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Abstract 

Background Understanding genetic-metabolite associations has translational implications for informing cardiovas-
cular risk assessment. Interrogating functional genetic variants enhances our understanding of disease pathogenesis 
and the development and optimization of targeted interventions.

Methods In this study, a total of 187 plasma metabolite levels were profiled in 4974 individuals of European ancestry 
of the GCAT| Genomes for Life cohort. Results of genetic analyses were meta-analysed with additional datasets, result-
ing in up to approximately 40,000 European individuals. Results of meta-analyses were integrated with reference gene 
expression panels from 58 tissues and cell types to identify predicted gene expression associated with metabolite 
levels. This approach was also performed for cardiovascular outcomes in three independent large European studies 
(N = 700,000) to identify predicted gene expression additionally associated with cardiovascular risk. Finally, genetically 
informed mediation analysis was performed to infer causal mediation in the relationship between gene expression, 
metabolite levels and cardiovascular risk.

Results A total of 44 genetic loci were associated with 124 metabolites. Lead genetic variants included 11 non-
synonymous variants. Predicted expression of 53 fine-mapped genes was associated with 108 metabolite levels; 
while predicted expression of 6 of these genes was also associated with cardiovascular outcomes, highlighting a new 
role for regulatory gene HCG27. Additionally, we found that atherogenic metabolite levels mediate the associations 
between gene expression and cardiovascular risk. Some of these genes showed stronger associations in immune tis-
sues, providing further evidence of the role of immune cells in increasing cardiovascular risk.

Conclusions These findings propose new gene targets that could be potential candidates for drug development 
aimed at lowering the risk of cardiovascular events through the modulation of blood atherogenic metabolite levels.
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Background
The global burden of dyslipidaemias in adult population 
has increased over the past 30 years [1]. This progressive 
increase is an alarming scenario because altered levels of 
blood lipids and fatty acids are a major risk factor for ath-
erosclerotic cardiovascular disease (CVD) [2, 3]. CVDs 
are a leading cause of disease worldwide, with near a 30% 
of overall deaths, and 40% of premature deaths [4]. In this 
context, blood biomarkers would help to detect and man-
age the disease and prevent their development.

Blood metabolite levels are influenced by both germline 
genetic variations [5] and environmental factors, such as 
lifestyle habits, temperature, or long-term air pollution 
[6, 7]. To understand and estimate the contribution of 
single-nucleotide polymorphisms (SNPs), many metabo-
lite genome-wide association studies (GWAS) have been 
carried out during the last decade [8–15]. These studies 
identified several genes that can be explored as pharma-
cological targets to modulate metabolite levels. How-
ever, most SNP-metabolite associations lay in intronic or 
intergenic regions and do not provide either a clear target 
gene or a functional contribution of the genetic region to 
the associated outcome. Therefore, GWAS findings are 
difficult to translate into clinical interventions. Over the 
last decade, these challenges have been addressed inte-
grating GWAS results with functional genomics datasets 
through genetic instrumental analyses, such as colocali-
zation analyses, transcriptome‐wide association studies 
(TWAS) and Mendelian randomization (MR) approaches 
[16]. A major advantage of instrumental analyses is that 
germline genetic associations cannot be explained by 
reverse causation and are less susceptible to confound-
ing. Instrumental analyses can therefore circumvent 
many of the inherent limitations of traditional observa-
tional studies.

The transcriptome-wide association studies (TWAS) 
allow the identification of associations between pre-
dicted gene expression and metabolite levels. This 
instrumental approach interrogates SNPs tagging func-
tional elements that alter expression levels to identify 
nearby genes causally associated with an outcome. 
TWAS capitalize and integrate expression quantitative 
trait loci (eQTL) studies and large GWAS datasets to 
provide associations that are not products of reverse 
causation [17]. In addition, TWAS results from individ-
ual tissues can be jointly analysed to leverage multi-tis-
sue eQTLs and enlarge power to detect gene expression 
variation potentially altering metabolite levels [18]. 

Tissue transcriptome profiles reflect the average gene 
expression across heterogeneous cells within the ana-
lysed tissue. However, it has been observed that most 
cells follow a few broad transcriptional programs 
which can be classified into major cell types: epithelial, 
endothelial, mesenchymal (i.e. fibroblasts, stem cells, 
muscle cells), neural and immune cells [19]. Therefore, 
the analysis of tissue type-specific eQTLs can be very 
informative to identify genes altering blood metabolite 
levels expressed within tissues categorized by major cell 
type composition. Previous TWAS studies associated 
gene expression with lipid levels and different cardio-
vascular outcomes [20–24]; however, the interpretation 
of the results is not straightforward, as within a single 
locus more genes than the causal gene can be identified 
by pleiotropic effects (bystander genes) [25, 26]. There-
fore, additional lines of evidence are needed to rule out 
pleiotropic effects.

In this study, we utilize genetic instrumental 
approaches to prioritize candidate genes across tissue 
categories. These genes are responsible for variations in 
plasma metabolites that contribute to an elevated risk 
of cardiovascular disease. To do this, as summarized in 
Fig. 1, we profiled a total of 187 unique plasma metab-
olite levels and 3 metabolite-ratios, including lipids 
particles, amino acids and fatty acids, in 4974 individu-
als of European ancestry of the GCAT| Genomes for 
Life cohort, and generated the corresponding GWAS 
results. Then, we generated a GWAS meta-analysis, 
including our study and publicly available datasets, 
and integrated these results with gene expression ref-
erence panels. The identified fine-mapped genes were 
also assessed for cardiovascular outcomes in three large 
European studies. Finally, for genes whose expression 
was associated with both metabolite levels and car-
diovascular risk, we conducted MR mediation analy-
ses. These analyses aimed to estimate the effect of gene 
expression on cardiovascular risk, considering both 
the direct effect and the effect mediated by metabolite 
levels. This multiomic integration approach enabled us 
to identify candidate genes that influence variations in 
blood metabolite levels and contribute to cardiovascu-
lar risk.

