from the PCR-array that 

exhibited differential expression compared to the control group. However, what is undeniable 

is that both bile salts and pungent spices have hypolipidemic effects and, similar to the SO 

additive, they increase bile acid secretion and bile salt-activated lipase activity, which 

ultimately reduces the levels of hepatic, intestinal, and perivisceral fat (Chapter I; Ruiz et al., 

2023a; Chapter III; Ruiz et al., 2023c). In conclusion, the three additives tested in the present 

thesis can be used as a strategy to reduce fat accumulation and lipid digestion problems 

without compromising the nutritional quality of fish, and when tied to the use of fish oil 

alternatives could be used in the aquaculture industry to implement more cost-effective, 

available, and sustainable alternatives to fish oil, as well as simply to alleviate lipid metabolism 

disorders through the above-explained mechanisms. 
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3. Dietary modulation of the blend of bile salts and combinations of 

spices on the immune condition in fish 

 

The substitution of fish oil with alternative ingredients in aquafeeds not only poses a potential 

risk to the fish growth and lipid metabolism, but it may also compromise the immune status 

of fish (Montero et al., 2010; Tan et al., 2016; Tan et al., 2017). Therefore, we also assessed the 

effect of the tested feed additives on the regulation of the intestinal immune condition in 

gilthead seabream through the study of the expression of a panel of selected biomarkers 

related to epithelial integrity, barrier function, and immune response (Chapter II; Ruiz et al., 

2023b; Chapter III; Ruiz et al., 2023c; Chapter IV; Ruiz et al., 2024a). 

Regarding the effect of bile salts, it is important to consider that in mammals it is well-known 

that bile acids have the ability to modulate innate immunity through the activation of FXR and 

G protein-coupled bile acid receptor 1 (GPBAR1/TGR5) (Schubert et al., 2017). For instance, 

many studies in mammals have shown that activation of FXR reduces intestinal epithelial 

permeability (Gadaleta et al., 2011; Stojancevic et al., 2012). Thus, under current experimental 

conditions, the down-regulation of fxr in the liver and the reduced content of CDCA, the main 

agonist of FXR, in the gallbladder of gilthead seabream fed the diet supplemented with the 

blend of bile salts (Chapter I; Ruiz et al., 2023a), may be related to the down-regulation of 

cadherin-17 (cdh17), and gap junction Cx32.2 protein (cx32.2) in the intestine (Chapter II; Ruiz 

et al., 2023b). Similarly, there was a down-regulation of mucin 13 (muc13). These results a priori 

might suggest a lower turnover rate of the epithelial tissue and mucus, and consequently a 

higher intestinal permeability. In this sense, in mammals, an excessive content of bile salts can 

lead to a loss of tight junctions between epithelial cells, resulting in a higher epithelial 

permeability and cell death (Keating and Keely, 2009). Similarly, Fuentes et al. (2024) reported 

that the addition of a mixture containing 3% CA and 97% DCA to the intestine of gilthead 

seabream in vitro at high concentrations (500 μg/ml in the intestinal fluid) increased the 

epithelial permeability of the intestine. However, when supplementing gilthead seabream diet 

with the tested blend of bile salts we observed no changes in the expression of the remaining 

tight junction proteins that were assayed (Chapter II; Ruiz et al., 2023b), nor on the histological 

values of villus height, enterocyte height, and number of goblet cells (Chapter I; Ruiz et al., 

2023a). Thus, our results indicated that despite the down-regulation of cdh17, cx32.2, and 

muc13, the inclusion of the blend of bile salts at a dietary level of 0.06% did not compromise 

the epithelial integrity in gilthead seabream intestine. In addition, we observed a down-

regulation of proliferating cell nuclear antigen (pcna). Previous studies have correlated a 

higher proliferative activity associated to pcna up-regulation with a decreased cell life (Van 

Der Hulst, 1998). Thus, the down-regulation of pcna in fish fed the BS0.06% diet may be attributed 

to an extended cell life, a lower epithelial turnover rate, and an improved health condition of 

the enterocytes (Gisbert et al., 2017). 

Many studies in fish have also demonstrated that dietary supplementation of bile salts can 

induce an innate immune response. This was the case of striped catfish, which showed an 

improvement in the rates of lysozyme activity, phagocytic activity, and phagocytic index in 
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serum when supplementing the diet with a blend of bile salts at a dietary inclusion level of 

0.025-0.15% (Adam et al., 2023). Analogously, Jin et al. (2019) described an enhanced lysozyme 

activity in the liver, but not in serum, of black seabream fed a high-fat diet under 

supplementation with bile salts at a dietary inclusion levels of 0.02%. In tongue sole fed a diet 

supplemented with a blend of bile acids at inclusion levels of 0.03 and 0.09%, an improved 

intestinal lysozyme activity was also reported, as well as a higher content of complement 3, 

suggesting an improved non-specific immune response (Li et al., 2021b). Zhang et al. (2022a) 

also suggested an enhanced immune response in Chinese perch when its diet was 

supplemented with bile acids at an inclusion level of 0.09% due to an increase in the levels of 

globulin in plasma. Nonetheless, the results of the studies presented in this thesis are not 

comparable to many of the above-mentioned results since we evaluated the transcriptomic 

profiling of a panel of local immune biomarkers in the gut, but we did not target the systemic 

immune response. In this sense, the local immune response affects the host vulnerability and 

success of infection by potential pathogens in a particular tissue, in this case the gut. On the 

other hand, the systemic response impacts the host susceptibility to coinfection of various 

tissues and organs by potential pathogens and involves circulating immune factors in the 

blood and the coordination of a general response to infection (Rynkiewicz et al., 2019). In 

addition, the gut microbiota can regulate the local immune response though production of 

molecular metabolites, such as SCFAs, tryptophan metabolites, and secondary bile acids. 

Although the gut microbiota can also regulate the systemic immune response, the mechanisms 

differ with respect to those for regulation of local immunity (i.e., translocation into the 

circulation of microbial soluble products which influence the activation of immune cells in the 

periphery; Wiertsema et al., 2021). Thus, while the majority of fish studies examining the 

effects of bile acids or spices have focused on systemic immunity, it is important to note that 

these findings cannot be extrapolated to those assessing local immunity or conflated as being 

the same as the results presented in this thesis. 

Teleost fish have a specialized and complex gut immune system in which the intestinal 

mucosal layer, comprising the mucus, its commensal bacteria and epithelial cells, forms a 

crucial physical and biochemical defense barrier against exogenous bacteria, toxins, and 

allergens (Firmino et al., 2021b). It also contributes to the local immune response by 

recognizing and processing antigens, recruiting innate and adaptive immune cells, and 

secreting cytokines, chemokines, antimicrobial peptides, and mucins through the gut-

associated lymphoid tissue (GALT) (Firmino et al., 2021a; Firmino et al., 2021b). In this sense, 

the innate immunity is the first line of defense against exogenous substances, and it responds 

in a non-specific manner before triggering the specific adaptive immune response. The innate 

immune response is induced by the recognition of pathogen-associated or damage-associated 

molecular patterns (PAMPs/DAMPs) by pathogen recognition receptors (PRRs). On the other 

hand, the adaptive responses entail the specific activation of lymphocytes through the 

interaction of their antigen receptors with specific foreign antigens (Secombes and Wang, 

2012). Regarding the expression results of the genes included in the PCR-array of gilthead 

seabream intestine, they may suggest the induction of an innate immune response by bile salts 

when supplemented at a dietary inclusion of 0.06% (Chapter III; Ruiz et al., 2023c). This was 

demonstrated by an up-regulation of C-C chemokine receptor type 3 (ccr3), which promotes 

the chemotaxis and activation of eosinophils and mast cells (Heath et al., 1997; Oliveira et al., 
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2003). In line with ccr3 up-regulation, bile salts also induced an up-regulation of C-C motif 

chemokine 20 (ccl20). This chemokine stimulates the migration of lymphocytes, and to a lesser 

extent, granulocytes (Hieshima et al., 1997), and also works as an agonist of C-C chemokine 

receptor type 6 (CCR6; Bird and Tafalla, 2015). These C-C chemokine receptors are involved 

in the recruitment of B and T cells, and the differentiation of CD4+ regulatory T cells (Treg cells), 

promoting inflammation (Williams, 2006; Kulkarni et al., 2018). In this sense, an adaptative 

immune response may also be expected in the intestine of gilthead seabream fed the BS0.06%, 

considering the up-regulation of cluster of differentiation 4-1 (cd4-1) and C-C chemokine 

receptor type 9 (ccr9). The cell marker CD4 can be found on a wide range of immune cells, 

including T cells, monocytes, macrophages, and dendritic cells, and drives their migration 

(Ashfaq et al., 2019). These same immune cells, together with B cells, express CCR9, which 

induce the migration of immune cells to the gut, where they control intestinal inflammation 

(Pathak and Lal, 2020). 

Additionally, dietary supplementation with bile salts also induced an up-regulation of 

immunoglobulin T membrane-bound form (igt-m) in the intestine of gilthead seabream. This 

immunoglobulin is produced by B cells mainly located in the lamina propria of the gut and is 

specialized in protecting the mucosal surfaces of teleost fish by maintaining microbiota 

homeostasis and clearing pathogens, similar to the role of immunoglobulin A in mammals (Yu 

et al., 2020). The absence of changes in the expression of immunoglobulin M (igm) are in line 

with the differential regulation of IgT and IgM described in gilthead seabream by Piazzon et 

al. (2016). On the other hand, contrary to our results, Li et al. (2021b) observed an increase in 

IgM levels in the intestine of tongue sole under bile salt dietary supplementation at 0.03 and 

0.09%, indicating that the immune response is also dependent on the fish species, additive 

composition and origin, and dietary inclusion level, among other experimental conditions. 

Regarding the differential expression of interleukins and PRRs, as stated in Chapter II of this 

thesis (Ruiz et al., 2023b), the up-regulation of the PRR macrophage mannose receptor 1 (mrc1) 

and of interleukin-8 (il-8) that we observed in the intestine of gilthead seabream fed the BS0.06% 

diet may indicate a pro-inflammatory response (Gazi and Martinez-Pomares, 2009; Zou and 

Secombes, 2016), together with the up-regulation of ccr3, ccl20, cd4-1, and ccr9, which may be 

attributed to a migration of immune cells towards the GALT. On the other hand, bile salt 

dietary supplementation also induced an up-regulation of the PRR galectin-1 (lgals1), which 

reduces the synthesis of pro-inflammatory cytokines (Seropian et al., 2018), and a down-

regulation of the PRRs toll-like receptor 9 (tlr9) and galectin-8 (lgals8), which promotes the 

production of pro-inflammatory cytokines (Kumagai et al., 2008; Cattaneo et al., 2014, 

respectively), suggesting the induction of an anti-inflammatory response. In this sense, Jin et 

al. (2019) reported an anti-inflammatory response to bile salt dietary supplementation in black 

seabream, indicated by the down-regulation of tumor necrosis factor-alpha (tnf-α) and 

interleukin-1 beta (il-1β) in the intestine. Wang et al. (2022) found a down-regulation of the 

proinflammatory cytokines tnf-α and il-8, but an up-regulation of transforming growth factor-

β1 (tgf-β1), also pro-inflammatory, in the liver of tongue sole under bile salt dietary 

supplementation. Additionally, Yu et al. (2019) found an up-regulation of some pro-

inflammatory cytokines (tnf-α and il-8), but also an up-regulation of anti-inflammatory 

cytokines [interleukin-10 (il-10), interleukin-11 (il-11), and tgf-β1] in the liver of largemouth 

bass when feeding it with a diet supplemented with bile salts, which is in line with the results 
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of the present thesis, even though the liver primarily serves as a mediator of the systemic 

immune response (Kubes and Jenne, 2018) and in this doctoral thesis the results pertain to the 

local immune response in the gut. The induction of the expression of both pro- and anti-

inflammatory related genes may be a mechanism to stimulate a sort of immunocompetence 

priming without compromising the fish physiology (Salomón et al., 2020; Firmino et al., 2021b; 

Firmino et al., 2021c; Salomón et al., 2021), since no signs of inflammation or morphological 

differences aside from differential accumulation of fat deposits, were observed in the intestine 

of gilthead seabream fed the different diets (Chapter I; Ruiz et al., 2023a). 

Interestingly, the regulation of many of the above-mentioned genes was shared between the 

tested blend of bile salts and the SO feed additive, as it was the case for il-8, ccr3, lgals1, and 

mrc1, which were up-regulated, and tlr9, which was down-regulated in fish fed the SO diet 

with respect to their congeners fed the control diet. In addition, this combination of spices 

induced an up-regulation of il-1β, and a down-regulation of the PRR fucolectin (fcl) (Chapter 

IV; Ruiz et al., 2024a). In this sense, Il-1β is a cytokine which activates various immune cells, 

mainly lymphocytes and phagocytic cells, and is one of the primary mediators of the 

inflammatory response (Sakai et al., 2021). The PRR FCL is a fucose-binding lectin, and it has 

been described to induce phagocytosis of potential pathogens in an in vitro study in the 

macrophages of European sea bass (Salerno et al., 2009). Thus, the down-regulation of fcl, 

together with the down-regulation of tlr9, which recognizes unmethylated CpG motifs of 

bacterial genomic DNA (Hemmi et al., 2000), may indicate a lower exposure to potential 

pathogens, maybe induced by the antimicrobial effect of turmeric, capsicum, black pepper, 

and ginger (Pundir and Jain, 2010; Jiang, 2019), as will be further discussed in the following 

section. However, further studies would be needed to confirm this hypothesis, since the PRRs 

lgals1 and mrc1 were up-regulated in gilthead seabream fed the SO diet. 

Overall, the above-mentioned results indicated that, similar to the tested blend of bile salts, 

the SO additive induced a state of immunocompetence, improving the intestinal health of 

gilthead seabream. In agreement with the results of the present thesis, many studies have 

shown the role of such spices in the stimulation of fish immune response at the systemic level, 

whereas our studies were one of the few focused on local immunity of the gut. For instance, 

turmeric and curcumin have been reported to enhance the phagocytic, bactericidal, and 

lysozyme activities, phagocytic index, and/or resistance against infectious pathogens in many 

fish species, including gilthead seabream (Ashry et al., 2021), common carp (Abdel‐Tawwab 

and Abbass, 2017), grass carp (Ming et al., 2020), rainbow trout (Yonar et al., 2019), and Nile 

tilapia (Diab et al., 2014). Although fewer studies have focused on the immunomodulatory 

properties of capsicum in fish, Ibrahim et al. (2024) observed a higher content of complement 

3, increased phagocytic and bactericidal activities in serum, and an up-regulation of il-1β, 

interleukin-6 (il-6), il-8, il-10, and tgf-β in the head kidney of Nile tilapia fed with a diet 

supplemented with capsicum. Similarly, an increase in lysozyme activity, higher levels of IgM, 

and an activation of the complement system, including components C3 and C4, have been 

observed in rainbow trout when including capsicum in the diet (Firouzbakhsh et al., 2019; 

Shamsaie Mehrjan et al., 2020). 

Under piperine dietary supplementation many studies have also described a stimulation of 

the lysozyme and phagocytic activities and/or an increased resistance to infectious pathogens 
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in rohu (Nilavan et al., 2017), olive flounder (Malintha et al., 2023), and common carp (Giri et 

al., 2023). Some of the studies testing piperine supplementation in aquafeeds have also 

described increased immunoglobulin levels (Malintha et al., 2023), and an induction of the 

alternative complement pathway and respiratory burst activities in serum (Giri et al., 2023). 

