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The Bayesian way of life

Observations

Updated 
information

Initial guesses



Our “a posteriori” 
knowledge, based on our “a 

priori” guess and 
fundamented on 

observations, is that a snake 
has eaten an elephant.

Integrating information iteratively

“A priori” guess: It can either be a hat or a 
snake that has eaten an elephant

Initial observations “a posteriori” knowledge Updating observations

After repeating the 
process “n” times:
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Thomas Bayes (1702-1761)

Inverse probability: The “true” distribution for a fact is 
achieved by iteratively integrating observations.

© Wikipedia



p (B | A) p (A) p (A | B) p (B)=

Bayes’ Theorem

Probability 
of a B event 

giving A

Probability 
of a 

A event

Probability 
of a A event 

giving B

Probability 
of a 

B event

A B

A  B



After a test for a severe disease which only the 0.1% of
population has, the doctor tells you that the test is positive,
and its accuracy is 99%

Which are the odds that you actually have the illness?

Example of application

It’s a 99%, right? NO!
Let’s do some Bayesians…



p (D | H+)
p (H+ | D)  * p (D)

=

Re-arranging Bayes’ Theorem (I)

Probability of 
having the 
disease (D)

giving a 
positive result 

(H+)
POSTERIOR

Probability
of testing
positive

(H+)

Probability of 
having a 

positive result 
(H+) when 
having the 
disease (D)

LIKELIHOOD

“A priori” 
probability of 

having the 
disease (D)

PRIOR

p (H+)



p (D | H+)
p (H+| D)  *  p (D)

=

Re-arranging Bayes’ Theorem (II)

p (D)*p(H+| D) + p (D-)*p(H+| D-) 

Probability
of testing
positive

(H+)

=

Probability
of testing

positive (H+)
having the
disease (D)

+

Probability of 
testing positive

(H+) without
having the

disease (D-)



p (D | H+) 0.99 * 0.001
=

So let’s solve

0.001 * 0.99   +   0.999 * 0.01 

Probability 
of testing 
positive 

(H+)

=

Probability 
of testing 

positive (H+) 
while having 
the disease

+

Probability of 
testing positive 

(H+) without 
having the 

disease

0.09

So, after a single positive test –i.e. without any PRIOR 
information, the chances we have the disease are 9%



p (D | H+) 0.99 * 0.09
=

What if a second test is also positive?

0.09 * 0.99   +   (1-0.09) * 0.01 

Probability 
of testing 
positive 

(H+)

=

Probability 
of testing 

positive (H+) 
while having 
the disease

+

Probability of 
testing positive 

(H+) without 
having the 

disease

0.91

So, after the second positive test, chances that we have 
the disease are 91%



p (D | H-) 0.99 * (1-0.09)
=

What if the second test is negative?

(1-0.09) * 0.99 + 0.09 * 0.01 

Probability 
of testing 

negative (H-)
=

Probability 
of testing 

negative (H-) 
while not 
having the 

disease

+

Probability of 
testing negative 

(H-) while 
having the 

disease

0.9989

So, if the second test is negative, the probability of 
having the disease is 0.11%



Summary

From our PRIOR knowledge, and 
providing the LIKELIHOOD of our 

observations, we can obtain a 
POSTERIOR probability estimate.

We build our knowledge by 
iteratively integrating observations. 



Let’s follow the white rabbit



Model Bayesian inversion

We can obtain our POSTERIOR parameter distribution from 
our PRIOR knowledge about parameters and model fit to 

observations (i.e. LIKELIHOOD) for a given set of parameters.

Hartig et al., 2012



Advantages and disadvantages:

Advantages of Bayesian inverse modeling:

-Allows to include “a priori” observations in the model.
-Not only accounts for the best parameter estimates, but also 
includes parameter uncertainty.

-Robust parameter estimates in complex models.