Methods
A detailed workflow diagram of the methods is depicted 
in the Additional file 1.
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Study participants
Participants included in this study belong to the 
GCAT|Genomes for life cohort, a population-based 
cohort from Southern Europe (Catalonia, NE Spain). The 
GCAT cohort comprises 20,000 volunteers, recruited 
between 2014 and 2018, from Catalan general population, 
aged between 40 and 65 years old at the time of recruit-
ment, and 59.16% women. All the participants completed 
a detailed, self-reported, baseline questionnaire. All par-
ticipants gave their consent, and all procedures were car-
ried out in accordance with ethical standards [27]. About 

5000 participants were randomly selected from the whole 
cohort based on overall demographic distribution (i.e. 
gender, age, residence) to perform genome-wide analy-
ses [28]. This cohort subset, named GCATcore, included 
55.6% women, with a mean age of 51.0 ± 6.9 years and an 
average body mass index (BMI) of 27.1 ± 4.7 (Additional 
file 2: Table S1).

Genome data
A total of 5459 GCAT participants were genotyped using 
the Infinium Expanded Multi-Ethnic Genotyping Array 

Fig. 1 Graphical abstract of the performed analyses and main results. GWAS: Genome-wide association study. TWAS: Transcriptome-wide 
association study. MR: Mendelian randomization
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(MEGAEx) (ILLUMINA, San Diego, California, USA). 
A final dataset of 4974 GCAT participants of European 
ancestry that passed strict quality control were con-
sidered for genome-wide analyses, the GCATcore [28]. 
Genetic variants of these individuals were phased using 
SHAPEIT2 [29] and imputed using IMPUTE2 [30] and 
four reference panels: 1000 Genomes [31], UK10K [32], 
Genomes of the Netherlands [33] and Haplotype Refer-
ence Consortium [34]. Following the recommendations 
of the developers of GUIDANCE [35], the best imputa-
tion quality score from each panel was retained. After 
merging the imputation results of each reference panel, 
a total of ~ 20  M unique autosomal variants with minor 
allele frequency (MAF) > 0.001 and imputation quality 
score  (R2) > 0.3 were retained for subsequent analysis.

Metabolome data
A total of 188 metabolite levels were assessed in plasma 
samples of 4974 GCATcore participants by the Centre 
for Omic Sciences (COS) Joint Unit of the Universitat 
Rovira i Virgili-Eurecat. Details on sample processing 
and metabolite profiling are included in Additional file 1. 
In brief, each metabolite was profiled using one of these 
three platforms: Gas Chromatography-mass spectrom-
etry (GCms, four batches), Liquid Chromatography-mass 
spectrometry (LCms, five batches) and Nuclear Mag-
netic Resonance Chromatography-mass spectrometry 
(NMRms, two batches). Redundant metabolite measures 
were discarded when measured using different profiling 
platforms. This was the case for total cholesterol levels, 
discarding GCms measures and keeping NMRms meas-
ures, providing a final set of 187 metabolites (Additional 
file  2: Table  S2). Metabolites were grouped accord-
ing to chemical classification provided by the Human 
Metabolome DataBase (HMDB) 4.0 [36]. We classified 
the metabolites into 4 super-classes: lipids and lipid-like 
molecules, organic acids, organic oxygen compounds 
and organoheterocyclic compounds; and 11 classes: 
fatty acyls, glycerophospholipids (phosphatidylcholines, 
lysophosphatidylcholines and phosphatidylethano-
lamines), glycerolipids (triglycerides), lipoprotein lipids 
(characteristics of lipoprotein lipids), prenols (tocophe-
rols), sphingolipids (sphingomyelins), steroids (choles-
terols), carboxylic acids (amino acids), hydroxy acids, 
organooxygen compounds (carbohydrates) and indoles. 
Additionally, we computed 3 ratio parameters: the ratio 
of the concentration of low-density lipoprotein (LDL) 
particles to high-density lipoprotein (HDL) particles 
[LDL/HDL], the ratio of the concentration of total lipo-
protein particles to HDL particles [Total/HDL] and the 
ratio of leucine to isoleucine [leucine/isoleucine] (Addi-
tional file  2: Table  S2). Since plasma was not always 
obtained in fasted conditions, analyses were adjusted 

correcting by chylomicrons as a closely related measure 
of the post-prandial phase.

Genome‑wide association analysis
A linear regression was fitted for each metabolite control-
ling by age, sex, chylomicron levels and number of batch 
and the first four principal components (PC) to account 
for the genetic population structure of the GCAT par-
ticipants. Residuals were rank-based inverse normalized 
and considered as the outcome for GWAS. Allele dosage 
for each imputed genetic variant was considered in the 
GWAS analysis by using PLINK2 [37].

Meta‑analysis
Meta-analysis was performed using METAL software 
[38] and combining GWAS summary statistics from the 
GCAT and six additional published studies of similar 
ancestry, age, BMI distribution and metabolomic plat-
forms [8–13]. Sample size, sex ratios, ancestry and age 
and BMI distributions are included in the Additional 
file  2: Table  S1. A full description of the enrolling pro-
cess and metabolite profiling of the additional datasets is 
included in the Additional file 1. The combination of the 
studies included up to 26,533 independent individuals 
and each plasma metabolite was meta-analysed by stud-
ies comprising only independent individuals using simi-
lar metabolomics platforms (GCms, LCms or NMRms). 
In case a metabolite was analysed by two or more studies 
including non-independent individuals, we considered 
the study with the largest sample size (Additional file 2: 
Table S2). Since each study performed the GWAS analy-
sis using different transformations, meta-analyses were 
based on Z-scores (p-value direction) weighted by sam-
ple size using a random effects model implemented in 
the METAL software [38]. Assuming a standardized trait 
with a mean 0 and a standard deviation 1, the SNP effect 
(b) and standard error (se) can be estimated as suggested 
by Zhu et al. [39];

where p is the minor allele frequency (MAF) of the sin-
gle-nucleotide polymorphism (SNP), n represents the 
sample size and Z the Metal Z-score. The threshold used 
to determine significant genetic variants was calculated 
by dividing the standard genome-wide significant thresh-
old of P < 5 ×  10−8 by the number of effective tests iden-
tified through a PC analysis for all analysed metabolites 
[13]. We found that 48 PCs explained 95% of the total 
variance and were considered as effective tests. Then, the 
significance threshold was P < 1.04 ×  10−9.

