

Bayesian model calibration

D. Nadal, S. Sabaté

Department of Evolutionary Biology, Ecology and Environmental Sciences. University of Barcelona and CREAF

Ecology and Forest Management, 2024-25

Some rights reserved © Presentation, Daniel Nadal-Sala, 2024 D_nadal@ub.edu

© Images, their authors

The Bayesian way of life

Integrating information iteratively

"<u>A priori</u>" guess: It can either be a hat or a snake that has eaten an elephant

Initial observations

After repeating the process "n" times:

"a posteriori" knowledge

Updating observations

Our "<u>a posteriori</u>" knowledge, based on our "<u>a</u> <u>priori</u>" guess and fundamented on <u>observations</u>, is that a snake has eaten an elephant.

Thomas Bayes (1702-1761)

Inverse probability: The "true" distribution for a fact is achieved by iteratively integrating observations.

Bayes' Theorem

Example of application

After a test for a severe disease which only the 0.1% of population has, the doctor tells you that the test is positive, and its accuracy is 99%

Which are the odds that you actually have the illness?

It's a 99%, right?

NO! Let's do some Bayesians...

Re-arranging Bayes' Theorem (I) p(H+|D) * p(D) p (D | H+) p(H+) "A priori" **Probability** Probability of **Probability of** probability of of testing having the having a positive having the disease (D) positive result (H+) disease (D) (H+) when giving a PRIOR positive result having the disease (D) (H+) **POSTERIOR** LIKELIHOOD

So, after a single positive test –i.e. without any PRIOR information, the chances we have the disease are 9%

What if a second test is also positive?

So, after the second positive test, chances that we have the disease are 91%

What if the second test is negative?

So, if the second test is negative, the probability of having the disease is 0.11%

Summary

From our PRIOR knowledge, and providing the LIKELIHOOD of our observations, we can obtain a POSTERIOR probability estimate.

We build our knowledge by iteratively integrating observations.

Let's follow the white rabbit

Model Bayesian inversion

We can obtain our **POSTERIOR** parameter distribution from our **PRIOR** knowledge about parameters and model fit to observations (i.e. **LIKELIHOOD**) for a given set of parameters.

Advantages and disadvantages:

Advantages of Bayesian inverse modeling:

-Allows to include "a priori" observations in the model.

-Not only accounts for the best parameter estimates, but also includes parameter uncertainty.

-Robust parameter estimates in complex models.

Disadvantages:

-Elevated computational costs.

-Dominancy of the frequentist approach.

Example: Simple model application

By using Least Squares

Least Squares assumptions

- Independence of observations.
- Homoscedasticity -> Homogeneity of variances
- Residuals distributed according to a N(0, σ^2).

Assumptions Bayesian inversion

- Independence of the observations.
- Prior parameter distribution.
- Likelihood function dependent on a normal distribution.

Prior parameter distribution:

Since y is always positive, and y(10)~10 0<a<5 So b ~ U(0,5)

Similarly, while values are in the same order of magnitude, and at higher x values we find higher y values, we can assume that 0<b<10. So b ~ U(0,10)

Likelihood function

Observation value + likely - likely

For each observation, we assume a normal distribution centered in the observation, with a standard deviation according to 1/observation (in order to maintain homogeneity of the residuals).

Then, we multiply probabilities for all observations, as we are searching for the LIKELIHOOD of our model when representing the data.

Bayesian inversion

Posterior distribution

Example with binomial distribution

Two football teams in a city (n = 10000 people)

Probability for a given person being a supporter of Antidoping FC?

Binomial distribution likelihood

$$p(\text{Antidoping}|p, x) = \frac{n!}{(n-x)! * x!} * p \times q^{(n-x)}$$

Asking 20 people 10 times:

Asking 20 people 20 times:

Asking 20 people 50 times:

The support to Antidòping FC is

61.9-67.6% chances of a given person supports Antidòping FC

Initial population chance: 0.65

Why not simply using the MAP?

Why not simply using the parameter value that provides the most likely -i.e. less negative likelihood- value?

This is called the Maximum A Posteriori likelihood (MAP)

MAP may not be representative:

Correlations between marginal posteriors

https://github.com/florianhartig/LearningBayes

Non-linear correlations

-0.73

Summarizing parameters (e.g. value at maximum likelihood) may move away model outputs from the maximum likelihood regions.

Example of Bayesian inversion (I)

Robinia pseudoacacia occurrences in GBIF

To evaluate the growth performance of two riparian tree species (*F. excelsior* and *R. pseudoacacia*) under climate change

Nadal-Sala (PhD Thesis)

Example of Bayesian inversion (II)

Sap flow (Thermal Dissipation)

Basal Area Increment (Dendrometers)

Nadal-Sala (PhD Thesis)

Field data

"In situ" sap flow observations in a Mediterranean riparian forest

GOTILWA+ calibration

Simulation validation against SWC

Climate change scenarios

Climate change projections

Higher increase in *R. pseudoacacia* growth than in *F. excelsior* under all climate change scenarios.

Projecting CC impacts on E. saligna

Bayesian calibration of FvCB model

Bayesian calibration of β model

Comparison with observed water source

GOTILWA+ captures NCU, E and WUE observed responses to D increases.

Model validated

