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A B S T R A C T

Neuroimaging and fluid biomarkers are used to differentiate frontotemporal dementia (FTD) from Alzheimer’s 
disease (AD). We implemented a machine learning algorithm that provides individual probabilistic scores based 
on magnetic resonance imaging (MRI) and cerebrospinal fluid (CSF) data. We investigated whether combining 
MRI and CSF levels could improve the diagnosis confidence. 215 AD patients, 103 FTD patients, and 173 healthy 
controls (CTR) were studied. With MRI data, we obtained an accuracy of 82 % for AD vs. FTD. A total of 74 % of 
FTD and 73 % of AD participants have a high probability of accurate diagnosis. Adding CSF-NfL and 14–3–3 
levels improved the accuracy and the number of patients in the confidence group for differentiating FTD from 
AD. We obtain individual diagnostic probabilities with high precision to address the problem of confidence in the 
diagnosis. We suggest when MRI, CSF, or the combination are necessary to improve the FTD and AD diagnosis. 
This algorithm holds promise towards clinical applications as support to clinical findings or in settings with 
limited access to expert diagnoses.

1. Introduction

Frontotemporal dementia (FTD) is a clinically, pathologically, and 
genetically heterogeneous neurodegenerative disorder, which tends to 

be misdiagnosed with Alzheimer’s Disease (AD) (Harris et al., 2015; 
Koedam et al., 2010; Mendez et al., 2013). Clinically, AD and FTD are 
inherently different, with the usual overlap occurring primarily between 
certain rare subtypes of these conditions (Bozeat et al., 2000). However, 
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AD is the most frequent dementia and sometimes is the first choice for 
many non-specialist clinicians. The overlapping symptoms, especially in 
the early stages, and the lack of specific, accepted, and available diag-
nostic biomarkers for FTD subtypes make its diagnosis challenging 
(Swift et al., 2021). Although prior literature quantifying misdiagnosis 
between AD and FTD variants is scarce, a study by Falgàs et al. (Falgàs 
et al., 2019) conducted in a memory clinic showed that up to 19 % of 
clinically suspected early-onset AD cases were ultimately diagnosed as 
FTD after performing CSF or neuroimaging biomarkers (FDG-PET, 
amyloid-PET, MRI). These misdiagnoses included both bvFTD, lvPPA, 
and svPPA cases. Therefore, there is a need to identify tools to help 
accurately diagnose dementia’s underlying etiologies and their 
subtypes.

During the last two decades, fluid biomarker studies have substan-
tially improved the diagnosis of neurodegenerative dementias. The 
current clinical criteria for AD diagnosis include cerebrospinal fluid 
(CSF) biomarkers, such as the amyloid-beta protein 42 (Aβ42), the total 
tau (t-tau), and phosphorylated tau (p-tau) (Albert et al., 2011; 
McKhann et al., 2011). However, currently, FTD criteria do not include 
biochemical markers. Neurofilament light chain (NfL) levels, a marker 
of neuroaxonal damage, and 14–3–3 protein levels, a marker of 
synaptic-neuronal loss, have been both proposed as nonspecific neuro-
degeneration markers that could support the diagnosis of FTD, although 
their levels are also increased in AD compared to controls (Alcolea et al., 
2017; Antonell et al., 2019; McFerrin et al., 2017; Rohrer et al., 2016).

Magnetic Resonance Imaging (MRI) is broadly used in the study of 
AD and FTD, both at the research and the clinical levels. Visual evalu-
ation of the atrophy pattern is mainly used in the clinical setting 
(Davatzikos et al., 2008; Du et al., 2007). MRI markers such as atrophy 
measures have a neurobiological implication as could play an important 
role in disease diagnosis and tracking of pathologic progression in AD or 
FTD and are used as outcome measures in trials of potentially 
disease-modifying therapies (Frisoni et al., 2010; Prados et al., 2015). 
Quantitative MRI studies have described patterns of cortical thickness 
and gray matter (GM) volume loss in AD and FTD at the group level 
when compared separately with healthy populations (Bocchetta et al., 
2021; Borrego-Écija et al., 2021; Canu et al., 2017; Contador et al., 2021; 
Möller et al., 2015, 2013). The conclusions drawn by prior studies 
regarding a specific MRI pattern of atrophy for AD were that the regions 
of the temporal, parietal, and occipital lobes were the ones more affected 
(Blanc et al., 2015; Möller et al., 2013; Whitwell et al., 2011). On the 
other hand, atrophy in the temporal and frontal lobes constitutes the 
specific FTD atrophy pattern (Couto et al., 2013; Möller et al., 2015; 
Rabinovici et al., 2008). However, quantitative MRI studies are only 
scarcely used in clinics due to technical difficulties and limited accuracy 
in performing the diagnosis at the individual level.

