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Esther Sanfeliu c, Xavier P. Burgos-Artizzu a,b 

a Transmural Biotech S. L., Barcelona, Spain 
b BCNatal – Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Clínic de Barcelona (University of Barcelona) and Hospital Sant Joan de Deu, 
Barcelona, Spain 
c Radiology Department, Hospital Clinic de Barcelona (University of Barcelona), Barcelona, Spain   

A R T I C L E  I N F O   

Keywords: 
Machine Learning 
Ultrasound 
Breast Cancer 
Lymphadenopathy 
COVID-19 

A B S T R A C T   

Purpose: The aim of this study is to assess the potential of quantitative image analysis and machine learning 
techniques to differentiate between malignant lymph nodes and benign lymph nodes affected by reactive changes 
due to COVID-19 vaccination. 
Method: In this institutional review board–approved retrospective study, we improved our previously published 
artificial intelligence model, by retraining it with newly collected images and testing its performance on images 
containing benign lymph nodes affected by COVID-19 vaccination. All the images were acquired and selected by 
specialized breast-imaging radiologists and the nature of each node (benign or malignant) was assessed through a 
strict clinical protocol using ultrasound-guided biopsies. 
Results: A total of 180 new images from 154 different patients were recruited: 71 images (10 cases and 61 
controls) were used to retrain the old model and 109 images (36 cases and 73 controls) were used to evaluate its 
performance. The achieved accuracy of the proposed method was 92.7% with 77.8% sensitivity and 100% 
specificity at the optimal cut-off point. In comparison, the visual node inspection made by radiologists from 
ultrasound images reached 69.7% accuracy with 41.7% sensitivity and 83.6% specificity. 
Conclusions: The results obtained in this study show the potential of the proposed techniques to differentiate 
between malignant lymph nodes and benign nodes affected by reactive changes due to COVID-19 vaccination. 
These techniques could be useful to non-invasively diagnose lymph node status in patients with suspicious 
reactive nodes, although larger multicenter studies are needed to confirm and validate the results.   

1. Introduction 

On 11th March 2020, the World Health Organization (WHO) 
declared the ongoing COVID-19 outbreak a global pandemic. As of early 
June 2022, more than 530 million people worldwide have been infected 
by SARS-CoV-2 (the strain of coronavirus that causes COVID-19), and 
more than 6.3 million have died according to WHO’s statistics [1]. 
COVID-19 has changed the landscape of global society and has con-
verted in a public emergency. 

Obtaining a vaccine against this coronavirus has been a global 

priority in the fight against the pandemic. In December 2020 the most 
developed countries worldwide began a massive vaccination program. 
mRNA-based vaccines Comirnaty (Pfizer/BioNTech) and Spikevax 
(Moderna), vector-based vaccines Vaxzevria (AstraZeneca) and Janssen 
COVID-19 vaccine (Johnson&Johnson/Janssen) and others, were 
distributed over the world’s main countries. As of 1st June 2022, 66.0% 
of the world population has received at least one dose and 60.2% is fully 
vaccinated (excluding booster shots), according to OurWorldInData [2]. 
During this time, like any drug, a significant number of adverse reactions 
to the new COVID-19 vaccines have been observed [3]. Most common 
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side effects are mild-to-moderate, and similar to those described for 
other vaccines: pain in the injection site, fatigue, headaches, fever, 
chills, and muscle and joint pains [3,4]. 

Other less common side effects such as axillary and supraclavicular 
lymphadenopathy have been reported [3,4]. In the Moderna trial, 
axillary swelling and tenderness on patient survey was reported in 
10.2% people in the vaccine group after first dose (4.8% in placebo) and 
14.0% after second dose (3.9% in placebo) [5]. While not reported as an 
adverse event in Pfizer-BioNTech trials, more cases are reported in the 
COVID-19 vaccine group (64) than in the placebo group (6) [6]. Astra-
Zeneca does not detail these reactions in its trials, but simply labels them 
as “uncommon” in the vaccine characteristics [7]. No data or informa-
tion related to this adverse reaction was reported in Janssen trials [8]. 
Globally, recent studies performed in general population have reported 
that the incidence of post-vaccination lymphadenopathy ranged from 
14.5% (after a single dose) to 53% [9]. 