Moreover, when supplementing ginger in fish diets, an increase in the activities of lysozyme 

and alternative complement pathways, as well as total immunoglobulin levels, have been 

found in common carp (Fazelan et al., 2020) and striped catfish (Mohammadi et al., 2020). In 

addition to the increased lysozyme activity, improved bactericidal action, anti-protease, and 

respiratory burst activities in serum, and phagocytic activity in head kidney, have been shown 

in Asian sea bass fed a diet supplemented with ginger (Talpur et al., 2013). Similarly, 

Sukumaran et al. (2016) reported an enhancement in lysozyme activity and total 

immunoglobulin levels in skin mucus, and an up-regulation of the anti-inflammatory 

cytokines il-10, and tgf-β, and down-regulation of pro-inflammatory cytokines il-1β and tnf-α 

in the head kidney, hepatopancreas and intestine of rohu when fed a diet supplemented with 

ginger. In addition, these authors observed a higher resistance to Aeromonas hydrophila 

infection and antimicrobial activity in skin mucus against potential pathogens. This is 

consistent with the higher resistance against Streptococcus agalactiae of Nile tilapia (Brum et al., 

2017) and increased survival rate and antibacterial capacity against Vibrio spp. and fecal 

coliforms in the intestine of striped catfish (Ashry et al., 2023) when their diets were 

supplemented with ginger. However, under the current experimental approaches considered 

within this doctoral thesis, there was no evaluation of the potential disease-resistance effects 

of the tested additives in fish; thus, this approach deserves further attention once their 

lipotropic effect has been demonstrated (Chapter I; Ruiz et al., 2023a; Chapter II; Ruiz et al., 

2023b; Chapter III; Ruiz et al., 2023c; Chapter IV; Ruiz et al., 2024a). 

Regarding the spices present in the SPICY feed additive, apart from the above-mentioned 

immunostimulatory properties of capsicum, black pepper, and ginger, many authors have 

observed an immune response under supplementation of cinnamaldehyde in aquafeeds. For 

instance, in Nile tilapia and fat greenling, an increased serum content of immunoglobulin G 

(IgG) has been shown under dietary supplementation of cinnamaldehyde (Amer et al., 2018; 

Gu et al., 2022). In tongue sole, an immune response has also been suggested by the use of 

dietary supplementation with cinnamaldehyde based on the increased lysozyme activity of 

liver and muscle, but not in serum, mid kidney, or spleen (Wang et al., 2021a). On the other 

hand, Abd El-Hamid et al. (2021) reported an increase in serum lysozyme and alternative 

complement activities, IgM content, and in the expression of il-1β, il-8, il-10, and tnf-α in the 

spleen in Nile tilapia, as well as a higher resistance against S. agalactiae infection under 

cinnamaldehyde dietary supplementation. These results were partly in contradiction to those 

observed by Amer et al. (2018), who reported no significant differences in lysozyme activity 

and IgM content in serum in Nile tilapia. Such different findings among studies reveal once 

again, that the mechanisms of immune response induced by an additive can vary depending 

on its format, origin, composition, inclusion level, and many other experimental conditions, 

even among fish from the same species (Firmino et al., 2021a). However, the results of such 

studies only targeted the immune response at a systemic level, which as mentioned above 

cannot be extrapolated to the immune response found at a local level, as was our case. 
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Concerning the immune effect of the SPICY additive on the gut, under current experimental 

conditions, the expression of only two genes was up-regulated in gilthead seabream at the 2-

h postprandial state: il-1β, which was up-regulated, and ccr9, which was down-regulated 

(Chapter III; Ruiz et al., 2023c). On the other hand, a clear anti-inflammatory immune response 

was observed in the liver of postprandial gilthead seabream when, in our previous assay, a 

diet with partial fish oil replacement by mammalian-rendered fat was supplemented with the 

SPICY additive at 0.15% (Ruiz et al., 2024c). Such results are quite different with respect to 

those reported herein in which gilthead seabream diets containing poultry fat as the main lipid 

source were supplemented with the SPICY additive at 0.1% led to mild intestinal immune 

modulation of il-1β and ccr9 in 2 h-postprandial gilthead seabream when supplementing the 

SPICY additive at 0.1% in the diet with partial fish oil replacement by poultry fat and soybean 

oil (Chapter III; Ruiz et al., 2023c). In this context, the liver primarily serves as a mediator of 

systemic immune responses (Kubes and Jenne, 2018; Secombes and Wang, 2012). It is also 

important to acknowledge the complexity of these results, considering that, as explained 

above, a higher gene expression does not necessarily involve a higher translation into proteins 

and/or a higher enzymatic activity. The decoupling of gene expression from enzyme activity 

can be due to post-transcriptional or post-translational modifications that were not part of the 

present study, so further validation of the gene expression results with complete proteomic 

analyses could provide more clarity. In addition, only 44 genes related to intestinal 

permeability, barrier function, and immunity were studied in the current thesis, whereas in 

Ruiz et al. (2024c) a microarray-based transcriptomic analysis coupled with an interactomic 

approach was employed to study the effect of the SPICY additive on thousands of genes, many 

of which were associated with biological processes related to immunity. 

Nonetheless, it is important to highlight that in 48 h fasted-gilthead seabream the number of 

genes regulated by both spice additives, SPICY and SO, significantly increased, while 

inversely only three genes were affected by the blend of bile salts in the fasting state. In this 

sense, the tested blend of bile salts induced an up-regulation of two genes encoding for tight 

junction proteins: claudin-15 (cldn15), and coxsackievirus and adenovirus receptor homolog 

(cxadr). These results may indicate a decrease in epithelial permeability (Raschperger et al., 

2008; Tipsmark et al., 2010) and subsequently an increasing gut barrier function induced by 

the blend of bile salts in the fasting state. On the other hand, the blend of bile salts only down-

regulated the cluster of differentiation 8 beta (cd8b), which encodes for one of the two chains 

of the cell marker CD8 expressed on the surface of cytotoxic T cells, which acts as a signal 

transduction molecule and protects against intracellular bacterial infection (Nakanishi et al., 

2015). In some mammalian species, CD8β can also be expressed in NK cells, macrophages, and 

mast cells (Gibbings and Befus, 2009). In addition, studies in mammals have correlated the 

down-regulation of cd8 with the differentiation of helper and cytotoxic T cells (Nomura and 

Taniuchi, 2020). However, it is difficult to interpret the significance of the down-regulation of 

cd8b considering that no other immune-related genes were modulated by the blend of bile salts 

in 48 h fasted-fish (Chapter II; Ruiz et al., 2023b). In addition, previous studies have reported 

changes in the cell surface secretion of CD8 despite the sustained expression of this gene (Xiao 

et al., 2007), which is in line with the above-mentioned hypothesis that gene expression does 

not necessarily correlate with the translation rate and/or enzymatic activity. 
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On the other hand, opposite to the results obtained at 2-h postprandial state, the 

immunostimulatory effect of the SPICY feed additive was very evident in 48 h fasted-fish. As 

explained in the Chapter III of the present thesis (Ruiz et al., 2023c), the up-regulation of pcna 

and down-regulation of cxadr might suggest a lower permeability and higher epithelial 

integrity. In line with the up-regulation of pcna, the rate of cell proliferation seems to be 

inversely correlated with the expression of cxadr in mammals (Raschperger et al., 2006). 

Furthermore, the presumably decrease in permeability induced by the pungent spices may be 

the reason for the subsequent reduced expression of the PRR CD302 antigen (cd302), which is 

a C-type lectin receptor that plays a multifaceted role in immunity, contributing to the 

recognition and clearance of pathogens through endocytosis and phagocytosis, and to cell 

adhesion and migration (Kato et al., 2007). Several studies in fish have confirmed the role of 

CD302 in phagocytosis and bactericidal activity (Chen et al., 2016; Zhang et al., 2022c; Peng et 

al., 2023), which suggested that cd302 down-regulation may indicate a lower exposure to 

PAMPs due to the presumably higher gut epithelial integrity of 48 h fasted-fish fed the 

SPICY0.1% diet (Chapter III; Ruiz et al., 2023c). Additionally, Peng et al. (2023) found that the 

up-regulation of cd302 was associated with an up-regulation of the pro-inflammatory 

cytokines il-1β, il-6, interferon-γ (ifn- γ), and tnf-α in the mid kidney of yellow drum (Nibea 

albiflora) infected with Vibrio harveyi, suggesting the induction of a pro-inflammatory immune 

response. Thus, the down-regulation of cd302 that we observed in the intestine of 48 h fasted-

gilthead seabream fed with the SPICY0.1% diet may be associated with the down-regulation of 

the cell markers cd4-1, and cd8b, suggesting a lower accumulation of immune cells in the gut, 

and with the down-regulation of the cytokines, interleukin-15 (il-15) and interleukin-34 (il-34), 

which are pro-inflammatory (Zou and Secombes, 2016). Overall, these results may suggest an 

anti-inflammatory immune response in the intestine of 48 h fasted-gilthead seabream fed with 

the diet supplemented with the SPICY feed additive at an inclusion level of 0.1% (Chapter III; 

Ruiz et al., 2023c). 

When supplementing the basal diet with the SO additive, a similar down-regulation to that 

caused by the SPICY additive was observed for cd4-1, cd8b, il-15, and il-34 in the 48-h fasting 

state (Chapter IV; Ruiz et al., 2024a). In agreement with these results, a down-regulation of il-

6, interleukin-12 subunit beta (il-12b), and tnf-α, which encode pro-inflammatory cytokines 

(Zou and Secombes, 2016; Sakai et al., 2021), was also observed in 48 h fasted-fish fed with the 

SO diet. On the other hand, the expression of the gene encoding for the anti-inflammatory 

cytokine il-10 was also down-regulated by the SO additive. In fish, IL-10 can inhibit the 

expression of pro-inflammatory cytokines, such as il-1β, il-6, il-8 and tnf-α (Grayfer et al., 2011; 

Piazzon et al., 2015). In addition, it has been reported that IL-10 induces the development of 

Treg cells and proliferation of CD8+ memory T cells in cultures from immunized European 

common carp (C. carpio carpio L.), as well as promoting the proliferation of IgM+ B cells and 

production of IgM in cultures from naive and immunized fish (Piazzon et al., 2015). In this 

sense, even though under current conditions il-10 down-regulation might be in line with the 

down-regulation of cd4-1 and cd8b, there were no changes in the expression of other immune 

biomarkers like igm, il-1β, il-8, and tnf-α; and il-6 was down-regulated, contrary to what may 

be expected considering the results of the above-mentioned studies. Thus, these results 

suggested that the down-regulation of il-10 was not correlated with a significant modulation 

of IL-10 production and/or that the effects induced by il-10 down-regulation did not 
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completely counteract the coordinated anti-inflammatory immune response induced by the 

down-regulation of pro-inflammatory cytokines (il-6, il-12b, il-15, il-34, tnf-α). 

Furthermore, the down-regulation of the immune cell markers ccr9, and C-C chemokine 

receptor type 11 (ccr11) may also be an indicator of the anti-inflammatory immune response 

induced by the SO feed additive in 48 h fasted-gilthead seabream. For instance, previous 

studies have correlated the up-regulation of C-C chemokine receptors, including ccr11, with 

the presence of proinflammatory cytokines, PAMPs, and bacterial infection in rainbow trout 

(Qi et al., 2017). Considering the above information, one of the potential causes of the down-

regulation of such C-C chemokine receptors and pro-inflammatory cytokines may be the 

presumably lower recognition of PAMPs by the PRR toll-like receptor 2 (TLR2) associated to 

tlr2 down-regulation. This PRR plays an essential role in the detection of a wide range of 

fungal, bacterial, and viral PAMPs, including chitin, lipoproteins, lipopeptides, lipoteichoic 

acid, and lipoarabinomannan (Palti, 2011; Oliveira-Nascimento et al., 2012; Zhang et al., 2014). 

To what extend the anti-inflammatory immune response herein observed in 48 h fasted-fish 

may be associated to a lower exposure to potential pathogens deserves further investigation, 

and a deeper focus on the fish gut autochthonous microbiota, which will be addressed in the 

following section. 

Overall, it is clear that the combinations of spices included in both the SPICY and SO feed 

additives induced an intestinal anti-inflammatory immune response in gilthead seabream, 

which was particularly evident at the 48-h fasting state (Chapter III; Ruiz et al., 2023c; Chapter 

IV; Ruiz et al., 2024a). Although under current conditions no visible signs of inflammation 

were observed in the intestine of gilthead seabream, the anti-inflammatory properties of the 

tested spices have been well-described in mammals (Srinivasan, 2005; Jiang, 2019) and they 

have also been reported in some fish species, in concordance with our results of immune-gene 

expression. For instance, the anti-inflammatory effects of ginger, turmeric, and 

cinnamaldehyde have been reported in rohu (Sukumaran et al., 2016), grass carp (Ming et al., 

2020), and zebrafish (Faikoh et al., 2014) respectively, through an up-regulation of anti-

inflammatory cytokines, such as il-10 and tgf-β, and a down-regulation of pro-inflammatory 

cytokines, such as il-1β, il-6, il-8, il-15, and tnf-α. In this sense, similar to mammals, the terpenes 

and organosulfur compounds present in phytogenics have been proposed as being responsible 

for the antimicrobial, antioxidant, anti-inflammatory, and immunomodulatory properties of 

herbs and spices in fish (Firmino et al., 2021a). 

In summary, different immunomodulatory effects of the tested additives were observed in the 

present thesis depending on the time passed since the last feeding. At the 2 h-postprandial 

state, the blend of bile salts and the SO feed additive showed an intestinal immune modulation 

in fish which was characterized by the regulation of both pro- and anti-inflammatory genes, 

likely resulting in a state of immunocompetence against potential threats. On the other hand, 

after a 48-h fasting period, a clear anti-inflammatory pattern was observed in gilthead 

seabream fed the diet supplemented with the SPICY and SO feed additives, which may 

potentially improve intestinal motility, feed digestion, nutrient absorption, and ultimately 

feed utilization and fish growth (Serna-Duque and Esteban, 2020). Therefore, these results 

indicate that the three additives tested in the present thesis may enhance the health status of 

gilthead seabream, which is in agreement with the above-mentioned studies in other fish 
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species and higher vertebrates, even though the evaluation of their activity in promoting 

disease resistance mechanisms when the host is exposed to a pathogen, deserves further 

attention and needs to be addressed in future studies. 
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4. Dietary modulation of the blend of bile salts and combinations of 

spices, and effect of the intestinal microbiota transplant (IMT) on 

the fish gut microbiota 

 

It is well-known that the gut microbiota has a crucial role in fish growth and health, through 

the regulation of multiple physiological functions, such as feed and nutrient utilization, 

metabolism, development, mucosal integrity, and immune system modulation (Egerton et al., 

2018; Yu et al., 2021). Among this wide range and pleiotropic functions under regulation by 

the gut microbiota, its involvement in the host's lipid metabolism is highly remarkable, as it 

has been well-demonstrated in mammals. In this sense, obesity has been correlated with 

changes in the composition, diversity, and gene regulation profile in the gut microbiota of 

mammals (Ley et al., 2006; Turnbaugh et al., 2019). Particularly, these studies have associated 

a leaner phenotype with a higher microbial diversity and an increased abundance of 

Bacteroidota in humans and mice. In mice, it has also been shown that the gut microbiota of 

an obese individual has higher capacity to harvest energy from the diet compared to the 

microbiota of a lean mouse, based on predictive metagenomics and on biochemical analyses 

(Turnbaugh et al., 2006). It has been postulated that in higher vertebrates there is cross-talk 

between the gut microbiota and the adipose tissue of the host that is able to regulate energy 

metabolism via adipokines and metabolites, such as bile acids and short-chain fatty acids 

(SCFAs) (Wu et al., 2022). In addition, some studies performing fecal microbiota transplants 

(FMTs) between mice with different fatty phenotypes have shown an establishment of the 

donor phenotype after the FMT (Turnbaugh et al., 2006; Yan et al., 2023). Similar results have 

been obtained when performing inter-specific FMTs from humans (Ridaura et al., 2013; 

Tremaroli et al., 2015) or pigs (Yang et al., 2018) to germ-free mice. These findings highlight 

the relevance of the microbiota in defining the levels of fat accumulation in mammals. 