b =
z

2p(1− p) n+ z2
se =

1

2p(1− p) n+ z2
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Genetic heritability and correlation
Phenotypic variance explained by all genome-wide SNPs 
(heritability) was estimated through the genomic-relat-
edness-based restricted maximum-likelihood (GREML) 
approach implemented in the Genome-wide Complex 
Trait Analysis (GCTA) software [40]. Genetic correla-
tions between traits were estimated using the bivariate 
GREML approach in GCTA [41]. Analyses were per-
formed using the individual-level data of GCAT samples 
with SNPs restricted to those with MAF > 0.01. To obtain 
correlation results with enough statistical power, we 
included metabolites with nominally significant genetic 
heritability (P < 0.05). To adjust for multiple testing, we 
considered genetic correlations with a false discovery 
rate (FDR) < 0.05 as robust evidence of shared genetic 
contribution.

Mash analysis
To validate top SNP associations, multivariate adaptive 
shrinkage (mash) analysis of the meta-analysed summary 
statistics was performed [42]. In the presence of struc-
tured effects, mash analysis shares information across 
metabolites and shrinks estimates towards zero allow-
ing the identification of associated loci. We performed 
this analysis using the R package mashr. As a condition 
to nominate significant genetic variants in each GWAS, 
we considered a genome-wide significance threshold of 
1.04 ×  10−9 in the meta-analysis and a standard local false 
sign rate (lfsr) < 0.05 in the mash approach.

SNP annotation
Top associated SNPs were functionally annotated and 
gene-mapped using the integrative web-based Functional 
Mapping and Annotation (FUMA) platform (https:// 
fuma. ctglab. nl/) [43]. Overlapping top SNP regions 
among metabolites were considered as a single locus. 
Previous associations with complex phenotypes were as 
well assessed using FUMA. Regional plots for top asso-
ciated SNPs were generated, which enables inspection of 
the strength of association, the extent of association sig-
nal and linkage disequilibrium (LD), and the position of 
findings relative to genes in the region. Plots were gener-
ated using the software LocusZoom v1.3 [44]. Measures 
of LD were estimated using European populations of the 
1000 Genomes Project.

Transcriptome‑wide association analysis for metabolites
We integrated results of GWAS meta-analyses with ref-
erence panels for gene expression under the summary-
based PredXcan approach [45] to identify predicted 
gene expression associated with metabolite blood level. 
Elastic net prediction models for genetically regulated 
gene expression in multiple tissues from GTEx v8 were 

obtained from PredictDB (http:// predi ctdb. org/) [46, 
47]. In addition, we retrieved the Correlated Expression 
and Disease Association Research (CEDAR) dataset that 
included transcriptome data of six relevant blood cell 
types (CD4, CD8, CVD19, CD14, CD15 and platelets) 
[48]. CEDAR data quality control and elastic net pre-
diction models were performed by our group and was 
described in a previous work [49]. For each metabolite, 
TWAS results were meta-analysed among tissues, using 
the summary-based MultiXcan approach [18], for all tis-
sues and for different tissue groups regarding the abun-
dance of major cell type [19]: epithelial, mesenchymal, 
immune or neural (Additional file 2: Table S3). In order 
to correct the results for multiple testing, we defined as 
robust evidence of candidate causal gene those results 
with a P-value lower than the significance threshold cor-
rected by Bonferroni using the number of effective tests 
and the total number of tested genes (P < 1.21 ×  10−8).

Fine‑mapping in extended LD regions for metabolites
To tease out the causal gene in genetic regions with more 
than one associated gene due to extended LD, probabilis-
tic fine-mapping was performed using the fine-mapping 
of causal gene sets (FOCUS) software [50]. FOCUS mod-
els the correlation structure across predictive models 
and computes posterior probabilities (PIP) for a gene to 
explain observed association signals at a specific locus. 
As a condition to nominate significant genes whose gene 
expression is probably causally associated with metabo-
lite levels, we considered a significance threshold of 
1.21 ×  10−8 in the TWAS approach, and a credible set 
with a nominal confidence > 90% and with a PIP > 0.5 in 
the FOCUS approach.

Finally, fine-mapped genes were linked to diseases 
using the DisGeNET platform that integrates data from 
curated repositories, GWAS catalogues and scientific lit-
erature [51]. Diseases were classified into 23 categories 
according to the Medical Subject Headings 2022 (MeSH) 
database (https:// meshb. nlm. nih. gov/ treeV iew), and we 
tested whether these categories were overrepresented 
in our gene set using a fisher test. Significance threshold 
was corrected by Bonferroni using the number of tested 
categories (P < 2.2 ×  10−3).

Transcriptome‑wide association analysis of fine‑mapped 
genes for cardiovascular outcomes
For genes which predicted gene expression was found 
associated with metabolite levels, we tested whether pre-
dicted gene expression was additionally associated with 
cardiovascular risk. To do so, we used cardiovascular-
related GWAS results from large studies of European 
individuals (CARDIoGRAMplusC4D [52], FinnGen [53] 
and UK Biobank [54, 55]) (Additional file  2: Table  S4). 

https://fuma.ctglab.nl/
https://fuma.ctglab.nl/
http://predictdb.org/
https://meshb.nlm.nih.gov/treeView
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A full description of the enrolling process of the cardio-
vascular datasets is included in the Additional file 1. The 
analysed cardiovascular outcomes included coronary 
artery disease (CAD, 3 datasets), myocardial infarction 
(MI, 3 datasets), angina pectoris (ANG, 2 datasets), ath-
erosclerosis (ATH, 2 datasets) and atrial fibrillation (AF, 
2 datasets). First, we integrated GWAS summary statis-
tics with reference panels for gene expression under the 
summary-based PredXcan approach [45], and TWAS 
results were meta-analysed among tissues, using the 
summary-based MultiXcan approach [18], for all tissues 
and for different tissue groups regarding the abundance 
of major cell type [19]: epithelial, mesenchymal, immune 
or neural (Additional file  2: Table  S3). In order to cor-
rect the results for multiple testing, we defined as robust 
evidence of candidate causal gene those results with a 
P-value lower than the significance threshold corrected 
by Bonferroni using the number of tested cardiovascu-
lar datasets (12 datasets) and the total number of tested 
genes (53 genes) (P < 7.9 ×  10−5).