Regardless of the frequency of this type of adenopathy related to 
vaccination, radiologists and oncologists should be aware of it to obviate 
unnecessary changes in patient management, particularly for cancer 
patients [10]. Recognizing this as a potential differential diagnosis is 
crucial to be able to provide appropriate follow-up recommendations 
[11]. 

In the oncology field, lymph node status has always been a key factor 
for the staging, prognosis and treatment of cancer. Ultrasound exami-
nation of axillary lymph nodes has become common practice in the pre- 
surgical assessment of breast cancer patients [12,13]. Once suspicious 
nodes have been detected, invasive techniques are performed to confirm 
malignancy such as ultrasound-guided fine needle aspiration (FNA) or 
core needle biopsy (CNB) [13,14]. 

To reduce or avoid the use of these invasive techniques, several 
studies have used artificial intelligence (AI) techniques to non- 
invasively predict axillary lymph node involvement in breast cancer 
from medical images. Our previous study published in 2019 [15] 
demonstrated the potential of image analysis techniques to detect the 
microstructural and compositional changes that occur in lymph nodes to 
noninvasively diagnose metastatic involvement. Subsequently, Sun et al. 
[16], Lee et al. [17], Zhou et al. [18] and Sun et al. [19] confirmed that 
deep learning techniques and more specifically convolution neural 
networks can effectively predict axillary lymph node metastasis. 

Building upon our previous study researching AI methods to di-
agnose metastatic involvement in axillary lymph nodes from ultrasound 
images [15], the objective of this study is to assess the potential of 
similar image analysis and machine learning techniques to differentiate 
between malignant lymph nodes affected by metastatic breast cancer 
and benign lymph nodes affected by reactive changes due to COVID-19 
vaccination. 

2. Methods 

2.1. Study design and patients 

This was an institutional review-board approved retrospective study 
authorized by the ethics committee of the Hospital Clínic de Barcelona 
(HCB/2020/0863) with a waiver of the need to obtain patient informed 
consent. 

In this study, we improved our previous AI technique [15], retraining 
the old model with newly collected images. Subsequently, we tested the 
resulting model using new images which contain benign lymph nodes 
affected by COVID-19 vaccination. 

To improve our last model, specialized breast-imaging radiologists of 
Hospital Clínic de Barcelona retrospectively selected nodes from pa-
tients attending the clinic for routinary breast and axillary lymph node 
radiological assessment between November 2018 and February 2020. 
These patients were either breast cancer patients, or non-breast cancer 
patients who underwent an examination for other reasons (not related 
with the COVID-19 vaccine, still non-existent at that time). None of 

these patients were overlapped in time with patients of our previous 
study. 

To test the model and obtain the final results, the radiologists 
retrospectively selected all viable nodes from the first months of COVID 
vaccination campaign (from March 2021 to June 2021). This was the 
period where more benign suspicious nodes were analyzed, as there was 
no certainty that COVID vaccination could affect the axillary nodes. 
These nodes were from breast cancer patients or non-breast cancer pa-
tients who underwent an examination for possible lymphadenopathy 
caused by COVID-19 vaccination (with Moderna, Pfizer-BioNTech or 
AstraZeneca vaccines). 

The nature of each node was assessed through a strict clinical pro-
tocol outlined below. Only images from nodes which met the inclusion 
criteria detailed in this clinical protocol were collected. Images with 
artefacts, pointers or callipers, were also discarded. If more than one 
image per node was available, radiologists selected only the best image 
(the one with best resolution and saturation-darkness ratio) to use in this 
study. 

