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A B S T R A C T   

Background: risk of fraudulent mislabeling of organic food, driven by higher prices and a more favorable con-
sumer perception, underscores the necessity for accurate authentication of organic products. Different analytical 
approaches and statistical analysis have been developed to classify between organic and conventional food. 
Scope and approach: In this review the current analytical approaches to detect organic food mislabeling are 
described. Potential and validated markers of organic traceability are explained, together with the techniques 
and statistical analysis employed. In this article, all the different foods have been reviewed and are presented by 
type of food. 
Key findings and conclusions: Variations in the elemental and stable isotopic ratios of fertilizers lead to differences 
in plant food ratios. In the case of animal food products, the distinct ratio in organic results in a final product 
with a unique elemental and stable isotopic composition. Those could be used for authenticating organic food. In 
addition, the different fertilization promotes different metabolic pathways leaving a distinct metabolic signature, 
hence targeted and untargeted metabolomic analysis permits the traceability of organic food. Finally, the use of 
soft classification models such as SIMCA, PLS-DA or OPLS-DA permits the classification of organic food and 
enables prediction of whether a new sample is conventional or organic.   

1. Introduction 

The demand for organic food is increasing, as consumers perceive it 
to be healthier, safer, and more environmentally friendly. This tendency, 
together with the fact that organic products command a higher price on 
the market than the conventional equivalents, creates a significant risk 
of fraudulent practices, such as deliberate mislabeling. From 1999 to 
2020, the total global land area devoted to organic agriculture experi-
enced a substantial increase, surging from 11 million hectares to 74.9 
million hectares (Willer, Trávníček, Meier, & Schlatter, 2022). 
Furthermore, the European Union has made a significant commitment to 
bolster organic production, aiming to allocate 25% of all agricultural 
land to organic farming by 2030 as an integral part of its farm-to-fork 
strategy for sustainable food systems. In parallel, sales of organic food 
products have more than doubled over the last decade, with Canada, 

China, and Germany experiencing notable market growth percentages of 
26.1%, 23.0%, and 22.3%, respectively (Willer et al., 2022). This 
continuing expansion underscores the urgency of developing analytical 
tools to authenticate organic products and thwart fraudulent activities 
that seek to blur the lines between different agricultural and farming 
systems and food producers (Pettoello-Mantovani and Olivieri, 2022). 
To achieve this, it is imperative to include organic food traceability in 
existing food safety regulations and trade agreements. In Europe, in 
response to the swiftly evolving landscape of the organic sector, new 
legislation for organic products became effective on January 1, 2022, 
after a one-year delay in its implementation. The purpose of this regu-
lation is to promote equitable competition for farmers, whilst preventing 
fraud and maintaining consumer trust. 

As differences in fertilization practices between organic and con-
ventional agriculture can significantly impact the elemental and isotopic 
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composition of crops (vegetables, fruits, cereals, etc.), various atomic 
spectroscopy techniques have been successfully implemented to verify 
compliance with organic regulations. (Bateman & Kelly, 2007; Laursen, 
Schjoerring, Kelly, & Husted, 2014). Organic crop systems rely on 
compost and farmyard manure and avoid the use of pesticides, whereas 
conventional farming uses inorganic fertilizers and pesticides, both of 
which often contain heavy metals (Hassanpourfard, Mane, & Banerjee, 
2023). Inorganic fertilizers have higher concentrations of rare-earth 
elements, such as La, Ce, Th, and Yb, and their frequent application 
can lead to increased levels of these elements in the soil, subsequently 
affecting the composition of plants and seeds (Turra et al., 2013). In 
addition, the differences in C/N ratios between organic and conven-
tional fertilizers promote different biological pathways in plant organ-
isms, resulting in contrasting metabolic signatures (González-Coria 
et al., 2022). Differences in the stable isotopic ratio, elemental distri-
bution, and nutrient profile of animal feed are transferred to meat and 
other animal products (Pustjens, Boerrigter-Eenling, Koot, Rozijn, & van 
Ruth, 2017). These signatures can be determined by targeted profiling or 
whole fingerprint analysis, the latter providing a more accurate classi-
fication (Quintanilla-Casas et al., 2020). Additionally, due to the diverse 
fertilizer management practices used in both organic and conventional 
systems, relying on a single method for authentication is challenging. 
Therefore, the generation of multivariate fingerprints using multiple 
complementary atomic spectroscopy techniques combined with che-
mometric analysis of spectral data is strongly recommended. 

Comprehensive and in-depth traceability analysis of organic food has 
scope for considerable improvement. In this article, we review English 
language publications on the authentication of organic vegetable and 
animal foods for human consumption, spanning from 2013 to the pre-
sent, with the aim of providing pertinent and novel insights into food 
traceability. The different sections correspond to food types, which are 
presented in the order of the food recommendations on the Mediterra-
nean diet pyramid (Willett et al., 1995). In addition, the vegetable and 
fruit sections are divided by colour, reflecting current recommendations 
from Harvard and other medical schools that emphasize the importance 
of eating foods of a broad colour palette (McManus, 2019). 

2. Methodologies for organic food authentication 

2.1. Analytical techniques 

The analytical approaches to verify the organic status of organic food 
can be classed within four groups: elemental analysis, stable isotopes 
analysis, targeted profiling of characteristic compounds, or untargeted 
profiling. In elemental analysis, the concentration of each target element 
is measured by inductively coupled plasma mass spectrometry (ICP-MS) 
or ICP-optical emission spectrometry (OES). ICP apparatus is based on 
the use of high energy electric currents that atomize the sample, then 
those atoms are detected by the MS or the OES (Lee, 2018). 

In isotopic analysis, the difference between the stable isotopes is 
determined by isotope ratio mass spectrometry (IRMS) and expressed as 
δxE. For example, δ15N is a measure of the ratio of 15N/14N in the 
samples to the 15N/14N in a reference material, or more precisely, it 
represents the per mil (‰) variation in the sample ratio compared to the 
standard ratio. Thus, a negative δ15N value indicates that the sample 
ratio of 15N/14N is lower than the standard ratio (Novak, Adler, Husted, 
Fromberg, & Laursen, 2019). The calculation follows the equation:  

δxEsample/standard = 1000*(Ratiosample-Ratiostandard)/ Ratiostandard                     

In targeted profiling, different approaches are needed depending on 
the target chemicals. For example, the fatty acid profile is determined by 
triglyceride transesterification followed by a volatilization, and then the 
analysis of the resulting mixture is carried out by gas-chromatography 
coupled to flame ionisation detection (GC-FID) (Capuano, Gravink, 
Boerrigter-Eenling, & van Ruth, 2015). On the other hand, the volatile 

profile is analysed by a headspace solid-phase microextraction coupled 
to GC-mass spectrometry (HS-SPME-GC-MS) (Cuevas, Pereira-Caro, 
Moreno-Rojas, Muñoz-Redondo, & Ruiz-Moreno, 2017). In this analyt-
ical technique, the volatile compounds from a sample are captured by an 
adsorbent and then desorbed in the GC for their analysis. Other targeted 
profiling could be the phenolic profile, which could be achieved by 
different means, but mainly are determined by liquid chromatography 
(LC) coupled to photodiode array detector (PDA) or to MS detector 
(Lozano-Castellón et al., 2022). However, PDA detector could led to 
identification errors, as it is just based in the retention time and absor-
bance wavelength, which is shared by some compounds, such as quer-
cetin-3-O-glucuronide and rutin, for example. 

In untargeted analysis, spectral analyses are carried out in order to 
have a whole image of the samples. The most commonly used techniques 
in untargeted analysis are HRMS, nuclear magnetic resonance (NMR), 
and infra-red (IR) spectra. HRMS consists of an MS detector that de-
termines the exact mass of the compounds, which can be used to 
determine the formula and a probable structure if fragmentation anal-
ysis is also performed (Duncan, 2012). NMR spectra are based on the 
magnetic activity of a molecule and provide information about the 
structure of the molecules, it is used to detect if a group (organic or 
conventional) is richer in phenolic compounds than the other group, for 
example (Harris, Becker, Cabral de Menezes, Goodfellow, & Granger, 
2001). In addition, IR also provides information about functional 
groups, but it is based on the vibrational pattern of these substituents 
with infrared radiation (General survey of vibrational spectroscopy, 
1995). 

In untargeted analysis, the spectral peaks can be identified before the 
statistical analysis. Alternatively, all the peaks can be analysed without 
identification, which is restricted to any emerging marker peaks. When 
tracing organic food, it may be more useful to work with the whole 
fingerprint, doing the statistical analysis before the identification, which 
contains more information and therefore facilitates the separation of 
groups, such as organic versus conventional (Quintanilla-Casas et al., 
2020). In this case, the compounds responsible for the differences be-
tween groups might not be identified at the end, but since the main 
objective is to discriminate between groups, these details might seem 
less important. 

To choose the most suitable analytical methods, it is crucial to 
consider the type of sample and the available equipment. If spectral 
techniques are available, they are preferable as they yield high- 
information output, enhancing the potential to develop and validate a 
model for distinguishing between organic and conventional food. It is 
worth noting that while elemental analysis and isotopic ratio assess-
ments may generate smaller result matrices, they still demonstrate 
effective group separation. 

