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Summary

Liquid phase transmission electron microscopy allows the
imaging of materials in liquid environments. The sample is
encapsulated within electron-beam transparent windows and
hence protected by the ultrahigh vacuum necessary within
the electron gun. Such an approach allows to study biological
and soft materials in their natural environment and offers the
possibility of accessing their dynamic nature. Yet, the electron
beam scattering from the windows and solvent increases the
image noise and blur. Herein, we propose a pipeline to both
de-noise and sharpen images obtained by liquid transmission
electron microscopy. We develop the workflow in a way that
it does not require any human interference, nor introduce
artefacts, but actually unveils features of the imaged samples
covered by the noise and the blur.

Introduction

Every measurement is comprised of the actual signal and its
associated noise. The presence of noise covers and distorts the
original signal often modifying structural features of the sub-
ject under study. The tremendous advances in imaging tech-
niques achieved in the last decades have in turn generated
a vast development in denoising algorithms aimed to restore
the signal lying under the noise components. Many existing
approaches (Shao et al., 2014) have been tailored to each par-
ticular imaging process and type of noise (Rohit & Ali, 2013).
The specificity associated to denoising algorithms have thus
prevented the production of a general high-performance al-
gorithm that operates in all imaging modalities (Rohit & Ali,
2013). Herein we propose an algorithm that aims to recover
images generated by liquid transmission electron microscopy
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LTEM (De Jonge & Ross, 2011), a cutting-edge imaging modal-
ity that allows real time imaging of nanoscopic structures
within liquid and monitor dynamic processes. This approach
offers a step-change in our ability to study matter in its virgin
state on the nano and micron scale, removing the artefacts
induced by drying or cryogenic treatments. LTEM imaging
find applications in a myriad of research fields from electro-
chemical reactions (Radisic et al., 2006), nanocrystals growth
(Zheng et al., 2009) and tomographic reconstructions of par-
ticles in liquid (Marchello et al., 2019). However, all these
investigations require highly resolved images which need a
few postprocessing steps aimed to recover essential features
of the structures under study. Conventionally, EM images are
heavily affected by different types of noise, mainly due to the
fluctuation in the intensity of the beam, secondary electrons
and the readout noise of the detector (Narasimha et al., 2008).
In the case of LTEM the liquid nature of the specimen adds an
additional component to the overall existing noise. Hence, as
a result existing algorithms are inadequate for restoring LTEM
images. The resolution of the images is also further lowered by
the presence of the liquid media that adds blurring to the im-
ages. In addition, image corruption is remarkably worse when
studying organic samples, as they are made of light elements
with low electron density. The investigation herein presented
aims to improve the resolution of images from organic mate-
rials recorded via LTEM.

Materials and methods

Materials

Polymer synthesis and particle formation. Poly(2-(metha-
cryloyloxy)ethylphosphorylcho-line)-poly(2-diisopropylami-
noethyl methacrylate) PMPC25-PDPA70 amphiphilic block
copolymers were synthesised by atom transfer radical
polymerisation (ATRP) as reported by Du et al. (2005).
PMPC25-PDPA70 polymeric particles were formed by the
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pH-switch method. First, the polymers were dissolved in
phosphate-buffered saline PBS at pH 2 in a concentration
of 10 mg mL–1 solution; then, the pH was slowly raised
to 7.4 adding sterile NaOH (0.5 M) dropwise. The initial
transparent solution became milky due to the formation of
the polymer nanostructures. The solution was purified by
size-exclusion chromatography SEC, where the solution was
passed through a size exclusion column filled with Sepharose
4B, bead diameter between 45 and 165 µm, purchased
from Sigma-Aldrich. SEC was performed in order to remove
polymer aggregates and larger structures. The PMPC-PDPA
polymer particle solution was diluted to 1.5 mg mL–1 in PBS
and imaged.

Poly(ethylene glycol)-poly(methionine) PEG-PMET Poly
(ethylene glycol)-b-poly(L-methionine) block copolymer
PEG125-PMET120 vesicles were produced by the solvent-switch
method. Briefly, PEG125-PMET120 (molecular weight (Mw):
25 kDa by 1H-NMR (nuclear magnetic resonance), 26 kDa and
1.4 polydispersity by gel permeation chromatography (GPC))
was previously synthesised according to Yamada et al. (2013),
with some modifications. 10 mg of the isolated polymer were
dissolved in 0.5 mL of a mixture 1 : 1 of tetrahydrofuran:
dimethyl sulfoxide (THF:DMSO). Next, 1.15 mL of milliQ wa-
ter was added using a syringe pump at 1 µL min–1 rate while
keeping the sample under stirring at 500 rpm at room temper-
ature. Finally, the sample was diluted with 1.35 mL of milliQ
water and dialysed against water (×5) using Spectra/Por 6
Dialysis Tubing, 3.5 kD MWCO (Spectrum labs). The polymer
vesicle solution was further diluted to 1.5 mg mL–1 in PBS and
imaged.