2.2. Image acquisition 

All the collected images were ultrasound images in B-mode of an 
axillary lymph node acquired by specialized breast-imaging radiologists 
during each patient examination with no prior guidelines. The images 
were stored in DICOM (Digital Imaging and Communication in Medi-
cine) format and later anonymised. 

The ultrasound devices used to acquire the images were an Acuson 
Antares (Siemens AG, Munich, Germany) with a 10–13 MHz linear 
transducer and an Aplio i800 (Canon Inc., Ōta, Tokyo, Japan) with a 10 
MHz linear transducer. 

2.3. Clinical management 

The protocol used in the hospital to determine the nature (benign or 
malignant) of axillary lymph nodes was the same as in our previous 
study [15]. This protocol is based on Bedi’s criteria [20], which defines 
the degree of suspicion of metastatic involvement for each axillary 
lymph node (Fig. 1). When a node is considered suspicious for metastasis 
(Bedi score of 3 or higher), an ultrasound-guided FNA or CNB was 
performed by the radiologist to confirm malignancy, even in the case of 
recent vaccination. 

For breast cancer patients (with or without history of recent vacci-
nation), only confirmed malignant nodes with FNA or CNB were selected 
to use as “cases”. Nodes with negative result or without a FNA or CNB 
result were discarded, since we could not be sure of their real nature. 

In case of non-breast cancer patients used to retrain the model, only 
nodes not suspicious of metastasis (Bedi score lower than 3) or nodes 
with benign confirmation via ultrasound-guided FNA or CNB were 
retained. All these nodes were assumed negative for metastasis and used 
as “controls”. 

For non-breast cancer patients used to test the model (patients with 
history of recent vaccination), only suspicious nodes (Bedi score of 3 or 
higher) with negative breast findings on ultrasound were used. All these 
nodes were assumed negative for metastasis and used as “controls” since 
as far as we know, they continued to have all negative follow-ups at the 
time of this study. 

2.4. Image analysis 

The proposed technique had three different steps: (1) manual 
delineation of the region of interest (ROI); (2) quantitative image 
analysis from ROIs; and (3) classification with machine learning 
methods. These three steps were performed for both training and testing 
subset images. 

(1) From each image, the selected lymph node was segmented out 
manually by an expert radiologist using a graphical user interface, 
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obtaining the node’s ROI. 
(2) Subsequently, each outlined ROI was quantitatively analysed to 

obtain textural features useful to train the machine learning methods. To 
do this task, image processing techniques were used to encode the ROI 
pixels values into a meaningful representation of the textural patterns it 
contained. In this case, a simpler, yet efficient, method than that used in 
the previous study was selected to perform this task: a multiresolution 
approach based on local binary pattern (LBP) method [21]. This method 
is based on recognizing that certain LBPs, termed “uniform”, are 
fundamental properties of a local image texture. Indeed, their histogram 
of occurrence has proven to be a very powerful texture feature. This 
technique is very robust in terms of grey-scale and rotation variations. 

(3) Finally, the computed features and the histopathologic outcome 
of each image were used to train and test supervised machine learning 
methods to distinguish between nodes that were positive for metastasis 
and those that were negative even if they had reactive changes due to 
COVID-19 vaccination. As in our previous study, we again used sparse 
partial least squares (SPLS) method [22] to perform this task. This 
method is a variant of the widely used PLS method, which is a technique 
that reduces the predictors to a smaller set of uncorrelated components 
and performs least squares regression on these components, instead of 
on the original data. SPLS produces sparse linear combinations of the 
original PLS predictors to achieve good predictive performance and 
variable. 

2.5. Statistical analysis 

The performance of the final method was evaluated using the test set 
images. This set was a compound of affected metastatic nodes and 
benign nodes affected by COVID-19 vaccination. 

Receiver operating characteristic (ROC) curve was computed to 
report overall classifier performance and then typical binary perfor-
mance metrics were reported at the optimal cut-off point of the ROC 
curve (chosen as that maximizing accuracy). The same ROC curve was 
computed with Bedi scores annotated by expert radiologists to compare 
the differences in performance with the proposed method. 