A growing body of evidence supports the role of machine learning 
(ML) techniques using brain MRI (Abraham et al., 2014; Frizzell et al., 
2022; Mateos-Pérez et al., 2018) to support the clinical diagnosis of 
these two dementias (Bron et al., 2017; Chagué et al., 2021; Klöppel 
et al., 2008; Möller et al., 2016; Pérez-Millan et al., 2023). Many studies 
have shown that a support vector machine (SVM) with neuroimaging 
data differentiates AD or FTD patients from healthy controls (Bisenius 
et al., 2017; Bron et al., 2021; Cuingnet et al., 2011; Lampe et al., 2023; 
Magnin et al., 2009; Meyer et al., 2017; Pérez-Millan et al., 2023). In the 
context of the differential diagnosis of these two dementias, it is known 
that the clinical symptoms of FTD and AD can display a substantial 
overlap between them (Mendez, 2006; Wojtas et al., 2012; Zee et al., 
2008), suggesting that additional markers may help in the differentia-
tion. In this sense, in recent years, several studies have appeared to 
assess the use of artificial intelligence, including ML and deep learning, 
to evaluate, predict, and classify the differential diagnosis of FTD and AD 
with multiple data, including MRI, neuropsychological test, or biolog-
ical data (Garcia-Gutierrez et al., 2021; Javeed et al., 2023; Kim et al., 
2019; Maito et al., 2023; Moguilner et al., 2022; Nguyen et al., 2023; 
Pérez-Millan et al., 2023). These studies have presented different 

approaches and multiple datasets, leading to different predictive capa-
bilities and a wide range of applicability settings. It is still not clear 
which is the best data to use and whether ML or deep learning achieves 
the best accuracy. Thus, there is still a need to improve these algorithms, 
for example, by obtaining high accuracies for the different subtypes, by 
finding the best combination of data or by being able to obtain proba-
bility disease scores at the subject level. In addition, these previous 
studies use uniquely MRI data – either unimodal or multimodal MRI – or 
the combination of MRI data and neuropsychological test data (De 
Francesco et al., 2023; Moguilner et al., 2022). To our knowledge, no 
previous studies have combined MRI and CSF data in an ML algorithm 
for the differential diagnosis of FTD and AD. In previous works, we used 
statistical approaches to study the contribution of the biochemical 
markers to the structural changes (Falgàs et al., 2020) and the associa-
tion between the CTh variability and CSF levels (Pérez-Millan et al., 
2024). Here, we explore for the first time the combination of MRI and 
CSF in a ML algorithm to differentiate FTD and AD.

In this study, we aimed to develop a probabilistic computer-aided 
classification method for FTD and AD, using MRI data assuming that 
there will be overlapping and differential brain patterns in these two 
neurodegenerative disorders. Then, we addressed the clinical problem of 
diagnosis confidence using individual prediction probabilities. Finally, 
we proposed investigating whether combining MRI and CSF biomarkers 
could lead to better differentiation of these two dementias and gain 
more confidence in the diagnosis.

2. Materials and methods

2.1. Participants

We recruited the participants from the Alzheimer’s disease and other 
cognitive disorders unit of the Hospital Clínic de Barcelona (HCB), 
Barcelona, Spain. All participants underwent a complete clinical and 
cognitive evaluation, a lumbar puncture for AD markers following the 
hospital’s standard clinical care practice, and a 3T high-resolution 
structural MRI scan. Participants with a history of stroke, traumatic 
brain injury, major psychiatric disorder, or alcohol abuse were excluded.

All AD participants fulfilled the criteria for mild dementia due to AD 
(Albert et al., 2011; McKhann et al., 2011) supported by the CSF bio-
markers profile suggesting underlying AD neuropathology according to 
National Institute on Aging/Alzheimer’s Association Research Frame-
work 2018 (Jack et al., 2018). The FTD participants fulfilled the diag-
nostic criteria for either behavioral variant frontotemporal dementia 
(bvFTD) or FTD-related primary progressive aphasia (PPA) phenotypes, 
including Semantic Variant Primary Progressive Aphasia (svPPA) and 
Nonfluent Variant Primary Progressive Aphasia (nfvPPA) 
(Gorno-Tempini et al., 2011; Rascovsky et al., 2011). Participants with 
clinical features of AD but with unsupportive CSF profile were excluded 
from the study, as well as patients with FTD who showed an AD CSF 
profile. Healthy controls (CTR) had cognitive performance within the 
normative range (cutoff 1.5 SD from the normative mean, available 
normative data (Peña-Casanova et al., 2009)) and normal AD CSF bio-
markers. We included healthy voluntaries and individuals with subjec-
tive memory complaints; all of them performed within the normal range 
in all the tests of the comprehensive neuropsychological assessment 
reported in previous studies of the group (Contador et al., 2022; 
Tort-Merino et al., 2022).

The HCB Ethics Committee approved the study (HCB 2019/0105), 
and all participants gave written informed consent.

2.2. Biochemical markers

We used commercially available single-analyte enzyme-linked 
immunosorbent assay (ELISA) kits to determine levels of CSF NfL (IBL 
International, Hamburg, Germany) and CSF 14–3–3 (CircuLex, MBL 
International Corporation, Woburn, MA) at the Alzheimer’s disease and 

A. Pérez-Millan et al.                                                                                                                                                                                                                          Neurobiology of Aging 144 (2024) 1–11 

2 



other cognitive disorders unit laboratory, Barcelona, Spain.

2.3. MRI acquisition

We acquired a high-resolution 3D structural dataset (T1-weighted, 
MP-RAGE, repetition time = 2.300 ms, echo time = 2.98 ms, 240 slices, 
field-of-view = 256 mm, voxel size = 1 × 1 × 1 mm) for everyone at 
each time point in a 3T Magnetom Trio Tim scanner (Siemens Medical 
Systems, Germany) upgraded to a 3T Prisma scanner (Siemens Medical 
Systems, Germany) during the study.