Mendelian randomization approach
Genetically informed mediation inference analysis was 
performed to make causal mediation inference about the 
relationship between gene expression, metabolite levels 
and cardiovascular risk. To do so, we apply a Mendelian 
randomization (MR) approach in several steps. MR is a 
method that uses genetic variants as instrumental vari-
ables to test for and estimate causal effects between risk 
factors and outcomes. The underlying principle is that 
genetic variants are randomly assigned at conception, 
akin to a natural randomized control trial, and germline 
genetic associations cannot be explained by reverse cau-
sation and are less susceptible to confounding [56]. The 
most used MR approach is the “two-sample” MR, where 
the genetic instrument of the putative risk factor is iden-
tified in one genetic study (the largest for the risk factor), 
but is subsequently evaluated for association to the out-
come in a second genetic study (the largest for the out-
come) [57].

As genetic instruments for gene expression, it was 
used the top associated expression quantitative trait 
loci (eQTL), not showing pleiotropic effects for nearby 
genes also identified in this study, from the most rel-
evant tissue in the GTEx Consortium [46]. In the case 
of CELSR2 and PSRC1 genes, the selected eQTLs were 
not either associated to expression of SORT1 or in LD 
 (R2 = 0.08; European samples) (https:// ldlink. nih. gov/). 
However, the eQTL for PSRC1 showed residual asso-
ciation with CELSR2 expression in the liver. The genetic 
instruments for metabolite levels were selected from 
the top independent SNPs identified in this study. The 
strength of associations between a genetic instrument 

and an exposure is reflected in the F-statistic, which 
is inversely related to weak instrument bias, being 10 
the minimum estimation for a F-statistic to avoid bias 
of this nature [58]. The F-statistic was estimated as 
F = (n−k−1

k
)( R2

1−R2
) , where  R2 is the proportion of phe-

notypic variance explained by the genetic instrument, 
n is the sample size, and k the number of genetic vari-
ants [58]. Explained phenotypic variance for a single 
SNP was estimated as R2

= 2b2(p)(1− p) , a function of 
effect size for the risk factor in standard deviation units 
(b) and minor allele frequency (p) [59]. The parameters 
of association of genetic instruments with CAD risk 
will be obtained from the cardiovascular-related GWAS 
results from large studies of European individuals 
(CARDIoGRAMplusC4D [52], FinnGen [53] and UK 
Biobank [54, 55]) (Additional file 2: Table S4).

Each genetic instrument provides an estimation of 
the exposure levels effect on outcome risk (Wald ratio: 
genetic effect on the exposure/ genetic effect on the 
outcome). In the case of eQTLs on metabolites and 
CAD risk, this was the main MR estimate. In the case 
of metabolite levels on CAD risk, the main MR esti-
mate was the combination of SNP Wald ratios in a 
single causal estimation through an inverse-variance 
weighted MR estimator [57]. Because of the presence 
of pleiotropic variants can lead to biased causal effect 
estimates, several MR sensitivity analyses for data with 
potentially invalid instruments were applied. Initially, 
to evaluate the extent to which directional pleiotropy 
(non-balanced horizontal pleiotropy) may affect the 
effect estimate, we used the intercept test within an 
MR-Egger weighted linear regression approach [60]. 
Furthermore, the weighted median method relaying on 
the distribution on SNP effects were applied, which is 
less sensitive to SNPs with biased effect [61]. These MR 
estimates were obtained using the “TwoSampleMR” R 
package (R software).

Finally, we investigated complex networks of relation-
ships between variables, in particular where some of 
the effect of gene expression on CAD risk may operate 
through an intermediate variable (metabolite levels). 
Under an instrumental approach, mediated and non-
mediated effects of the exposure on the outcome can be 
estimated using a regression-based method. If all effects 
are linear without interaction terms, the non-mediated 
effect can be obtained, under the assumption of homo-
geneity of causal effects across individuals in the popu-
lation, as the difference between the total effect of gene 
expression on CAD risk and the product of the effects 
of gene expression on metabolite levels and metabolite 
levels on CAD risk. The standard error and confidence 
intervals for these quantities can be estimated by boot-
strapping [62].

https://ldlink.nih.gov/
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Results
Metabolomic profile
We profiled metabolite blood levels of 4974 individuals 
of the GCATcore. The quality control procedure pro-
vided a final dataset of 187 metabolites and 3 ratios for 
subsequent analyses. We classified the metabolites into 
11 classes according to the Human Metabolite Database 
(HMDB) 4.0 [36]; 10 fatty acyls, 74 glycerophospholip-
ids (phosphatidylcholines, lysophosphatidylcholines and 
phosphatidylethanolamines), 26 glycerolipids (triglyc-
erides), 23 lipoprotein lipids (characteristics of lipopro-
tein lipids), one prenol (tocopherol), 25 sphingolipids 
(sphingomyelins), 3 steroids (esterified, free and total 
cholesterol), 16 carboxylic acids (amino acids), 3 hydroxy 
acids, 5 organooxygen compounds (carbohydrates) and 
one indol (Additional file 2: Table S2). The distribution of 
metabolite levels is depicted in Additional file 1.