Considering the nature of the food sample, the volatile fingerprint 
can serve as a valuable source of information. However, it is essential to 
know that certain foods have minimal odor, diminishing the possibility 
that the volatile profile alone would offer substantial information. In 
such cases, alternative analyses may yield more robust results and pro-
vide a more comprehensive understanding of the sample. As food 
matrices are so diverse, each case should be studied to select the best 
analytical method for tracing the organic samples. 

2.2. Statistical approaches 

The obtained analytical data are evaluated by different statistical 
procedures to accurately classify the organic samples. Prior to the formal 
analysis, the data could be transformed, scaled and normalized in order 
to improve the classification. Scaling the data is a transformation that 
changes the range of the data, but the differences between samples for 
each variable remains. The result is data fitted between a smaller range, 
which is helpful as it allows to easily compare between different vari-
ables, as all of them have similar values after the scalation process. If 
there is no scaling step, the model would mainly focus on variables with 
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high values, then the contribution of some variables with low values 
could be minimal, which can result in a loss of classification power of the 
model. Some examples of scaling are mean-centered, auto-scaling, and 
Pareto scaling, for more information see: van den Berg, Hoefsloot, 
Westerhuis, Smilde, and van der Werf (2006). Depending on the data, 
some transformations will improve more the model separation than 
others. On the other hand, normalizing the data is useful when para-
metric tests are applied, as those require data normally distributed. As 
the data matrices could be immense and the best preprocessing option 
could not be clear, some authors try all the preprocessing possibilities, 
and finally select the one that provides better classification between 
groups (de Andrade et al., 2023). 

After the data pretreatment, the formal analysis is carried out. First, 
the differences between supervised and unsupervised models should be 
highlighted. An unsupervised approach is an exploratory tool that will 
reveal the natural distribution of the samples, allowing emerging groups 
to be identified. In contrast, supervised analysis forces the separation of 
samples into selected groups or classes, making it a useful approach for 
discriminating between organic and conventional foods. The most 
common unsupervised methods are principal component analysis (PCA) 
and hierarchical cluster analysis (HCA). PCA is a mathematical tool that 
reduces the dimensions of a data set, resulting in data that can be easily 
analysed for variations. The data are transformed into new dimensions 
(PCs) that are linear polynomials of the original variables. The result is a 
set of new dimensions, each explaining a percentage of the variability 
between the samples, which could be easily interpreted, since all the 
information could be graphically represented in 2 or 3 dimensions (2 or 
3 PCs). In the end, the researcher has a graph in which the samples are 
distributed in hyperspace. Samples that have similarities tend to group 
together and knowing the coefficient for each variable for the PCs, one 
could determine why those variables are grouped together and why they 
are separated from the others (Jolliffe & Cadima, 2016). In the case of 
the HCA, it is also an unsupervised model that allows to detect the 
natural cluster between groups, but it works differently. In the case of 
the HCA, it uses a dendrogram for representing the grouping. Samples 
that are together in the dendrogram, are similar, and those samples that 
are not together are different. For building this dendrogram, different 
methods can be used, one is building a heatmap using the Euclidean 
distance. This distance is the difference between the mean and the value 
of the sample for a variable. And then in the heatmap, the samples are 
grouped according to those values (Nielsen, 2016, pp. 195–211). 

In the classification of organic and conventional foods, the most used 
supervised techniques are partial least squares discriminant analysis 
(PLS-DA), soft independent modelling of class analogy (SIMCA), and 
support vector machines (SVM). The latter is useful when the dataset is 
small, SVM is based on the maximum margin hyperplane finding pro-
cedure, a type of linear model. Considering a dataset with two classes 
(organic and conventional samples) where the classes are linearly 
separable, then a hyperplane in the input space can classify the samples 
between the groups. The final hyperplane selected by the model is the 
one that minimize the errors in classifying the samples (Barbosa et al., 
2016). In the case of SIMCA, it is often used as a one-class classifying 
model, although it could be used as discriminant model sometimes. It 
works as follows, first a model for each group is created, concretely a 
PCA (Pomerantsev & Rodionova, 2020). Then using the residuals of each 
group, the orthogonal and score distances, it is assessed if a sample 
belongs to that group or not. For checking these residuals, different 
methods have been developed, one of which is the data-driven SIMCA 
(DD-SIMCA) (Pomerantsev & Rodionova, 2020). 

Finally, the PLS-DA is a discriminant method that uses the PLS- 
regression to search for latent variables with a maximum covariance 
with the Y-variables (the groups). These latent variables are linear 
combinations of the original variables (Ballabio & Consonni, 2013). 
Then, similarly to the PCA, it is possible to represent in a new hyper-
space the samples according to their latent variables and visually check 
the group separation. In this case, this separation is forced by the model, 

and not natural as in the PCA. 
Once generated, the supervised model is generally verified by cross- 

validation, in which the model is tested and trained using different 
subsets of data in multiple iterations. The aim of this statistical treat-
ment is to evaluate the real-world performance of a predictive model 
with optimum accuracy, and it is the most used technique for predictive 
models (Allen, 1974). One type of cross-validation usually employed is 
the k-fold cross-validation. It consists in dividing equally the sample set 
in k subsets. Then each time one subset is left out for testing and the 
others are used for building the model. This procedure is repeated k 
times until all subsets have been used for testing. The final error is the 
sum of the errors of each procedure (Barbosa et al., 2016). A summary of 
the possible methodologies for organic traceability is shown in Fig. 1. In 
addition, a flowchart for the development and validation of a supervised 
discriminant model is presented in Fig. 2. 

This review also includes studies that exclusively employed unsu-
pervised models to find marker compounds for discrimination. Table 1 
and Table 2 present all the articles covered, listing the target foods, the 
marker compounds (or potential marker compounds), statistical pro-
cedures, and if a validated supervised model was used to authenticate 
the organic product. 

3. Vegetables 

3.1. Red vegetables 

Two studies on organic and conventional tomatoes and sweet pep-
pers cultivated in different Brazilian regions evaluated techniques to 
discriminate between agronomic practices and geographic origin. de 
Andrade et al. (2023) reported that near-infrared (NIR) spectrometry 
combined with various chemometric methods, including PCA, 
DD-SIMCA, and PLS-DA, constitutes a useful system to verify the 
authenticity of organic products based on the profile of non-volatile 
components such as fibres, sugars, or fatty acids. Promising results 
were also obtained by Galvan et al. (2023) using energy-dispersive 
X-Ray fluorescence (EDXRF) combined with chemometric tools, an 
approach that does not require complex sample preparation steps and is 
fast and relatively inexpensive compared to chromatographic or spec-
trometric analytical techniques. 

Zappi et al. (2022) developed a fast, cost-effective, and green pro-
cedure to verify the label information of tomato sauces by the analysis of 
volatile organic compounds (VOCs) and the colloidal fraction via 
multivariate statistical analysis. VOCs in tomato sauce were determined 
by GC-FID and GC-ion mobility spectrometry (GC-IMS), whereas the 
colloidal fraction was evaluated by asymmetric flow field-fractionation 
(AF4). The data obtained by both methods were useful for food-quality 
control: AF4 yielded comparable or better results than GC-IMS and 
offered complementary information to distinguish between brands of 
tomato sauce and certify their organic authenticity. 

Ways to detect the fraudulent branding of conventional tomatoes as 
organic were investigated in a study with Solanum lycopersicum cv. 
Ramyle (Díaz-Galiano, Heinzen, Martínez-Bueno, Rajski, & Fernánde-
z-Alba, 2022). This tomato cultivar was grown using different amounts 
of synthetic or natural crop protection agents, combined with chemical 
or organic fertilisers, and the metabolic profile of the tomatoes was 
analysed by LC coupled to Orbitrap mass spectrometry (LC-Q-Orbi-
trap-MS) combined with chemometrics. A polyketide phytoalexin 
identified as gerberin ([M+H]+ at m/z 291.1075) was found to be a 
potential marker to distinguish between organic and conventional 
cultivation, as its levels correlated negatively with the presence of syn-
thetic chemicals. In contrast, the use of δ15N- IRMS alone proved to be 
insufficient to discern between agricultural practices. 

The mineral profiling of tomatoes can identify chemical markers of 
the farming system. With this aim, a study carried out by Cvijanović 
et al. (2021) analysed eight varieties of four types of tomatoes (beef, 
cluster, cherry and plum), cultivated by integrated or organic farming 
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regimes. Integrated farming falls between organic and conventional, as 
it applies minimum amounts of pesticides and synthetic fertilizers 
(Worth, 2012). A total of 44 elements were quantified using ICP-MS and 
chemometric techniques, among which the contents of Al, Mn, As, Pb, 
and some rare-earth elements distinguished between the two agricul-
tural systems. In another study, the contents of 25 elements were 
identified as differentiators between organic and conventional practices 
tomato and bell pepper cultivations (Capsicum annuum) (Araújo, de 
Lima, Barbosa, & Alleoni, 2019). Discrimination models developed 
using data mining techniques and feature selection combined with 
classification algorithms resulted in accuracy rates of 100% in bell 
pepper and 97% in tomato. These high success rates suggest that 
multi-element analysis supported by the use of algorithms is a useful 
strategy to authenticate organic products. 