2.4. MRI processing

We used the processing stream available in FreeSurfer version 6.0 
(http://surfer.nmr.mgh.harvard.edu.sire.ub.edu/) to perform cortical 
reconstruction and volumetric segmentation of the T1-weighted acqui-
sitions. FreeSurfer allowed us to obtain cortical thickness (CTh) maps 
and segment the subcortical structures (Fischl et al., 2004; Fischl and 
Dale, 2000). From reconstructed data, we got summary measures of 
mean CTh and GM volumes across the left and right hemispheres and 
summary measures of mean CTh in 68 cortical regions and GM volumes 
of 16 subcortical structures, all derived from atlases available in Free-
Surfer (Desikan et al., 2006; Seidman et al., 1997). The estimated 
intracranial volume estimated with FreeSurfer was used to normalize 
volume measures. All images and individual segmentations were visu-
ally inspected and manually corrected if needed.

2.5. MRI-based individual probabilistic classification algorithm

We used all CTh values, GM subcortical volumes, and the age of the 
participants to create our ML algorithm. Age was added as a feature to 
ensure that the ML algorithm captures age’s true importance or influ-
ence on the model. We introduced the regional measures of both 
hemispheres separately, leading to a total of 84 features per subject (see 
Supplementary Material).

We first converted MRI data (subcortical volumes normalized by 
intracranial volume and CTh measures) to z-scores with the training 
data (all participants) and then applied this conversion to obtain the z- 
scores for the test dataset. We implemented a calibrated classifier with 
an SVM as a base estimator to predict the diagnosis of the participants, 
where the features of the ML algorithm were the previously described 
values transformed to z-scores. The calibration was set using the Cali-
bratedClassifierCV from the Scikit-learn library with a cross-validation of 
5 with the train set. As our proposal involves an inner loop in the cali-
bration, to maximise the number of samples included in this procedure, 
the SVM base estimator hyperparameters were fixed to kernel=rbf, C=1 
and gamma=1/(number of features). For each classifier, we fitted a 
logistic regression model that distributes the classifier’s output of the 
decision function, which predicts a “soft” score for each sample in 
relation to each group. The model assumes a sigmoid shape and cali-
brates the probability between 0 and 1. We created classifiers for each 
pair of diagnostic groups (AD vs. CTR, FTD vs. CTR, and AD vs. FTD) and 
across the three groups (AD vs. FTD vs. CTR). Then, we subdivided the 
FTD group into bvFTD and PPA (we merged svPPA and nfvPPA due to 
the sample size and named the group as PPA), and we used them as 
independent groups in a new set (AD vs. bvFTD, AD vs. PPA, CTR vs. 
bvFTD, CTR vs. PPA, and bvFTD vs. PPA). All the comparisons were 
performed with a 5-fold cross-validation with stratified folds preserving 
the percentage of samples of each diagnosis to evaluate the performance 
of the classification. Then, we analysed the importance of each region 
for the decision of the classification through a permutation feature 
importance estimation (Breiman, 2001) using the test data of each run 
with the calibrated SVM algorithm. Feature importance is evaluated as 
the difference between the baseline metric and the metric obtained after 
permuting a feature and re-evaluating it. We used the permutatio-
n_importance from the Scikit-learn library. The higher the weight, the 

larger the importance of the feature in the classification. Notably, the 
units of the weights are rather arbitrary. Thus, even if they can be 
compared across features for a given classification problem, they should 
not be compared across different scenarios.

We obtained individual probabilities associated with group corre-
spondences as output values for each test data point given by the cali-
brated SVM. They had complementary values (i.e., the probability of one 
group is equal to 1 minus the probability of the other in the classification 
between two diagnostics), and they were directly associated with the 
output category (i.e., the final classification was the one with probability 
>0.5). We conventionally set two levels of diagnosis confidence: an 
individual probability ≥ 0.8 (or ≤ 0.2) was considered to provide high 
diagnosis confidence, while probabilities between 0.2 and 0.8 were 
considered a “gray zone”, with lower or insufficient diagnosis confi-
dence for the clinical decision. Thus, we estimated the accuracy and the 
number of individuals with a high probability of being from the group 
for each classification.

Finally, we aimed to explore if NfL and 14–3–3 levels could help 
diagnose the individuals of the gray zone of the MRI diagnosis for the 
following comparisons due to the available data: AD vs. CTR, FTD vs. 
CTR, and AD vs. FTD. Thus, we created a reduced dataset with partici-
pants having MRI data, NfL, and 14–3–3 levels. We trained and tested 
the proposed algorithm in 3 situations: MRI-based algorithm, CSF-based 
algorithm, and MRI and CSF-based algorithm to study if the individual 
probabilities towards the actual class increased. We did not include 
Aβ42, t-tau, and p-tau levels to avoid circularity, as these markers were 
used in the clinical diagnosis according to current criteria.

We implemented the ML algorithm in Python version 3.10.6 (www. 
python.org) with the Scikit-learn library (Pedregosa et al., 2011).

