
INTRODUCTION

Nitric oxide (NO) regulates a wide range of biological
activities in the nervous, vascular and immune systems,
and is implicated in a number of different pathologies.1–8

This highly reactive molecule is produced from L-argi-
nine by an enzyme termed NO synthase (NOS). An
inducible isoform of NOS (iNOS), mainly activated by

immune stimuli, has been identified in several cell
types.9–14 NO stimulates anti-tumoral and anti-microbial
activity in activated rat and murine macrophages, thus
playing an important role in innate defense mechanisms
in rodents. Expression of iNOS and concomitant
increases in NO production has also been reported in
humans during bacterial infections, in septic patients and
in other inflammatory diseases.14–24 However, and
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In contrast to the thoroughly characterized mechanisms of positive regulation within cytokine
signaling pathways, our knowledge of negative feedback loops is comparatively sparse. We and
others have previously reported that IRAK-M down-regulates inflammatory responses to multiple
stimuli. In particular, we could show that the nitric oxide (NO) donor, GSNO, induces IRAK-M
overexpression in human monocytes. Here we study the expression of another important negative
regulator of cytokine signaling, SOCS-1, in human monocytes exposed to GSNO. The NO donor
induced significant levels of SOCS-1 mRNA and protein, 6 h and 16 h after stimulation,
respectively. Monocytes stimulated with GSNO for longer periods (24 h and 48 h) failed to express
IL-6 and IP-10 upon LPS challenge. In addition, and in line with previous reports of NO-mediated
induction of TNF-α, we have found that exposure to this cytokine induces SOCS-1 mRNA in
human monocytes. A blocking antibody against TNF-α impaired SOCS-1 expression upon GSNO
treatment and re-instated IL-6 and IP-10 mRNA levels after LPS challenge in cultures pretreated
with the NO donor. We conclude that NO stimulates SOCS-1 overexpression in a pathway at least
partially regulated by TNF-α.
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despite expressing iNOS, activated human monocytes
generate, at least in vitro, much lower amounts of NO
than murine macrophages challenged with lipopolysac-
charide (LPS) or cytokines.25,26 Thus, while in mouse
and rat models of inflammation activated macrophages
represent the major source of NO, in vitro studies indi-
cate that in humans NO is mainly produced by local res-
ident cells such as renal mesangial cells and colon
epithelial cells, not by monocytes/macrophages.15–19,26

In spite of this fundamental difference between human
and rodents, it is well documented that human mono-
cytes/macrophages are exposed to low concentrations of
NO in the blood in either normal or pathological condi-
tions. For instance, smooth muscle and endothelial cells
produce low amounts of this molecule under normal
conditions to maintain the vascular tone.27–29Nitric oxide
produced by these cells can diffuse into the blood and
interact with mononuclear blood cells. In addition,
macrophages that migrate to sites of inflammation are
exposed to NO produced by resident cells.30,31 This is,
for example, the case of septic shock patients, in whom
average serum concentrations of nitrite/nitrate
(NO2

–/NO3
–), the stable products of NO decomposition,

rise to ~70 µM.32

It has been demonstrated that NO up-regulates nega-
tive signaling pathways in human monocytes,33,34 as
mononuclear cells become refractory to LPS and/or
cytokine stimulation after exposure to NO donors.35–37In
our efforts to unveil the molecular basis of these path-
ways, we have previously reported that NO induces
expression of IRAK-M,34 a catalytically disabled mem-
ber of the IRAK family that exerts a negative control on
the progression of inflammatory responses.38–41 In addi-
tion, we and others were able to show that NO prevents
activation of the IRAK cascade and the subsequent
translocation of NF-κB to the nucleus.33,34