Ferritin. Equine ferritin was purchased from Sigma-Aldrich
and diluted at 2 mg mL–1 in PBS.

Imaging methods

All the materials were imaged in solution with the Ocean
holder, manufactured by DENSsolution. In the holder, the sam-
ples were protected from vacuum by entrapping them into a
liquid chamber made by two chips of silicon nitride (SixNy).
One of the chips had a 200 nm-spacer which allowed for the
liquid sample to be channelled into the liquid cell. Both chips
had a 50 nm thick electron transparent viewing window at
their geometrical centre with size 10µm×200µm. The spacer
is designed to keep the thickness of the liquid layer constant
during the experiment. However, in practical terms the thick-
ness of the observation window is the result of the height of the
spacer, that is 200 nm and the bulging effect experienced by
the SixNy windows when the holder is inserted into the micro-
scope. The window bulging effect has been reported elsewhere
(De Jonge et al., 2009) and is due to the he differential pres-
sure between the microscope column and the interior of the
liquid cell. The poly(methyl methacrylate) PMMA protective
layer covering the SixNy cell chips was removed by rinsing the

chips in HPLC-graded acetone and HPLC-graded isopropanol
for 5 min each. Then, the chips surface was further cleaned by
air plasma discharge for 13 min which increased the surface
hydrophilicity. The cleaned chips were placed into the liquid
holder, where 1.5 µL of the sample was deposited onto the
bottom chip and enclosed with the top chip. After sealing the
liquid cell and holder, 300µL of the liquid sample was injected
with a peristaltic pump at 20 µL min–1 via the inlet tube until
the liquid cell, and outlet tubes were filled in with the sample.
Inlet and outlet tubes were then connected forming a closed
loop with the liquid cell. The holder was allowed to rest for
5 min before inserting it in the microscope to avoid convection
effects which may alter the Brownian motion of the nanostruc-
tures in the liquid media. The experiments were performed in
static condition.

The images used to implement the proposed denoising al-
gorithm were produced by a system comprises a JEOL JEM-
2200FS transmission electron microscope TEM equipped with
a field emission gun (FEG) at 200 kV, and an in-column Omega
filter. Two imaging modes, transmission electron microscopy
TEM and scanning transmission electron microscopy STEM,
were used to demonstrate that the imaging process here pre-
sented works independently from the imaging modes and or-
ganic samples used. In TEM mode, the camera was the direct
detection device DDD in situ K2-IS camera from Gatan, which
allowed low-dose imaging modes facilitating both high spatial
(3838 × 3710 pixels) and temporal resolution. Images were
acquired in both counted, Figures 2 and Figure 3, and lin-
ear mode, Figure 4, with an exposure time of 0.1 s. Electron
doses for the images shown in Figures 2–4 were 0.148e−/Å2,
0.517e−/Å2, 6.429e−/Å2, respectively. In STEM mode, the
Hamamatsu screening camera of the microscope was used
(2048 × 2048 pixels). STEM images (Figures 6A, E) were col-
lected at a dwell time of 3 s and a total dose of 47.590e−/Å2

and 74.335e−/Å2, respectively.

Imaging processing methods

From a mathematical point of view, a digital image can be
described by using Eq. (1).

IN = IO × B + N, (1)

Where IN is the result of the imaging process, IO models the
original noiseless image, B the blurring function and N the
noise component, here considered as additive. The objective
of the proposed pipeline is to restore the original image IO ,
suppressing the noise N and identifying the blurring matrix B
(Banham & Katsaggelos, 1997). However, the high variety of
sources that can produce noise makes the distribution of the
noise hard to estimate (Kushwaha et al., 2011). For conven-
tional TEM images the blurring term B does not constitute a
true problem and is compensated by the contrast transfer func-
tion (CTF) estimation, which models the distortion introduced
by the microscope (Rohou & Grigorieff, 2015). Unfortunately,
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none of the image restoration algorithms developed for con-
ventional TEM (Narasimha et al., 2008) are able to account
for the presence of liquid media in the imaging process. Despite
the presence of the liquid that alters the B term, Eq. (1) can
still be considered valid for LTEM images.

The approach proposed in this work is a two-stage single in-
put pipeline, aiming to recover the noiseless image IO . The first
stage of the pipeline is responsible for identifying and suppress-
ing the noise, whilst the second stage restores the sharpness
of the image, estimating and removing the blurring function.
Figure 1 shows the flowchart of the pipeline, highlighting in-
puts and outputs of each stage.