Taking a different approach, the enzymatic profiles of tomatoes were 
examined to distinguish the impacts of organic and conventional 
farming (Rodrigues et al., 2021). The enzymatic activity in three tomato 
varieties (khaki, Italian and cherry) collected in different seasons was 
measured. The determined enzymes were invertases (INV), poly-
galacturonases (PG), peroxidases (PO), polyphenoloxidases (PPO), cat-
alases (CAT) and phenylalanine ammonia lyase (PAL), and correlations 
with the farming systems were determined by PCA. The activities of PO, 
PPO, CAT, and PAL proved to be useful for tomato certification and 
traceability, particularly PO and CAT, the latter correlating better with 

conventional farming. 
Metabolomic fingerprinting provides a comprehensive character-

ization of plant metabolomes, reflecting the impact of both endogenous 
and exogenous factors. Advanced technologies based on high perfor-
mance liquid chromatography coupled with high-resolution accurate 
mass spectrometry (HPLC-HRAMS) were used to screen organic and 
conventional tomatoes grown in a greenhouse under controlled condi-
tions (Martínez Bueno, Díaz-Galiano, Rajski, Cutillas, & Fernández-Alba, 
2018). In addition, stable nitrogen isotopes (δ15N) and pesticide residues 
were analysed as possible indicators of production systems. Chemo-
metric analysis of the HRAMS and δ15N data provided a robust classi-
fication model. PCA showed sample clustering according to the farming 
system and significant differences in the content of six compounds 
(L-tyrosyl-L-isoleucyl-L-threonyl-L-threonine, trilobatin, phloridzin, 
tomatine, phloretin and echinenone). In a study by Bontempo et al. 
(2020), stable isotope ratios of hydrogen (δ2H), carbon (δ13C), nitrogen 
(δ15N), oxygen (δ18O) and sulfur (δ34S) were analysed in organic and 
conventional tomatoes and tomato passata. A method based on 
GC-combustion-IRMS (GC-C-IRMS) was developed for the analysis of C 
and N isotope ratios in tomato-derived amino acids. The most significant 
parameter to distinguish between organic and conventional products 
was the δ15N value of amino acids. The authors proposed isotopic 
analysis of amino acids as a novel tool to be used in addition to existing 
certification and control procedures for organic tomatoes. 

Fig. 1. Proposed methodologies for organic traceability.  
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3.2. Green vegetables 

Araújo et al. (2019) also determined the differences in elemental 
composition between organic and conventional lettuces. As in tomatoes, 
bell peppers, and onions, the contents of 25 elements were determined 
by ICP-OES using the conventional sample introduction system. For 
lettuce, the predictive accuracy obtained with the discriminatory model 
was 92%, with a 90% hit rate for organic samples. Similarly, the pre-
viously described method of Novak et al. (2019) for organic authenti-
cation (see previous section 3.2. Brown/orange vegetables), based on 

stable isotope ratio analysis, was also able to discriminate between 
organic and conventional cabbage. 

A comparative study evaluated the functional and bioactive com-
pounds of Asparagus officinalis L. cultivated with conventional or organic 
systems, comparing greenhouse and conventional open–field farming 
(Ku et al., 2018). Antioxidant capacity, total polyphenols and chloro-
phylls a and b, and total carotenoids (xanthophylls + carotenes) were 
determined spectrophotometrically. Higher phenolic content in clad-
odes was associated with conventional regime. In contrast, organic 
spears had higher levels of total phenolics and flavonoids and showed 

Fig. 2. Flowchart for the development and validation of a supervised discriminant model.  
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Table 1 
Analytical and statistical approaches for organic traceability in vegetables, fruits 
and cereals.  

Food Key Variables Statistical 
analysis 

Validated 
method 

References 

VEGETABLES 
tomato, 

sweet 
pepper 

NIR spectra PCA, PLS- 
DA, SIMCA 

Yes de Andrade 
et al. (2023) 

tomato, 
sweet 
pepper 

EDXRF spectra ComDim, 
PLS-DA 

Yes Galvan et al. 
(2023) 

tomato VOCs (GC-FID 
and GC-IMS) and 
colloidal fraction 
(AF4) 

PCA No Zappi et al. 
(2022) 

tomato Metabolome 
profile (LC-Q- 
Orbitrap-MS) 

Direct 
comparison 

No Díaz-Galiano 
et al. (2022) 

tomato Elemental 
composition 
(ICP-MS) 

PCA No Cvijanović et al. 
(2021) 

tomato, bell 
pepper 

Elemental 
composition 
(ICP-OES) 

PCA, LDA, 
SVM, ANN, 
RF 

Yes Araújo et al. 
(2019) 

tomato Enzimatic 
activity (INV, 
PG, PO, PPO, 
CAT, PAL) 

PCA No Rodrigues et al. 
(2021) 

tomato Metabolomic 
fingerprint 
(HPLC-HRAMS) 
and δ15N 

PCA No Martínez Bueno 
et al. (2018) 

tomato δ15N + GC-C- 
IRMS 

PCA, 
ANOVA 

No Bontempo et al. 
(2020) 

carrot Metabolomic 
profile (UHPLC- 
HRMS) 

PLS-DA, 
OPLS-DA, 
ANOVA 

Yes Dinis et al. 
(2023) 

carrot, 
potato 

δ18O (IRMS) ANOVA, 
QDA 

Yes Novak et al. 
(2019) 

carrot Metabolomic 
profile (UHPLC- 
MS) 

OPLS-DA Yes Cubero-Leon 
et al. (2018) 

potato δ15N ANOVA No Gatzert et al. 
(2021) 

potato Transcriptomic 
profile 

HCA, ORA No Pacifico et al. 
(2017) 

onion Elemental 
composition 
(ICP-OES) 

PCA, LDA, 
SVM, ANN, 
RF 

Yes Araújo et al. 
(2019) 

lettuce Elemental 
composition 
(ICP-OES) 

PCA, LDA, 
SVM, ANN, 
RF 

Yes Araújo et al. 
(2019) 

cabbage δ18O ANOVA, 
QDA 

Yes Novak et al. 
(2019) 

asparagus Phenolic 
compounds 

ANOVA No Ku et al. (2018) 

FRUITS 
banana δ15N ANOVA, 

PCA 
No Wang et al. 

(2021) 
banana Microbial 

genetic 
fingerprint (PCR- 
DGGE) 

PLS-DA Yes Bigot et al. 
(2020) 

orange juice Metabolomic 
profile (HPLC- 
HRMS), VOCs 
(HS-SPME-GC- 
MS) 

PCA, PLS- 
DA, HCA 

Yes Cuevas, 
Pereira-Caro, 
et al. (2017) 

orange 
leaves 

Elemental 
composition 
(ICP-MS) 

SVM, ANN Yes Maione et al. 
(2017) 

orange fruit VOCs (HS-SPME- 
GC-MS) 

PLS-DA Yes Cuevas, 
Moreno-Rojas, 
and 
Ruiz-Moreno 
(2017)  

Table 1 (continued ) 

Food Key Variables Statistical 
analysis 

Validated 
method 

References 

nectarine, 
peach 

Microbial 
genetic 
fingerprint (PCR- 
DGGE) 

PLS-DA Yes Bigot et al. 
(2015) 

apple juice Metabolomic 
profile (UHPLC- 
HRMS) 

PCA, PLS- 
DA, OPLS- 
DA, ANOVA 

Yes Dinis et al. 
(2022) 

strawberry Nitrate isotopic 
composition 
(δ15N, δ18O) 

SIMCA Yes Wassenaar et al. 
(2022) 

red grape Vibrational 
spectroscopy 
(ATR-FTIR, 
Raman 
spectroscopy) 

PCA, AHC, 
DA,PC-DA 

Yes Radulescu et al. 
(2021) 

apple VOCs (HS- 
SPME/GC-MS) 

PLS-DA Yes Giannetti et al. 
(2017) 

strawberry FT-NIR spectra PCA, PLSR, 
PLS-DA, 

Yes Amodio et al. 
(2017) 

grape juice Elemental 
composition 
(ICP-MS) 

SVM, 
Decision 
trees, ANN 

Yes Maione et al. 
(2016) 

grape juice Elemental 
composition 
(ICP-MS) 

PCA, SIMCA Yes Borges et al. 
(2016) 

goldenberry Metabolomic 
fingerprint 
(UPLC-QToF- 
MS) 

PCA No Llano et al. 
(2018) 

CEREALS 
Rice Elemental 

composition 
(ICP-MS) 

PSA, 
SIMCA, 
HCA, KNN 

Yes Borges, Gelinski, 
de Oliveira 
Souza, Barbosa, 
and Batista 
(2015) 

Rice Elemental 
composition 
(ICP-MS) 

t-test, SVM Yes Barbosa et al. 
(2016) 

Rice δ13C and δ15N LSD 
(ANOVA) 

No Chung, Park, 
et al. (2017) 