Over the past 5 years, further molecules have been
implicated in the down-regulation of inflammatory
responses. A critical regulator of cytokine signaling,
SOCS-1, was identified as an intracellular negative-
feedback molecule that inhibits overactivation of the
JAK–STAT-mediated signal cascade through binding to
JAK.42–44 On the other hand, overexpression of SOCS-1
impairs production of LPS-induced molecules such as
IP-10 and IL-6.45,46Interestingly, SOCS-1 knockout mice
show spontaneously elevated serum levels of pro-
inflammatory cytokines and suffer from multiple inflam-
matory diseases, from which they die around 3 weeks
after birth.42,44 These symptoms coincide with hallmarks
of LPS-diseases in wild-type mice.47,48 Moreover, endo-
toxin tolerance is strikingly impaired in macrophages
from SOCS-1–/– mice, thus suggesting that SOCS-1
down-regulates TLR signaling in parallel to IRAK-
M.47,48 Indeed, SOCS-1 overexpression suppressed LPS-
induced IκB phosphorylation and NF-κB activity.48

Additionally, inhibition of LPS-induced IL-6 production
has been demonstrated in RAW cells that overexpress
SOCS-1; this occurs through a mechanism that involves
JAK2 and STAT5.46 Other authors have suggested that
SOCS-1 limits the extent of TLR signaling indirectly, by
inhibiting type I IFN signaling, but not the main NF-κB
pathway.45

Based on these findings, we hypothesized that NO
modulates the expression of SOCS-1 in human mono-
cytes. Furthermore, and since NO is known to induce
TNF-α release from monocytes and macrophages,34,49–52

we also examined whether TNF-α is implicated in the
regulation of SOCS-1 by NO. Using the NO donor S-
nitrosoglutathione (GSNO), we show here for the first
time that the exposure of human monocytes to NO
induces both SOCS-1 mRNA and protein expression,
and that this process involves the release of TNF-α.

MATERIALS AND METHODS

Reagents

S-Nitrosoglutathione (GSNO) and glutathione (GSH) were
obtained from Biosensing (Berlin, Germany). Dr Chris
Galanos (Max Planck Institute für Immunobiologie,
Freiburg, Germany) generously provided LPS from
Salmonella abortus. All other reagents, of the highest qual-
ity commercially available, were obtained from Merck
(Darmstadt, Germany), Boehringer (Mannheim, Germany),
or Sigma (St Louis, MO, USA). The medium used for cell
culture was Dulbecco’s MEM (DMEM) from Gibco, UK.
The goat anti-SOCS-1 polyclonal antiserum, the mouse
anti-β-actin monoclonal antibody and the rabbit anti-TNF-α
antibody were purchased from Santa Cruz (Los Angeles,
CA, USA). CD-14-FITC was from eBioscience (San
Diego, CA, USA).

PMBC isolation and cell culture

Peripheral mononuclear blood cells (PMBCs) were iso-
lated from the blood of healthy donors by centrifugation
on Ficoll–Hypaque Plus (Amersham Bioscience, The
Netherlands). Cells were initially cultured for at least 2 h
at a density of 106 cells/ml in DMEM supplemented with
antibiotics (100 IU/ml penicillin and 100 µg/ml strepto-
mycin). After this period, the supernatant was removed
and the adherent cells were cultured in the same medium
supplemented with antibiotics (100 IU/ml penicillin and
100 µg/ml streptomycin) and 10% heat-inactivated nor-
mal serum (pooled from healthy volunteers). Cells were
treated for different periods with a range of GSNO con-
centrations (from 0.5 nM to 1 µM) as described below.
In other experiments, cells were treated with GSNO
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and/or TNF-α (2 ng/ml) in the presence or absence of an
anti-TNF-α antibody (from 50–300 ng/ml) for 16 h. All
reagents and medium used were endotoxin free, as tested
using Limulus Amebocyte Lysate kit (Bio Whittaker,
Walkersville, VA, USA). The homogeneity of cells was
tested in every experiment by flow cytometry (anti-
CD14–FITC staining).

RNA and protein isolation

Cells were washed once in PBS and their RNA and protein
were isolated using TRI-Reagent (IMICO, Cincinnati, OH,
USA). To obtain cDNA, RNA was treated with RNAse-
free DNAse I (Amersham Biosciences), and reverse tran-
scription was performed on 1 µg of this material using a
poly(dT) oligonucleotide primer (Roche, Palo Alto, CA,
USA) in a final volume of 20 µl. Protein fractions were iso-
lated as recommended (Roche), and the final pellets were
dissolved in a solution containing 1% SDS.