The first preprocessing block receives in input the LTEM im-
age, which is comprised of the image data and the metadata,
a text file containing the settings of the microscope. First, the
image data is stored, while the metadata is discarded, as it pro-
vides no value for the image analysis. Then, the image data
is processed by applying the median filter, which removes the
very black and very white noise pixels corrupting the image
(Chan et al., 2005). Additionally, the image is divided into
different patches that is selected areas of pixels. The mean
intensity values of the patches are then subtracted from the
patches intensity in order to correct nonuniform illumination
and remove any source of bias resulting from the illumina-
tion. Consequently, the intensity values of the patches are
centred to 0, responding uniformly to the different steps of the
pipeline (Stark, 2000). The output of the preprocessing step
is fed in input to the denoising block which applies the Pro-
gressive Image Denoising (PID) algorithm (Knaus & Zwicker,
2014) in Figure 1. This method iteratively processes images
in three steps: (i) separates the noise from the actual signal, (ii)
estimates the noise component for every iteration and finally
(iii) applies a dual-domain image denoising (DDID) filter on
both spatial and Fourier domains (Knaus & Zwicker, 2013).
A great advantage of using the PID denoising algorithm re-
lies on the absence of artefacts in the outcome of the process,
as proven by Knaus & Zwicker (2014). Due to the iterative
structure of the method, the most critical parameter affect-
ing the algorithm performance is the number of iterations.
Figure 2 shows an example of LTEM image of PMPC-PDPA
particles in PBS solution where the algorithm PID has been
applied.

The results of the proposed pipeline method are shown when
varying the number of iterations in Figure 2(B). A quantifica-
tion of the noise removed from the algorithm can be performed
by comparing the original noiseless image to the output of the
pipeline. However, in LTEM the noiseless original image is
never available, and any quantitative analysis of the goodness
of the algorithm results impossible to perform (Mohammad-
Djafari, 2013).

From the results shown in Figure 2, it emerges how the
noise decreases proportionally to the number of iterations.
The images produced after performing 30 iterations do not
significantly differ with respect to each other. Consequently,

30 iterations was set as default value in order to reduce the
complexity of the algorithm.

After the noise has been suppressed, the image can enter
the deblurring final stage of the algorithm (Fig. 1). Some pre-
liminary considerations must be taken into account regarding
the holder used for imaging in liquid phase. As mentioned
above the holder encloses liquid samples into a liquid cell and
between two electron transparent SixNy windows. However,
when the holder is inserted into the microscope, the differential
pressure existing between the interior of the liquid cell and the
microscope generates a bulging effect on the observation win-
dows. The bulging experienced by the flexible silicon nitride
observation windows in turn increases the thickness of the
liquid layer enclosed by the liquid cell. The variation in liquid
thickness however is not uniform across the liquid cell, but it
seems to reach its maximum value at the middle of the observa-
tion windows. Subsequently, the range of thicknesses adopted
by the liquid layer can be matched to local values of the blur-
ring function that corrupts the image. The blurring function
corrupting the LTEM images comprises the local blurring con-
tribute of the liquid and the CTF of the microscope. Therefore,
estimating a priori a global blurring function is impossible. The
general procedure employed in the present investigation in-
volved estimating the blurring function, from now on referred
to as kernel, and then deconvolving it to the blurred image
to restore sharpness. From a mathematical point of view, this
scenario can be described as a blind deconvolution problem. In
order to solve the blind deconvolution problem, we extended
the methodology reported by Yuan et al. (2007) by splitting
the image into different areas, estimating the kernel of each
patch. This procedure results in a local implementation of the
method proposed by Yuan. Further on, this local extension of
Yuan’s method will be referred to as LED (Local Extension De-
blur). It is worth specifying that to further reduce the variation
of the thickness of the liquid layer, the images were recorded
close to the corners of the observation windows, where the
thickness is at its lowest value.

Both Yuan’s and LED method require two images in input:
a blurred low noise image, containing information about the
structure and a sharp noisy image, carrying information about
the details (Yuan et al., 2007). We used the PID image as the
blurred low noise image, and the median filtered image as
the sharp noisy image. The image to set as second input was
median filtered in order to improve the deblurring result by
excluding the salt-and-pepper noise from the process, without
losing the sharp structure of the image. The median filtered
image produced better quality results if chosen as the initial
condition in the iterative estimation process of the kernel. In
order to avoid undesired copies of image features appearing
in proximity of sharp discontinuities also known as ‘ringing’
artefacts (Fergus et al., 2006), we performed a deconvolution
step to the residual image. This latter models the difference
between the original and the noisy images during the kernel
estimation process (Yuan et al., 2007).
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Fig. 1. Flow chart modelling the pipeline used for restoring the original sharp and noiseless image recorded via LTEM. The image recorded by LTEM (IN)
is first preprocessed by removing salt-and-pepper noise (INd) and any source of bias. Next, the resulting image is processed by the denoising algorithm to
suppress the noise. The output image at this stage (IB) together with the median filtered image (INd) are set as input to the deblurring algorithm, which
restores the original sharpness of the signal.