All the methods used in the image analysis and in the statistical 
analysis processes, were developed using Matlab R2017a (MathWorks, 
Inc., Natick, MA, USA). 

3. Results 

In our previous study [15] the proposed classification method was 
trained with 118 images from 105 distinct patients: 53 affected meta-
static nodes (cases) and 65 unaffected nodes (controls). 

In this study, a total of 180 new images from 154 different patients 
were recruited: 71 images (10 cases and 61 controls) were used to 
retrain the old model and 109 images (36 cases and 73 controls) were 
used to evaluate the performance of the proposed method. The preva-
lence of metastatic nodes in the training set (previous train subset plus 
new retrain subset) and testing set was 33% in both cases. 

Table 1 shows the demographic characteristics of the 71 new images 
from 60 different patients recruited to retrain the old model and Table 2 
shows the demographic characteristics of the 109 new images from 94 
different patients recruited to test the new model. 

To point out visual similarities between malign nodes and those 
affected by COVID-19 vaccination, Fig. 2 shows an example of two nodes 
with the same Bedi score (5) but different nature: one is a benign node 
affected by COVID-19 vaccination while the other is a malignant node. 
Both are morphologically similar (similar contours of the nodes and 
fatty hilum). 

Fig. 3 shows the ROC curve obtained by the proposed classification 

Fig. 1. Drawings and definitions of the different types of nodes proposed by Bedi [20] according to their degrees of suspicion. Courtesy of Coronado- 
Gutierrez et al. [15]. 

Table 1 
Demographic characteristics of patients used to retrain the old model.   

Patients Nodes 

Diagnosed Breast Cancer 10 10 
Invasive Ductal Carcinoma (IDC) 8 8 
Invasive Lobular Carcinoma (ILC) 1 1 
Other carcinomas 1 1 
Non-diagnosed Breast Cancer 50 61 
TOTAL 60 71  
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learning method on the test set after being retrained using the new 
training set. The overall area under the ROC curve (AUC) was 88.4%, 
and the optimal accuracy achieved was 92.7%, with 77.8% and 100% 
sensitivity and specificity, respectively (Table 3). 

Fig. 3 also shows the ROC curve obtained with Bedi scores annotated 
by expert radiologists on the test images, to visualize the differences 
with the proposed method. In this case, the AUC was 62.6% and the 
optimal accuracy was 69.7%, with 41.7% sensitivity and 83.6% speci-
ficity (Table 3). 

4. Discussion 

In this study, AI techniques presented in our previous publication 
[15] to non-invasively diagnose axillary lymph node involvement in 
breast cancer were applied to observe its potential to differentiate be-
tween malignant nodes and benign nodes affected by COVID-19 vacci-
nation. The proposed method was evaluated using axillary lymph node 
images from ultrasound explorations of breast cancer and non-breast 
cancer patients recorded in Hospital Clínic de Barcelona. The training 
(and retraining) set images were all malignant and normal benign nodes, 
and the testing set images were malignant and benign nodes affected by 
COVID-19 vaccination, which are morphologically similar. 

Results showed that the proposed image analysis and machine 
learning methods can effectively differentiate malignant nodes from 
benign ones even if they had reactive changes due to COVID-19 vacci-
nation. The proposed technique reached 92.7% accuracy, with 77.8% 
sensitivity and 100% specificity at the optimal cut-off point. These re-
sults demonstrate that these techniques have potential to detect unaf-
fected lymph nodes even if they look visually similar to a metastatic one 
to the naked eye. 

Secondly, the visual Bedi score made by radiologists showed lower 
results compared with the proposed method. The ROC curve obtained 
with this visual scoring reached an AUC of 62.6% while the proposed 

method got 88.4%. This direct comparison on the same images clearly 
suggests that the proposed methods can improve radiologists’ perfor-
mance and also indicate that visual techniques are not enough to 
correctly classify nodes in patients after COVID-19 vaccination. 