Genome‑wide association analysis
The GCAT GWAS summary statistics were meta-ana-
lysed with six additional published studies (Additional 
file 2: Table S1), generating summary statistics compris-
ing up to 26,533 independent individuals (Additional 

file 2: Table S2). Manhattan plots and quantile–quantile 
(QQ) plots of meta-analyses results for each metabolite 
are included in Additional file 1. As result, a total of 44 
genetic loci were associated with 124 metabolite parame-
ters, comprising 350 independent locus-metabolite asso-
ciations. LocusZoom plots for the 350 locus-metabolite 
associations were included in Additional file 1. We iden-
tified 165 lead SNPs tagging 76 genes (Fig. 2A, B, Addi-
tional file 2: Table S5). We did not identify any significant 
genetic association for the other 66 analysed metabolites. 
The 44 genetic loci had been previously related to metab-
olite levels, and half of them were specific to metabolite 
classes; 8 of them were only associated with carboxylic 
acids, 6 with glycerophospholipids, 5 with lipoprotein 
lipids, 2 specific loci for sphingolipids and 1 for indoles. 
The other 22 loci were shared among metabolite classes 
(Fig.  2A, C). Two metabolite classes, prenols and orga-
nooxygen compounds, showed no genome-wide signifi-
cant SNPs.

The functional annotation of the 165 identified lead 
SNPs revealed that there were 10 non-synonymous 
SNPs and 1 non-frameshift deletion variant (Table  1 
and Additional file  2: Table  S5). Among them, we 

Fig. 2 Genome-wide associated variants for 190 metabolites. A Summary of the GWAS results. B 3D Manhattan plot of significant SNPs according 
to thresholds in meta-analyses and mashr approaches. C Significant loci per metabolite class
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identified common variants such as a non-synonymous 
SNPs and a non-frameshifting deletion in APOB gene 
(rs1367117-Thr98Ile in exon 4 and rs878853971-p.
Leu12_Ala16delinsProAlaLeu in exon 1) related to cho-
lesterol and lipoprotein lipid levels; one SNP in GCKR 
gene (rs1260326-Leu446Pro in exon 14) associated with 
fatty acyls, lipoprotein lipids and glycerolipids; and the 
two SNPs in APOE gene responsible of the APOE pro-
tein isoforms (rs429358- p.Cys130Arg and rs7412-
Arg176Cys in exon 4) related to fatty acyls, cholesterol 
and lipoprotein lipids. We also identified less frequent 
variants (MAF < 0.1 in the GCAT samples) such as the 
rs11591147 in exon 1 of PCSK9 gene (p.Arg46Leu), the 
rs6756629 in exon 2 of ABCG5 (p.Arg50Cys), the rs268 
(exon 6 of LPL; p.Asn318Ser), the rs2228603 (exon 3 of 
NCAN; p.Pro92Ser), the rs58542926 (exon 6 of TM6SF2; 
p.Glu167Lys) and the rs1800961 (exon 4 of HNF4A; 
p.Thr139Ile) associated with fatty acyls, cholesterol, lipo-
protein lipids, phosphatidylcholine and sphingomyelin 
levels (Table 1).

Genetic heritability and correlations
SNP-based heritability estimates observed in this study 
(Additional file  2: Table  S2) were similar than estimates 
observed in previous studies [63]. A total of 47 out of 190 
metabolites levels and ratios showed a significant SNP-
based heritability (P < 0.05) [h2 = 0.59 − 0.12] (Additional 
file  2: Table  S2). The metabolites showing significant 
genetic heritability belonged to the metabolite classes 
of glycerophospholipids (15 phosphatidylcholines, 2 
lysophosphatidylcholines and 2 phosphatidylethano-
lamines), and glycerolipids (16) and lipoprotein particles 
mainly related with very low-density lipoproteins (VLDL) 
(5) (Additional file 2: Table S2). Genetic correlations were 
performed among the 47 metabolites with significant 
heritability, and a total of 40 genetic correlations were 
observed (FDR < 0.05), involving 15 glycerolipids, 9 glyc-
erophospholipids and the 5 lipoprotein particles. The 
85% of correlations were among metabolites of the same 
class (Additional file 2: Table S6).

Transcriptome‑wide association analyses
We integrated GWAS meta-analyses results with refer-
ence panels for gene expression from 58 tissues and cell 
types. A total of 2537 gene expression-metabolite associ-
ations were identified in the TWAS meta-analyses results 
including all tissues (Fig. 3A), while additional 1807 gene 
expression-metabolite associations were identified in 
the meta-analyses of tissue categories (data not shown). 
The fine-mapping FOCUS approach validated 53 genes 
as associated with 108 metabolites, comprising 196 gene 
expression-metabolite associations (Table  2, Fig.  3B). 
Manhattan plots of meta-analyses results including all 

tissues, and highlighting fine-mapped genes, for each 
metabolite were included in Additional file 1.

The 95% of fine-mapped gene expression-metabolite 
associations (187) identified genes potentially explain-
ing previously observed locus-metabolite associations, 
from which the 74% (139) comprised the closest gene of 
the associated SNP (Fig. 3B, Additional file 2: Table S6). 
The other 5% of gene-metabolite associations (9) identi-
fied associations not observed in GWAS results (Fig. 3B), 
most of them within the 44 genetic loci and increas-
ing the number of associated metabolites, except for 
SEC22B gene (1p12) related to serine levels and GCSH 
gene (16q23.2) to glycine levels (Additional file  2: 
Table S7). Among the 53 fine-mapped genes in Table 2, 
it is worth highlighting some results. The fine-mapped 
TWAS results suggest that variations in gene expres-
sion levels might be responsible for some of the associa-
tions observed in GWAS. For instance, PCSK9, CELSR2, 
APOB, LPL, FADS1, LIPC, CETP and PLTP on lipo-
protein lipids; PCSK9, CELSR2 and APOB on steroids; 
APOB, MSH5 and LPL on glycerolipids; FADS1 and LIPC 
on fatty acyls; FADS1 and CETP on glycerophospholip-
ids; and CERS4 and SPTLC3 on sphingomyelins (Table 2). 
Beside these observations, we identified PSRC1 gene 
(1p13.3) associated with total LDL concentration, despite 
that GWAS results pointed to the SNP rs12740374, in 
the UTR3 region of CELSR2 gene (Additional file  2: 
Table S5). We observed another similar case in the 2p23.3 
region. The SNP rs6547692, located in an intron of GCKR 
gene, was found associated with concentration of small, 
medium and large VLDL particles (Additional file  2: 
Table S5). However, the gene whose predicted expression 
was found associated to these lipid traits was the C2orf16 
gene (Table  2). Other results to highlight are found in 
7q11.23 region. This genetic region was found associ-
ated to small VLDL concentration in the GWAS results; 
but TWAS results identified the gene MLXIPL, within 
the region, associated with concentration of small but 
also with medium, large and total VLDL, and triglycer-
ides (Table 2). Also, in 10q24.31 region, the expression of 
SCD gene appeared related to levels of stearic acid and 
lysophosphatidylcholine acyl C16:1 (LPC16:1), while 
GWAS results pointed to PKD2L1 gene. Finally, in the 
APOE loci, GWAS results only identified the two non-
synonymous APOE SNPs; however, TWAS results also 
pointed to PVR and APOC2 genes as potentially associ-
ated with lipoprotein lipids, steroids and sphingomyelin 
levels.