2.6. Statistics

We compared the demographic and clinical data among groups using 
ANOVA tests for continuous variables and Fisher test for discrete vari-
ables. Continuous variables were expressed as mean ± standard devia-
tion (SD). The pairwise differences were evaluated using a Benjamini- 
Hochberg correction. The significance level was set in all the analyses 
at a corrected p-value < 0.05. Statistical analyses were performed using 
R version 4.2.1.

3. Results

3.1. Sample demographics

The prospective study includes 491 participants: 215 AD, 103 FTD 
(56 bvFTD, 24 svPPA, 21 nfvPPA, and 2 PPA), and 173 CTR participants 
(74 % were healthy voluntaries, and 26 % were individuals with sub-
jective memory complaints but completely normal cognition and normal 
AD CSF biomarkers). A subset of the study participants had CSF mea-
sures available: NfL (N=365) and 14–3–3 (N=182). Table 1 shows de-
mographic information, group statistics (p-values corrected by 
Benjamini-Hochberg), and biomarker levels. As expected, CSF bio-
markers levels showed significant differences between groups (corrected 
p-value<0.05). There were differences in age and sex. As expected, 
based on previous studies, AD and CTR groups had more women than 
men; meanwhile, the FTD groups were more harmonized. Regarding 
age, CTR were younger than AD and FTD participants.

3.2. MRI-based probabilistic classification algorithm

We estimated the accuracy performance of our algorithm as the 
mean accuracy obtained in each k-fold of the test data. The train and test 
were 80 % and 20 % of the total sample, respectively, in all the analyses. 
Including sex in the algorithm led to similar results. We got an accuracy 
of 88 ± 8 % (AUC=0.87) when discriminating AD patients from CTR, 
and 87 ± 4 % (AUC=0.85) when determining FTD patients from CTR. 
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When we tried classifying AD vs. FTD patients, the accuracy was 82 ±
6 % (AUC=0.77). All AUC and the F1-score for all comparisons are 
shown in Supplementary Table 2. Notably, given a rather unbalanced 
scenario, the results of these metrics indicate that the overall accuracy is 
not likely to be driven by a single-group classification. Finally, we ob-
tained an accuracy of 77 ± 6 % when discriminating between the three 
groups (AD vs. FTD vs. CTR) (Table 2).

As shown in Figure 1 and in Supplementary Figure 1, the resulting 
algorithms were well-calibrated, which allowed us to create confidence 
ranges in the algorithm classification. The comparison of AD vs. CTR 
showed that 73 % of AD participants and 65 % of CTR participants 
presented a probability higher than 0.8 (probability of being correctly 
classified). In the FTD vs. CTR comparison, we found 74 % FTD partic-
ipants and 73 % CTR participants with a probability ≥ 0.8. Finally, when 
discriminating AD vs. FTD, we found 73 % AD participants and 74 % 
FTD participants with probabilities above 0.8 for being classified as AD 
or FTD, respectively. Figure 2 shows the density of the individual 
probabilities and how the distribution between the clinical and the al-
gorithm diagnosis is distributed within the group with an individual 
probability ≥ 0.8. Figure 2 shows that a higher probability reduced the 
misprediction. However, a high probability does not ensure a correct 
classification.

Then, we aimed to study the FTD clinical subtypes separately. Due to 
limitations in sample size, we merged svPPA and nfvPPA in the same 
named PPA group. We obtained 91 ± 2 % accuracy for classifying 
bvFTD patients vs. CTR and 93 ± 4 % when discriminating PPA patients 
from CTR. In both cases, the accuracy increased compared to the accu-
racy reported for all FTD together (87 ± 4 %). Compared with AD, we 
obtained 85 ± 3 % for the bvFTD vs. AD comparison and 91 ± 3 % for 
the PPA vs AD. Finally, we obtained an accuracy of 68 ± 6 % discrim-
inating bvFTD from PPA.

3.3. Important MRI regions for classification

Figure 3 shows the region weights associated with each comparison 
(Tables 3, 4 and 5 in Supplementary Material show the feature impor-
tance of all the features). It should be noted that these weights should 
not be compared between classification settings, as they reflect the ab-
solute change in accuracy associated with each feature. However, the 
different feature orderings within each comparison offer important in-
sights. In summary, when comparing AD versus CTR, the GM volume of 
the hippocampus, putamen, and amygdala played the most crucial role. 
For FTD vs. CTR, we found that occipital, parietal, and frontal regions 
emerged as the top regions for the classification. Finally, when 
discriminating both dementias (AD vs. FTD), we found a widespread 
pattern in which the CTh measures were generally more important than 
subcortical GM volumes, especially those in the frontal lobe. In this 
comparison, age emerged as a medium important feature, being in the 
sixth place (Table 5 Supplementary Material).

The results of the most crucial regions in the classifications consid-
ering bvFTD and PPA participants are shown in Figure 4. When 
discriminating bvFTD from CTR, the frontal and temporal lobes and the 
GM volume of the ventricles were the most important areas. In contrast, 
when differentiating between CTR and PPA participants, the top regions 
were GM volumes of the hippocampus, amygdala, and temporal lobe. 
When discriminating AD from bvFTD, the most important areas were the 
temporal, parietal, and occipital lobes. The frontal, parietal, and oc-
cipital lobes emerged in the PPA vs. AD discrimination. Finally, when 
discriminating bvFTD vs. PPA, the regions which contributed the most 
were the frontal, temporal, and occipital lobes.