Rice δ13C and δ15N 
(Compound- 
specific) 

HCA, PSA, 
OPLS-DA 

No Chung, Kim, An, 
et al. (2019) 

Rice δ13C and δ15N SVM Yes Chung et al. 
(2021) 

Rice δ13C and δ15N +
elemental 
composition 
(ICP-MS/MS) 

ANOVA, 
PCA, PLS- 
DA 

Yes Liu et al. (2020) 

Rice δ13C and δ15N +
elemental 
composition 
(ICP-MS) 

ANOVA, 
PCA, PLS- 
DA 

Yes Yuan et al. 
(2018) 

Rice Metabolomic 
fingerprint 
(UHPLC-QToF 
MS) 

PCA, PLS- 
DA, HCA, 
OPLS-DA 

Yes Xiao et al. 
(2018) 

Rice NIR spectra PCA, PLS 
regression 

Yes Xiao et al. 
(2019) 

Rice Phenolic 
compounds 

ANOVA, 
LSD 

No Prabakaran 
et al. (2018) 

Wheat and 
barley 

Elemental 
composition 
(ICP-OES) 

PCA No Laursen et al. 
(2011) 

Wheat and 
barley 

δ2H and δ15N mean ±
error 

No Laursen et al. 
(2013) 

Wheat δ13C and δ15N 
(Compound- 
specific) 

SD, HSD 
turkey 

No Paolini et al. 
(2015) 

Wheat δ13C mean ± SD No Gatzert et al. 
(2021) 

Wheat Metabolomic 
profile (GC-MS) 

t-test PCA No Bonte et al. 
(2014) 

wheat Metabolomic 
profile (GC-MS) 

machine 
learning 

Yes Kessler et al. 
(2015) 

(continued on next page) 
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higher antioxidant activities in three radical scavenging assays 
compared to the conventional counterparts. Multivariate analysis 
partially differentiated between the organic and conventional samples. 

3.3. Brown/orange vegetables 

Several efforts have also been made to authenticate organic carrots 
(Daucus carrota) and potatoes (Solanum tuberosum). In a study by Dinis, 
Tsamba, Jamin, and Camel (2023), an orthogonal projections to latent 
structures-discriminant analysis (OLPS-DA) model generated from 
untargeted ultra-high performance liquid chromatography-HRMS 
(UHPLC-HRMS) data was able to differentiate between carrots pro-
duced in different regions, but not according to the farming regime. A 
novel method for organic authentication was developed by Novak et al. 
(2019). based on the analysis of oxygen stable isotope ratios in 
plant-derived sulphate compounds. Its application, together with iso-
topic analysis of bulk plant tissue and plant-derived nitrate, allowed 
discrimination between organic and conventional potatoes and carrots. 
Oxygen isotope ratios of sulphate in organic vegetables were found to be 
significantly lower compared to those of conventional products, and the 
values were directly correlated with the type of fertilisation. Moreover, 
sulphate isotope analysis had superior classification power compared to 
known bulk tissue isotope markers and nitrate isotope values (Cuber-
o-Leon, De Rudder, & Maquet, 2018). In a study based on large-scale 
comparative metabolomics, OPLS-DA models accurately predicted 
whether carrots were conventionally or organically produced based on 
LC–MS data. When the training set used to build the OPLS-DA models 
contained samples representative of each harvest year, 100% correct 
classification of carrots was achieved, indicating that the farming system 
modulates the carrot metabolome. 

Gatzert et al. (2021) was able to separate potatoes from different 

regions in Germany according to their provenance after analysing their 
stable isotope compositions of oxygen, hydrogen, carbon, nitrogen, and 
sulfur using single-variate authentication methods. Effective isotope 
tracers of origin were δ 18O, δ 2H, δ 15N, δ 13C and δ 34S. However, only 
protein δ 15N could differentiate between organic and conventional 
potato samples. The study verified that food authenticity tracking re-
quires the analysis of a broad range of isotopes. Pacifico, Onofri, Parisi, 
Ostano, and Mandolino (2017) analysed the transcriptomic profile of a 
potato cultivar grown for two years using organic or conventional 
farming practices. The transcriptomic raw data were obtained through 
Potato Oligo Chip Initiative (POCI) microarrays and processed using 
unsupervised coupling multivariate statistical analysis and bioinfor-
matics (MapMan software). Transcriptome changes detected in the po-
tato tubers in response to organic management were associated with 
nutrition (e.g., the content of phenylpropanoids, flavonoids, glyco-
alkaloids, asparagine, and ascorbic acid). Several candidate genes were 
identified as potential markers of organically grown potatoes. 

Araújo et al. (2019) demonstrated the efficiency of machine learning 
techniques in the classification of vegetables produced under organic or 
conventional systems in the state of Pernambuco, Brazil. The contents of 
25 elements were determined in onions by ICP-OES using the conven-
tional sample introduction system. Data mining techniques were applied 
to develop discrimination models based on organic vegetable samples, 
which were analysed by feature selection combined with classification 
algorithms. For onions (Allium cepa Hysam), 100% accuracy was ob-
tained, indicating that elemental quantification can be used to authen-
ticate organic and conventional onions. 

4. Fruits 

The lack of reliable analytical techniques to differentiate between 
organic and conventional foods has resulted in the exploration of 
innovative methodologies. For example, differences in chemical 
composition between organic and conventional fruits have been iden-
tified using omics approaches, whereas microbial fingerprinting has led 
to the proposed use of microorganisms as organic biomarkers. 

4.1. Red fruits 

NIR spectroscopy offers great potential not only for selecting high- 
quality fruit products but also for improving the traceability and 
authentication of organic produce. In a study by Amodio, Ceglie, 
Chaudhry, Piazzolla, and Colelli (2017), NIR spectroscopy was applied 
to differentiate between various categories of strawberries grown under 
three distinct fertility management systems: conventional, organic with 
input substitution, and organic using manure and cover crop amend-
ment. Reflectance spectra were collected using Fourier transform 
(FT)-NIR. PLS analysis was performed to build predictive models of 
chemical quality, including factors such as total soluble solids, ascorbic 
acid and phenolic compound content, pH and titratable acidity. Addi-
tionally, PLS-DA was used for classification models. The study success-
fully discriminated between the three production systems with over 95% 
sensitivity and more than 94% specificity, highlighting the potential of 
NIR methodologies for classifying organic food products. In addition, 
Wassenaar et al. (2022) used an innovative Ti(III) reduction method for 
rapid and cost-effective isotopic analysis of nitrate in organic and con-
ventional strawberries. The distinctive isotopic signatures of synthetic 
nitrate fertilizers, marked by elevated δ 18O values and reduced δ 15N 
values, proved indicative of conventional agriculture. Using chemo-
metric analysis (DD-SIMCA), nitrate δ18O values were found to be a 
robust primary discriminator between organic and conventional straw-
berry production. It was concluded that this method is useful for eval-
uating nitrate fertilization practices in organic and conventional 
production and can support existing authenticity verification 
techniques. 

FTIR and Raman spectroscopic screening methods with multivariate 

Table 1 (continued ) 

Food Key Variables Statistical 
analysis 

Validated 
method 

References 

(MeltGB 
2.0) 

wheat Crystallization 
patterns 

PCA, k- 
nearest- 
neighbour 
method 

Yes Kahl et al. 
(2015) 

wheat Phenolic acids PCA, 
ANOVA 

No Weesepoel et al. 
(2016) 

corn NIR and MIR 
spectra 

PLSR, 
SIMCA 

Yes Ayvaz et al. 
(2015) 

Abbreviations: EDXRF = Energy-Dispersive X-Ray Fluorescence, ICP = Induc-
tively coupled plasma, PCA = Principal Component Analysis, SIMCA = Soft 
Independent Modeling of Class Analogy, HCA = Hierarchical Cluster Analysis, 
KNN––K-nearest neighbours, SVM = support vector machine, OPLS-DA =
Orthogonal Projections to Latent Structures Discriminant Analysis, LSD = least 
significant difference, PLSR = partial least squares regression, ComDim =
Common Dimension Analysis, VOCs = Volatile organic compounds, AF4 =
asymmetric flow field-fractionation, ICP-OES = inductively coupled plasma/ 
optical emission spectroscopy, LDA = linear discriminant analysis, ANN =
artificial neural networks, RF = random forest, INV = invertases, PG = poly-
galacturonases, PO = peroxidases, PPO = polyphenoloxidases, CAT = catalases, 
PAL = phenylalanine ammonia lyase, HPLC-HRAMS =High-performance liquid 
chromatography/high-resolution accurate mass spectrometry, GC-C-IRMS = gas 
chromatography-combustion-isotope ratio mass spectrometry, QDA = quadratic 
discriminant analysis, REIMS = rapid evaporative ionisation mass spectrometry, 
QToF = quantitative time of flight, PCA= Principal component analysis, FAMEs 
= fatty acids methyl esters, DGGE = PCR-Denaturing Gradient Gel Electropho-
resis, ATR-FTIR = attenuated total reflectance-Fourier transform infrared 
spectroscopy, AHC=Agglomerative Hierarchical Clustering, DA = discriminant 
analysis, PC-DA = combination of principal component and discriminant anal-
ysis, MANOVA = multivariate analysis of variance, HS-SPME/GC-MS=Head 
Space-Solid Phase Micro Extraction/Gas Chromatography Mass Spectrometry, 
ORA= Over-Representation Analysis. 
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statistical techniques (PCA and HCA) were applied to hydroalcoholic 
extracts from different grape components (skin, seeds, and pulp), in a 
range of grape varieties. Distinct chemical patterns were identified, 
which distinguished between organic and conventional vineyard prac-
tices (Radulescu et al., 2021). 