Similarly, many studies in fish have shown that the gut microbiota is able to regulate intestinal 

absorption of fatty acids, lipid deposition in digestive tissues, and the expression of genes 

related to lipid metabolism (Semova et al., 2012; Ni et al., 2014; Sheng et al., 2018). 

There are reports that have demonstrated and proposed different mechanisms by which the 

fish gut microbiota can regulate lipid metabolism and promote fat mobilization, that are very 

similar to the mechanisms found in mammals (Wu et al., 2024). The most well-demonstrated 

mechanism in fish is the production and secretion of microbial lipases. Bacterial lipases are 

normally extracellular and versatile in terms of temperature and pH, even though they are 

more functional under the alkaline environment typical of the intestinal lumen (Gupta et al., 

2004). Bacterial lipases have been documented in a diverse range of aquaculture species 

comprising freshwater, brackish water, and marine fish (Ray et al., 2012). In addition, as in 

mammals, some members of the fish gut microbiota are able to metabolize non-starch 

carbohydrates that are indigestible for the host into short-chain fatty acids (SCFAs), such as 

acetate, propionate, and butyrate (Hao et al., 2017). Subsequently, it has been demonstrated 

that such SCFAs, especially acetate (Xu et al., 2022c; Yu et al., 2022; Zhou et al., 2023) and 

butyrate (Zhou et al., 2019; Chen et al., 2022), improve hepatic lipid metabolism, reducing lipid 
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accumulation in fish as well as improving the condition of the intestinal epithelium (Estensoro 

et al., 2016; Liu et al., 2023; Xun et al., 2023; Zhao et al., 2024). Another mechanism of regulation 

of lipid metabolism by the gut microbiota may be through the gut-liver axis, transforming 

primary bile acids into secondary bile acids, which are then reabsorbed in the gut and 

transported to the liver via the hepatic portal vein (Romano et al., 2020; Introduction, Figure 

3). 

Considering the above-mentioned mechanisms, it is evident that the intestinal microbiota has 

a major role on fish lipid metabolism and on the regulation of fat accumulation, and 

consequently in the overall fish performance and health condition. However, in nutritional 

studies it is usually difficult to determine to what extent the observed changes in gut microbial 

communities are a cause or a consequence of the modulation of the fish health by aquafeeds. 

Thus, in the first part of this section, we will compare the changes observed in the gut 

microbiota of gilthead seabream when supplementing its diet with the tested additives and 

intend to explain the potential relationships between such changes and the lipid metabolism 

and overall health condition of fish based on the literature. For this purpose, we will also 

establish a correlation between the gut microbial composition and the fish performance 

parameters measured in the articles of the present thesis. 

As mentioned above, the gut microbiota is involved in lipid metabolism through regulation of 

the bile salt profile, but this modulation is bidirectional since bile salts can also regulate the 

gut microbiota profile. In this sense, bile salts can be toxic for the host fish, or higher 

vertebrates, and for some bacterial strains when they are found at high concentrations in the 

intestinal lumen because the detergent activity of bile salts can disrupt membrane integrity 

(Schubert et al., 2017; Fuentes et al., 2024). In addition, the hydrophobic nature of bile acids 

has been correlated with toxicity, with bile salts being more hydrophobic in their deconjugated 

form, and after metabolization by the gut microbiota, namely, secondary bile salts (Hofmann, 

1999; Ridlon et al., 2014). This may explain the lower observed (number of ASVs) and 

estimated richness values (Chao1 and ACE indices), which were observed in the anterior 

intestine of gilthead seabream when supplementing its diet with the tested blend of bile salts 

(Chapter II; Ruiz et al., 2023b). The increased content of the secondary bile salt T-DCA in the 

anterior intestine of gilthead seabream fed the BS0.06% diet (Chapter I; Ruiz et al., 2023a), which 

have more toxicity than primary bile acids (Schubert et al., 2017), was in line with such 

decrease in the richness of the gut microbiota from the anterior intestine. 

On the other hand, there were no significant differences in Chao1 and ACE values between 

fish fed the control diet and that supplemented with bile salts in the posterior intestine, where 

production of secondary bile acids mainly takes place (Hagey et al., 2010). However, 

paradoxically, by synthesizing different types of secondary bile salts, the gut microbiota also 

prevents the toxicity that may be caused by the accumulation of primary bile salts synthesized 

by the host (Schubert et al., 2017). Fortunately, the decrease in bacterial richness observed in 

the anterior intestine of gilthead seabream was not associated to changes in its diversity 

(Shannon and Simpson indices) neither were there differences in inter-individual diversity 

among dietary treatments (beta diversity; Bray-Curtis). In this sense, a loss of microbial 

diversity is usually associated with a loss of microbial functionality, leading to reduced 

digestive capacity, lower energy production, and increased susceptibility to diseases (Infante‐
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Villamil et al., 2021). A decreased microbial diversity has been usually associated with an 

inflammatory condition in higher vertebrates (Sekirov et al., 2010). In addition, the decreased 

resource competition in an environment with low microbial diversity leads to a higher risk of 

colonization by potential pathogens, causing infectious diseases (Sekirov et al., 2010). These 

results indicated that the administration of the blend of bile salts as a dietary additive did not 

pose a risk of dysbiosis in gilthead seabream. 

Similar to our study, no differences in diversity (Shannon and Simpson indices) were found in 

the posterior intestine of Chinese perch when its diet was supplemented with a blend of bile 

salts at 0.09% (Zhang et al., 2022a). Neither were there significant differences in observed 

richness, even though the number of observed OTUs was higher in fish fed the diet 

supplemented with bile salts than in those fed the control diet (Zhang et al., 2022a). On the 

other hand, different results have been obtained in tongue sole (Li et al., 2021b) and grass carp 

(Zhou et al., 2018a). In the mid intestine of tongue sole, a decrease in the number of observed 

OTUs was observed under dietary supplementation of a blend of bile salts of porcine origin at 

both tested inclusion levels, 0.03 and 0.09% (Li et al., 2021b). Such results were in agreement 

with the decreased number of ASVs that we observed in both anterior and posterior intestinal 

regions of gilthead seabream when supplementing its diet with bile salts. However, Li et al. 

(2021b) reported no changes in estimated richness (Chao1 and ACE indices), as well as an 

increase in diversity (Shannon and Simpson indices), which was suggested to improve the 

general health and the ability to resist infection. Such increase in diversity was also correlated 

with the separation among all groups observed in the PCoA for beta diversity based on Bray-

Curtis distances, indicating a different structure of the gut bacterial communities (Li et al., 

2021b). In the intestine of grass carp, a diminishment in the number of OTUs was also found 

under dietary supplementation with bile salts at an inclusion level of 0.006% (Zhou et al., 

2018a). Nonetheless, an increase in estimated richness as shown by Chao1 and ACE indices 

and a reduction in the values of Shannon index were also reported. In this sense, the specific 

type of bile salt tested has a pivotal role on microbial diversity and richness, as demonstrated 

by Xiong et al. (2018). These authors evaluated the specific effect of different primary and 

secondary bile salts at an inclusion level of 0.2 mmol kg-1 on the microbial communities of the 

posterior intestine of grass carp. Particularly, only T-CDCA and taurolithocholic acid (T-LCA) 

were able to increase bacterial richness (Chao1 index), while L-TCA and tauroursodeoxycholic 

acid (T-UDCA) increased the values of Shannon and Simpson indices. Overall, the differential 

results in microbial richness and diversity found among studies were likely dependent on the 

type of bile acids/salts tested, as well as on the specific conditions of the nutritional study, 

such as the feeding period, the fish species, the diet composition, the inclusion levels and 

origin of the additive, and the intestinal region sampled, among other factors (Xiong et al., 

2018; Li et al., 2021b). 

Regarding spices, previous studies in mammals have shown that many spices, including 

capsicum, cinnamon, and turmeric, have antimicrobial properties against potential pathogens, 

resulting in beneficial effects for the host health (Jiang, 2019). Similarly, the antimicrobial 

properties of spices have also been reported in fish. In particular, antibacterial activities for 

capsicum and turmeric have been described in Nile tilapia (Ibrahim et al., 2024) and rainbow 

trout (Yonar et al., 2019), respectively. The antimicrobial activity of ginger has been reported 

in Asian sea bass (Talpur et al., 2013), and common carp (Fazelan et al., 2020). However, these 
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studies only evaluated the antimicrobial activities of such species in serum, which is not 

transposable to the fish gut. At an intestinal level, the antimicrobial activity of some of the 

tested spices has also been described, such as black pepper in rohu (Ullah et al., 2021), ginger 

in striped catfish (Ashry et al., 2023), and turmeric in gilthead seabream (Ashry et al., 2021). 

Nonetheless, the above-mentioned studies evaluated the antibacterial activity of such species 

by means of traditional microbiological methodologies like the comparison of the number of 

colony forming units (CFUs) on culture media; thus, only considering the viable culturable 

bacteria. 

Very few studies have evaluated the effect of the herein tested spices in the gut microbial 

communities of fish using 16S rRNA gene sequencing. Among these studies, Yılmaz et al. 

(2024) reported no significant differences in observed (number of OTUs) and estimated 

richness (Chao1 index), neither on the diversity and structure of the bacterial communities in 

the intestine of rainbow trout when supplementing its diet with capsicum at different 

inclusion levels (0.7-2.8%). On the other hand, an increase in the values of observed (number 

of OTUs) and estimated richness (Chao1 index), as well as in diversity (Shannon index), and 

phylogenetic diversity (Faith index), was observed in tongue sole under dietary 

supplementation with cinnamaldehyde at an inclusion level of 0.1% (Wang et al., 2021a). A 

different structure (beta diversity) in tongue sole fed the diet supplemented with 

cinnamaldehyde was also observed with respect to tongue sole fed the control diet (Wang et 

al., 2021a). In Ruiz et al. (2023c; Chapter III), no differences in estimated richness (ACE index) 

were found in the intestine of gilthead seabream fed the diet supplemented with the SPCIY 

additive at 0.1%, containing capsicum, black pepper, ginger, and cinnamaldehyde, with 

respect to their congeners fed the control diet. Regarding bacterial diversity indices, no 

differences were observed either for the values of Shannon or Faith phylogenetic diversity, but 

the supplementation of the SPICY additive induced a significant increase in the values of the 

Simpson index in the posterior intestine. Shannon and Simpson indices are both estimators of 

diversity, but while the Shannon index puts more weight on richness, the Simpson index puts 

more weight on evenness, which is the degree of homogeneity in the distribution of species 

abundances (Kim et al., 2017b). Consequently, the increase in the values of the Simpson index 

that we observed may be associated with a higher bacterial diversity due to a higher evenness 

of the population rather than to a higher richness, since there were no differences in the values 

of ACE and Shannon indices. In this sense, an increase in bacterial diversity is typically 

regarded as a beneficial aspect since it is typically linked to an improvement in the condition 

of the host health (Terova et al., 2019). On the other hand, no differences in estimated richness 

(ACE index), diversity (Shannon and Simpson indices), or phylogenetic diversity (Faith index) 

were observed in gilthead seabream when the diet was supplemented with the SO additive at 

0.2%, containing turmeric, capsicum, black pepper, and ginger (Chapter IV; Ruiz et al., 2024a). 

In addition, no inter-individual phylogenetic differences (beta diversity based on weighted 

UniFrac distances) were found in fish fed the SPICY0.1% nor the SO diet with respect to the 

control group, indicating the absence of risks of dysbiosis when the additives based on spices 

were administered to gilthead seabream. 

Overall, the similar diversity that we observed in all the microbiota samples may be explained 

by the existence of a core microbiota common to all individuals, which is stable and persistent 

regardless of changing factors and is normally composed of highly abundant microbial 
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members (Astudillo‐García et al., 2017). In this sense, previous studies have demonstrated 

that, as in mammals, fish also have a core gut microbiota which does not change regardless of 

external factors, such as the feeding of different diets or distinct environmental conditions 

(Roeselers et al., 2011; Mente et al., 2018; Nikouli et al., 2018; Rudi et al., 2018; Kokou et al., 

2019). In our case, only 350 out of 19,829 ASVs were shared among the four dietary groups 

(control diet, BS0.06% diet, SPICY0.1% diet, SO diet) in the anterior intestine, and 319 out of 13,996 

ASVs were common to all groups in the posterior intestine (Figure 1). The majority of ASVs 

were unique to each dietary treatment. Despite the relatively low number of ASVs common to 

all dietary treatments, these represented an abundance of 40.7% in the anterior intestine, and 

of 45.3% in the posterior intestine. Related to this, a recent study has reported the presence of 

a core gut microbiome in gilthead seabream which was maintained in all individuals during 

the nutritional trial after a change of diet (Ruiz et al., 2024d). Although the diet plays a 

paramount role in defining the fish gut microbial diversity, structure, and composition (Silva 

et al., 2011; Ghanbari et al., 2015), there are other biotic and abiotic factors, which were 

common to all individuals used in the nutritional trials of the present thesis, and that may 

contribute to the shaping of a core microbiome. For instance, it has been shown that the fish 

microbiota is influenced by host inherent factors, such as the genetic background (Navarrete 

et al., 2012) and the origin of the fish (Dhanasiri et al., 2011), and by environmental factors, 

including the water temperature, salinity (Rudi et al., 2018) and the microbial composition of 

the environment (Roeselers et al., 2011). Moreover, the nutritional trials evaluating the effects 

of the dietary supplementation of the tested additives on gilthead seabream were carried out 

in parallel in different tanks from the same recirculating aquaculture system (RAS, 

IRTAmarTM), under the same environmental conditions, and all the fish come from the same 

commercial hatchery. Thus, the common origin, genetic background, and environmental 

conditions in the four nutritional studies included in this thesis were the main determinants 

of the common ASVs found among studies. 

 

Figure 1. Venn diagram plotting the number of unique and shared ASVs (and relative abundance % 
with respect to the total abundance of ASVs) in gilthead seabream (Sparus aurata) fed the control diet 
and the diets supplemented with bile salts at an inclusion level of 0.06% (BS0.06% diet), a combination of 
capsicum, black pepper, and ginger oleoresins, and cinnamaldehyde at 0.1% (SPICY0.1% diet), and a 
combination of turmeric, capsicum, black pepper, and ginger oleoresins at 0.2% (SO diet). 
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The similar microbial diversity and structure of the gut microbial communities among 

different dietary treatments was associated to a similar bacterial composition. At the level of 

phylum, significant differences with respect to the control diet (P ≤ 0.05) were only found in 

fish fed the BS0.06% and SPICY0.1% diet. In this regard, an increase of 2.2% in the relative 

abundance of Desulfobacterota was observed in the anterior intestine of gilthead seabream fed 

the BS0.06% diet with respect to the control group (Chapter II; Ruiz et al., 2023b), which was 

attributed to the increased abundance of the genus Desulfovibrio, whose importance will be 

further discussed below. In addition, under dietary bile salt supplementation, an increase of 

13.6% in the relative abundance of Firmicutes, and a decrease of 14.3% in the relative 

abundance of Proteobacteria were also observed in the posterior intestine (Chapter II; Ruiz et 

al., 2023b). In agreement with our study, Zhang et al. (2022a) reported an increase in the 

abundance of Firmicutes in the posterior intestine of Chinese perch when its diet was 

supplemented with bile salts at an inclusion level of 0.09%. These authors associated the 

increased abundance of this phylum with a higher stress tolerance. Additionally, in higher 

vertebrates it has been shown that members of the phylum Firmicutes are able to tolerate and 

metabolize primary bile salts, thus having a higher survival in the gut than non-tolerant 

bacteria (Islam et al., 2011; Joyce and Gahan, 2017). In this sense, it is well-known that the 

presence of bile acids in the intestine usually inhibits the growth of bacteria sensitive to them, 

while promotes a higher growth of bacteria able to tolerate and/or metabolize bile acids 

(Ridlon et al., 2014). On the other hand, Zhou et al. (2018a) observed a significant reduction in 

the abundance of Firmicutes in the intestine of grass carp when fed a diet supplemented with 

bile salts at 0.006%. However, the above-mentioned studies are not directly comparable, since 

it is important to consider that Zhou et al. (2018a) homogenized the whole gut, while Zhang 

et al. (2022a) only sampled the posterior intestine, which is the region where we found 

differences in the abundance of Firmicutes. In addition, to ensure the collection of 

autochthonous microbiota, we fasted the fish for 48 h before the sampling and Zhang et al. 