3.4. Individual probabilities using MRI and CSF data

The group classification performance of the algorithm and the per-
centage of participants with an individual probability≥80 % using MRI- 
only, CSF-only, and combined MRI and CSF data are presented in 
Table 2. Adding NfL and 14–3–3 data to the MRI data improved the 
results in some of the comparisons.

For comparing AD vs. CTR, CSF data (NfL and 14–3–3) alone was 
enough and better than MRI data to discriminate between AD and CTR 
participants (Table 2, Figure 5). Thus, in this comparison the MRI data 
could not be needed. In the comparison between FTD and CTR, having 
MRI or CSF data led us to similar results in terms of accuracy (see Table 2
and Figure 5). However, the MRI data is needed for having a high 
number of CTR with a CTR-probability higher than 0.8. Thus, in this 
case, combining the MRI and CSF data reduced the participants in the 
gray zone of the diagnosis. Finally, when we compared AD and FTD 
participants, combining MRI and CSF data increased both the accuracy 
and the number of participants with a probability≥ 0.8 (see Table 2 and 
Figure 5). Thus, in the differential diagnosis of FTD and AD, having MRI 

Table 1 
Group summaries written as each measure’s mean and standard deviation. We calculated differences between groups using Fisher Test for sex or the Anova Test for the 
rest of the variables. We highlighted the significant group differences in bold. We measured pairwise differences with a Benjamini-Hochberg correction p-value. CTR: 
healthy participants, AD: Alzheimer’s disease, FTD: frontotemporal dementia, NfL: neurofilament light chain.

CTR AD FTD CTR-AD p-values CTR-FTD 
p-values

AD-FTD p-values

N MRI 173 215 103 — — —
Sex at MRI, Men/Women 67/106 78/137 54/49 0.67 0.049 0.022
Age at MRI, 

years (SD)
59.4 (15.0) 65.0 (9.9) 63.7 (8.3) 1.3e− 5 0.0045 0.39

N CSF NfL 112 175 78 — — —
CSF NfL, 

pg/ML 
(SD)

536.1 (312.6) 1134.7 (587.1) 2340.6 (1736.3) 1.2e− 07 < 2e− 16 5.9e− 06

N CSF 14–3− 3 50 68 64 — — —
CSF 14–3–3, 

pg/ML 
(SD)

2531.9 (748.2) 5727.3 (2303.5) 4234.9 (1869.1) < 2e− 16 3.0e− 06 5.9e− 06

Table 2 
Classification performance of the different approaches and the percentage of 
participants with a higher probability of 80 % in the diagnosis grouped by 
diagnosis.

AD vs CTR FTD vs CTR AD vs FTD

MRI all data 
(N=491)

Accuracy: 87.7 % 
AD: 73.4 % 
CTR: 64.5 %

Accuracy: 86.9 % 
FTD: 74.2 % 
CTR: 73.3 %

Accuracy: 81.8 % 
AD: 73.3 % 
FTD: 74.2 %

MRI reduced data 
(N=178)

Accuracy: 88.5 % 
AD: 67.2 % 
CTR: 55.3 %

Accuracy: 85.6 % 
FTD: 68.1 % 
CTR: 54.3 %

Accuracy: 84.6 % 
AD: 53.2 % 
FTD: 54.4 %

CSF data 
(N=178)

Accuracy: 93.0 % 
AD: 72.1 % 
CTR: 71.7 %

Accuracy: 86.6 % 
FTD: 72.1 % 
CTR: 23.5 %

Accuracy: 83.8 % 
AD: 40.6 % 
FTD: 45.9 %

MRI and CSF data 
(N=178)

Accuracy: 90.3 % 
AD: 68.1 % 
CTR: 64.4 %

Accuracy: 86.5 % 
FTD: 70.8 % 
CTR: 53.2 %

Accuracy: 88.5 % 
AD: 60.7 % 
FTD: 55.1 %
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and CSF data could bring more reliability to the diagnosis.

4. Discussion

In this study, we implemented a machine learning algorithm that 
discriminates FTD and AD patients using data from structural MRI. In 
addition, our algorithm was able to differentiate subtypes of FTD with 
good accuracy. Clinical diagnosis requires decisions at the individual 
level, and the degree of confidence in the diagnosis is key in managing 
the patient. We approach the clinical question of diagnosis confidence 
using individual probabilities. Among our key results, we found that 
74 % FTD and 73 % AD participants showed an individual proba-
bility≥0.8 of being well-classified by the algorithm in the FTD vs. AD 
comparison. Adding CSF neurodegeneration markers (NfL and 14–3–3) 
levels improved the diagnosis classification or the number of patients 
with high individual probability for the diagnosis in some cases, espe-
cially for differentiating FTD from AD.