RT-PCR

The RT-PCR was performed using a ‘One Step’ protocol
from Biotools (Kit Retrotools, Biotechnological and
Medical Laboratories, SA, Spain).

mRNA quantification

Expression levels of SOCS-1, IP-10, TNF-α, and 18S were
analyzed by real-time quantitative PCR (LightCycler,
Roche Diagnostics, Indianapolis, IN, USA), using cDNA
obtained from 1 µg total RNA. Reactions were performed
using a Fast-Start DNA master SYBR Green system
(Roche) and specific primers. All results were normal-
ized with respect to the expression of the 18S gene, and
the cDNA copy number of each gene of interest was
determined using a 7-point standard curve. Standard
curves were run with each set of samples, the correlation
coefficients (r2) for the standard curves being > 0.98. To
confirm the specificity of the reaction products in each
experiment, melting profiles were analyzed using the
LightCycler. Profiles were recorded by maintaining the
reaction at 80°C for 10 s and then raising the tempera-
ture to 95°C at a linear rate of 0.1°C/s, while measuring
the emitted fluorescence. Analysis of the melting curves
demonstrated that each pair of primers amplified a single
product. In all cases, identity of this final product was
verified by agarose gel electrophoresis; gels were
stained with 0.5 µg/ml ethidium bromide and viewed
under UV light to confirm that a single product of the
predicted size was amplified. Each LightCycler PCR run
consisted of 45 cycles with an initial denaturation step of

5 min at 95°C. Cycling profiles were as follows: for
TNF-α: 95°C for 10 s, 64°C for 10 s, and 72°C for 19 s;
for IL-6: 95°C for 10 s, 50°C for 10 s, and 72°C for 16 s;
for IP-10: 95°C for 10 s, 48°C for 10 s, and 72°C for 10
s; for SOCS-1: 95°C for 10 s, 63°C for 10 s, and 72°C
for 10 s, for IL-10: 95°C for 10 s, 68°C for 10 s, and
72°C for 10 s.

Primers

The sequences of the primers used are as follows:

TNF-α sense: 5′-GCC TCT TCT CCT TCC TGA TCG T-3′
TNF-α antisense: 5′-CTC GGC AAA GTC GAG ATA GTC G-3′
SOCS-1 sense: 5′-GCG CGA CAC GCA CTT CCG CAC A-3′
SOCS-1 antisense: 5′-TCG AAG AGG CAG TCG AAG CTC TCG-3′
IL-6 sense: 5′-TCG AAA TGT GGG ATT TTC CCA TGA GT-3′
IL-6 antisense: 5′-ACT CAT GGG AAA ATC CCA CAT TTC GA-3′
IP-10 sense: 5′-CTG ACT CTA AGT GGC ATT-3′
IP-10 antisense: 5′-TGA TGG CCT TCG ATT CTG-3′
IL-10 sense: 5′-ATG CCC CAA GCT GAG AAC CA-3′
IL-10 antisense: 5′ –TCT CAA GGG GCT GGG TCA GC-3′

These primers were synthesized, desalted and purified by
IZASA (Barcelona, Spain). For 18S mRNA detection, we
used the primers of QuantumRNA Classic 18S provided
by Ambion.

Apoptosis assay

Cells were washed and resuspended in PBS. The apopto-
sis assay was performed using an Annexin V-FITC/PI
Apoptosis Detection kit (Oncogene, Germany) accord-
ing to the manufacturer’s recommendations. The stained
cells were analyzed in a BD FACScalibur flow cytome-
ter (San Jose, CA, USA) equipped with a 25-mW argon
laser. The proportion of apoptotic cells was quantified by
plotting the Annexin V-FITC versus the PI fluorescence.

Western-blot analysis

Proteins were denatured by boiling in Laemmli buffer,
resolved on 12% SDS–PAGE gels in Tris/glycine/SDS
buffer (25 mM Tris, 250 mM glycine, 0.1% SDS), and
transferred to Immun-Blot PVDF membranes (Bio-Rad,
CA, USA) at 300 mA for 1.5 h at 4°C. After blocking for
1 h in 20 mM Tris-HCl, 150 mM NaCl, 0.2% Tween 20
(TBS-T) containing 5% non-fat milk, the membranes
were washed three times in TBS-T alone and probed for
20 h with the antibody diluted in TBS-T (anti-SOCS-1;
Santa Cruz, CA, USA). Following washing in TBS-T,
the membranes were incubated with secondary HRP-
conjugated (1:2000 dilutions) for 45 min and washed
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three times in TBS-T. The bound antibodies were
detected using ECL Plus reagents according to the man-
ufacturer’s instructions (Amersham–Pharmacia Biotech,
The Netherlands).