Most of the 53 fine-mapped genes were specific to a 
metabolite class (Fig. 3C), being the carboxylic acids and 
sphingolipids the metabolite classes with all the genes 
specific to the class (9 and 4 genes, respectively). These 
were followed by glycerophospholipids (11 genes out 
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of 15 total genes associated in this class: 11/15), glyc-
erolipids (8/16), and lipoprotein lipids (4/18)). Steroids 
and fatty acyls were the classes without specific genes, 
6 and 4 genes, respectively, that were mostly shared 
with lipoprotein lipids (Fig.  3C). On the other hand, 15 
of the 53 fine-mapped genes were specific to a single tis-
sue type category (Fig. 3D; pale colour portion of bars). 
For instance, the genetically predicted gene expression 
of SLC7A6 was associated with lysine levels only in epi-
thelial tissues meta-analysis, while expression of GCSH 
was related to glycine levels only in the mesenchymal 
tissues meta-analysis (Table  2). Finally, it is also worth 
to mention that some genes showed stronger effects in 
meta-analysis of specific tissue types compared with 
meta-analysis including all or other tissue types. This was 
the case for PCSK9 and SPTLC3 genes which associations 
with metabolite levels were stronger in immune tissue 
meta-analysis, and for CELSR2 and C2orf16 genes in epi-
thelial tissues meta-analysis (Additional file 2: Table S7).

Cardiovascular diseases
Gene set enrichment of the 53 fine-mapped genes was 
tested for association with disease categories using the 
DisGeNET platform [51]. Results revealed that several 
fine-mapped genes were associated with the follow-
ing DisGeNET terms: coronary heart disease (21 genes, 
FDR = 3 ×  10−9), coronary artery disease (20 genes, 
FDR = 9 ×  10−8) and cardiovascular diseases (19 genes, 
FDR = 6 ×  10−7), while enrichment was also observed for 
diabetes (20 genes, FDR = 9 ×  10−6), and diabetes melli-
tus (20 genes, FDR = 1 ×  10−4) (Fig. 3B; Additional file 2: 
Table S8).

To identify potential causal genes whose expression 
contributes to cardiovascular risk, we tested for asso-
ciation the predicted expression of the 53 fine-mapped 
genes with a set of cardiovascular outcomes. The tested 
outcomes were coronary artery disease (CAD), myo-
cardial infraction (MI), angina pectoris (ANG), athero-
sclerosis (ATH) and atrial fibrillation (AF) from three 

Fig. 3 Transcription-wide associated genes for 190 metabolites. A 3D Manhattan plot of the 2537 gene-metabolite associations in the overall 
multi-tissue meta-analysis. B Summary of the fine-mapped 53 genes for metabolites. C Upset plot of the 53 fine-mapped gene-metabolite 
associations per metabolite class. D Distribution of the 53 fine-mapped genes among metabolite classes and specific cell type categories
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large studies of European population (CARDIoGRAM-
plusC4D [52], FinnGen [53] and UK Biobank [54, 55]) 
(Additional file  2: Table  S4). As result, the gene expres-
sion of 15 genes were identified as associated with car-
diovascular outcomes except for AF, comprising 51 
gene expression-cardiovascular outcome associations 
(Table  2 and Additional file  2: Table  S9). Most of these 
associations were identified in the overall multi-tissue 
meta-analyses results, but additional associations were 
identified in the meta-analyses results including only tis-
sues within immune (7 out of 36 total associations in this 
category: 7/36), mesenchymal (3/24), neural (1/15) and 
epithelial (0/20) tissue categories (Fig.  4A). The genes 
associated with an outcome in at least two datasets, thus, 
replicating results were PCSK9, CELSR2, PSRC1, APOB, 
HCG27 and LPL (Fig. 4A and Table 2). Interestingly, the 
PCSK9 gene showed stronger effects in the association 

with cardiovascular outcomes in immune tissues meta-
analysis, while CELSR2 gene in epithelial tissues meta-
analysis. Additionally, the genes APOB, HCG27 and LPL 
appear to play roles in immune and mesenchymal tissues. 
This suggests that these genes might influence immune 
functions and the behaviour of mesenchymal cells, which 
are critical for the structure but also function of connec-
tive tissues (Table 2 and Additional file 2: Table S9).