Table 2 
Demographic characteristics of patients used to test the new model.   

Patients Nodes 

Diagnosed Breast Cancer 36 36 
Invasive Ductal Carcinoma (IDC) 33 33 
Invasive Lobular Carcinoma (ILC) 1 1 
Other carcinomas 2 2 
Non-diagnosed Breast Cancer 

(reactive changes by COVID-19 vaccination) 
58 73 

TOTAL 94 109  

Fig. 2. Ultrasound images of 2 different nodes: (a) benign node with reactive changes due to COVID-19 vaccination; (b) metastatic node of invasive ductal carci-
noma. Arrows point out the node’s cortex and arrow heads their fatty hilum. 

Fig. 3. ROC curve obtained by the proposed method (blue line) versus visual 
inspection by expert radiologists using Bedi’s criteria (red line) on the same 
test images. 

Table 3 
Performance metrics of the proposed method and the visual scoring at optimal 
cutoff point (best accuracy) of the ROC curves. The numbers in brackets 
represent the 95% confidence interval and the numbers in parentheses the 
number of correct answers among the total. (AUC = Area Under the ROC Curve; 
ACC = Accuracy; SENS = Sensitivity; SPEC = Specificity; PPV = Positive Pre-
dictive Value; NPV = Negative Predictive Value).   

AUC ACC SENS SPEC PPV NPV 

Proposed 
method  

88.4%   92.7% 
[86.0 
96.8] 
(101/ 
109) 

77.8% 
[60.8 
89.9] 
(28/ 
36) 

100.0% 
[95.1 
100.0] 
(73/73) 

100.0% 
[87.7 
100.0] 
(28/28) 

90.1% 
[81.5 
95.6] 
(73/ 
81) 

Visual 
scoring  

62.6%  69.7% 
[60.2 
78.2] 
(76/ 
109) 

41.7% 
[25.5 
59.2] 
(15/ 
36) 

83.6% 
[73.0 
91.2] 
(61/73) 

55.6% 
[35.5 
74.5] 
(15/27) 

74.4% 
[63.6 
83.4] 
(61/ 
82)  
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Unaffected reactive nodes could be easily confused with reactive ones, 
especially in patients with breast cancer. For this reason, current clinical 
protocols could greatly benefit from the techniques proposed in this 
study. 

These results are in line with Sun et al. [16], Lee et al. [17] and Zhou 
et al. [18], who obtained an AUC between 75.9% and 95.7%. Still, these 
studies used ultrasound images of primary breast cancer tumours and 
not of axillary lymph nodes. Our results show higher performance 
compared to the recent study of Sun et al. [19] which used axillary 
lymph node images. With a similar test sample size, they obtain an AUC 
of 72% and an accuracy, sensitivity and specificity of 72.6%, 65.5% and 
78.9% respectively. Moreover, more complex methods based on con-
volutional neural networks were used in these studies compared to our 
proposed algorithm and none of them related lymph node involvement 
with lymphadenopathy due to COVID-19 vaccination. 

The proposed techniques could be implemented as an online soft-
ware or even integrated in the ultrasound machine, to facilitate its use in 
real clinical practice. This software could be used by radiologists right 
after an axillary lymph node exploration and the results would be ob-
tained in less than thirty seconds. Processing time in our computers 
using Matlab R2017a was less than one second. To this, one must add the 
time radiologists’ need to manually delineate the lymph node, which in 
our case was less than 20 seconds by using our platform. In the future, if 
larger databases were collected, an automatic node’s delineation could 
probably be implemented using deep learning algorithms given their 
recent success stories in similar applications [23]. 

Focusing on clinical practice, a software using these techniques could 
greatly benefit clinicians, radiologists and patients. This software could 
be used to support decision making in both cancer and non-cancer pa-
tients with suspicious lymph nodes (Bedi score of 3 or higher) during 
ultrasound examination. In this way, unnecessary biopsies would be 
avoided, thus improving patient management and treatment. Another 
potential application of these techniques could be after neoadjuvant 
chemotherapy (NCT), by providing a non-invasive way of evaluating 
axillary lymph node status which often becomes negative after NCT, and 
avoiding therefore unnecessary lymph node excisions. 