Previous ML algorithms using structural MRI data have reported 

accuracies between 76 % and 97 % for AD vs. CTR, 72–88 % for FTD 
versus CTR, 51–90 % for AD versus FTD, and 54–70 % in discriminating 
between AD, FTD, and CTR (Bron et al., 2017; Canu et al., 2017; 
Davatzikos et al., 2008; Dukart et al., 2011; Kim et al., 2019; Li et al., 
2021; Lin et al., 2018; Möller et al., 2016; Moore et al., 2019; 
Pérez-Millan et al., 2023; Salvatore et al., 2015; Wang et al., 2016, 
2018). These studies used different algorithms, with the SVM being the 
most common. We obtained accuracies that are in accordance with, or 
even outperformed, previously reported algorithms, especially for AD 
vs. FTD (Basheera and Sai Ram, 2019; Dashtipour et al., 2022; Frizzell 
et al., 2022; Mateos-Pérez et al., 2018; McCarthy et al., 2018). We have 
differentiated FTD expressions (bvFTD and PPA) against AD or CTR, 
outperforming previously published works (Canu et al., 2017; Lampe 
et al., 2023; Möller et al., 2016; Wang et al., 2016). First, regarding the 
comparisons with CTR, for bvFTD, we obtained a 91 % accuracy, and in 
the case of the PPA participants, an accuracy of 93 %. When classifying 
bvFTD and PPA separately against AD, we obtained accuracies up to 
90 % for both cases. However, when we tried to classify bvFTD vs. PPA, 

Fig. 1. Calibration plots with the test dataset to evaluate the calibration quality for each classification scenario. We observe that the line plot generated by mean 
predicted probabilities vs fraction of positiveness (represented with a green plain line) approaches the identity line (here represented as a gray-dashed line), which 
would indicate a perfect calibration AD: Alzheimer’s disease, FTD: frontotemporal dementia, CTR: healthy controls.

Fig. 2. Density plot to study the obtained individual probabilities with the MRI-based algorithm (all the study participants included). The clinical diagnosis is 
identified with triangles or circles, and the algorithm’s diagnoses are plotted with different colors. The vertical red dashed lines indicate the thresholds for the grey 
zone. We highlight a random participant (point) with a dashed red circle in the comparison of AD vs CTR for explanatory reasons. This point would have a probability 
of 0.7 of being AD (x-axis) and consequently a probability of 0.2 of being CTR (inverse probability). AD: Alzheimer’s disease, FTD: frontotemporal dementia, CTR: 
healthy controls, P: probability.
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we obtained an accuracy of 68 %, which is lower than the accuracy 
reported by Kim et al. (Kim et al., 2019), probably due to differences in 
the algorithm. They used hierarchical classification with cortical atro-
phy, but in the CTh measures, they applied noise removal. Then, the 
hierarchical classification algorithm was constructed by applying linear 
discriminant analysis (LDA) in combination with principal component 
analysis (PCA) to the cortical thickness data. The results of their pro-
posed algorithm using the entire hierarchical tree showed an overall 
75.8 % accuracy, but looking in detail at step 3 of the algorithm, which 
focused on the FTD group (bvFTD versus PPA), the algorithm presented 
86.9 % accuracy, which is higher than the obtained in our algorithm. 
Thus, our algorithm accurately distinguishes AD, FTD, and CTR using 
MRI data. However, the classification accuracy between bvFTD and PPA 
is lower than in some previous works.

Other studies using multimodal information also reported high 
classification accuracy combining data from different imaging modal-
ities or other biological and clinical measures (Bron et al., 2021; Chen 
et al., 2017; Dashtipour et al., 2022; Dukart et al., 2011). Even so, in 
some cases, our scores with only structural MRI data showed better 
accuracy (Bouts et al., 2018; Bron et al., 2017; Dyrba et al., 2015; Wang 
et al., 2016). Here, we evaluated if adding CSF data to the MRI could 
improve the accuracy or the number of participants with a high diag-
nosis confidence. This could help reduce the number of clinical tests 
usually required to take these patients. This approach identifies partic-
ipants who need additional clinical tests while sparing others from un-
necessary examinations that wouldn’t yield new evidence. In our cohort, 
adding NfL and 14–3–3 CSF data to the MRI data provided was benefi-
cial for the accuracy of the group classification or the number of par-
ticipants with high individual diagnosis probability in some cases, 
especially in the differential diagnosis of FTD and AD. In this case, the 
combination of the data of these two modalities increased the accuracy 
and the number of participants with a reliable diagnostic. In the case of 
discriminating AD and CTR, the CSF data presented the best 

performance, so the MRI data may be unnecessary or redundant. Finally, 
in the case of classifying FTD versus CTR, MRI and CSF data showed 
similar results, though the MRI data contributes to the reliability of the 
CTR diagnosis, so in this case, we should recommend using MRI data. 
The comparisons between CTR and dementia patients (AD or FTD) are a 
gold standard for studying the algorithm and for research proposes. For 
clinical utility, it could be helpful the differential diagnosis of FTD vs AD 
or their subtypes. We excluded Aβ42, t-tau, and p-tau from our algo-
rithm to avoid circularity. These biomarkers were used to confirm AD 
when positive or FTD when negative. In contrast, NfL and 14–3–3 were 
not used to determine the label feature. Although NfL and 14–3–3 
correlate with Aβ42, t-tau, and p-tau, so does hippocampus volume. 
Therefore, this correlation with current diagnostic biomarkers of AD 
does not bias the algorithm, as these biomarkers were not used to create 
the feature label (diagnosis), which is what the ML algorithm aims to 
predict. The participants with available CSF NfL and 14–3–3 biomarkers 
were not those that the clinician was already in doubt based on the MRI, 
as the diagnostic criteria for these patients are supported by a CSF 
profile.