IL-6 protein quantification by ELISA

Supernatants from cell cultures of human monocytes treated
with different stimuli were used to analyze levels of IL-6
protein production. The assay was performed using a human
IL-6 Instant ELISA (Bender MedSystem GmbH, Austria)
according to the manufacturer’s recommendations.

Data analysis

The number of experiments analyzed is indicated in each
figure. Data were collected from a minimum of three

experiments and used to calculate the mean ± SD. The
statistical significance was calculated using the unpaired
Student’s t-test; differences were considered significant
at P values < 0.05.

RESULTS AND DISCUSSION

Nitric oxide induces SOCS-1 gene expression in human
monocytes

As S-nitrosoglutathione (GSNO) slowly and sponta-
neously releases NO, it is a potential in vivo storage and
transport vehicle for this highly reactive molecule.53–55In
a previous work, we showed that human monocytes
exposed to this NO donor overexpressed the negative
regulator of inflammation, IRAK-M.34 This pseudoki-
nase is also involved in endotoxin tolerance.38–40 On the
other hand, exposure to NO attenuates interactions
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Fig. 1. SOCS-1 gene is overexpressed in human monocytes treated with low GSNO concentrations. Cultures of human monocytes were treated for 6, 16 or
24 h with the indicated concentrations of the nitric oxide donor, GSNO. Total RNA was isolated from the cells and cDNA was synthesized using a poly(dT)
primer. (A) RT-PCR products were separated in an agarose gel and stained with ethidium bromide. (B) Levels of SOCS-1 and 18S mRNA expression were
analyzed by real-time Q-PCR (LightCycler system). GSH (1 µM) was used as negative control. Data from one representative experiment are shown (n = 3).



between IRAK-1 and TRAF-6 and, as a consequence,
the activation of NF-κB in murine macrophages and
dendritic cells.33 Thus, it appears that NO can disrupt the
LPS signaling pathway by inhibiting various elements
downstream of TLR engagement. Reports on the anti-
inflammatory activity of the JAK-binding protein,
SOCS-1, and its implication in endotoxin tolerance,42–48

prompted us to analyze the effect of GSNO on SOCS-1
gene expression in human monocytes.

As hypothesized, cell treatment with GSNO (from 0.5
nM to 1 µM) resulted in a concentration-dependent
induction of SOCS-1 mRNA (Fig. 1). Of particular note,
even GSNO concentrations as low as 5 nM induced sig-
nificant expression of the SOCS-1 gene. No SOCS-1
mRNA induction was detected when 1 µM GSH was
used instead of GSNO, indicating that the observed

effect is most probably due to NO release. We also stress
that no traces of endotoxin were detected in any of our
solutions of NO donors, evaluated using Limulus
Amebocyte Lysate kit.

We next examined the kinetics of SOCS-1 gene
expression at a fixed GSNO concentration (0.5 µM).
SOCS-1 mRNA levels were maximal 6 h after human
monocytes exposure to GSNO, and remained signifi-
cantly higher than background for about 30 h after stim-
ulation (Fig. 2A,B). Similar results were obtained with
an unrelated NO-donor; treatment for 6 h with 0.5 µM
DETA-NONO-ate induced comparable levels of SOCS-
1 mRNA (Fig. 2B). Finally, we compared the levels of
SOCS-1 mRNA expression due to GSNO with those
observed after stimulation with 10 ng/ml LPS (Fig. 2C).
Comparison with Figure 2B reveals that maximum levels
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Fig. 2. Time course of SOCS-1 gene expression in GSNO-stimulated monocyte cultures. Human monocytes were treated with 0.5 µM GSNO for the times
indicated. (A) RT-PCR products were separated on an agarose gel and stained with ethidium bromide. (Control: no treatment). (B) SOCS-1 and 18S mRNA
levels were analyzed by Q-PCR (LightCycler system); the ratio between SOCS-1/18S is depicted. Positive control: cells treated for 6 h with 0.5 µM DETA-
NONO-ate. (C) Human monocytes were treated with 10 ng/ml LPS for the indicated periods, the ratio of SOCS-1 and 18S mRNA expression levels was
determined as in (B). The results of one representative experiment are shown (n = 3). Ø = Controls



of induction are similar upon treatment with LPS and
NO donors. The time course of monocyte responses to
these stimuli is markedly different, however, as endo-
toxin already induces high SOCS-1 levels 1 hour after
challenging.