Disadvantages:

-Elevated computational costs.
-Dominancy of the frequentist approach.



x

y

Dataset: n = 100
a = 2.5
b = 0.5

random = N(0,0.25)

Example: Simple model application



By using Least Squares

x

y

Dataset: n = 100
aestimate = 2.48(0.12)
bestimate = 0.5(0.005)



• Independence of observations.
• Homoscedasticity -> Homogeneity of variances
• Residuals distributed according to a N(0,2).

Least Squares assumptions



• Independence of the observations.
• Prior parameter distribution.
• Likelihood function dependent on a normal 

distribution.

Assumptions Bayesian inversion



Prior parameter distribution:

x

y Similarly, while values are 
in the same order of 

magnitude, and at higher x 
values we find higher y 
values, we can assume 

that 0<b<10.
So b ~ U(0,10)

Since y is always positive, 
and y(10)~10 

0<a<5
So b ~ U(0,5)



Likelihood function

For each observation, we assume a 
normal distribution centered in the 

observation, with a standard 
deviation according to 

1/observation (in order to maintain 
homogeneity of the residuals).

Observation value

Then, we multiply probabilities for 
all observations, as we are 

searching for the LIKELIHOOD of our 
model when representing the data.

+ likely      - likely



x

y
Bayesian inversion

Dataset: n = 100
aestimate = p(1 | D)
bestimate = p(2 | D)
estimate = p(3 | D)



Intercept

sl
op

e

Posterior distribution



Two football teams in a city (n = 10000 people) 

Example with binomial distribution

Probability for a given person being a supporter of Antidòping FC?



Binomial distribution likelihood

p(Antidoping| p, x) =
n!

(n-x)! * x!
*  p x *  q (n-x)

q = (1-p)



Asking 20 people 10 times:

Prior

Observations

Posterior

p = 0.672 (0.605-0.738)



Asking 20 people 20 times:

Prior

Observations

Posterior

p = 0.68 (0.632-0.725)



Asking 20 people 50 times:

Prior

Observations

Posterior

p = 0.648 (0.619-0.676)



61.9-67.6% chances of a given 
person supports Antidòping FC

Initial population chance: 0.65

The support to Antidòping FC is



Why not simply using the MAP?

Why not simply using the parameter value that provides 
the most likely -i.e. less negative likelihood- value? 

This is called the Maximum A Posteriori likelihood (MAP)



MAP may not be representative:

MAP Median

Posterior 
distribution



Correlations between marginal posteriors

https://github.com/florianhartig/LearningBayes



Non-linear correlations

Summarizing parameters 
(e.g. value at maximum 
likelihood) may move 
away model outputs 
from the maximum 
likelihood regions.

https://github.com/florianhartig/LearningBayes



Example of Bayesian inversion (I)

To evaluate the growth performance of two riparian tree 
species (F. excelsior and R. pseudoacacia) under climate change

Nadal-Sala (PhD Thesis)



Example of Bayesian inversion (II)

Sap flow (Thermal Dissipation) Basal Area Increment (Dendrometers)

Nadal-Sala (PhD Thesis)
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Julian Day (2012)

“In situ” sap flow observations in a 
Mediterranean riparian forest

Nadal-Sala et al, (2017)



Nadal-Sala et al, (2019)

GOTILWA+ calibration



Simulation validation against SWC

Nadal-Sala et al, (2019)



Climate change scenarios

Nadal-Sala et al, (2019)



Higher increase in R. pseudoacacia growth than in F. excelsior
under all climate change scenarios.

Climate change projections

Nadal-Sala et al, (2019)



Projecting CC impacts on E. saligna

Nadal-Sala et al, (2021)



Bayesian calibration of FvCB model

Nadal-Sala et al, (2021)



Bayesian calibration of  model

Nadal-Sala et al, (2021)



Comparison with observed water source

Nadal-Sala et al, (2021)



GOTILWA+ captures 
NCU, E and WUE 

observed responses to 
D increases.

Model validated

Nadal-Sala et al, (2021)



Nadal-Sala et al, (2021)