Mendelian randomization approach
Genetically informed mediation analysis was performed 
to infer causal mediation in the relationship between 
gene expression of the 6 identified genes (PCSK9, 
CELSR2, PSRC1, APOB, HCG27 and LPL), metabolite 
levels and cardiovascular risk. To do so, we apply a Men-
delian randomization approach in several steps. First of 
all, we identified the metabolites, related to the 6 genes 

Fig. 4 Transcription-wide associated genes for cardiovascular outcomes. A Upset plot of the 15 gene-cardiovascular phenotypes associations 
per tissue category and summary of the 6 replicated genes. B Summary of the genetically informed mediation inference analysis among the 6 
genes, metabolite levels and cardiovascular risk



Page 17 of 22Carreras‑Torres et al. Genome Medicine          (2024) 16:122  

of interest, that were associated with CAD risk under a 
MR approach using the SNPs identified in this study as 
instruments [57]. The metabolites associated with CAD 
risk were mainly atherogenic metabolites, including the 
steroid parameters (esterified, free and total cholesterol), 
levels of small, medium, large and total LDL particles, 
cholesterol in IDL, LDL and VLDL particles, triglyc-
erides in IDL and levels of triglycerol C52:2 and C52:4 
(Additional file 2: Table S10). Second, for each gene, we 
identified the main eQTL in a relevant tissue (blood for 
PCSK9, CELSR2, PSRC1, HCG27 and LPL, and adipose 
subcutaneous tissue for APOB) of GTEx Consortium 
[46]. Then, we estimated the MR effect of gene expression 
on the metabolite levels identified in the previous step 
and on the CAD risk in the three datasets (CGC4D, UK 
Biobank and FinnGen study) [57]. As expected, all results 
were significant, except for the genes APOB and HCG27 
on the FinnGen CAD risk (Additional file 2: Table S11). 
Finally, we decomposed the total effects of gene expres-
sion on CAD risk into mediated effects and non-medi-
ated effects by metabolites [62]. We observed that for 
the genes APOB, HCG27 and LPL, the effects mediated 
by metabolites were significant and explaining the total 
effects, letting null contribution to non-mediated effects 
of gene expression of these genes on CAD risk (Fig. 4B, 
Additional file  2: Table  S12). For the genes PCSK9 and 
CELSR2, the effects mediated by metabolites were signifi-
cant and partially explaining the total effects, thus, some 
effect non-mediated by the tested metabolites remained 
(Fig.  4B, Additional file  2: Table  S12). Finally, the gene 
PSRC1 showed opposite effects of mediated and non-
mediated effects resulting in a total negative contribu-
tion of gene expression on CAD risk, i.e. being protective. 
This was the result of an increasing risk effect mediated 
by concentrations of total LDL, i.e. expression of PSRC1 
increases concentrations of total LDL and CAD risk, but 
a protective effect non-mediated by the tested metabo-
lite, i.e. expression of PSRC1 decreases CAD risk by inde-
pendent pathways than LDL levels (Fig.  4B, Additional 
file 2: Table S12).

Discussion
Over the past decade, numerous GWAS have investi-
gated metabolite levels and cardiovascular outcomes, 
and provided hundreds of genetic regions associated with 
these traits [64]. However, the interpretation of GWAS 
findings, the identification of the causal gene underlying 
susceptibility and the evaluation of relationships between 
genetic regions, metabolite levels and cardiovascular risk 
have remained challenging. In this study, to link metab-
olite-mediated cardiovascular genetic risk loci to key 
cell types and tissues, we performed integrative analy-
ses spanning multiple GWAS on metabolite levels and 

cardiovascular diseases, and gene expression reference 
panels with different broad transcriptional programs 
under a genetically informed inference framework. We 
performed genome-wide and transcription-wide asso-
ciation analyses on levels of 190 plasma metabolites and 
metabolite ratios, from large European datasets includ-
ing novel 4974 individuals of the Spanish GCAT cohort, 
and on risk for cardiovascular diseases, from three large 
European studies. In addition, because the interpretation 
of the TWAS results is not straightforward by the poten-
tial identification of bystander genes, we infer media-
tion in the relationship between gene expression of six 
top associated genes (PCSK9, CELSR2, PSRC1, APOB, 
HCG27 and LPL), metabolite levels and cardiovascular 
risk. Interestingly, our analysis revealed that the follow-
ing atherogenic metabolites were the mediators of car-
diovascular risk: steroid parameters (esterified, free and 
total cholesterol), levels of small, medium, large and total 
LDL particles, cholesterol in IDL, LDL and VLDL parti-
cles, triglycerides in IDL and levels of triglycerol C52:2 
and C52:4.

Some of the observed genetic associations are pre-
dicted to have functional impact, such as the rare non-
synonymous SNP in PCSK9 gene [52], the common 
non-synonymous SNPs in APOB [65], and the non-
frameshifting deletion in APOB gene [66], inducing LDL 
cholesterol and consequently affecting CAD risk. How-
ever, the SNPs identified in APOB in our analysis were 
different from the ones observed in a Japanese study [65], 
pointing to population-specific functional associations.

Results from the multiomic integration approach iden-
tified 53 fine-mapped genes, most of them associated 
with a single metabolite class; while specificity for tissue 
type category was not widely observed. In contrast, in 
the analyses for cardiovascular outcomes, we identified 
15 genes, out of the 53 genes, replicating the results for 
six of them, which gene expression was associated with 
cardiovascular outcomes showing stronger association in 
immune tissues. The identification of HCG27 gene as the 
causal gene for CAD risk in 6p21 locus is a new finding 
of this study. PCSK9 on 1p32 and CELSR2 and PSRC1 on 
1q13 were already associated with cardiovascular risk in 
previous GWAS [52, 67–70]. As well, APOB (2p24) and 
LPL (8p21) genes have been previously associated with 
LDL cholesterol and triglycerides metabolism, and CAD 
risk [52, 65, 71, 72].

Regarding the MHC region, previous studies did not 
identify a clear target gene for the observed cardiovas-
cular association [70]. HCG27 is a long noncoding RNA 
(lncRNA) whose locus was associated with monocyte/
leukocyte ratio [73], and circulating HCG27 lncRNA has 
been associated with acute ischemic stroke and intrac-
ranial haemorrhage via inflammation-related signalling 
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pathway [74, 75]. Inflammation in tissues can disrupt 
normal lipid storage and mobilization processes, which 
would explain the previous associations between MHC 
region and circulating triglycerides levels [76, 77]. Our 
results showed that HCG27 lncRNA expression in 
immune cells is associated with cardiovascular risk medi-
tated by triglycerol levels. Therefore, HCG27 is a func-
tional candidate gene to explain the GWAS association 
with CAD risk.