Low NO concentrations do not affect monocyte viability

As NO has been reported to induce programmed cell
death in monocytes,56–59 we wondered whether the
observed effect on SOCS-1 expression levels could be
related to apoptotic processes. In our hands, however,
treatment with up to 1 µM GSNO did not affect culture
viability as shown by the low percentage of
AnnexinV/PI stained cells, which remained around 3%
in all experiments (Fig. 3A). This apparent contradiction
can be explained by the fact that much higher doses of
GSNO and/or other (related/unrelated) NO donors were
employed in most previous investigations. Moreover,

homogeneity of the human monocyte cultures was also
unaffected by NO treatment as determined by flow
cytometry (anti-CD14–FITC staining), which showed an
average of 90% of the cells expressing the specific sur-
face marker CD14 (Fig. 3B). These data suggest that the
observed effect on SOCS-1 regulation occurs mainly in
monocytes/macrophages (CD14 positive), while other
cells subtypes have minimal representation, if any.

SOCS-1 protein is expressed in human monocytes
exposed to NO

Having established that exposure of human monocytes
to GSNO induces SOCS-1 up-regulation at the mRNA
level, we examined cell extracts to determine whether
this mRNA was also translated into protein. Cells stimu-
lated with 0.5 µM GSNO produced SOCS-1 protein as
determined by Western-blot analysis using a specific
antiserum. In contrast to the significant SOCS-1 mRNA
expression levels already seen after 6 h stimulation,
larger amounts of the protein were first observed 14 h
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Fig. 3. Exposure to low NO concentrations does not compromise
monocytes viability. (A) Human monocytes were treated with the
indicated concentrations of GSNO, medium alone (0), or 10 µg/ml LPS
and 100 U/ml IFN-γ (LPS/IFN-γ) for 24 h before they were harvested,
washed and resuspended in PBS. Cells were double stained with Annexin
V/PI and analyzed by flow cytometry. The proportion of cells stained for
Annexin and PI is shown (n = 3). *P < 0.05 with respect to control cells
(0). (B) Human monocytes were treated with the concentrations of GSNO
indicated or medium alone for 24 h or 48 h before they were harvested,
washed and resuspended in PBS. Cells were stained with anti-CD14–FITC
and analyzed by flow cytometry. The proportion of cells stained for anti-
CD14–FITC is shown (n = 3). *Fraction of cells collected just after
isolation by centrifugation on Ficoll–Hypaque Plus.

A

B

Fig. 4. SOCS-1 protein is present in GSNO-treated monocytes. (A)
Human monocytes were culture in medium alone (0) or stimulated with
0.5 µM GSNO for 6, 14, 24 or 48 h. Total protein was isolated and
quantified, and the expression of SOCS-1 was analyzed by Western
blotting using 15 µg total protein and an anti-SOCS-1 polyclonal
antiserum. An anti β-actin monoclonal was used as a control for loading.
The data of a representative experiment are shown (n = 2). (B) Total
protein was isolated and quantified from cultures of (1) human
lymphocytes, (2) THP-1 cell line, and from human monocytes either
untreated (3), or stimulated for either 16 h (lane 4) or 24 h (lane 5) with 10
ng/ml LPS; samples were analyzed by Western blotting using 15 µg total
protein and an anti-SOCS-1 polyclonal antiserum. An anti β-actin
monoclonal was used as a control for loading. The data of a representative
experiment are shown (n = 3).

(*)



after stimulation with GSNO, and were maintained for at
least 48 h (Fig. 4A). Other controls are shown in Figure
4B. Similar results were obtained when other NO-donors
were used (data not shown).