Besides reaching good accuracies, one of the main novelties of our 
work is that we obtained the individual probabilities for each diagnosis 
in all comparisons. Notably, as we built our first set of algorithms 
uniquely with MRI data, these probabilities might reflect each in-
dividual’s brain atrophy severity. Using these values, we could identify 
the participants with high diagnosis confidence (with a probability 
upper to 80 %) and those who do not have that high confidence that 
could be a candidate for further evaluations. Notably, more than 70 % of 
AD and FTD participants were classified with high diagnosis confidence 
in the FTD vs. AD comparison. It is important to note that our results are 
merely an example of interpreting these probabilities in a context where 
participants are distributed along a spectrum between two groups, 
assuming that clinical conditions (or labels) are known. However, the 
interpretation may differ in various clinical contexts, particularly when 

Fig. 3. Cortical and subcortical patterns of the feature importance of each region associated with the different AD and FTD comparison (comparison per row). A 
higher value indicates greater importance of a region for classification. AD: Alzheimer’s disease, FTD: frontotemporal dementia, CTR: healthy controls.
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there are more erroneous or unknown diagnoses. We suggest evaluating 
these algorithms with different datasets to explore various applications 
and scenarios.

Furthermore, we depicted the patterns that drive accuracy for each 
classification setting to obtain a comprehensive explanation of structural 
changes in both dementias. The GM volume of the hippocampus, puta-
men, and amygdala were essential in differentiating AD from CTR. 
While the mathematical approaches used by ML algorithms differ from 
traditional statistical group comparisons—mainly because they account 
for interactions and hidden relationships between features—several key 
conclusions can be drawn from these patterns. Notably, our results 
reflect the typical AD neuroimaging pattern, found mainly in the early 
stages of the disease, where most patients of our sample are. The 
involvement of the hippocampus and subcortical areas aligns with the 
neuropathological continuum demonstrated by postmortem studies, 
such as Braak et al., 2011, showing that tau pathology affects these re-
gions in the earliest stages of the disease. Hippocampal atrophy is 
considered a hallmark feature of AD, directly related to memory 
impairment (Braak et al., 2011). The amygdala, involved in emotional 
processing and memory, also exhibits early atrophy, contributing to 
behavioral symptoms (Johnson et al., 2024; Punzi et al., 2024). The 
putamen, part of the basal ganglia, may be affected by tau pathology 
spreading from the hippocampus and other subcortical areas in early 
disease stages, impacting cognitive functions (Yang et al., 2024). By 
contrast, when differentiating FTD from CTR, the cortical regions were 
the most important, especially the CTh of occipital, parietal, and frontal 
regions. Accordingly, GM volumes of subcortical areas could help to 
identify AD patients, while CTh could be the key to identifying FTD 

participants. This aligns with findings obtained using more classical 
analysis methods (Avants et al., 2010; Contador et al., 2021; Dickerson 
et al., 2001; Frisoni et al., 2010; Gil-Navarro et al., 2013; Gordon et al., 
2016; Hodges and Patterson, 2007; Jack et al., 2000). Regarding FTD 
variants, the frontal brain regions emerged for the bvFTD, while the 
hippocampus and temporal regions were the most important in PPA, as 
previously reported (Avants et al., 2010). These results align with pre-
viously described brain changes in bvFTD and PPA. bvFTD is charac-
terized by primary degeneration affecting the frontal lobes, causing 
behavioral symptoms such as disinhibition, apathy, and impulsivity 
(Rascovsky et al., 2011). In contrast, PPA is marked by degeneration in 
the language areas, particularly the left temporal lobe, manifesting as 
impaired language skills (Gorno-Tempini et al., 2011).

Overall, our study has several strengths. First, we provide examples 
of scenarios where MRI or CSF data or their combination contributes to a 
more reliable AD or FTD diagnosis. In addition, the overall good per-
formance of our algorithm offers opportunities for future clinical ap-
plications after validating this type of ML algorithm in other datasets, 
including AD and FTD or in other neurodegenerative dementias. We 
suggest its potential implementation could be particularly impactful in 
locations with limited access to expert opinion or incomplete biomarker 
profiles. The individual probabilities generated could significantly 
advance personalized medicine. The use of probabilistic algorithms like 
the one proposed here may be a first step towards developing new 
methods that consider disease severity or therapy response, helping to 
identify potential candidates for new drugs or additional diagnostic 
tests, as we could address their current diagnostic confidence. Further 
studies may aim to validate these outcomes regarding individual clinical 

Fig. 4. Cortical and subcortical patterns of the feature importance of each region associated with the different bvFTD and PPA comparison (comparison per row). A 
higher value indicates the greater importance of a region for classification. AD: Alzheimer’s disease, bvFTD: behavior frontotemporal dementia, PPA: primary 
progressive aphasia, CTR: healthy controls.
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outcomes at a longitudinal level, such as response to therapy or disease 
trajectory.