In the 1p32 region, the pointed gene which gene expres-
sion would be related to CAD risk was PCSK9 in tissues 
enriched with immune cells, which included the liver tis-
sue. As observed in the Human Protein Atlas browser 
(https:// www. prote inatl as. org/), the protein encoded by 
PCSK9 is mainly enriched in the liver, but also expressed 
in intestine, kidney and blood vessels. Our results indi-
cate that the contribution of PCSK9 on CAD risk is partly 
mediated by levels of subspecies of cholesterol and LDL 
particles, and partly mediated by independent pathways. 
Interestingly, the role of PCSK9 reducing LDL cholesterol 
was found to act via endosome/lysosome LDLR degrada-
tion [78]. However, it was observed that PCSK9 inhibi-
tors reduced LDL cholesterol in more than 60% of initial 
levels on top of statin therapy, while the reduction in car-
diovascular risk was about 15%, much less than expected 
[79]. This has been partially explained by potential less 
benefit in statin-treated patients, and by the lack of anti-
inflammatory effect of PCSK9 inhibitors. In addition, an 
increasing number of studies suggested that PCSK9 also 
influences the haemostatic system, by altering platelet 
function and the coagulation cascade [80], and inflamma-
tory, apoptotic and immune pathways [81]. Our results 
add evidence on this line where the relation between 
PCSK9 and CAD risk appears to transcend lipid levels.

In the case of the 1p13 region, TWAS results identi-
fied both CELSR2 and PSRC1 as genes whose expression 
would modify lipid levels and CAD risk. Genetic studies 
early identified this locus as involved in lipid metabolism 
and CAD risk [82, 83]. Interestingly, PSRC1 genetic vari-
ants showed significant variation among different popu-
lations, being both protective in East Asian populations 
but risk factors in European populations [84]. Beyond 
lipid metabolism, the role of PSRC1 gene in cell growth 
and formation and progression of atherosclerotic plaque 
is well established [67]. Also, integrative functional anal-
yses identified that PSRC1 variants may regulate gene 
expression of PSRC1, CELSR2, SORT1 genes in the liver, 
which alter LDL cholesterol levels and CAD risk, but 
also circulating granulin [85]. In particular, that study 
observed how the eQTL used for PSRC1 in our study was 
inversely associated with protein levels of PLA2G12B, 
C1QTNF1, CA10 and GRN, which, in turn, can affect 
CAD risk. These potential mechanisms of action would 

explain our observations on the opposite effects of lipid 
mediated and non-mediated effects of PSRC1 gene 
expression on CAD risk, as well the variation among dif-
ferent populations or type of patients, being of risk when 
altering levels cholesterol particles but protective when 
acting on independent pathways. Further functional 
analyses are required to determine the multifaceted con-
tributions of PSRC1 gene expression on CAD risk.

An interesting observation of this study is that gene 
expression associated with cardiovascular risk pheno-
types often showed a stronger association in tissues with 
a high percentage of immune and mesenchymal cells. 
This is in accordance with atherosclerosis as a disease 
associated with immune-related pathways, where mac-
rophages, monocytes and T cells play a central role in the 
inflammatory response, plaque development and throm-
bosis [86–88]. In addition, there is a growing evidence on 
the role of mesenchymal cells, beyond tissue structure, 
on epithelial cell differentiation or intestinal immune cell 
education [89], reinforcing the increasing evidences for 
the gut-cardiac paradigm in cardiovascular health [90]. 
Increasing evidence of immune cells action is reported. 
A higher cancer risk has been associated with a high 
immune cell tissue content [91]. Here, the gene expres-
sion profiles acting in immune cells and tissues with high 
content of immune and mesenchymal cells provided by 
this study will contribute to understanding the molecu-
lar processes driving cardiovascular risk. Gene expres-
sion of these genes can be an attractive therapeutic 
target to modulate atheroma progression, regression or 
stabilization.

Another interesting finding of this study is the enrich-
ment of the fine-mapped genes in genes associated with 
nutritional and metabolic diseases. Accordingly, triglyc-
eride-rich lipoproteins particles, LDL particles, tricarbo-
xylic acids and branched-chain amino acids have been 
associated with obesity, beta-cell function, insulin resist-
ance and incident type 2 diabetes (T2D) [92–95]. In this 
study, a considerably proportion of fine-mapped genes 
were associated with carboxylic acids, and none of these 
were associated with cardiovascular outcomes. There-
fore, the identified carboxylic acid genes could be par-
tially driving this enrichment.

Regarding limitations and future analyses, it should be 
noted that these results are restricted to European pop-
ulations and cannot be generalized to other continen-
tal populations. For instance, non-synonymous SNPs in 
APOB gene identified in this study differ from SNPs iden-
tified in a Japanese study. LD patterns of European sam-
ples or co-regulating genes can originate false positives, 
confounded results, and complicated the interpretation 
of the results. Thus, transcription instrumental-based 
results from different ancestry populations are needed to 

https://www.proteinatlas.org/
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tease out causal genes. In addition, our results are based 
on the prediction of gene expression values in a TWAS 
framework. The predictive performance of gene expres-
sion prediction models is limited and depends on the 
sample sizes of the eQTL datasets used for training the 
statistical models. Therefore, future trials and functional 
analyses are needed to definitely validate the causative 
role of gene expression of the identified genes in the con-
text of the proposed key cell types and tissues for metab-
olite levels and cardiovascular risk. Finally, since plasma 
was not always obtained in fasted conditions, genome-
wide analyses were adjusted correcting by chylomicrons 
as a closely related measure of the post-prandial phase. 
However, this correction could obscure the genetic vari-
ants involved in chylomicrons biology [96–98].

Conclusions
We provided evidence for 53 candidate genes whose 
expression is associated with metabolite levels. Out of 
these 53 genes, the gene expression of 6 was robustly 
associated with cardiovascular risk phenotypes show-
ing stronger association in immune cells and tissues 
with high immune component, including the novel gene 
regulatory target HCG27. In addition, we estimate the 
extent to which gene expression affect cardiovascular 
risk mediated and non-mediated by metabolite levels. 
These results suggest novel potential gene-drug targets to 
reduce the risk for cardiovascular outcomes by modify-
ing atherogenic blood metabolite levels.
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