Interestingly, other researchers have demonstrated that
exposure to NO promotes changes in monocytes by which
they become refractory to subsequent stimulation by LPS
and/or cytokines.37,47 Based on our current findings, we are
tempted to speculate that NO might contribute to this tran-
sient refractory state by inducing different negative regula-
tors of inflammation such as IRAK-M and SOCS-1.

GSNO blocks LPS-induced IL-6 and IP-10 but not IL-
10 mRNA expression

Previous reports have demonstrated that SOCS-1 blocks
cytokine expression after LPS challenge. Overexpression
of SOCS-1 inhibits IP-10 and IL-6 up-regulation following

LPS-mediated TLR4 activation.45,46 Having established
that SOCS-1 protein is expressed upon GSNO treatment,
we decided to study its influence on IL-6 and IP-10
mRNA levels in LPS-challenged cells. To this end,
human monocytes were cultured in the presence of 0.5
µM GSNO for 6 h, 24 h or 48 h, before being stimulated
for different times with 10 ng/ml LPS. Expression of
LPS-induced IL-6 was markedly down-regulated in cells
pretreated with GSNO for 24 h or 48 h (Fig. 5A). In a
similar manner, expression of IP-10 due to endotoxin
challenge was also significantly reduced after one or two
days GSNO pre-treatment (Fig. 5B). This observation
suggests a possible involvement of NO-induced SOCS-1
in regulating cytokine production, as its protein levels
correlate with the measured effect on IL-6 and IP-10
induction (see above and Fig. 4). Further experiments
using interfering RNA technology and/or knockout mice
would help define the actual contributions of SOCS-1
expression on the observed effect.
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Fig. 5. IL-6, IP-10 and IL-10 mRNA expression after LPS treatment in human monocytes pretreated with GSNO. Human monocytes were pretreated or not
with 0.5 µM GSNO for 6, 24 or 48 h and then treated with 10 ng/ml LPS for additional 1 or 6 h and 6, 24 or 48 h. The relative increases in mRNA levels of
IL-6 (A), IP-10 (B) and IL-10 (C) with respect to 18S were determined by real-time Q-PCR as indicated in the caption to Figure 2. The result of a
representative experiment is shown (n = 4). *P < 0.05 with respect to LPS stimulation without GSNO pretreatment.



We also determined mRNA levels of IL-10 induced upon
LPS challenge in our experimental model. Interestingly,
induction of this anti-inflammatory cytokine by LPS was not
significantly down-regulated when cells were pre-treated
with GSNO (Fig. 5C). Altogether, our data indicate that
monocyte exposure to nitric oxide affects mainly the expres-
sion of LPS-induced pro-inflammatory cytokines.

GSNO blocks LPS-induced IL-6 protein expression

To confirm the results presented in the previous section,
human monocytes were cultured in the presence of 0.5
µM GSNO for 24 h, before being stimulated for 1, 6, 16,
24 or 48 h with 10 ng/ml LPS. As shown in Figure 6,
expression of LPS-induced IL-6 was also down-regu-
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Fig. 6. Pretreatment with a NO donor decreases levels of IL-6 protein expression upon LPS stimulation. Human monocytes were cultured either in the
presence of medium alone (none) or different stimuli: 0.5 µM GSNO alone (GSNO), 10 ng/ml LPS alone (LPS), or 0.5 µM GSNO for 24 h followed by 10
ng/ml LPS for the indicated times (LPS*). Levels of IL-6 protein in the supernatant of each culture were evaluated using a commercial ELISA. The result
of a representative experiment is shown (n = 2). *P < 0.05 with respect to LPS stimulation without GSNO pretreatment.

Fig. 7. GSNO induces expression of TNF-α mRNA and TNF-α induces SOCS-1 expression. (A) Cultures of human monocytes from healthy donors were
treated with 0.5 µM GSNO or medium alone (0) for the indicated times. The expression of TNF-α gene was analyzed by RT-PCR from total RNA isolated
from the cultures. The results of a representative experiment are shown (n = 2). (B) Human monocytes were treated with TNF-α (2 ng/ml) for the indicated
times. The expression of SOCS-1 mRNA was evaluated by real-time Q-PCR (LightCycler system). The results of a representative experiment are shown (n
= 4). *P < 0.05 with respect to the control (t = 0 h).



lated at protein level in those cells pretreated with
GSNO. Whilst LPS induced a clear up-regulation of IL-
6 production, pretreatment with a NO-donor signifi-
cantly reduced the presence of IL-6 in the supernatants
of those cultures stimulated with LPS. In addition, we
note that treatment with GSNO alone did not result in
IL-6 accumulation.