In two separate studies, data mining techniques were employed to 
differentiate between organic and conventional grape juices based on 
their mineral composition. Using ICP-MS, 44 elements were identified in 
37 grape juice samples, both organic and conventional, from various 
locations in Brazil (Maione et al., 2016). Predictive models developed 
with SVM, ANN, and decision trees effectively distinguished between 
the two types of grape juice. In the differentiation, Na, Sn, P, K, Sm, and 
Nd emerged as key variables, whereas Ag, Zn, Cr, Be, and Pd were the 
least important. 

Also using ICP-MS, the other study determined the concentration of 
24 elements in 19 organic and 17 conventional grape juices produced in 
Brazil. Concentrations of Ba, Ce, La, Mg, P, Pb, Rb, Sn, and Ti were found 
to be higher in organic samples, while those of Na and V were higher in 
conventional samples (Borges et al., 2016). Analysis of these data by 
PCA and SIMCA statistical techniques accurately discriminated between 
the two sample types. This research indicates that multi-element 
profiling methods are suitable alternatives for assessing potential 

adulteration in grape juice. 

4.2. Orange/yellow/white fruits 

The molecular analysis of microbial ecology has become a pivotal 
technique to determine the origin of certain foods. This approach is 
based on identifying microorganisms on the external surface of food and 
establishing their links with specific geographical regions. Two 
insightful studies have used this strategy to differentiate between con-
ventional and organic fruits, examining the rDNA fingerprint of micro-
organisms. In the work of Bigot, Meile, Kapitan, and Montet (2015), a 
robust methodology was developed that combines the analysis of yeast 
and bacteria species using PCR-denaturing gradient gel electrophoresis 
(DGGE) with chemometric methods (PLS-DA). This tool proved highly 
effective in predicting organic practices for nectarines and peaches. The 
same techniques successfully differentiated between organic and con-
ventional banana samples, regardless of differences in other factors such 
as farming methods, fruit varieties, and geographical origin, demon-
strating the validity of this innovative method (Bigot et al., 2020). 

Conventional and organic bananas were also differentiated by 
determining their stable isotopic ratios and elemental composition, 
followed by statistical analysis (PCA and correlation), using samples 

Table 2 
Analytical and statistical approaches for organic traceability in animal products, oils, stimulant foods and miscellanea.  

Food Key Variables Statistical analysis Validated 
method 

References 

ANIMAL PRODUCTS 
Beef meat Lipidomic profile (REIMS-QToF) PCA-LDA Yes Robson et al. (2022) 
Pork meat FA profile SIMCA Yes Oliveira et al. (2015) 
Pork meat δ13C, δ15N, δ2H and δ18O and elemental composition (ICP-MS) OPLS-DA Yes Zhao et al. (2020) 
Fish (salmon and 

trout) 
δ13C and δ15N, FA profile, carotenoids t-test or mann-whitney test No Molkentin et al. (2015) 

Eggs Elemental composition (ICP-MS) SIMCA Yes Borges, Volmer, et al. 
(2015) 

Eggs δ13C and δ15N MANOVA, LSD No Rogers et al. (2015) 
Eggs Physical parameters, fat content, FA profile PCA No Marelli et al. (2021) 
Milk δ13C and δ15N LSD No Chung et al. (2014) 
Milk 13C NMR spectra of the manure Direct comparison No He et al. (2015) 
Milk FA profile and TAG profile Kruskal–Wallis and pairwise 

Mann–Whitney U test 
No Capuano et al. (2015) 

Butter Fat content, Free fatty acid, FA profile and TAG profile Kruskal–Wallis and pairwise 
Mann–Whitney U test 

No Pustjens et al. (2017) 

Milk δ13C and δ15N, FA profile and vitamin E PCA OPLS-DA Yes Chung et al. (2018) 
Milk δ13C and δ15N from fatty acids and aminoacids PLS-DA Yes Chung, Kim, Yarnes, et al. 

(2019) 
Milk Metobolomic profile (1H NMR) PLS-DA Yes Phuenpong et al. (2021) 
Milk powder δ13C, δ15N and δ18O, Elemental composition (ICP-OES and ICP- 

MS) and FA profile 
OPLS-DA Yes Xu et al. (2021) 

Milk FA profile OPLS-DA Yes Hou et al. (2023) 
OILS 
walnut oils Volatile compounds (GC-MS) AHC, PCA, sPLS-DA Yes Kalogiouri et al. (2021) 
EVOO Calorimetric analysis PCA No Mallamace et al. (2017) 
STIMULANT FOOD 
Coffee Aroma, flavor, aftertaste, body, and acidity Hierarchical clustering No David et al. (2023) 
Coffee Elemental composition (ICP-MS) Mann–Whitney test No Barbosa et al. (2014) 
Ginseng δ13C, δ15N and δ34S GLM No Chung, Lee, et al. (2017) 
MISCELLANEA 
Hen feed FA profile PLS-DA Yes Alewijn et al. (2016) 
Hemp δ15N Kruskal-Wallis No Calvi et al. (2022) 
Saffron NMR PLS-DA Yes Musio et al. (2022) 

Abbreviations: EDXRF = Energy-Dispersive X-Ray Fluorescence, ICP = Inductively coupled plasma, PCA = Principal Component Analysis, SIMCA = Soft Independent 
Modeling of Class Analogy, HCA = Hierarchical Cluster Analysis, KNN––K-nearest neighbours, SVM = support vector machine, OPLS-DA = Orthogonal Projections to 
Latent Structures Discriminant Analysis, LSD = least significant difference, PLSR = partial least squares regression, ComDim = Common Dimension Analysis, VOCs =
Volatile organic compounds, AF4 = asymmetric flow field-fractionation, ICP-OES = inductively coupled plasma/optical emission spectroscopy, LDA = linear 
discriminant analysis, ANN = artificial neural networks, RF = random forest, INV = invertases, PG = polygalacturonases, PO = peroxidases, PPO = poly-
phenoloxidases, CAT = catalases, PAL = phenylalanine ammonia lyase, HPLC-HRAMS =High-performance liquid chromatography/high-resolution accurate mass 
spectrometry, GC-C-IRMS = gas chromatography-combustion-isotope ratio mass spectrometry, QDA = quadratic discriminant analysis, REIMS = rapid evaporative 
ionisation mass spectrometry, QToF = quantitative time of flight, PCA= Principal component analysis, FAMEs = fatty acids methyl esters, DGGE = PCR-Denaturing 
Gradient Gel Electrophoresis, ATR-FTIR = attenuated total reflectance-Fourier transform infrared spectroscopy, AHC=Agglomerative Hierarchical Clustering, DA =
discriminant analysis, PC-DA = combination of principal component and discriminant analysis, MANOVA = multivariate analysis of variance, HS-SPME/GC-MS=Head 
Space-Solid Phase Micro Extraction/Gas Chromatography Mass Spectrometry, ORA= Over-Representation Analysis. 
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collected from six countries (Colombia, Costa Rica, Dominica Republic, 
Ecuador, Panama, and Peru). Significant isotopic differences indicated 
that δ15N is a potential marker of organically produced bananas, 
constituting a traceability tool for commercial fruits (Wang, Erasmus, & 
van Ruth, 2021). In another study this determination was also proposed 
for organic banana traceability, concretely δ15N was higher for organic 
banana than for conventional ones (Tixier, Loeillet, Coulis, Lescot, & de 
Lapeyre de Bellaire, 2022). 

Differences in the phytochemical composition of conventional and 
organic goldenberries (Physalis peruviana), particularly in withanolide 
glycosides, were observed by Llano et al. Using a fingerprinting 
approach, they identified higher levels of withanolides in organic than 
in conventional fruit. This difference may be associated with a chemical 
defence mechanism, as withanolides act as immunosuppressants and 
insect repellents. Thus, withanolides were proposed as a useful 
authenticity marker for organic (pesticide-free) goldenberries (Llano, 
Muñoz-Jiménez, Jiménez-Cartagena, Londoño-Londoño, & Medina, 
2018). 

Data mining with ICP-MS was employed by Maione et al. (2017) to 
investigate the elemental composition of organic citrus leaves in Brazil, 
the world’s top orange producer, where organic citriculture is currently 
expanding. Classification models based on SVM and artificial neural 
networks (ANN) were generated to predict the authenticity of organic 
leaves based on the concentrations of fourteen chemical elements. The 
best model achieved 88% accuracy, with Mn, Mg, and Rb being the most 
relevant elements. The methodology could therefore be useful to 
authenticate organic citrus leaves and potentially has wider application 
in certifying other organic food products. 