This study has several strengths. First of all, we tested the proposed 
method with images of benign nodes affected by COVID-19 vaccination, 
considerably different from the benign nodes used in the training set 
(not affected by COVID-19 vaccination). Secondly, unlike our previous 
study where the images were collected avoiding any type of ultrasound 
post-processing, the new collected images were obtained with no prior 
guidelines and images with post-process were accepted. As the main 
limitation of the study, the small size of the data test set warrants the 
need to confirm these results in larger multicenter studies before they 
can be applied in clinical practice. 

5. Conclusions 

The results show the potential of image analysis and machine 
learning methods to differentiate between malignant lymph nodes 
affected by metastatic breast cancer and benign lymph nodes affected by 
reactive changes due to COVID-19 vaccination. These techniques could 
be useful to non-invasively diagnose lymph node status in patients with 
and without diagnosed breast cancer with suspicious reactive nodes. 
Larger, multicenter studies are needed to confirm and validate the re-
sults described in this study. 

Funding 
This research did not receive any specific grant from funding 

agencies in the public, commercial, or not-for-profit sectors. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

References 

[1] “WHO Coronavirus (COVID-19) Dashboard | WHO Coronavirus (COVID-19) 
Dashboard With Vaccination Data.” https://covid19.who.int/ (accessed 1st June 
2022). 

[2] “Coronavirus (COVID-19) Vaccinations - Statistics and Research - Our World in 
Data.” https://ourworldindata.org/covid-vaccinations (accessed 1st June 2022). 

[3] M.M. Ahamad et al., “Adverse effects of COVID-19 vaccination: machine learning 
and statistical approach to identify and classify incidences of morbidity and post- 
vaccination reactogenicity,” medRxiv, p. 2021.04.16.21255618, Apr. 2021, doi: 
10.1101/2021.04.16.21255618. 

[4] N. Hiller, S. N. Goldberg, M. Cohen-Cymberknoh, V. Vainstein, and N. Simanovsky, 
“Lymphadenopathy Associated With the COVID-19 Vaccine,” Cureus, vol. 13, no. 2, 
Feb. 2021, doi: 10.7759/CUREUS.13524. 

[5] “Local Reactions, Systemic Reactions, Adverse Events, and Serious Adverse Events: 
Moderna COVID-19 Vaccine | CDC.” https://www.cdc.gov/vaccines/covid-19/ 
info-by-product/moderna/reactogenicity.html (accessed 1st June 2022). 

[6] “Reactions and Adverse Events of the Pfizer-BioNTech COVID-19 Vaccine | CDC.” 
https://www.cdc.gov/vaccines/covid-19/info-by-product/pfizer/reactogenicity. 
html (accessed 1st June 2022). 

[7] “Summary of Product Characteristics for Vaxzevria - GOV.UK.” https://www.gov. 
uk/government/publications/regulatory-approval-of-covid-19-vaccine- 
astrazeneca/information-for-healthcare-professionals-on-covid-19-vaccine- 
astrazeneca (accessed 1st June 2022). 

[8] “The Janssen COVID-19 Vaccine’s Local Reactions, Systemic Reactions, Adverse 
Events, and Serious Adverse Events | CDC.” https://www.cdc.gov/vaccines/covid- 
19/info-by-product/janssen/reactogenicity.html (accessed 1st June 2022). 

[9] E. Garreffa, A. Hamad, C.C. O’Sullivan, A.Z. Hazim, J. York, S. Puri, A. Turnbull, J. 
F. Robertson, M.P. Goetz, Regional lymphadenopathy following COVID-19 
vaccination: Literature review and considerations for patient management in breast 
cancer care, Eur. J. Cancer 159 (2021) 38–51. 
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