TNF-α stimulates expression of SOCS-1

In a previous investigation, we established that NO
induces TNF-α release from human monocytes.34 Using
RT-PCR we could detect a significant increase of TNF-α
mRNA 2 h after stimulation with 0.5 µM GSNO (Fig.
7A). The same effect was observed when DETA-
NONO-ate was used instead (data not shown). We then
sought to determine whether exogenously added TNF-α

could directly influence SOCS-1 mRNA expression in
these cells. As shown in Figure 7B, stimulation of
human monocytes with TNF-α (2 ng/ml) was sufficient
to induce SOCS-1 gene expression 1 h after treatment. In
agreement with the kinetics of SOCS-1 induction by NO
(see above and Fig. 2), maximum levels of mRNA were
detected after 6 h challenge, and they remained high for
at least 30 h.

Anti-TNF-α blocking antibody blocks GSNO-induced
SOCS-1 expression and re-instates IL-6 and IP-10
levels after LPS stimulation

The rapid up-regulation of SOCS-1 expression in human
monocytes exposed to TNF-α suggests that this cytokine
may be involved in the pathway(s) that leads to the
induction of SOCS-1 in response to NO. To determine
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Fig. 8. GSNO-mediated stimulation of SOCS-1 is counteracted by an anti-TNF-α antibody. (A) Cultures of human monocytes were treated for 16 h with
combinations of 0.5 µM GSNO and 0, 50, 100 or 300 ng/ml anti-TNF-α antibody. Subsequently, total RNA was isolated and cDNA synthesized.
Quantitative analysis of the SOCS-1/18S ratio was carried out by real-time Q-PCR (LightCycler system). The results of a representative experiment are
shown (n = 3). *P < 0.05 with respect to the GSNO alone treatment. (B) Human monocytes were pretreated (+) or not (–) with GSNO for 16 h. After this,
cultures were stimulated with LPS for 1 h (striped bars) or 48 h (solid bars) in the presence or not of a blocking anti-TNF-α antibody. Quantitative analysis
of the IP-10/18S and IL-6/18S ratios were carried out by real-time Q-PCR (LightCycler system). The results of a representative experiment are shown (n =
3). *P < 0.05 with respect to LPS alone.



whether TNF-α was indeed involved in SOCS-1 up-reg-
ulation, we treated cultures of human monocytes for 16 h
with 0.5 µM of GSNO in the presence of an anti-TNF-α
blocking antibody (50–300 ng/ml). While GSNO-treated
cultures expressed SOCS-1, mRNA levels of this gene
were diminished in the presence of the antibody, in a
dose-dependent manner (Fig. 8A). This effect was also
observed at the protein level (data not shown).
Moreover, addition of anti-TNF-α antibody to cultures
of human monocytes pretreated with GSNO re-instated
the IL-6 and IP-10 mRNA levels after LPS-stimulation
(Fig. 8B).

CONCLUSIONS

We present here the first evidence that stimulation of
human monocytes with NO results in a significant
induction of SOCS-1, thus contributing to generate an
endotoxin-tolerance state. In addition, our observations
suggest and that this effect depends, at least partly, on
the early NO-induced endogenous release of TNF-α by
these cells. Since alternative mechanisms have been
advanced to explain the ability of NO to inhibit/activate
several important pathways,60 we cannot rule out that
other factors are implicated in the activation of SOCS-1
by NO in human monocytes. Nevertheless, our data sup-
port the contribution of TNF-α to this process. These
findings will certainly help our understanding of the role
of NO in inflammation and endotoxin tolerance. Further
experiments using knockout mice and/or interfering
RNA technology would help define the relative contri-
butions of SOCS-1, IRAK-M and other factors to the
generation of the endotoxin-tolerance state.
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