(2022a) removed the intestinal digesta, whereas Zhou et al. (2018a) apparently targeted all the 

microbial content. Thus, such differences in the sampling method regarding the intestinal 

region and type of targeted microbiota probably influenced the results obtained from each 

study, which reinforces the idea of the importance of standardizing sample collection and 

processing for studies focused on the host's microbiota (Kashinskaya et al., 2017; Legrand et 

al., 2020a; Ruiz et al., 2024e). Nonetheless, Zhou et al. (2018a) also observed a decrease in the 

relative abundance of Proteobacteria, which is in line with the effect that the tested blend of 

bile salts caused in the posterior intestine of gilthead seabream. Further, in fish fed the 

SPICY0.1% diet, an increase of 0.9% in the relative abundance of Chloroflexi was found in the 

posterior intestine, with respect to the individuals fed the control diet (Chapter III; Ruiz et al., 

2023c). Although this widespread and metabolic diverse phylum has been found in the 

intestine of many fish species (Fan et al., 2017; Bereded et al., 2020; Liu et al., 2021b; Naya-

Català et al., 2021b; Nikouli et al., 2021), it has not yet been correlated with the metabolism of 

lipids nor bile acids, nor is there strong evidence of its role on fish intestinal health. 

Some studies have used different ratios at the level of phylum as markers of the animal health 

and condition, with the ratio Firmicutes/Bacteroidota (F/B) being the most commonly used. 

In humans and mice, a reduction in the F/B ratio has been usually associated to obesity 

(Turnbaugh et al., 2006; Indiani et al., 2018), while in fish it is used as a biomarker of intestinal 
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dysbiosis (Mougin and Joyce, 2023). On the other hand, the ratio Bacteroidota/Proteobacteria 

(B/P) has been correlated with inflammation, but its significance can vary depending on the 

animal (Brugman et al., 2018). In mammals, decreased values of the B/P ratio have been 

associated to inflammation, whereas in fish an increase in the values of this ratio has been 

observed upon inflammation (Brugman et al., 2018). In the studies presented in this thesis, no 

significant differences in the values of the ratios F/B and B/P were found in the anterior nor 

posterior intestine of gilthead seabream when the control diet was supplemented with the 

tested additives (Table 2), which is in line with the similarities in gut microbial composition 

observed at the level of phylum. Thus, the absence of differences in the values of the ratio F/B 

may indicate no risk of dysbiosis in gilthead seabream when supplementing its diet with the 

blend of bile salts and both additives based on spices. The numerical though not statistically 

significant decrease in the ratio B/P in the posterior intestine of fish fed the BS0.06% diet, with 

respect to the control group, may be related to the anti-inflammatory potential of bile salts in 

the fish gut (Iwashita et al., 2009; Kortner et al., 2016). Nonetheless, such a decrease in B/P 

values was not significant, and no signs of inflammation were found in the intestine of gilthead 

seabream under current conditions (Chapter I; Ruiz et al., 2023a; Chapter II; Ruiz et al., 2023b). 

 

Table 2. Values of the ratios Firmicutes/Bacteroidota (F/B) and Bacteroidota/Proteobacteria (B/P) in 
the anterior and posterior intestine of gilthead seabream (Sparus aurata) fed the control diet and the diets 
supplemented with bile salts at an inclusion level of 0.06% (BS0.06%), a combination of capsicum, black 
pepper, and ginger oleoresins, and cinnamaldehyde at 0.1% (SPICY0.1%), and a combination of turmeric, 
capsicum, black pepper, and ginger oleoresins at 0.2% (SO). 

 Control BS0.06% SPICY0.1% SO P-value 

Anterior intestine 

F/B ratio 1.65 ± 0.13 1.77 ± 0.07 1.70 ± 0.29 1.61 ± 0.12 0.852 

B/P ratio 1.34 ± 0.17 1.17 ± 0.21 1.33 ± 0.14 1.06 ± 0.13 0.436 

Posterior intestine 

F/B ratio 2.13 ± 0.16 2.01 ± 0.25 1.92 ± 0.21 2.20 ± 0.12 0.582 

B/P ratio 1.67 ± 0.42 0.91 ± 0.12 1.35 ± 0.33 1.54 ± 0.25 0.162 

Values are represented as mean ± SEM (n = 12 fish per dietary group). There were no significant 

differences among groups (Kruskal-Wallis; P > 0.05). 

 

Considering the above-mentioned role of the gut microbial communities in fish performance, 

in order to facilitate the interpretation of the results, we tested the correlation between the 

results of growth and feed performance and the relative abundances of the predominant 

genera (≥ 1%) in the anterior and posterior intestine of gilthead seabream (Spearman's 

correlation, P ≤ 0.05; Figure 2). However, it should be noted that a significant correlation does 

not necessarily imply a cause-effect relationship. 
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Figure 2. Spearman's correlation among the relative abundance of the most abundant bacteria (≥ 1%) in 
the anterior and posterior intestine and the values of the fish performance indicators measured in 
gilthead seabream (Sparus aurata) fed the control diet and the diets supplemented with bile salts at an 
inclusion level of 0.06% (BS0.06% diet), a combination of capsicum, black pepper, and ginger oleoresins, 
and cinnamaldehyde at 0.1% (SPICY0.1% diet), and a combination of turmeric, capsicum, black pepper, 
and ginger oleoresins at 0.2% (SO diet). The correlation was tested among the mean values per tank of 
each parameter (n = 16 tanks). Spearman's correlation coefficients (rs) are represented using a color 
gradient (dark red: positive correlation – dark blue: negative correlation) and significant correlations (P 
≤ 0.05) are marked with an asterisk. Abbreviations: BWf: final body weight; SLf: final standard length; 
SGR: specific growth rate; K: Fulton's condition factor; HSI: hepatosomatic index; PVFI: perivisceral fat 
index; FCR: feed conversion ratio; ADC: apparent digestibility coefficient. 
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Considering the genera with a relative abundance ≥ 1%, the tested blend of bile salts had an 

effect in the relative abundance of bacterial taxa from both the anterior and posterior intestine 

(Chapter II; Ruiz et al., 2023b). Interestingly, on the other hand, the dietary effect of the SPICY 

additive was only detected in the posterior intestine (Chapter III; Ruiz et al., 2023c), while the 

effect of the SO additive was observed in the anterior intestine (Chapter IV; Ruiz et al., 2024a). 

Furthermore, it was striking to find common patterns of regulation of the relative abundance 

of some genera between the blend of bile salts used and the two tested combinations of spices. 

For instance, a significant increase in the levels of representatives of the genera Bacteroides, 

Desulfovibrio and Ralstonia was observed in the anterior intestine of gilthead seabream fed with 

both the BS0.06% diet and the SO diet, with respect to the control group. 

In concordance with our results, Zhou et al. (2018a) also observed an increase in the abundance 

of Bacteroides in grass carp under dietary supplementation with bile salts. As discussed in Ruiz 

et al. (2023b, 2024a; Chapter II; Chapter IV), it is well-demonstrated that members of both 

genera Bacteroides and Desulfovibrio are involved in bile acid metabolism. In this sense, some 

species belonging to Bacteroides have been reported to possess bile salt hydrolase (BSH) 

activity, which is necessary for the deconjugation of primary bile acids, the first step in the 

metabolization of primary bile salts into secondary bile acids (Kawamoto et al., 1989). 

Furthermore, some members belonging to this Gram-negative anaerobic genus have 

enzymatic activities for 7α-dehydroxylase, 7α-hydroxysteroid dehydrogenase (7α-HSD) and 

7β-hydroxysteroid dehydrogenase (7β-HSD), which catalyze the epimerization and oxidation 

or reduction of bile acids, necessary to complete their transformation into secondary bile acids 

(Chattopadhyay et al., 2022). However, species belonging to Bacteroides do not only contribute 

to lipid digestion and metabolism through their role in the metabolization of bile salts, but also 

through the production of SCFAs. In this sense, Bacteroides spp. are involved in the synthesis 

of propionate and acetate (Chattopadhyay et al., 2022), which can promote lipid catabolism 

and digestion, preventing fat accumulation in fish (Yu et al., 2022; Yousefi et al., 2024). In 

addition, some species belonging to the genera Desulfovibrio are capable of generating 

hydrogen sulfide (H2S) from taurine (Hu et al., 2022a; Rausch, 2023), which is released from 

deconjugated bile acids. Further, it has been shown that the bile acids CA and DCA induce the 

growth of Desulfovibrio (Chattopadhyay et al., 2022). Thus, in our studies, the increased relative 

abundance of Desulfovibrio may be attributed to the higher content of T-DCA in the intestine 

of gilthead seabream fed the BS0.06% diet (Chapter I; Ruiz et al., 2023a), and to the numerical 

increase in the levels of T-CA in the intestine of fish fed the SO diet (Chapter IV; Ruiz et al., 

2024a). Moreover, it has been reported that both Gram-negative anaerobic genera, Bacteroides 

and Desulfovibrio, promote the growth of bacteria with 7α-dehydroxylase activities, including 

Bacteroides (Hirano and Masuda, 1982; Hu et al., 2022a). 

While the role of Ralstonia in the fish gut remains unknown, considering the metabolic 

versatility of some species from this genus (Lu et al., 2013; Riedel et al., 2014), previous studies 

have hypothesized that they might biosynthesize bioactive compounds and secondary 

metabolites beneficial for the fish (Cerezo-Ortega et al., 2021). However, further studies are 

needed to confirm this hypothesis. Using the data of the studies included in this thesis, it was 

observed that the relative abundance of Ralstonia in the anterior intestine tended to negatively 

correlate, even though not significantly (Spearman's correlations coefficient rs = -0.46, n = 16, 

P = 0.071), with the values of the PVFI. Thus, the increased abundance of this genus may be 
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associated the reduction in the levels of perivisceral fat found in gilthead seabream fed the 

BS0.06% diet (Chapter I; Ruiz et al., 2023a), and the SO diet (Chapter IV; Ruiz et al., 2024a). 

In the posterior intestine of gilthead seabream, we found common patterns in the regulation 

of the relative abundance of some genera by the tested blend of bile salts and the SPICY feed 

additive. Indeed, fish fed the BS0.06% and the SPICY0.1% diets showed a decrease in the relative 

abundance of the genera Campylobacter, Corynebacterium, and Peptoniphilus in the posterior 

intestine, with respect to their congeners fed the control diet (Chapter II; Ruiz et al., 2023b; 

Chapter III; Ruiz et al., 2023c). Such reductions in bacterial abundance may be consequence of 

the above-mentioned antimicrobial effect of bile salts (Schubert et al., 2017) and of spices 

(Jiang, 2019). Although in higher vertebrates some bacterial species belonging to these genera 

are considered potential pathogens (Sahin et al., 2002; Spier, 2008; Brown et al., 2014), in fish 

they have been found as part of the commensal microbiota of the intestine (Estruch et al., 2015; 

Zhou et al., 2018b; Liu et al., 2022b). Nonetheless, to date their role in fish health remains 

largely unexplored.  

When testing the correlation between the relative abundance of the genera from the posterior 

intestine of gilthead seabream and the fish performance indicators, significant correlations 

were found for the three genera. In particular, the abundance of Campylobacter was negatively 

correlated with the values BWf (rs = -0.52, n = 16, P = 0.049), SLf (rs = -0.56, P = 0.034), and SGR 

(rs = -0.53, P = 0.045), and the abundance of Corynebacterium was negatively correlated with the 

values of SLf (rs = -0.64, P = 0.012) and SGR (rs = -0.53, P = 0.047; Figure 2). Thus, the improved 

growth performance of fish fed the BS0.06% and SPICY0.1% diets may be associated to the lower 

levels of these genera in the posterior intestine in presence of such additives, or vice versa. The 

relative abundance of Porphyromonas, which decreased in fish fed the BS0.06% diet, also showed 

a negative correlation with SLf (rs = -0.58, P = 0.026) and SGR (rs = -0.54, P = 0.042). In addition, 

a positive correlation was found between the relative abundance of Corynebacterium and 

Peptoniphilus and the values of PVFI (rs = 0.54, P = 0.039; rs = 0.55, P = 0.036, respectively), 

indicating that there was an association between the decreased abundance of both genera in 

the posterior intestine and the lower levels of perivisceral fat in fish the BS0.06% and the 

SPICY0.1% diets. 

Overall, these results showed that the blend of bile salts and both combinations of spices were 

able to modulate the composition of the gut microbial communities of gilthead seabream 

without compromising their diversity and structure. In addition, the common patterns found 

between the blend of bile salts and the SO additive in the anterior intestine, and the SPICY 

additive in the posterior intestine, suggested that the modulatory effect of both, bile salts and 

spices, on the gut microbiota was in part due to a higher secretion rate of bile salts into the 

intestine. This is congruent with reports that supplementation of spices can induce a higher 

secretion of bile salts to the intestine (Platel and Srinivasan, 2004), which promotes the growth 

of bile salt-tolerant bacteria over bacteria which are not able to metabolize these compounds 

(Ridlon et al., 2014). Thus, the numerical increase of total bile salts in the intestine of gilthead 

seabream fed the SPICY0.1% and SO diets may partly be the cause of the microbial modulation 

induced by the tested spices (Chapter III; Ruiz et al., 2023c; Chapter IV; Ruiz et al., 2024a). 

Changing the subject, another objective of this thesis was to assess the viability of performing 

an intestinal microbiota transplant (IMT) from Atlantic salmon to gilthead seabream (Chapter 
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V; Ruiz et al., 2024b). The two fish species selected were marine carnivores that thrive at 

different environmental conditions, in order to be able to discriminate the microbial 

composition coming from the donor and receptor fish, and this assay was designed as a 

conceptual approach for future IMTs aimed at reducing fat accumulation by modulating the 

gut microbial communities of fish. In this sense, if we had observed a significant change in gut 

microbial diversity, structure, and composition under the dietary supplementation of any of 

the tested additives that might support the role of gut microbiota on body and perivisceral 

adiposity, the protocol developed in Ruiz et al. (2024b; Chapter V) could have been applied 

from gilthead seabreams fed one of the supplemented diets to their congeners that were fed 

the control diet to try to modulate their gut microbial communities and body fat levels. 

However, in the nutritional assays presented in this thesis, we did not observe such a radical 

change in the gut microbial communities as to expect to discern the establishment and/or 

maintenance of a new intestinal microbiota capable of contributing to the modulation of fat 

accumulation in gilthead seabream (Chapter II; Ruiz et al., 2023b; Chapter III; Ruiz et al., 2023c; 

Chapter IV; Ruiz et al., 2024a). Nonetheless, in the hypothetical case that this trial had been 

carried out, a point to address would have been whether gilthead seabream may still require 

the dietary additive supplementation to maintain its novel intestinal microbiota over time after 

the IMT. Therefore, the influence of the diet was also taken into account in our conceptual 

approach. Hence, one group of gilthead seabreams was fed with the typical gilthead seabream 

diet provided during the 36-day trial (GSB diet), while another group was fed with the diet of 

the Atlantic salmon after the IMT (Chapter V; Ruiz et al., 2024b). 