Our study also presents several limitations. First, it is unicentric. It 
has the advantage that all the participants had the same MRI scanner 
protocol and clinical criteria for the diagnosis. In the case of using the 
algorithm in other centers, the increased heterogeneity of the data could 
worsen the algorithm’s performance. Also, it is focused on only AD or 
FTD, so applying it to different clinical contexts could affect the results, 
particularly when there are more erroneous, unknown diagnoses or 
other neurodegenerative dementias. Another limitation regarding the 
FTD participants is that, when looking at the different clinical expres-
sions, we reduced the sample size to approximately 50 participants for 
each group, and svPPA and nfvPPA had to be studied together. This 
means that the results are subject to large sampling variability. Also, it is 
known that svPPA and nfvPPA present different characteristic MRI 
patterns, and CSF levels (NfL and 14–3–3) are both increased 
(Abu-Rumeileh et al., 2018; Ljubenkov et al., 2018; Seelaar et al., 2011). 
Thus, the feature importance of the MRI features may be influenced by 
the fact that we study PPA participants together. Future studies could 
further explore the subanalyses with the FTD phenotype subtypes in 
more detail. Finally, only some participants had NfL and 14–3–3 data 
available, and the smaller sample size might have impacted the results. 
Future studies may replicate our CSF results in large, multicentric co-
horts to support the findings. As is common with many ML algorithms 
using different data sources, the availability of NfL and 14–3–3 could 
introduce a bias towards a subset of participants. In our study, as these 
biomarkers are not obtained routinely, the availability of such data 
depended on whether we had leftover CSF or if the levels had been 
determined previously. We did not perform additional testing on the 

new participants, but this criterion was the same for both groups, 
minimizing the risk of a bias.

5. Conclusion

In conclusion, the proposed diagnosis algorithm has shown high 
accuracy classification scores with structural MRI data to discriminate 
AD, FTD, and CTR. Furthermore, we propose guidelines suggesting 
when MRI, CSF, or the combination are necessary or improve the 
diagnosis of FTD and AD patients. This approach also provided indi-
vidual classification probability scores as an ancillary tool for studying 
the overlapping results between FTD and AD and a surrogate estimation 
for the confidence in the ML diagnosis.
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original draft, Visualization, Methodology, Investigation, Formal anal-
ysis, Data curation, Conceptualization. Albert Lladó: Writing – review 
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A. Pérez-Millan et al.                                                                                                                                                                                                                          Neurobiology of Aging 144 (2024) 1–11 

10 

https://doi.org/10.1016/j.nicl.2017.05.018
https://doi.org/10.1016/j.nicl.2017.05.018
https://doi.org/10.1016/j.neurad.2020.04.004
https://doi.org/10.1016/j.neurad.2020.04.004
https://doi.org/10.1016/j.pscychresns.2017.04.004
https://doi.org/10.1016/j.pscychresns.2017.04.004
https://doi.org/10.1111/ene.15531
https://doi.org/10.1016/j.nicl.2021.102804
https://doi.org/10.3389/fnhum.2013.00467
https://doi.org/10.1016/j.neuroimage.2010.06.013
https://doi.org/10.1016/j.neuroimage.2010.06.013
https://doi.org/10.1007/978-3-030-95593-9_8
https://doi.org/10.1007/978-3-030-95593-9_8
https://doi.org/10.1016/j.neuroimage.2008.03.050
https://doi.org/10.1038/s41598-023-43706-6
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1016/S0197-4580(01)00271-8
https://doi.org/10.1093/brain/awm016
https://doi.org/10.1093/brain/awm016
https://doi.org/10.1371/journal.pone.0018111
https://doi.org/10.1371/journal.pone.0018111
https://doi.org/10.1002/hbm.22759
https://doi.org/10.1002/hbm.24925
https://doi.org/10.1111/ene.13945
https://doi.org/10.1073/pnas.200033797
https://doi.org/10.1073/pnas.200033797
https://doi.org/10.1093/cercor/bhg087
https://doi.org/10.1038/nrneurol.2009.215
https://doi.org/10.1038/nrneurol.2009.215
https://doi.org/10.1016/j.arr.2022.101614
https://doi.org/10.1016/j.arr.2022.101614
https://doi.org/10.1002/gps.5667
https://doi.org/10.1159/000346289
https://doi.org/10.1111/jnc.13656
https://doi.org/10.1212/WNL.0b013e31821103e6
https://doi.org/10.1212/WNL.0b013e31821103e6
https://doi.org/10.1016/j.jalz.2014.04.516
https://doi.org/10.1016/S1474-4422(07)70266-1
https://doi.org/10.1016/S1474-4422(07)70266-1
https://doi.org/10.1016/j.jalz.2018.02.018
https://doi.org/10.1212/wnl.55.4.484
https://doi.org/10.1212/wnl.55.4.484
https://doi.org/10.1007/s10916-023-01906-7
https://doi.org/10.1101/2024.01.12.24301221
https://doi.org/10.1016/j.nicl.2019.101811
https://doi.org/10.1093/brain/awm319
https://doi.org/10.1093/brain/awm319
https://doi.org/10.3233/JAD-2010-1337
https://doi.org/10.3233/JAD-2010-1337
https://doi.org/10.1016/j.nicl.2023.103320
https://doi.org/10.1016/j.nicl.2023.103320
https://doi.org/10.1002/hbm.25626
http://refhub.elsevier.com/S0197-4580(24)00145-3/sbref54
http://refhub.elsevier.com/S0197-4580(24)00145-3/sbref54
http://refhub.elsevier.com/S0197-4580(24)00145-3/sbref54
http://refhub.elsevier.com/S0197-4580(24)00145-3/sbref54


frontotemporal dementia trajectory. Ann. Clin. Transl. Neurol. 5, 1250–1263. 
https://doi.org/10.1002/acn3.643.
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