Fruit juice authentication traditionally relies on targeted analytical 
methods, focusing on specific components, such as sugars, organic acids, 
and volatile compounds. However, these techniques may overlook more 
complex forms of fraud, including false organic claims. Untargeted 
methods for juice authentication can provide a more comprehensive 
analysis, detecting numerous compounds. For instance, untargeted 
UHPLC-HRMS analysis combined with various chemometric tools, 
including PCA, PLS-DA, OPLS-DA, and analysis of variance (ANOVA), 
successfully discriminated between apple juice samples produced by 
organic and conventional farming systems. The reproducibility of the 
method and the effectiveness of batch correction procedures were 
established (Dinis, Tsamba, Thomas, Jamin, & Camel, 2022). 

Cuevas, Pereira-Caro, Moreno-Rojas, Muñoz-Redondo, and 
Ruiz-Moreno (2017). developed a chemometric approach to authenti-
cate organic orange juices commercially available in Europe. Metab-
olomic fingerprints and volatile profiles were obtained using 
HPLC-HRMS and HS-SPME-GC-MS, and the data were analysed by 
PCA, HCA, and PLS-DA. Key compounds, including flavonoids, fatty 
acids, aldehydes, and esters, were identified as potential markers for 
distinguishing organic juices. Finally, data fusion strategies yielded an 
optimal model for classifying organic and conventional orange juices, 
achieving an impressive 100% sensitivity and specificity. 

In a related study by the same group, HS-SPME-GC-MS was 
employed to compare the aromatic profiles of oranges from two culti-
vars grown under organic or conventional farming systems (Cuevas, 
Moreno-Rojas, & Ruiz-Moreno, 2017). The analysis revealed that both 
varieties of conventional oranges had higher concentrations of ester 
compounds, whereas the organic samples showed elevated levels of 
neryl and geranyl acetates, associated with the geranyl-diphosphate 
pathway, along with some terpenoids. Moreover, the application of 
PLS-DA proved highly effective in classifying oranges according to the 
farming system based on their volatile profiles, achieving an accuracy 
rate of 90% and 100%. 

In a study aimed at discriminating between organic and conventional 
apples grown in north-eastern Italy, volatile profiles were evaluated 
using HS-SPME-GC-MS and chemometric methods (Giannetti, Boccacci 
Mariani, Mannino, & Marini, 2017). The study included 42 apple cul-
tivars, ranging from ancient to new hybrid varieties, grown in different 

regions with different cultivation methods. After the identification of 
118 volatile compounds, PLS-DA models were used to classify the apples 
based on origin and type of cultivation, achieving an accuracy of over 
90%. Ethyl acetate and 1-methoxy-2-methyl butane were key com-
pounds in the differentiation of apple growing systems. 

5. Cereals 

Differences in fertilization practices between organic and conven-
tional agriculture can alter the chemical composition of cereals. 
Although atomic spectroscopy techniques have proved useful in moni-
toring organic compliance, the diversity in fertilizer management sys-
tems means that effective analysis depends on combining various 
techniques with chemometrics to create multivariate fingerprints. 

5.1. Rice 

Organic rice from Brazil was accurately classified by elemental 
profiling using quadrupole-ICP-MS followed by data analysis by PCA, 
SIMCA, HCA, and K-nearest neighbours statistical techniques (Borges, 
Gelinski, de Oliveira Souza, Barbosa, & Batista, 2015). The concentra-
tions of 20 chemical elements (macro and micro) were measured in 50 
rice samples (18 organic and 32 conventional). Conventional rice sam-
ples had a significantly higher content of As, B, Ba, Co, Cr, Cu, Mn, P and 
Zn and lower levels of K, Ca, Mo, Rb and Se compared to the organic 
samples. Therefore, in this simple and robust methodology, only 14 el-
ements (As, B, Ba, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, P, Rb, and Zn) need to 
be measured. The same group went on to optimize the methodology by 
applying SVM, analysing 19 elements (As, B, Ba, Ca, Cd, Ce, Cr, Co, Cu, 
Fe, La, Mg, Mn, Mo, P, Pb, Rb, Se and Zn) in organic (n = 17) and 
conventional (n = 33) rice samples. The authenticity of organic rice 
samples was predicted with an accuracy of 98% when using the 19 el-
ements, remaining as high as 96% when including only Ca and Cd 
(Barbosa et al., 2016). 

Stable carbon (δ13C) and nitrogen (δ15N) isotope analysis has proven 
to be a valuable method for authenticating organic agricultural prod-
ucts, including rice. δ13C values indicate the type of photosynthetic 
pathway, being higher in C4 plants (Badeck, Tcherkez, Nogués, Piel, & 
Ghashghaie, 2005). Various factors such as water, nutrients, and organic 
farming affect δ13C values due to their impact on soil microbe activity. 
On the other hand, δ15N values in agriculture reflect the usage of ni-
trogen fertilizers, being − 6 to 6‰ in conventional fertilizers and 1–37‰ 
in organic fertilizers (often >5‰) (Mukome, Doane, Silva, Parikh, & 
Horwath, 2013). These differences enable organic produce to be 
distinguished from conventionally grown items. 

The analysis of δ13C and δ15N using IRMS in various rice grains 
successfully distinguished environment-friendly (organic and pesticide- 
free) from conventional rice (Chung, Park, et al., 2017). However, it was 
found that other elemental isotope ratios would be needed for a clearer 
discrimination between pesticide-free and organic rice samples. In 
subsequent research, an alternative method was developed using 
compound-specific δ13C and δ15N analysis of fatty acids and amino 
acids, along with OPLS-DA (Chung, Kim, An, et al., 2019). This new 
approach successfully differentiated organic, pesticide-free, and con-
ventional rice samples, although the number of tested rice samples was 
limited. The OPLS-DA models highlighted the significance of δ13C values 
of tyrosine, isoleucine, and alanine (variable importance in projection 
values > 1) for distinguishing organic from pesticide-free rice, with 
δ13C-lysine playing a major role. In a recent five-year study of variations 
in δ13C and δ15N values in environment-friendly and conventional rice 
sold in retail markets in Korea, the feasibility of discriminant models for 
organic rice authentication was assessed (Chung, Kim, Moon, Chi, & 
Kim, 2021). SVM analysis provided 4.4–14.6% better overall predict-
ability of rice types than discriminant analysis and was effective in 
distinguishing organic (95.9%) and conventional (93.6%) from 
pesticide-free rice, potentially enabling high-throughput screening for 
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reliable certification of organic rice. 
A promising scientific tool to authenticate rice farming methods has 

been developed in China. A combination of stable isotope analysis and 
elemental profiling using chemometric methods, PCA, and linear 
discriminant analysis (LDA) correctly distinguished organically grown 
rice cultivars fertilized with animal manures from conventional rice 
grown with green compost or synthetic fertilizers (Yuan et al., 2018). 
Later, this isotopic and multi-element strategy was employed in a 
four-year experimental field trial with the three farming systems (Liu 
et al., 2020). The study involved the analysis of δ13C and δ15N values, 
along with the contents of 27 elements (including Na, K, Ca, Fe, and Zn) 
in both rice and soil samples. The data were evaluated by one-way 
ANOVA, multivariable correlation analysis, and partial LDA model-
ling. The influence of various factors such as cultivar, soil fertilization 
over multiple years, and agroclimatic variations impact on the δ13C and 
δ15N values. Hence, it was not feasible to accurately differentiate 
organic rice from green and conventional rice based solely on δ13C and 
δ15N values. However, significant differences were observed, particu-
larly higher levels of K and Ca in green and conventional rice due to the 
use of synthetic fertilizers (e.g., KNO3, KH2PO4, and CaHPO4). There-
fore, the combination of isotopic and elemental signatures with partial 
LDA modelling was able to classify organic rice with an impressive ac-
curacy of up to 100%. 

A different approach developed by Xiao, Ma, Zhang, and Qian 
(2018), based on the metabolite fingerprinting of rice samples from 
different cultivation practices, involved the use of UHPLC coupled to 
quadrupole time-of-flight MS (UHPLC-QTOF) in combination with sta-
tistical analyses (PCA, PLS-DA, HCA). In addition, an OPLS-DA model 
identified 30 key constituents that efficiently distinguished between 
organic and conventional cultivation. Among them, 8 metabolites 
(malvin, pinoresinol, lagochiline, 4-methylumbelliferyl glucuronide, 
coumarin 106, benzoyl-L-arginine, and hydrocinchonine) were proposed 
as potential biomarkers for authentication purposes. 

In an alternative strategy, NIR spectroscopy with an absorption mode 
range of 12000–4000 cm− 1 together with multivariate PCA and PLS 
regression (PLSR) discriminated between organic and conventional rice 
samples with a prediction accuracy of 87.5% (Xiao, Liu, Zhang, Ma, & 
Ngadi, 2019). Although the results indicated the models performed well, 
further research with a larger sample size is warranted to improve the 
predictions. In addition, the authors conclude the application of this 
methodology on an industrial scale would require the use of more 
tailored training sets and more in-depth knowledge of 
spectrum-associated chemical and structural characteristics. 