To date, very few studies evaluating the efficiency of FMTs and IMTs on the gut microbial 

modulation have been carried out in fish. Concerning fish from the same species, Hu et al. 

(2022b) performed a FMT in adult zebrafish via supplementation of the diet with fecal content 

from young donors, but the gut microbial communities after the transplantation were not 

evaluated. On the other hand, Zhang et al. (2023) performed a FMT in large yellow croaker 

from 1-year old individuals to larvae by oral administration through the diet for 30 days. In 

this case, the authors compared the gut microbiota of fish after the FMT with their congeners 

that were not administered the FMT, but not with the microbiota from the donors. Zhang et 

(2023) observed a significant increase in the observed (number of OTUs) and estimated 

richness (ACE and Chao1 indices) with respect to their congeners. No differences in Shannon 

and Simpson diversity indices were found, but there was a significant increase in Faith 

phylogenetic diversity index. Regarding beta diversity, in terms of unweighted UniFrac 

distances, the structure of the control group and the fish that received the FMT was different, 

with the latter having a much higher dispersion. The FMT also had an effect in the composition 

of the gut microbiota of large yellow croaker, increasing the relative abundance of the classes 

Gammaproteobacteria, Bacilli, Actinobacteria and Nitrososphaeria, and decreasing the 

relative abundance of the classes Alphaproteobacteria and unidentified Planctomycetes 

(Zhang et al., 2023). Thus, it is evident that the FMT performed by these authors was able to 

induce a modulation in the richness, structure, and composition of the gut microbial 

communities in large yellow croaker. Nonetheless, considering that the microbiota of the 

donor fish was not studied, it is difficult to determine to what extent the richness, structure, 

and composition of the donor was maintained. 
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Interestingly, Smith et al. (2017) and Legrand et al. (2020b) assessed the effect of FMT taking 

into account the variable “time”, to check if the microbial changes were maintained over time. 

In this sense, Legrand et al. (2020b) performed FMTs via oral gavage and through the water to 

yellowtail kingfish and compared the microbial profile of the inoculum from the donor fish 

and the gut microbiota of the receptors with the microbial communities of the individuals 

submitted to the transplant at 2, 8 and 15 days after the FMT. At 2 days post-FMT, these 

authors observed an increase in microbial richness (observed ASVs) and diversity (Shannon 

index) in 2 out of 4 fish submitted to the FMT via oral gavage, reaching values similar to those 

of the inoculum from the donor fish, while the other 2 transplanted fish showed values more 

similar to the recipient fish before the transplant. A few of the transplanted individuals, 

specifically 2 fish submitted to FMT via gavage and one submitted to FMT through water 

exposure, also showed a more similar beta diversity, based on Bray-Curtis distances, to the 

donor inoculum than to the recipient individuals. In addition, 17 out of the 79 ASVs found in 

the donor inoculum were observed in yellowtail kingfish at 2 days post-FMT, belonging 

mainly to the genera Aliivibrio and Lactobacillus. Nonetheless, at 8 and 15 days after the FMT, 

the microbial richness and diversity were reduced, beta diversity was similar to the recipient 

individuals, and the above-mentioned ASVs were not reported in the gut of transplanted fish, 

meaning that the microbial modulation induced by the FMT was not persistent over time 

(Legrand et al., 2020b). Additionally, Smith et al. (2017) performed an IMT through water 

exposure from young-age (6 weeks) African turquoise killifish (Nothobranchius furzeri) to 

middle-age (9.5 week) individuals. One week after the IMT, a similar richness (observed 

OTUs) to that of the donor and recipient fish was found, but the microbial structure (Bray-

Curtis and unweighted Unifrac distances) was different among these groups of fish. At 7 

weeks post-transplant, the richness of fish submitted to the FMT was lower than for the donor 

fish, but higher than for their congeners not submitted to FMT. In addition, at 7 weeks post-

IMT the gut microbial communities were more enriched with members of the phyla 

Bacteroidota and Firmicutes and with several genera which were highly abundant in the 

young donors, showing that in this case, gut colonization by the donors' microbiota was a 

progressive process over time (Smith et al., 2017). 

Inter-specific FMT and IMT have also been performed, between different animal species and 

zebrafish, or reciprocally. Focusing on inter-specific transplantations with fish as receptors, 

Rawls et al. (2006) transferred the cecal content of adult female mice to germ-free zebrafish 

larvae through water exposure. At 14 days post-transplantation, the authors observed a 

decrease in bacterial richness (Chao1 and ACE indices) and diversity (abundance of total 

sequences), and a separation in beta diversity based on weighted UniFrac distances with 

respect to the host before the IMT, clustering closer to the donor group. In addition, the 

phylum Firmicutes, which was highly abundant in the mice, colonized up to 65% of the gut 

microbial communities of zebrafish after the IMT. However, the majority of such Firmicutes 

belonged to the class Bacilli, which was more common in recipient zebrafish than in donor 

mice (Rawls et al., 2006). On the other hand, Valenzuela et al. (2018) performed a FMT from 

human to zebrafish larvae through exposure to an inoculum of the fecal sample. As a result, 

in terms of beta diversity (weighted UniFrac), the gut microbiota of zebrafish larvae at 2.5h 

after the transplant clustered together with that of recipient zebrafish before the FMT, but 

separately to the fecal sample. Indeed, only 6 of the 74 genera identified in the human sample 
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were transferred to the fish, corresponding to the genera Bacillus, Roseburia, Oscillospira, 

Prevotella, and two unassigned genera of the families Ruminococcaceae and 

Enterobacteriaceae (Valenzuela et al., 2018). These results were in line with the attempt of Toh 

et al. (2013) to perform an inoculation of bacteria isolated from a human fecal sample into 

zebrafish larvae through static immersion or microinjection. Larvae were sampled at 3, 5, and 

7 days post-inoculation, but only the species Lactobacillus paracasei and Eubacterium limosum, 

out of the 22 species and 30 strains inoculated, were observed at 3 days post-inoculation. At 7 

days, only L. paracasei was maintained when microinjection was used, but none of the species 

persisted when static immersion was used for inoculation (Toh et al., 2013). 

To our knowledge, the IMT presented in this thesis is the first attempt of IMT between two 

different fish species with aquaculture interest (Chapter V; Ruiz et al., 2024b). As main results, 

at the first sampling time after the transplantation (2 days post-IMT), we found no differences 

in richness (ACE index), diversity (Shannon index) nor phylogenetic diversity (Faith index). 

This was likely because donor (Atlantic salmon) and receptor (gilthead seabream) groups 

displayed similar values for such indices. In addition, at 2 days post-IMT all gilthead seabream 

displayed a similar microbial structure (weighted UniFrac distances) regardless of the feeding, 

which was very different to the microbial structure of the diets. The predominant phyla of the 

fish submitted to the IMT were Proteobacteria and Firmicutes, maintaining similar 

abundances to the donor Atlantic salmon and receptor gilthead seabream before the IMT. At 

2 days post-IMT we also observed many genera common to both donor and receptor fish, such 

as Photobacterium, Vibrio, and Escherichia-Shigella, while there were other genera exclusive from 

the donors, like Aliivibrio, or from the host, like Catenococcus. 

In addition, except for Ruiz et al. (2024b; Chapter V), none of the above-mentioned trials 

considered the variable diet, which may be used as a complementary factor to attempt to 

prolongate the persistence of the gut microbial modulation induced by FMTs and IMTs, 

considering its ability to shape the fish gut microbiota (Silva et al., 2011; Ghanbari et al., 2015). 

In this sense, in our trial we observed that at the final sampling time (36 days post-IMT), the 

richness (ACE index) of gilthead seabream fed the GSB diet was similar to the richness of 

gilthead seabream before the IMT, while the richness of gilthead seabream fed the salmon diet 

was similar to that of Atlantic salmon. Additionally, the microbial structure, based on 

weighted UniFrac distances, of fish fed each diet was different, with the microbial structure of 

gilthead seabream fed the salmon diet being similar to this diet, while fish fed the GSB diet 

clustered together with the GSB diet in the PCoA, despite being significantly different. The 

diet also showed a high influence on the gut microbial composition. In this sense, high 

abundances of the phylum Firmicutes, and the genera Lactobacillus and Ligilactobacillus, which 

were the predominant taxa found in the GSB diet, were observed in the gut of gilthead 

seabream fed the GSB diet at 36 days post-IMT. On the other hand, the feeding of the salmon 

diet led to the development of a new unique microbiota profile, which showed a decrease in 

the phylum Proteobacteria, and an increase in Firmicutes, Actinobacteriota and Bacteroidota 

with respect to the fish at 2 days post-IMT. There was also an increase in the abundance of the 

genera Escherichia-Shigella, Acinetobacter, and Cutibacterium, and an emergence of new genera 

such as Alloiococcus, Asinibacterium, Bacillus, and Turicella, while Photobacterium and Vibrio 

decreased (Chapter V; Ruiz et al., 2024b). 
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Summarizing, even though a priori the IMT performed herein seemed to work and the diet 

also contributed to a gut microbial modulation over time, the microbial changes observed after 

the 2 days post-MT were not as expected. In this sense, there exist some factors affecting the 

efficiency of the IMT that may be improved in further studies with regard to the application 

of the experimental protocol described in Ruiz et al. (2024b; Chapter V). For instance, one of 

the main constraining factors in our trial was the change of temperature that the microbial 

species suffered after the IMT, considering that the temperature can shape the fish microbial 

diversity, structure, and composition (Soriano et al., 2018; Sepulveda and Moeller, 2020; Liu et 

al., 2022b). Under current conditions, the water temperature at which donor Atlantic salmons 

were reared was 12 ºC, while the water temperature of gilthead seabream tanks was 20 ºC. 

Thus, considering fish as ectothermic organisms, it can be expected a decrease in the relative 

abundance of psychrophilic microorganisms, which are those species with an optimal growth 

temperature of 15 ºC or lower, and with a maximal growth temperature of 20 ºC (Moyer and 

Morita, 2007). This may be the case for some Aliivibrio species, since many of them have an 

optimal growth rate within the range of 12-18 ºC and lose growth capacity at temperatures of 

approximately 20 ºC (Colquhoun et al., 2002; Khrulnova et al., 2011; Söderberg et al., 2019), 

and in our trial the relative abundance of this genus decreased to near zero after 2 days post-

IMT (Chapter V; Ruiz et al., 2024b). 

Another potential weakness of our study may be the inability to confirm that no further 

changes occurred after the final sampling time. In his sense, we are confident that the mixture 

of antimicrobials (AMs) employed to obliterate the host basal microbiota did not have an effect 

on the results of gilthead seabream at the 36 days post-IMT, since the values microbial richness 

(ACE index) and diversity (Shannon and Faith indices), and weighted UniFrac distances at 17 

days post-AMs were already similar to those of gilthead seabream before the application of 

AMs. In addition, microbial composition was also very similar at 17 days post-AMs with 

respect to the one of fish pre-AMs, with the only exception of the phylum Cyanobacteria and 

the genera Vibrio and Escherichia-Shigella (Chapter V; Ruiz et al., 2024b). Nonetheless, 

considering the high number of underlying factors that may influence the gut microbial 

communities after the IMT, such as the microbial adaptation to the new environmental 

conditions or the resource competition among bacteria (Neuman et al., 2016; Scheuring et al., 

2022), it is not possible to ensure that after 36 days no further changes in microbial 

communities would occur, especially in the case of the group that was submitted to a change 

of diet to the salmon diet after the IMT. In this sense, a study in Atlantic cod (Gadus morhua) 

reported that the microbial modulation induced by the dietary supplementation of egg wrack 

(Ascophyllum nodosum) extended over a long period, finding differences in microbial diversity, 

structure, and composition between the weeks 8 and 12 of the trial (Keating et al., 2021). 

Indeed, these authors observed a trend towards convergence of the gut microbial communities 

of all fish over time irrespective of their dietary treatment. In agreement with these results, in 

a previous trial we observed that the gut microbial modulation of gilthead seabream after a 

change of diet was extended up to the 60 days that the trial lasted, also showing a convergence 

towards an increasing core microbiota over time in all fish (Ruiz et al., 2024d). Such results 

may be in line with the existence of an increasing core microbiota that we found in gilthead 

seabream at 7 days post-IMT (8 days post-AMs) and at 16 days post-IMT (17 days post-AMs) 
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irrespective of the treatment in Ruiz et al. (2024b; Chapter V), and whose growth could 

potentially have continued over time if we had extended the trial for a longer period. 

In addition to the aforementioned factors that can be improved when applying the proposed 

IMT protocol, there are also many other factors, not only specific to our protocol but also at a 

more generic level, that should be considered in the hypothetical scenario of IMTs being used 

as a strategy for productive purposes on an industrial scale. A significant flaw in many 

protocols of IMTs, including ours, is the use of large quantities of antibiotics to purge the 

existing microbiota. To reduce the application of antibiotics, this approach might be modified 

to include alternatives such as the use of anti-microbial peptides (Cheng et al., 2014), a stress-

induced dysbiosis (Uren Webster et al., 2021), or an extended fasting period to deplete the 

existing host basal microbiota (Viver et al., 2023). It is also important to consider that another 

constraint of IMTs in fish is the high number of individuals managed in aquaculture (FAO, 

2022), which economically and functionally hinders their massive application on an industrial 

scale. 

In view of the above-mentioned information, nowadays IMTs may only be used in an 

experimental context, to test their effects on animal performance, as has been done in higher 

vertebrates, such as ruminants (Ribeiro et al., 2017), swine (Hu et al., 2018), and poultry 

(Siegerstetter et al., 2018), and to help elucidate the role on fish performance of the gut 

microbial communities which are modulated by the IMTs. In this sense, studies in African 

turquoise killifish, zebrafish, and large yellow croaker have shown that FMTs and IMTs can 

be used to improve fish performance and physiology, in terms of growth, digestive capacity, 

reproductive performance, intestinal health, gut microbial diversity, and life longevity, among 

other parameters (Hu et al., 2022b; Smith et al., 2017; Zhang et al., 2023). Likewise, the effect 

of the gut microbial changes induced by an IMT on the levels of fat accumulation in fish may 

be tested in future studies. In this sense, studies performing intra- (Turnbaugh et al., 2006) and 

inter-specific microbial transplants (Ridaura et al., 2013; Tremaroli et al., 2015; Yang et al., 2018) 

in mice have shown that FMTs and IMTs are able to modulate the levels of body fat 

accumulation in association with changes in the gut microbial composition. Similarly, studies 

in poultry have shown that FMTs can modulate the chicken body weight and up-regulate 

genes involved in fat metabolism (Zhang et al., 2022b). Thus, the application of IMTs in future 

studies in fish may lead to promising results in terms of an improved fish performance and/or 

regulation of fat accumulation. However, with the existing knowledge of today, the use of 

IMTs as a feasible strategy in the industrial sector still seems implausible. 

Overall, the results of gut microbiota of the present thesis show that both tested strategies, the 

supplementation of aquafeeds with supplements based on bile salts or spices and the 

performance of an IMT followed by a dietary treatment, were able to modulate gut microbial 

composition of gilthead seabream. In addition, the IMT and posterior dietary treatment was 

able to modulate bacterial richness, diversity, and structure. However, even though the effect 

of the IMT was more pronounced, the supplementation of aquafeeds with the tested additives 

is currently closer to being used as a strategy to modulate the gut microbial communities, and 

fat accumulation levels, in the aquaculture sector.
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Conclusions 
 

1. The dietary supplementation of a blend of bile salts containing sodium cholate, sodium 

deoxycholate, and sodium taurocholate hydrate at an inclusion level of 0.06% promoted 

somatic growth and did not affect feed performance in gilthead seabream (Sparus aurata). 

2. The administration of a combination of capsicum, black pepper, and ginger oleoresins, and 

cinnamaldehyde (SPICY additive) at inclusion levels of 0.1% and 0.15% in the diet improved 

somatic growth, whereas at 0.1% it also reduced feed conversion ratio values in gilthead 

seabream. 

3. The inclusion of a combination of turmeric, capsicum, black pepper, and ginger oleoresins 

(SO additive) at 0.2% in the diet did not affect the growth and feed performances in gilthead 

seabream. 

4. The tested blend of bile salts at a dietary inclusion level of 0.06%, the SPICY additive at 0.1% 

and the SO additive at 0.2% reduced the values of perivisceral fat in gilthead seabream without 

compromising the proximate composition and fatty acid profile of the fillet, whereas the SO 

additive at the dietary inclusion of 0.2% also reduced the lipid content in the liver. 

5. The blend of bile salts at 0.12% in the diet, increased lipid apparent digestibility, in 

agreement with the higher activity of the bile salt-activate lipase and increased content of the 

bile salt taurodeoxycholic acid in the intestine, whereas the administration of a blend of bile 

salts at 0.06% and 0.12% reduced the accumulation of fat deposits in digestive organs like the 

liver and intestine. 

6. The supplementation of the SPICY additive at 0.1% and 0.15%, and of the SO additive at 

0.2% in the diet reduced the accumulation of fat deposits in the liver and the intestine, in line 

with the increased activity of the bile salt-activate lipase in the intestine. 

7. Based on the results of gene expression from the liver, the SO additive at 0.2% in the diet 

promoted fatty acid oxidation in 48 h fasted-gilthead seabream. 

8. Regarding the results of gene expression in the intestine, the blend of bile salts at 0.06% and 

the SO additive at 0.2% stimulated an immunocompetence priming at 2-h postprandial, 

whereas in fish fasted for 48 h the SPICY additive at 0.1% and SO additive at 0.2% induced an 

intestinal anti-inflammatory immune response, which may improve the intestinal health of the 

fish. 

9. The supplementation of the tested blend of bile salts and combinations of spices in aquafeeds 

are a safe strategy to improve the health and condition in farmed fish as well as modulate body 

fat accumulation without affecting the nutritional quality of the fillet. 
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10. The dietary supplementation of the blend of bile salts at 0.06% decreased the bacterial 

richness (observed ASVs, Chao1 and ACE indices) in the anterior intestine of gilthead 

seabream without affecting the diversity (Shannon and Simpson diversity indices) or structure 

(Bray-Curtis distances), increased the abundance of genera containing members able to 

metabolize bile acids (Bacteroides, Desulfovibrio, and Brevundimonas) and decreased the 

abundance of genera which were positively correlated with the levels of perivisceral fat and 

negatively correlated with growth performance (Porphyromonas, Campylobacter, 

Corynebacterium, and Peptoniphilus). 

11. The inclusion of the SPCIY additive at 0.1% in the diet increased the bacterial diversity 

(Simpson index) and modulated the composition of the bacterial communities in the posterior 

intestine, resulting in a decrease of some genera (Campylobacter, Corynebacterium, and 

Peptoniphilus) which were positively correlated with the levels of perivisceral fat and 

negatively correlated with growth performance, without compromising the gut bacterial 

structure (weighted UniFrac distances). 

12. The administration of the SO additive at 0.2% in the diet modulated the bacterial 

composition at the level of genus in the anterior intestine, favouring an increase in the 

abundance of genera containing members able to metabolize bile acids (Bacteroides and 

Desulfovibrio), without affecting bacterial richness (ACE index), diversity (Shannon, Simpson 

and Faith phylogenetic diversity indices), and structure (unweighted UniFrac and weighted 

UniFrac distances). 

13. Although some genera of bacteria were significantly correlated with the levels of 

perivisceral fat, a robust pattern in microbial diversity, structure and composition was not 

observed in the individuals with different levels of fat accumulation in the perivisceral cavity, 

liver, and intestine regardless of the tested additives administered. 

14. After performing an intestinal microbiota transplant (IMT) from donor Atlantic salmon 

(Salmo salar) to recipient gilthead seabream, at 2 days post-IMT the values of gut bacterial 

richness (ACE index) and diversity (Shannon and Faith phylogenetic diversity) of gilthead 

seabream were similar to those of donor and recipient fish, and many bacterial phyla and 

genera from donor and recipient fish were also observed in gilthead seabream at 2 days post-

IMT. 

15. After the IMT the diet played a paramount role in defining the gut microbiota of gilthead 

seabream, modulating the bacterial richness (ACE index), diversity (Shannon and Faith 

phylogenetic diversity), structure (Bray-Curtis and weighted UniFrac distances), and 

composition in a distinct manner depending on the type of diet that was fed. 

16. As a conceptual approach, the IMT is a feasible strategy to modulate the gut bacterial 

composition of the receptor fish, even though confirmation of the maintenance of the 

regulation induced by the IMT over the diet in long-term results can be improved with to use 

individuals reared at similar environmental conditions, or from the same species. 
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Appendix 1. Extended summary of studies compiling the effect of bile acid/salt dietary supplementation on the growth and feed performance 

of different fish species. 

Fish species Fish BWi 
Feeding 
period 

Diet composition 
(dry-matter basis) 

Remarks 
Additive 

composition 
(origin if given) 

Dietary 
inclusion 
level (%) 

Growth 
performance 

Feed 
performance 

References 

GIFT tilapia 
(Oreochromis 

niloticus) 

8.2 ± 0.2 g 9 weeks 
Wet weight 

(10.3% moisture): 
32% CP + 6% CL 

Vegetal protein-based 
diets 

69.9% HDCA, 
18.9% CDCA, 

7.8% HCA 
(Shangdong 

Longchang Animal 
Health Product 

Co., China) 

0.005 
=BWf 

↑WGR 
=FE 

Jiang et al. 
(2018) 

0.015 
↑BWf 

↑WGR 
↑FE 

0.045 
=BWf 

=WGR 
=FE 

0.135 
=BWf 

↓WGR 
↓FE 

2.5 ± 0.01 g 60 days 

38% CP + 8% CL N/I 
CA (Himedia 

Laboratories India 
Pvt. Ltd.) 

0.05 
↑WGR 
↑SGR 

=FCR 
=PER 

Bhusare et 
al. (2023) 

0.10 
↑WGR 
↑SGR 

=FCR 
=PER 

35% CP + 11% CL N/I 
CA (Himedia 

Laboratories India 
Pvt. Ltd.) 

0.05 
↑WGR 
↑SGR 

=FCR 
=PER 

0.10 
=WGR 
=SGR 

=FCR 
=PER 

32% CP + 14% CL N/I 
CA (Himedia 

Laboratories India 
Pvt. Ltd.) 

0.05 
=WGR 
=SGR 

↓FCR 
↑PER 

0.10 
=WGR 
=SGR 

↓FCR 
=PER 

Hybrid 
grouper 

(Epinephelus 
fuscoguttatus ♀ 
× E. lanceolatus 

♂) 

7.8 ± 0.01 g 8 weeks 48% CP + 15% CL High-lipid diet 
Na T-CA (>95%; 
Sigma-Aldrich) 

0.03 
=WGR 
=SGR 

=FI 
=FCR 

Xu et al. 
(2022b) 

0.06 
=WGR 
=SGR 

=FI 
=FCR 

0.09 
↑WGR 
↑SGR 

↓FI 
↓FCR 

0.12 
=WGR 
=SGR 

=FI 
=FCR 

0.15 
=WGR 
=SGR 

=FI 
=FCR 
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Fish species Fish BWi 
Feeding 
period 

Diet composition 
(dry-matter basis) 

Remarks 
Additive 

composition 
(origin if given) 

Dietary 
inclusion 
level (%) 

Growth 
performance 

Feed 
performance 

References 

Chinese perch 
(Siniperca 
chuatsi) 

171.3 ± 0.77g 56 days 47% CP + 7% CL N/I 
70.9% HDCA, 
20.2% CDCA, 

8.0% HCA 
0.090 

↑BWf 
↑WGR 

↓FCR 
Zhang et 

al. (2022a) 

Leopard coral 
grouper 

(Plectropomus 
leopardus) 

13.1 ± 0.14 g 10 weeks 52% CP + 10% CL N/I 

68% HDCA, 
17% CDCA, 

9% HCA (99%; 
porcine BS; 
Shandong 

Longchang Animal 
Health Product Co. 

Ltd., China) 

0.15 
↑BWf 

↑WGR 
↑SGR 

=FI 
=FCR 

Gao et al. 
(2023) 

0.30 
↑BWf 

↑WGR 
↑SGR 

=FI 
=FCR 

0.45 
=BWf 

=WGR 
↑SGR 

=FI 
=FCR 

0.60 
=BWf 

=WGR 
=SGR 

=FI 
=FCR 

Large yellow 
croaker 

(Larimichthys 
crocea) 

12.0 ± 0.20 g 10 weeks 45% CP + 18% CL N/I N/I (Bovine BS) 

0.015 
=BWf 

=WGR 
=SGR 

↓FCR 
↑PER 

Ding et al. 
(2020) 

0.030 
↑BWf 

↑WGR 
↑SGR 

↓FCR 
↑PER 

0.045 
=BWf 

=WGR 
=SGR 

↓FCR 
↑PER 

13.1 ± 0.18 g 10 weeks 42% CP + 12% CL 
Soybean oil as the main 

lipid source 

HDCA + HCA 
(≥77%), CDCA 

(≥17%) (Shandong 
Longchang Animal 
Health Product Co. 

Ltd., China) 

0.03 
=BWf 

=SGR 
=FI 

=FCR 

Li et al. 
(2023) 

0.06 
=BWf 

=SGR 
=FI 

↓FCR 

0.12 
=BWf 

=SGR 
=FI 

=FCR 

Black 
seabream 

(Acanthopagrus 
schlegelii) 

2.2 ± 0.00 g 8 weeks 42% CP + 17% CL 
Increase of fish oil and 
decrease of cellulose 

levels 
N/I 0.020 

=BWf 

=WGR 
=SGR 

=FE 
Jin et al. 
(2019) 
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Fish species Fish BWi 
Feeding 
period 

Diet composition 
(dry-matter 

basis) 
Remarks 

Additive 
composition 

(origin if given) 

Dietary 
inclusion 
level (%) 

Growth 
performance 

Feed 
performance 

References 

Largemouth bass 
(Micropterus 

salmoides) 

6.2 ± 0.03 g 70 days 51% CP + 14% CL N/I 

70.9% HDCA, 
20.2% CDCA, 8.0% 

HCA (Shandong 
Longchang Animal 

Health Care 
Co. Ltd., China) 

0.008 
=BWf 

=WGR 
=SGR 

↑FIR 
=FCR 
=PPV 
=PLV 

Yu et al. 
(2019) 

0.016 
=BWf 

=WGR 
=SGR 

=FIR 
=FCR 
=PPV 
↑PLV 

0.024 
=BWf 

=WGR 
=SGR 

↑FIR 
=FCR 
=PPV 
↑PLV 

0.030 
↑BWf 

↑WGR 
↑SGR 

↑FIR 
=FCR 
=PPV 
↑PLV 

0.060 
=BWf 

=WGR 
=SGR 

↑FIR 
=FCR 
=PPV 
=PLV 

18.4 ± 0.05 g 9 weeks 49% CP + 18% CL High fat diet 
CDCA (≥96%, 

Sigma-Aldrich) 

0.030 
=BWf 
=WG 
=SGR 

=FI 
=FCR 

Yin et al. 
(2021) 

0.060 
=BWf 
=WG 
=SGR 

=FI 
=FCR 

0.090 
=BWf 
=WG 
=SGR 

=FI 
=FCR 

Grass carp 
(Ctenopharyngodon 

idella) 
69.9 ± 6.24 g 8 weeks 

Wet weight (8.5% 
moisture): 

35% CP + 7% CL 

Basal diet 
supplemented with 2% 

soybean oil 

N/I (Longchang 
Animal Health 
Products Co. 
Ltd., China) 

0.006 
↑BWf 

↑SGR 

=FE 
=PER 
↑PPV 

Zhou et al. 
(2018a) 
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Fish species Fish BWi 
Feeding 
period 

Diet composition 
(dry-matter basis) 

Remarks 
Additive 

composition 
(origin if given) 

Dietary 
inclusion 
level (%) 

Growth 
performance 

Feed 
performance 

References 

Turbot 
(Scophthalmus 

maximus) 
8.5 g 56 days 48% CP + 12% CL 

Plant protein meal-based 
diet 

Na T-CA (95%; 
Aladdin Co., 

China) 
0.5 

↑BWf 
↑SGR 
↑WGR 

=FI 
↑FER 

Gu et al. 
(2017) 

Tongue sole 
(Cynoglossus 
semiliaevis) 

 
 

10.9 ± 0.32 g 8 weeks 53% CP + 8% CL N/I 

69.9% HDCA, 
18.9% CDCA, 7.8% 
HCA (Porcine bile, 

99%; Longchang 
Group, China) 

0.030 
↑BWf 

↑WGR 
↑SGR 

N/I 

Li et al. 
(2021b) 

0.090 
↑BWf 

↑WGR 
↑SGR 

N/I 

13.1 ± 2.4 g 10 weeks 53% CP + 8% CL N/I 

69.9% HDCA, 
18.9% CDCA, 7.8% 
HCA (99%; BS from 

livestock and 
poultry; Longchang 

Group, China) 

0.030 
↑BWf 

↑WGR 
↑SGR 

N/I 

Wang et al. 
(2022) 

0.090 
↑BWf 

↑WGR 
↑SGR 

N/I 

Rainbow 
trout 

(Oncorhynchus 
mykiss) 

13.3 ± 1.1 g 10 weeks 43% CP + 14% CL 
Total replacement of fish 
meal by defatted soybean 
meal and corn gluten meal 

N/I (Bovine BS; 
Wako Pure 

Chemicals, Japan) 
1.5 

↑BWf 

↑SGR 

=FI 
↑FER 

Yamamoto 
et al. (2007) 

11.3 ± 1.3 g 10 weeks 43% CP + 15% CL 
Total replacement of fish 
meal by defatted soybean 
meal and corn gluten meal 

N/I (Bovine gall 
powder, with 70% 

of BS content; 
Wako Pure 

Chemicals, Japan) 

1.5 
↑BWf 
↑SGR 

=FI 
↑FER 

Iwashita et 
al. (2008) 

Na T-CA (> 95%; 
Sigma Aldrich, 

USA) 
1.0 

↑BWf 
↑SGR 

=FI 
↑FER 

10 g 6 weeks 44% CP + 15% CL 

Defatted soybean meal-
based diet supplemented 
with 0.38% soya saponin 

Na T-CA (> 95%; 
Sigma-Aldrich, 

USA) 
1.0 =BWf =FI 

Iwashita et 
al. (2009) 

Defatted soybean meal-
based diet supplemented 
with 0.38% soya saponin 
and 0.0075% soya lectin 

Na T-CA (> 95%; 
Sigma-Aldrich, 

USA) 
1.0 =BWf =FI 
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Fish species Fish BWi 
Feeding 
period 

Diet composition 
(dry-matter basis) 

Remarks 
Additive 

composition 
(origin if given) 

Dietary 
inclusion 
level (%) 

Growth 
performance 

Feed 
performance 

References 

Atlantic 
salmon (Salmo 

salar) 
362 ± 95 g 77 days 41% CP + 30% CL 

Partial replacement of 
fish meal by soy 

protein concentrate and 
pea protein concentrate 

Na T-CA (>95%; 
HC Handelscenter, 

Denmark) 
1.8 

=BWf 
=TGC 
=SGR 

N/I 

Kortner et 
al. (2016) 

N/I (Bovine BS; 
HC Handelscenter, 

Denmark) 
1.8 

=BWf 
↓TGC 
↓SGR 

N/I 

Partial replacement of 
fish meal by soya 

protein 

N/I (Bovine BS; 
HC Handelscenter, 

Denmark) 
1.8 

=BWf 
=TGC 
=SGR 

N/I 

Striped catfish 
(Pangasianodon 
hypophthalmus) 

10.3 ± 0.20 g 70 days 32% CP + 5% CL N/I 

6.2% HCA, 13.8% 
CDCA, 53.1% 

HDCA (Lachance, 
RUNEON, China) 

0.025 

↑BWf 
↑WG 

↑ADG 
↑SGR 

=FI 
↓FCR 
↑PER 
↑PPV 

Adam et 
al. (2023) 

0.050 

↑BWf 
↑WG 

↑ADG 
↑SGR 

↑FI 
↓FCR 
↑PER 
↑PPV 

0.075 

↑BWf 
↑WG 

↑ADG 
↑SGR 

↑FI 
↓FCR 
↑PER 
↑PPV 

0.100 

↑BWf 
↑WG 

↑ADG 
↑SGR 

↑FI 
↓FCR 
↑PER 
↑PPV 

0.125 

↑BWf 
↑WG 

↑ADG 
↑SGR 

↑FI 
↓FCR 
↑PER 
↑PPV 

0.150 

↑BWf 
↑WG 

↑ADG 
↑SGR 

↑FI 
↓FCR 
=PER 
=PPV 
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Fish species Fish BWi 
Feeding 
period 

Diet composition 
(dry-matter basis) 

Remarks 
Additive 

composition 
(origin if given) 

Dietary 
inclusion 
level (%) 

Growth 
performance 

Feed 
performance 

References 

Yellow catfish 
(Pelteobagrus 

fulvidraco) 
19 ± 5 g 56 days 37% CP + 5% CL High-pectin diet 

G-CA (≥97%; 
Suzhou Ketong 

Biomedical 
Technology Co. 