A preliminary study was conducted to investigate variations in 
phenolic compounds in rice cultivated with different systems, as their 
contents are known to be influenced by the use of organic or synthetic 
pesticides and chemical fertilizers (Prabakaran et al., 2018). Ferulic acid 
was found to be the most abundant compound in three types of studied 
rice: (in decreasing order) pesticide-free > conventional > organic rice 
(p < 0.0001). Although the contents of individual phenolic compounds 
in polished rice samples were particularly low, they acquired statistical 
significance when analysed collectively. Despite the promising results, 
the researchers recognised that further studies were needed to guarantee 
the robustness of the experiments. 

5.2. Wheat 

Among cereal crops, wheat (Triticum aestivum L.) is considered the 
most important, constituting a basic dietary staple across the globe. The 
authentication of wheat has been the focus of considerable research in 
the last decades, addressing the need to verify its precise geographical 
origin, variety, and organic attributes, and to distinguish wheat flour 
from that of other cereals. In this context, multi-elemental profiling, 
combining ICP-MS and chemometrics, was able to confirm the organic 
status of wheat and barley (Laursen et al., 2011). No variations in 
essential plant nutrients were observed, but 14 elements allowed 

discrimination, particularly Cd from inorganic fertilizers. Discriminative 
power was enhanced by the use of semi-quantitative ICP-MS, which 
identified up to 25 elements, showing promise as a cost-efficient method 
for organic and conventional crop differentiation. 

The same research group conducted carefully controlled long-term 
field trials, including the production of wheat and barley, with the 
aim of authenticating organic versus conventional plants. Stable isotopes 
of H, C, N, O, Mg, and S together with compound-specific N and O iso-
topes were analysed (Laursen et al., 2013). δ15N values provided insights 
into the use of animal manure but failed to differentiate between plants 
produced with synthetic nitrogen fertilizers or green manures (mixtures 
of grasses and N2-fixing legumes). However, this limitation was over-
come by measuring δ2H, which effectively distinguished between 
organic and conventional wheat and barley grains. Using a similar 
method, a recent study analysed 132 wheat samples from various re-
gions in Germany to track their authenticity regarding production 
method and origin (Gatzert et al., 2021). Among the isotopes studied (of 
O, H, C, N, and S), δ13C was the only tracer that exhibited statistically 
significant differences between the organic and conventional wheat 
samples. 

Alternatively, looking for new and more sensitive markers to verify 
the crop fertilization regime, Paolini, Ziller, Laursen, Husted, and Camin 
(2015) analysed wheat-derived amino acids after protein hydrolysis and 
derivatization using advanced GC-C-IRMS techniques. Common and 
durum wheat samples grown with synthetic nitrogen fertilizers, animal 
manures, or green manures based on nitrogen-fixing legumes were 
studied. Measurements of δ13C values of glutamic acid and glutamine, 
along with δ15N and δ13C values of ten amino acids (Ala, Val, Ile, Leu, 
Gly, Pro, Thr, Asx, Glx, and Phe), effectively differentiated organic and 
conventional wheat. This differentiation persisted even in cases of 
organic wheat production involving nitrogen-fixing plant fertilization 
and crop rotation. 

Another approach involves the profiling of metabolites or specific 
nutrients. Metabolite profiling was employed to identify biomarkers in 
organic and conventional wheat grain from 11 diverse cultivars (Bonte 
et al., 2014). GC-MS analysis of methanol extracts revealed that the 
cultivar had a stronger impact on metabolite concentration than the 
farming system, although a t-test showed significant differences in five 
metabolites and 11 TAGs between organic and conventional wheat for 
all cultivars. The effectiveness of this approach was only demonstrated 
when analysing an individual cultivar, due to the significant genetic 
impact on the metabolite profile. The methodology was subsequently 
improved by the use of machine-learning algorithms to analyse the 
GC-MS data, proving able to differentiate between organic and con-
ventional cultivation for a specific year and wheat cultivar (Kessler 
et al., 2015). The dataset was derived from more than 300 GC-MS 
measurements of the same 11 wheat cultivars grown over 3 years and 
was processed using the MeltDB 2.0 metabolomics analysis platform. 
The unsupervised techniques of t-distributed stochastic neighbour 
embedding (t-SNE) and PCA, and supervised SVM were used to visualize 
and classify the samples. 

Similarly, phenolic acids were analysed by LC in search of bio-
markers of organic wheat grown in Denmark (Weesepoel et al., 2016). 
By combining baseline and retention-time correction pre-treatments and 
PCA, organic and conventional samples were differentiated by the first 
principal component (93%). Wheat grown in three different locations 
and harvested over two years was accurately categorized into organic 
and conventional groups according to the levels of protocatechuic acid 
measured by LC analysis at 280 nm (ANOVA, P < 0.05). 

In a different fingerprinting approach, crystallization with additives 
showed promise as an authentication tool for organic wheat, identifying 
unique structural variables (Kahl et al., 2015). The k-nearest-neighbour 
classification method distinguished between organic and non-organic 
wheat with 84% accuracy for Runal cv. and 95% for Titlis cv. 
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5.3. Corn 

Cornmeal is a primary ingredient in the production of diverse 
extruded snack products, and its intrinsic properties, in combination 
with the processing parameters, exert a substantial influence on the 
ultimate quality of the extruded product. In this context, Ayvaz, Plans, 
Towers, Auer, and Rodriguez-Saona (2015) evaluated techniques that 
can rapidly authenticate organic cornmeal by distinguishing it from 
conventional equivalents. The accurate classification of 11 organic and 
27 conventional cornmeal samples was achieved through the utilization 
of IR spectra in combination with several chemometric models, 
including SIMCA and PLSR. In concrete, benchtop and handheld NIR 
spectrometers, as well as portable mid-infrared (MIR) spectrometers 
were used. The IR data analysis revealed that differences in acidic amino 
acids (glutamic and aspartic acid) and amide regions attributed to pro-
teins had a substantial impact on the classification process. 

6. Animal products 

In contrast with organic agriculture, the production of organic ani-
mal products must comply with other regulations besides restrictions on 
the use of synthetic substances. Livestock should be raised in environ-
ments that closely resemble their natural living conditions, with space 
for moving and grazing, and access to natural air and light (UE, FDA). 
Also, the use of antibiotics is restricted, while the use of hormones is 
prohibited, and all animal feed must be organic (European Parliament & 
European Council, 2018; United States Department of Agriculture, 
2022). 

Among the different approaches to the authentication of organic 
animal products, the most explored are based on the fingerprint left by 
organic feed, including a distinct stable isotopic ratio, elemental distri-
bution, and fatty acid profile. In this section, the different strategies for 
distinguishing organic and non-organic animal products are discussed, 
focusing on some of the challenges faced by researchers. 

In authentication research, the most studied organic animal product 
is milk and its derivatives. Stable isotopes have been proposed as 
promising markers. The combination of δ13C and δ15N values was found 
to be more effective than either value alone in distinguishing organic 
from conventional milk (Chung, Park, Yoon, Yang, & Kim, 2014). This 
research was extended by the analysis of fatty acid profiles and vitamin 
E as well as stable isotopes (Chung et al., 2018), all of which showed 
stronger seasonal variation in organic than conventional milk. The 
combined measurement of δ13C and δ15N values, fatty acid contents, and 
vitamin E was proposed as an accurate system for establishing organic 
authenticity. This approach was improved in a subsequent study in 
which the stable isotopic ratio of fatty acids and amino acids permitted 
organic milk differentiation (Chung et al., 2019). A multivariate 
OPLS-DA model based on stable isotope ratios, elements, and fatty acids 
was also satisfactorily employed to discern between organic and con-
ventional milk (Xu et al., 2021). 

Another approach to authenticate organic milk is based on NMR 
spectra of the organic matter of the dairy manure. He et al. (2015) 
studied the 13C NMR spectra of the dairy manure from organic and 
conventional farming systems, and found that the region at 30 ppm, 
corresponding to cutan and cutin from the outer cuticle of herbaceous 
plants, had a higher peak in the former. This difference was attributed to 
the higher consumption of forage by organically farmed cows. In 
another study, the whole 1H NMR metabolite profile was used to build a 
PLS-DA model, which correctly classified organic and conventional milk 
(Phuenpong et al., 2021). 

The results have been less clear when using fatty acid and triglyc-
eride profiles for the discrimination of dairy products, as proposed by 
Capuano et al. (2015). As the fatty acid content depends on the nutrition 
of the cow, the model developed by Pustjens et al. (2017), using this 
approach failed to discern between butters originating from organically 
raised and grass-fed cows, although those groups were differentiated 

from conventional butter. In a recent study, organic and conventional 
milk (both raw and retail) were correctly classified using the fatty acid 
profile determined by GC-MS/FID and an OPLS-DA model (Hou et al., 
2023). However, it would be interesting to test the capacity of this model 
to differentiate between organic milk and milk produced from grass-fed 
cows in non-organic systems, which was not analysed. 