Ltd., China) 

0.06 
↑BWf 
↑SGR 

=FIR 
↓FCR 

Yao et al. 
(2022) 

 

Abbreviations: 

• CP, crude protein 

• CL, crude lipid 

• BS, bile salts 

• CA, cholic acid 

• CDCA, chenodeoxycholic acid 

• HCA, hyocholic acid 

• HDCA, hyodeoxycholic acid 

• T-CA, taurocholic acid 

• G-CA, glycocholic acid 

• Na T-CA, sodium taurocholate 

• BWi, Initial Body Weight 

• BWf, Final Body Weight 

• WG, Weight Gain (WG (g) = BWf - BWi) 

• WGR, Weight Gain Rate (WGR (%) = 100 x WG / BWi) 

• ADG, Average Daily Gain (g/day) 

• SGR, Specific Growth Rate 

• FI, Feed Intake 

• TGC, Thermal Growth Coefficient (TGC = 1000 x (BWf1/3 - 

BWi1/3) / (average temperature in ºC x days)) 

• FCR, Feed Conversion Ratio 

• FER, Feed Efficiency Ratio (FER = WG / feed intake) 

• FE, Feed Efficiency (FE (%) = 100 x FER) 

• FIR, Feed Intake Ratio, Voluntary Feed Intake, or Feeding Rate 

(FIR (%/day) = 100 x feed intake / [(BWf + BWi) / 2] / days 

• PER, Protein Efficiency Ratio (PER = biomass increase / protein 

intake) 

• PPV, Productive Protein Value (PPV (%) = 100 x protein gain / 

protein intake) 

• PLV, Productive Lipid Value (PLV (%) = 100 x lipid gain / lipid 

intake) 

• GIFT, genetically improved farmed tilapia 

• N/I, not identified or not assessed 
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Appendix 2. Extended summary of studies compiling the effect of capsicum (Capsicum spp.), black pepper (Piper nigrum), ginger (Zingiber 

officinale), turmeric (Curcuma longa), and cinnamaldehyde on the growth and feed performance of different fish species. 

Spice/active 
principle 

Fish species Fish BWi 
Feeding 
period 

Diet 
composition 
(dry-matter 

basis) 

Remarks 
Additive composition 

(origin if given) 
Additive 

format 

Dietary 
inclusion 
level (%) 

Growth 
perf. 

Feed 
perf. 

References 

Capsicum 
(Capsicum 

spp.) 

Blue streak 
hap 

(Labidochromis 
caeruleus) 

1.1 ± 0.02 g 45 days 
34% CP + 13% 

CL 
N/I Capsicum 

Powder 
(meal) 

2 
=BWf 

=WGR 
=SGR 

=FCR 
Yılmaz and 

Ergün 
(2011) 

5 
=BWf 

=WGR 
=SGR 

=FCR 

Jewel cichlid 
(Hemichromis 

guttatus) 
3.4 ± 0.03 g 90 days 

37% CP + 11% 
CL 

N/I 
Capsicum (from a local market in 

Turkey) 
Powder 
(flour) 

3 
=BWf 
=WG 
=SGR 

=FCR 

Yigit et al. 
(2021) 

7 
=BWf 
=WG 
=SGR 

=FCR 

11 
=BWf 
=WG 
=SGR 

=FCR 

15 
=BWf 
=WG 
=SGR 

=FCR 

Gilthead 
seabream 

(Sparus aurata) 
94.9 ± 0.3 g 6 weeks 

48% CP + 13% 
CL 

N/I 

Edible portion of capsicum devoid 
of stem ends, seeds, and core (from 

a local market in Alexandria, 
Egypt, harvested on 2007 season) 

Powder 
(meal) 

0.3 
=BWf 
=WG 
=SGR 

=FI 
=FCR 

Wassef et 
al. (2010) 

Mozambique 
tilapia 

(Oreochromis 
mossambicus) 

5 g 45 days 
37% CP + 10% 

CL 
N/I Capsicum 

Oleoresin 
(from 

Kutluer, 
Turkey) 

0.7 
=BWf 
=WG 
=SGR 

=FCR 

Yılmaz et 
al. (2013a) 

1.4 
=BWf 
=WG 
=SGR 

=FCR 
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Spice/active 
principle 

Fish species Fish BWi 
Feeding 
period 

Diet composition 
(dry-matter basis) 

Remarks 
Additive 

composition 
(origin if given) 

Additive 
format 

Dietary 
inclusion 
level (%) 

Growth 
perf. 

Feed 
perf. 

References 

Capsicum 
(Capsicum 

spp.) 

Nile tilapia 
(Oreochromis 

niloticus) 
22.3 ± 0.19 g 60 days 37% CP + 10% CL N/I 

Capsicum (from a 
local market in 
Zagazig, Egypt) 

Powder 

0.04 
↑BWf 
↑WG 
=SGR 

=FI 
↓FCR 
↑PER 

Ibrahim et 
al. (2024) 

0.08 
↑BWf 
↑WG 
=SGR 

=FI 
↓FCR 
↑PER 

0.16 
↑BWf 
↑WG 
↑SGR 

=FI 
↓FCR 
↑PER 

Rainbow 
trout 

(Oncorhynchus 
mykiss) 

93 ± 0.64 g 

20 days 40% CP + 12% CL N/I 
Capsicum (from 

local producers from 
Iran) 

Powder 

0.0033 
=BW 
↑TL 

N/I 

Talebi et al. 
(2013) 

0.0044 
↑BW 
↑TL 

N/I 

0.0055 
↑BW 
↑TL 

N/I 

40 days 40% CP + 12% CL N/I 
Capsicum (from 

local producers from 
Iran) 

Powder 

0.0033 
↑BW 
↑TL 

N/I 

0.0044 
↑BW 
↑TL 

N/I 

0.0055 
↑BW 
↑TL 

N/I 

60 days 40% CP + 12% CL N/I 
Capsicum (from 

local producers from 
Iran) 

Powder 

0.0033 

↑BWf 
↑TL 

=SGR 
=WGR 

=FCR 

0.0044 

↑BWf 
↑TL 

=WGR 
=SGR 

=FCR 

0.0055 

↑BWf 
↑TL 

=WGR 
=SGR 

=FCR 



NUTRITION AND GUT MICROBIOTA AS STRATEGIC TOOLS FOR 

MODULATING FAT ACCUMULATION IN AQUACULTURE FISH 

265 
 

Spice/active 
principle 

Fish species Fish BWi 
Feeding 
period 

Diet 
composition 
(dry-matter 

basis) 

Remarks 
Additive 

composition 
(origin if given) 

Additive 
format 

Dietary 
inclusion 
level (%) 

Growth 
perf. 

Feed 
perf. 

References 

Capsicum 
(Capsicum 

spp.) 

Rainbow 
trout 

(Oncorhynchus 
mykiss) 

58–60 g 

20 days 
45% CP + 20% 

CL 
N/I 

Leaves of capsicum 
(Kahramanmaraş, 
Turkey, harvested 

in September) 

Meal 
(extracted 

with 
acetone) 

0.5 =BW N/I 

Yanar et al. 
(2016) 

2 =BW N/I 

4.4 =BW N/I 

40 days 
45% CP + 20% 

CL 
N/I 

Leaves of capsicum 
(Kahramanmaraş, 
Turkey, harvested 

in September) 

Meal 
(extracted 

with 
acetone) 

0.5 =BW N/I 

2 =BW N/I 

4.4 =BW N/I 

60 days 
45% CP + 20% 

CL 
N/I 

Leaves of capsicum 
(Kahramanmaraş, 
Turkey, harvested 

in September) 

Meal 
(extracted 

with 
acetone) 

0.5 =BW N/I 

2 =BW N/I 

4.4 =BW N/I 

80 days 
45% CP + 20% 

CL 
N/I 

Leaves of capsicum 
(Kahramanmaraş, 
Turkey, harvested 

in September) 

Meal 
(extracted 

with 
acetone) 

0.5 
=BWf 

=TL 
=SGR 

=FCR 

2 
=BWf 

=TL 
=SGR 

=FCR 

4.4 
=BWf 

=TL 
=SGR 

=FCR 

195.1 ± 1.55 
g 

30 days 14% CP + 8% CL N/I Capsicum 

Oleoresin 
(from Smart 
Kimya Tic. 

ve 
Danışmanlık 

Ltd., 
Turkey) 

0.7 
↑BWf 

↑WGR 
↑SGR 

↓FCR 

Yılmaz et al. 
(2024) 

1.4 
↑BWf 

↑WGR 
↑SGR 

↓FCR 

2.1 
=BWf 

=WGR 
=SGR 

=FCR 

2.8 
=BWf 

=WGR 
=SGR 

=FCR 
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Spice/active 
principle 

Fish species Fish BWi 
Feeding 
period 

Diet 
composition 
(dry-matter 

basis) 

Remarks 
Additive 

composition 
(origin if given) 

Additive 
format 

Dietary 
inclusion 
level (%) 

Growth 
perf. 

Feed 
perf. 

References 

Black pepper 
(Piper 

nigrum) / 
piperine 

African 
catfish 
(Clarias 

gariepinus) 

60.3 ± 0.44 g 30 days 31% CP + 7% CL 

Basal diet 
supplemented 

with 0.5% 
turmeric 

Black pepper 
 

Powder 
(from a local 

market in 
Zagazig, 
Egypt) 

0.1 
=BWf 
=WG 
=SGR 

N/I 

El-Houseiny 
et al. (2019) 

Basal diet 
supplemented 

with 0.5% 
turmeric and 
fish exposed 
to cadmium 

at 0.8 mg/L in 
the water 

Black pepper 
 

Powder 
(from a local 

market in 
Zagazig, 
Egypt) 

0.1 
=BWf 
=WG 
=SGR 

N/I 

Rohu (Labeo 
rohita) 

22.1 ± 0.98g 
12 

weeks 
34% CP 

(%CL N/I) 
N/I 

Leaves of black 
pepper (collected 
during October-
December 2019 

from nursery farms 
in District Kasur, 

Pakistan) 

Powder 
(extracted 

with 
methanol) 

1 
=TL 
↓FL 

↑WG 

↑FI 
↑FCR 

Ullah et al. 
(2023) 

2 
↑TL 
↑FL 

↑WG 

↑FI 
↑FCR 

3 
↓TL 
↓FL 

=WG 

↑FI 
↑FCR 

Common carp 
(Cyprinus 

carpio) 
3.8 ± 0.12 g 40 days 53% CP + 7% CL 

Diet based on 
casein, 

gelatin, and 
free amino 

acids 
supplemented 

with 0.4% 
methionine 

Piperine 

Powder 
(>97%; 
Sigma-

Aldrich) 

0.02 =WG ↑FCR 

Wojno et al. 
(2021) 

Fruits of black 
pepper (from a local 
vendor from Ohio) 

Powder 
(extracted 

with hexane 
and filtered) 

0.02 ↓WG =FCR 
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Spice/active 
principle 

Fish species Fish BWi 
Feeding 
period 

Diet composition 
(dry-matter basis) 

Remarks 
Additive 

composition 
(origin if given) 

Additive 
format 

Dietary 
inclusion 
level (%) 

Growth 
perf. 

Feed 
perf. 

References 

Black pepper 
(Piper 

nigrum) / 
piperine 

Common 
carp 

(Cyprinus 
carpio) 

12.3 ± 0.31 g 8 weeks 33% CP + 9% CL N/I Piperine 

Powder (98%; 
from Senran-

Shengwu, 
China) 

0.05 
=BWf 

=WGR 
=SGR 

=FCR 

Giri et al. 
(2023) 

0.1 
=BWf 

=WGR 
↑SGR 

↓FCR 

0.2 
↑BWf 

↑WGR 
↑SGR 

↓FCR 

0.3 
=BWf 

↑WGR 
↑SGR 

=FCR 

0.4 
=BWf 

↑WGR 
=SGR 

=FCR 

Rainbow 
trout 

(Oncorhynchus 
mykiss) 

41 ± 8 g 

30 days 45% CP + 16% CL N/I Black pepper Powder 0.1 =BW N/I 
Stoev and 

Zhelyazkov 
(2021) 

60 days 45% CP + 16% CL N/I Black pepper Powder 0.1 
=BWf 
=WG 

↓FCR 

Olive 
flounder 

(Paralichthys 
olivaceus) 

27.6 ± 0.4 g 8 weeks 50% CP + 11% CL N/I 
Piperine (from 

Synergen, South 
Korea) 

N/I 

0.025 
=BWf 
=WG 
=SGR 

=FCR 
=PER 

Malintha et 
al. (2023) 

0.050 
↑BWf 
↑WG 
↑SGR 

=FCR 
↑PER 

0.075 
=BWf 
=WG 
↑SGR 

=FCR 
↑PER 

0.1 
=BWf 
=WG 
=SGR 

=FCR 
=PER 

0.2 
=BWf 
=WG 
=SGR 

=FCR 
=PER 
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Spice/active 
principle 

Fish species Fish BWi 
Feeding 
period 

Diet composition 
(dry-matter basis) 

Remarks 
Additive composition 

(origin if given) 
Additive 

format 

Dietary 
inclusion 
level (%) 

Growth 
perf. 

Feed 
perf. 

References 

Ginger 
(Zingiber 
officinale) 

Asian sea 
bass (Lates 
calcarifer) 

18 ± 1 g 15 days 
Wet weight (9.7% 

moisture): 
42% CP + 17% CL 

N/I 

Peeled rhizomes of 
ginger (from 

the local market in 
Kuala Terengganu, 

Malaysia) 

Powder 
(extracted 

with 
methanol) 

0.1 
↑WGR 
↑SGR 

↓FCR 

Talpur et al. 
(2013) 

0.2 
↑WGR 
↑SGR 

↓FCR 

0.3 
↑WGR 
↑SGR 

↓FCR 

0.5 
↑WGR 
↑SGR 

↓FCR 

1 
↑WGR 
↑SGR 

↓FCR 

Rohu (Labeo 
rohita) 

12.3 ± 0.11 g 

30 days 28% CP + 7% CL N/I 

Peeled rhizomes of 
ginger (from a local 

market in Thanjavur, 
India) 

Powder 

0.2 
=WG 
=SGR 

=FI 
=FCR 

Sukumaran 
et al. (2016) 

0.4 
=WG 
=SGR 

=FI 
=FCR 

0.6 
=WG 
=SGR 

↑FI 
=FCR 

0.8 
↑WG 
↑SGR 

↑FI 
↓FCR 

1 
=WG 
↑SGR 

↑FI 
=FCR 

60 days 28% CP + 7% CL N/I 

Peeled rhizomes of 
ginger (from a local 

market in Thanjavur, 
India) 

Powder 

0.2 
=WG 

=WGR 
=SGR 

=FI 
=FCR 

0.4 
=WG 

=WGR 
=SGR 

=FI 
=FCR 

0.6 
↑WG 

↑WGR 
↑SGR 

=FI 
↓FCR 

0.8 
↑WG 

↑WGR 
↑SGR 

=FI 
↓FCR 

1 
↑WG 

↑WGR 
↑SGR 

=FI 
↓FCR 
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Spice/active 
principle 

Fish species Fish BWi 
Feeding 
period 

Diet composition 
(dry-matter 

basis) 
Remarks 

Additive 
composition 

(origin if given) 

Additive 
format 

Dietary 
inclusion 
level (%) 

Growth 
perf. 

Feed 
perf. 

References 

Ginger 
(Zingiber 
officinale) 

Common carp 
(Cyprinus 

carpio) 

16 g 60 days 41% CP + 9% CL 

Fish were 
reared at 

high 
stocking 

densities (20 
kg/m3) 

Ginger (from a local 
shop in Iran) 

Powder 

0.5 
=BWf 

↑WGR 
↑SGR 

↓FCR 

Fazelan et 
al. (2020) 

1 
=BWf 

↑WGR 
↑SGR 

↓FCR 

10.9 ± 0.17 g 60 days 

Wet weight 
(5-11% moisture): 

38-41% CP 
+ 4-16% CL 

N/I 

Rhizomes of ginger 
(from Zarringiah 
medicinal plants 

company in Urmia, 
Iran) 

Powder 
(extracted 

with ethanol) 

0.1 
=BWf 
=WG 
↑SGR 

↓FCR 

Mohammadi 
et al. (2020) 

0.2 
↑BWf 
↑WG 
↑SGR 

↓FCR 

0.4 
↑BWf 
↑WG 
↑SGR 

↓FCR 

Striped catfish 
(Pangasianodon 
hypophthalmus) 

19.93 ± 0.29 g 90 days 25% CP + 6% CL N/I Rhizomes of ginger 

Powder 
(from a local 

market in 
Egypt) 

0.5 
↑BWf 

↑WG 
↑SGR 

=FI 
↓FCR 
↑PER 

Ashry et al. 
(2023) 

1 
↑BWf 

↑WG 
↑SGR 

=FI 
↓FCR 
↑PER 

1.5 
↑BWf 

↑WG 
↑SGR 

=FI 
↓FCR 
↑PER 

Rainbow trout 
(Oncorhynchus 

mykiss) 
7.5 ± 0.1 g 8 weeks 46% CP + 13% CL N/I Rhizomes of ginger 

Powder 
(extracted 

with ethanol, 
from Saha 

Jesa 
Medicinal 
Plants Co., 

Iran) 

0.5 

↑BWf 
↑WG 

=WGR 
=SGR 

=FI 
=FCR 
↑PER 
↑LER 

Aqmasjed et 
al. (2023) 
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Spice/active 
principle 

Fish species Fish BWi 
Feeding 
period 

Diet composition 
(dry-matter basis) 

Remarks 
Additive 

composition 
(origin if given) 

Additive 
format 

Dietary 
inclusion 
level (%) 

Growth 
perf. 

Feed perf. References 

Ginger 
(Zingiber 
officinale) 

Nile tilapia 
(Oreochromis 

niloticus) 
1.8 ± 0.52 g 55 days 

Wet weight 
(12.5% moisture): 
40% CP + 5% CL 

N/I 

Rhizomes of ginger 
(harvested in the 

State of Amazonas, 
Brazil) 

Essential oil 
(extracted by 

hydro-
distillation) 

0.5 
= BWf 
=TL 

=SGR 
=FCR 

Brum et al. 
(2017) 

1 
= BWf 
=TL 

=SGR 
=FCR 

1.5 
↓BWf 
↓TL 

↓SGR 
↑FCR 

Turmeric 
(Curcuma 
longa) / 

curcumin 

Gilthead 
seabream 

(Sparus aurata) 
20.0 ± 0.37 g 150 days 44% CP + 16% CL N/I Curcumin 

Powder (from 
a local market 

in Egypt) 

1.5 
=BWf 

=WG 
=SGR 

↑FCR 
=PER 

Ashry et 
al. (2021) 

2 
↑BWf 

↑WG 
=SGR 

=FCR 
=PER 

2.5 
↑BWf 

↑WG 
=SGR 

↓FCR 
=PER 

3 
↑BWf 

↑WG 
↑SGR 

↓FCR 
↑PER 

Large yellow 
croaker 

(Larimichthys 
crocea) 

15.9 
± 0.16 g 
(SEM) 

10 weeks 43% CP + 18% CL High-fat diet Turmeric N/I 

0.02 
=BWf 

=WGR 
=SGR 

N/I 

Ji et al. 
(2021) 

0.04 
↑BWf 

↑WGR 
↑SGR 

N/I 

0.06 
=BWf 

=WGR 
=SGR 

N/I 

Largemouth 
bass 

(Micropterus 
salmoides) 

37.8 ± 0.2 g 8 weeks 52% CP + 12% CL 

80% fish meal 
replacement 
by poultry 

meal 

Curcumin 

Powder (from 
Dulai 

Biotechnology 
Co., China) 

0.5 
=BWf 
=WG 

=FI 
=FCR Wang et al. 

(2023) 
1 

↑BWf 
↑WG 

↑FI 
=FCR 
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Spice/active 
principle 

Fish species Fish BWi 
Feeding 
period 

Diet composition 
(dry-matter 

basis) 
Remarks 

Additive 
composition 

(origin if given) 

Additive 
format 

Dietary 
inclusion 
level (%) 

Growth 
perf. 

Feed perf. References 

Turmeric 
(Curcuma 
longa) / 

curcumin 

Common carp 
(Cyprinus 

Carpio) 

1.4 ± 0.06 g 10 weeks 9% CP + 4% CL N/I Turmeric 

Powder 
(from a local 

market in 
Egypt) 

0.1 
↑BWf 

↑WGR 
=SGR 

↑FI 
=FCR 
=PER Abdel‐

Tawwab 
and 

Abbass 
(2017) 

0.2 
↑BWf 

↑WGR 
=SGR 

↑FI 
=FCR 
=PER 

0.5 
↑BWf 

↑WGR 
=SGR 

↑FI 
=FCR 
=PER 

3.8 ± 0.12 g 40 days 53% CP + 7% CL 

Diet based on 
casein, gelatin, 

and free 
amino acids 

supplemented 
with 0.4% 

methionine 

Turmeric (Verdure 
Sciences, 

Noblesville, 
Indiana) 

N/I 0.02 =WG =FCR 
Wojno et 
al. (2021) 

Crucian 
carp (Carassius 

auratus) 
76.3 ± 0.10 g 105 days 37% CP + 8% CL N/I Curcumin 

Powder 
(Sigma-

Aldrich Co., 
USA) 

0.1 
=BWf 

=WGR 
=FI 

↑FER Jiang et al. 
(2016) 

0.5 
↑BWf 

↑WGR 
=FI 

↑FER 

Grass carp 
(Ctenopharyngodon 

idella) 
5.3 ± 0.10 g 60 days 31% CP + 5% CL N/I Curcumin 

Powder 
(Sigma-

Aldrich Co., 
USA) 

0.02 
=BWf 
↑WGR 
↑SGR 

↓FCR 

Ming et al. 
(2020) 

0.04 
↑BWf 

↑WGR 
↑SGR 

↓FCR 

0.06 
↑BWf 

↑WGR 
↑SGR 

↓FCR 

0.08 
↑BWf 

↑WGR 
↑SGR 

↓FCR 
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Spice/active 
principle 

Fish species Fish BWi 
Feeding 
period 

Diet composition 
(dry-matter 

basis) 
Remarks 

Additive 
composition 

(origin if given) 

Additive 
format 

Dietary 
inclusion 
level (%) 

Growth 
perf. 

Feed 
perf. 

References 

Turmeric 
(Curcuma longa) 

/ curcumin 

African catfish 
(Clarias 

gariepinus) 
60.3 ± 0.44 g 30 days 31% CP + 7% CL 

 N/I Turmeric 

Powder (from a 
local market in 

Zagazig, 
Egypt) 

0.1 
=BWf 
=WG 
=SGR 

N/I 

El-
Houseiny 

et al. 
(2019) 

Fish were 
exposed to 

cadmium at 
0.8 mg/L in 

the water 

Turmeric 

Powder (from a 
local market in 

Zagazig, 
Egypt) 

0.1 
↑BWf 
=WG 
=SGR 

N/I 

Rainbow trout 
(Oncorhynchus 

mykiss) 

31.3 ± 1.17 g 8 weeks 47% CP + 10% CL N/I Curcumin 
Powder (from 

Merck) 

1 
↑BWf 
↑WG 
↑SGR 

↓FCR 

Yonar et 
al. (2019) 

2 
↑BWf 
↑WG 
↑SGR 

↓FCR 

4 
↑BWf 
↑WG 
↑SGR 

↓FCR 

7.5 ± 0.1 g 8 weeks 46% CP + 13% CL N/I Curcumin 

Powder (from 
Dineh 

Pharmaceutical 
Co., Iran) 

0.5 

↑BWf 
↑WG 

=WGR 
=SGR 

=FCR 
↑PER 
↑LER 

Aqmasjed 
et al. 

(2023) 

Nile tilapia 
(Oreochromis 

niloticus) 
60 ± 5 g 7 weeks 

32% CP 
(%CL N/I) 

N/I Turmeric Powder 

1 
↑BWf 
↑WG 

↓FCR 
Diab et al. 

(2014) 
2 

↑BWf 
↑WG 

↓FCR 

Cinnamaldehyde 
Tongue sole 
(Cynoglossus 

semilaevis) 
188 ± 5 g 60 days 52% CP + 14% CL 

N/I 
Cinnamaldehyde, 

lecithin, α-
tocopherol, 
ethanol, and 
potassium 

dihydrogen 
phosphate 

Liposome-
encapsulated 

product 
0.1 

=BWf 
↑WGR 
↑SGR 

↓FCR 
↑PER 

Wang et al. 
(2021a) 

Diet 
supplemented 

with 107 
Bacillus subtilis 

Liposome-
encapsulated 

product 
0.1 

↑BWf 
↑WGR 
↑SGR 

↓FCR 
↑PER 
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Spice/active 
principle 

Fish species Fish BWi 
Feeding 
period 

Diet 
composition 
(dry-matter 

basis) 

Remarks 
Additive 

composition 
(origin if given) 

Additive 
format 

Dietary 
inclusion 
level (%) 

Growth 
perf. 

Feed 
perf. 

References 

Cinnamaldehyde 

Fat greenling 
(Hexagrammos 

otakii) 
6.2 ± 0.19 g 8 weeks 

51% CP + 10% 
CL 

N/I 

Cinnamaldehyde 
(from Improved 
McLin Biotech 
Co., Shanghai, 

China) 

N/I 

0.02 
↑WGR 
↑SGR 

↓FCR 

Gu et al. 
(2022) 

0.04 
↑WGR 
↑SGR 

↓FCR 

0.06 
↑WGR 
↑SGR 

↓FCR 

0.08 
↑WGR 
↑SGR 

↓FCR 

0.10 
↑WGR 
↑SGR 

↓FCR 

Grass carp 
(Ctenopharyngodon 

idella) 
227.3 ± 0.46 g 60 days 28% CP + 4% CL N/I 

Cinnamaldehyde 
(>98%; from the 
Shanghai Menon 
Animal Nutrition 
Technology Co. 

Ltd., China) 
diluted to 18% 

with silicon 
dioxide to 
enhance it 
stability 

Essential 
oil 

0.02 
(0.004% cin.) 

↑BWf 
↑WGR 
↑SGR 

↑FI 
↑FE 

Zhou et al. 
(2020) 

0.04 
(0.007% cin.) 

↑BWf 
↑WGR 
↑SGR 

↑FI 
↑FE 

0.06 
(0.011% cin.) 

↑BWf 
↑WGR 
↑SGR 

↑FI 
↑FE 

0.08 
(0.014% cin.) 

↑BWf 
↑WGR 
↑SGR 

↑FI 
↑FE 

Nile tilapia 
(Oreochromis 

niloticus) 
10.2 ± 0.06 g 

15 days 33% CP + 9% CL N/I 

Cinnamaldehyde 
(from Flaka 
Chemical, 

Switzerland) 

Essential 
oil (≥98%) 

0.105 
=BW 
=WG 

=FI 
=FCR 

Amer et al. 
(2018) 

0.210 
=BW 
=WG 

=FI 
=FCR 

75 days 33% CP + 9% CL N/I 

Cinnamaldehyde 
(from Flaka 
Chemical, 

Switzerland) 

Essential 
oil (≥98%) 

0.105 

=BWf 
=WG 

=ADG 
=SGR 

=FI 
=FCR 
=PER 

0.210 

=BWf 
=WG 

=ADG 
=SGR 

=FI 
=FCR 
=PER 
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Spice/active 
principle 

Fish species Fish BWi 
Feeding 
period 

Diet 
composition 
(dry-matter 

basis) 

Remarks 
Additive 

composition 
(origin if given) 

Additive 
format 

Dietary 
inclusion 
level (%) 

Growth 
perf. 

Feed 
perf. 

References 

Cinnamaldehyde 
Nile tilapia 

(Oreochromis 
niloticus) 

20.6 ± 0.15 g 
12 

weeks 
32% CP + 8% CL N/I 

Cinnamaldehyde, 
polyoxyethylene, 

monooleate 
(Tween 80, food 
grade), sodium 

alginate (medium 
viscosity, A-2033) 

(from Sigma-
Aldrich Co., St. 

Louis, USA) 

Nanoemulsion 

0.01 

↑BWf 
↑WG 

↑WGR 
↑SGR 

↓FI 
↓FCR 
↑PER 

Abd El-
Hamid et 
al. (2021) 

0.02 

↑BWf 
↑WG 

↑WGR 
↑SGR 

↓FI 
↓FCR 
↑PER 

0.03 

↑BWf 
↑WG 

↑WGR 
↑SGR 

↓FI 
↓FCR 
↑PER 

 

Abbreviations: 

• CP, crude protein 

• CL, crude lipid 

• BW, Body Weight 

• BWi, Initial Body Weight 

• BWf, Final Body Weight 

• TL, Total Length 

• FL, Fork Length 

• WG, Weight Gain (WG (g) = BWf - BWi) 

• WGR, Weight Gain Rate (WGR (%) = 100 x WG / BWi) 

• ADG, Average Daily Gain (g/day) 

• SGR, Specific Growth Rate 

• FI, Feed Intake 

• FCR, Feed Conversion Ratio 

• FER, Feed Efficiency Ratio (FER = WG / feed intake) 

• FE, Feed Efficiency (FE (%) = 100 x FER) 

• PER, Protein Efficiency Ratio (PER = biomass increase / protein 

intake) 

• LER, Lipid Efficiency Ratio (PER = biomass increase / lipid 

intake) 

• N/I, not identified or not assessed
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