Regarding the authentication of organic eggs, they were effectively 
distinguished by multi-element analysis and a SIMCA model (Borges, 
Volmer, et al., 2015). In a comparison of stable isotope ratios, δ15N was 
proposed as a possible marker of traceability, as values differed between 
organic and conventional eggs (Rogers, van Ruth, Alewijn, Philips, & 
Rogers, 2015). Another study used physical parameters (total weight, 
plus the weights of the albumen, yolk, and shell) together with the fatty 
acid profile and content to build a PCA model that accurately separated 
the two egg types (Marelli, Madeddu, Mangiagalli, Cerolini, & Zaniboni, 
2021). 

Attempts to authenticate organic beef and pork have had positive 
outcomes. Oliveira, Alewijn, Boerrigter-Eenling, and van Ruth (2015) 
developed a SIMCA model based on fatty acid and volatile/non-volatile 
organic compound fingerprints to distinguish between organic, 
free-range, and conventional pork meat. The fatty acid profile gave the 
best results, achieving 100% correct prediction. Accurate organic pork 
authentication was also achieved by combining multi-element and iso-
topic data obtained from defatted meat and developing PCA and 
OPLS-DA models (Zhao et al., 2020). Organic and conventional beef 
were differentiated by HRMS lipidomic analysis and the use of PCA-LDA 
models, with 84% accuracy (Robson, Birse, Chevallier, & Elliott, 2022). 
It was concluded that this system was more accurate than isotopic 
analysis, as well as being cheaper and quicker. 

Farmed fish can also be labelled as organic. As in animal farming, 
organic aquaculture is characterized by the provision of organic feed, 
natural light, and adequate space. With the purpose of tracing this kind 
of fish, Molkentin, Lehmann, Ostermeyer, and Rehbein (2015) studied 
the fatty acid profile and stable isotope ratios in wild, organic, and 
conventional salmon and trout. Among the fatty acids, the linoleic acid 
content (highest in conventional salmon) distinguished between the 
three types of fish. The combined δ13C and δ15N values in defatted 
matter differentiated organic from conventional but not wild fish, which 
was eventually achieved by measuring δ13C in the fish lipids. 

7. Oils 

7.1. Extra virgin olive oils 

Due to the widespread incorporation of extra virgin olive oils 
(EVOOs) into healthy diets in recent years, there has been a growing 
need to authenticate their geographical origin and assess their quality 
(Lozano-Castellón et al., 2022). Several advanced analytical techniques 
have been employed to investigate the physical and chemical properties 
of EVOOs, including NMR spectroscopy, X-ray diffraction (XRD), ultra-
violet (UV) spectroscopy, HPLC, and GC (Lozano-Castellón et al., 2022). 
Notably, differential scanning calorimetry (DSC) has recently found 
application in the analysis of various foodstuffs, including EVOO, to 
establish a distinct thermal fingerprint capable of characterizing indi-
vidual samples (Mallamace et al., 2017). 

In 2015, an Italian research team used DSC in an extensive investi-
gation into the thermal properties of 39 organic EVOOs sourced from 
diverse regions worldwide. This analytical technique generates distinc-
tive thermal profiles, known as thermograms, by subjecting the sample 
to a series of heating and cooling cycles. Variations stemming from 
different cultivars, geographical origin, or chemical composition mani-
fest as noticeable alterations within the corresponding thermograms, 
based on the melting profiles of triacylglycerol constituents (Mallamace 
et al., 2017). 
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7.2. Walnut oil 

The volatile metabolome of walnut oils from both conventional and 
organic farming practices was comprehensively studied with HS-SPME- 
GC-MS (Kalogiouri et al., 2021). The solid-phase microextraction pro-
tocol was optimized, taking into account the impact of extraction time 
and temperature and sample mass, and the optimal conditions for 
extracting 0.5 g of walnut oil were established as 40 ◦C for a duration of 
60 min. The analysis of twenty Greek walnut oil samples (ten conven-
tional and ten organic) led to the identification of 41 volatile com-
pounds, which constituted a diverse range of chemical classes such as 
aldehydes, ketones, alcohols, monocarboxylic acids, as well as hetero-
cyclic compounds, including pyrazines, pyrazine derivatives and furan 
derivatives. Based on these data, a robust classification model was 
developed using sparse-PLS-DA, which provided 100% accuracy in 
classification of the two types of walnut oils. The compounds responsible 
for the variability were three alcohols, 2-hexenal, hexanol, pentanol; 
and two aldehydes, pentanal and 2,4-heptadienal (Kalogiouri et al., 
2021). 

8. Coffee and stimulant beverages 

Coffee stands as one of the world’s most widely traded commodities. 
Projections indicate that the global organic coffee market is on a tra-
jectory to reach $20.78 billion by 2030, with a predicted annual growth 
rate of 10.6% from 2020 to 2030 (David, Intania, Purnama, & Iswaldi, 
2023), which is largely attributed to the rising demand for 
health-promoting products. Notably, organically cultivated coffee beans 
exhibit significantly higher concentrations of total phenols and phenolic 
compounds in comparison with their conventionally grown counterparts 
(Król, Gantner, Tatarak, & Hallmann, 2020). 

Melgaço Barbosa et al. combined advanced data mining techniques 
with the assessment of trace element concentrations to evaluate the 
authenticity of organic coffee, identifying 38 elements in a total of 54 
samples of Brazilian coffee (20 organic and 34 nonorganic). Opposing 
the concept that organic food is inherently richer in essential elements, 
higher levels were found in conventional coffee samples, with the 
exception of Cs, Tl and W (Barbosa et al., 2014). Furthermore, the levels 
of essential elements found in the coffee samples closely align with data 
of previous studies of coffee grown in Brazil and other global regions 
(Amorim Filho, Polito, & Gomes Neto, 2007; Zaidi, Fatima, Arif, & 
Qureshi, 2005). With these data, the three classification algorithms were 
used, multilayer perceptron (MLP), SVM, and naïve Bayes (NB), MLP 
and SVM achieved a predictive accuracy of 96.3%. In the case of NB, the 
predictive accuracy increased to 98.2% when only eight of the elements 
(Zn, Se, Ba, U, Dy, Tl, Th, and Mo) were included in the chemometric 
analysis (Barbosa et al., 2014). The levels of trace elements in coffee are 
influenced by various factors, including the cultivar, soil type, and 
fertilization practices, and can constitute a unique fingerprint. The high 
level of accuracy achieved in the study underscores the potential of 
employing trace element concentrations in conjunction with data min-
ing techniques as a robust and versatile tool for authenticity assessment 
of organic coffee. 

Isotopic analysis has also been proposed as a way of detecting fraud 
in organic ginseng. The δ15N value was found to be consistently lower in 
conventional than in organic ginseng, regardless of the type of organic 
fertilization (Chung, Lee, et al., 2017). 

9. Miscellaneous 

Some other foods and products that do not fit into the previous 
sections have been the subject of authentication studies, although with 
scarce data produced to date. For example, the authentication of organic 
animal feed has been studied, as its use is one of the main requisites in 
the production of organic animal products. Thus, organic laying hen 
feed was discriminated from conventional feed by a PLS-DA model using 

the fatty acid profile (Alewijn, van der Voet, & van Ruth, 2016). Organic 
and conventional saffron were also discriminated by a PLS-DA model 
using the whole NMR fingerprint (Musio et al., 2022). Finally, stable 
isotope ratios were proposed as possible markers to classify organic and 
conventional hemp for food use, as the isotopic pattern differs according 
to the growing system (Calvi et al., 2022). 

10. Conclusion 

In this review, we have looked at the studies exploring cutting-edge 
techniques to differentiate between organic and conventional foods. The 
application of molecular microbial analysis, advanced chemometrics, 
and a range of spectroscopic methods has provided invaluable insights 
into the origins and authenticity of food products. After this compre-
hensive survey, several key conclusions can be drawn. 

Elemental analysis and stable isotopes analysis together with che-
mometrics have proven the ability to classify between organic and 
conventional samples. In addition, molecular analysis, particularly 
rDNA fingerprinting of microorganisms, is emerging as a key tool for the 
authentication of a wide variety of fruits, accurately predicting culti-
vation practices and thereby enhancing product credibility. False 
organic claims can also be uncovered using untargeted metabolomic 
fingerprinting and the comprehensive analysis of volatile profiles. 
Finally, the combination of techniques such as UHPLC-HRMS and HS- 
SPME-GC-HRMS with advanced statistical treatment of data is proving 
to be highly effective in differentiating between organic and conven-
tional food, with guaranteed reliability of results. 

11. Future perspectives 

The challenge with these methods lies in the fact that the chemical 
composition of the food is not solely determined by fertilization. 
Therefore, a wide range of samples should be incorporated into the 
model development to ensure the predictability of the model. 

Organic food analysis holds great promise with the development of 
more accurate and accessible tools to verify product authenticity and 
quality. The efficiency and accuracy of existing techniques will be 
further improved through automation and integration of AI and machine 
learning. Research should also be expanded to include a wider range of 
products and regions. The commercial application of more efficient 
methods to control quality, detect fraud, and verify product labeling will 
ensure consumer confidence and industry standards. 
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González-Coria, J., Lozano-Castellón, J., Jaime-Rodríguez, C., Olmo-Cunillera, A., 
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