Fig. 2. PID algorithm results when executing different number of iterations performed on PMPC-PDPA particles when imaged via LTEM in TEM mode. (A)
Original raw image as provided by the K2 camera. (B) From left to right, the outcome of the PID algorithm iterated 10, 20, 30 and 40 times respectively.
The level of noise is reduced with respect to the number of iterations, but no significant differences between 30 and 40 iterations images can be noticed.

A GitHub repository has been created, describing the im-
plementation of the method and providing a folder contain-
ing the Matlab scripts. The repository can be found at the
following link https://github.com/GabrieleMarchello/LPEM-
post-processing-pipeline.

The various denoising algorithms employed in this study
were executed in a machine Ubuntu Linux 16.04 64-bit oper-
ative system with the following hardware specifications: two
central processing units (CPU) Intel Xeon Gold 5118 2.3 GHz
with 12 cores each, 128 GB (8 × 16 GB) 2666 MHz DDR4
RAM, 512 GB class 20 solid state drive (SSD) and dual SLI
NVIDIA Quadro P5000 16 GB as GPUs.

Results

The pipeline herein proposed extends and adapts to liquid
imaging by employing two of the state-of-the-art methods
well established within the current image denoising and
deblurring research fields. The PID algorithm was proven
to ensure high performance in image denoising, as shown
in Figure 3 comparing three different denoising algorithms
applied to the same image of ferritin in PBS (Marchello et al.,
2019). Figure 3(A) depicts the original noisy image, set as
reference. Figures 3(B)–(D) show the outcome of the denois-
ing processes performed via median filter, wavelet denoising
process (Mallat, 2009), and the PID algorithm, respectively.

Table 1. Reports the execution times of the various denoising algorithms
employed in this study.

Median filter Wavelet denoising PID

Figure 2 00 h 00’ 28’’ 00 h 01’ 06’’ 01 h 24’ 19’’
Figure 3 00 h 00’ 31’’ 00 h 00’ 56’’ 01 h 31’ 27’’

The median filter and the wavelet denoising algorithm are two
of the most common tools used in image analysis. However,
the PID algorithm produces higher quality images (see
Figs. 3B–D) and it is computationally demanding (Table 1).

The effect of the deblurring algorithm on the image of ferritin
obtained via LTEM can be further appreciated in Figure 4,
where the LED algorithm in Figure 4(D) was applied to the
raw image in Figure 4(A) and compared with Yuan’s method
in Figure 4(C). The PID denoised image is shown as reference
in Figure 4(B).

In order to understand better and evaluate the performance
of both deblurring algorithms, Yuan’s global and the reported
LED algorithm, a region of interest (ROI) with a fixed number
of pixels was chosen perpendicular to the edge of a particle
of ferritin, as shown in the images displayed in Figure 4. The
chosen ROI was then cropped in the four images as shown in
Figure 5.
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Fig. 3. Comparison of different denoising algorithms performed on ferritin imaged via LTEM in TEM mode. (A) Original raw image of ferritin as provided
by the K2 camera. (B) The outcome of the median filter, (C) wavelet denoising and (D) PID algorithm. The median filter results to be not very effective,
whilst the wavelet denoising removes not only the noise, but also the actual signal, resulting in a very smoothed image. Conversely, the PID algorithm
removes a significant component of the noise, preserving the features in original image. (E)–(H) The area surrounding a particle corresponding to the red
box in (A)–(D), respectively.

Fig. 4. Comparison on the performances of the deblurring algorithm performed on ferritin imaged via LTEM in TEM mode. (A) Original raw image of
ferritin as provided by the K2 camera. (B) PID denoised image. (C) Deblurred image produced by the original Yuan’s method. (D) LED deblurred image.

The selected ROI were flattened along the vertical direc-
tion, averaging the intensity of the pixels, in order to reduce
the variation of intensity. The pixel profiles were then inter-
polated hence obtaining the four smoothed functions shown
in Figure 5(C). The profile in blue and red, extracted from the
raw and the PID denoised images respectively, result almost
constant highlighting a mild variation in the pixel intensity
close to the location of the edge. Conversely, Yuan’s method
(yellow plot in Fig. 5C) stresses the variation of the pixel inten-
sity between the light background with high intensity values
and the dark particle of ferritin with low intensity values across

the edge. However, its sinusoidal function representation is
wide, highlighting a distortion effect due to blur, which moves
the peak of the function to the further left. On the contrary,
the LED technique (purple plot in Fig. 5C) enhances the in-
tensity values and decreases the width of the sinusoidal wave,
resulting in a sharper image. To produce the results shown in
Figure 5, the image was divided into areas of 128 × 128 pixels,
with a stride that is the shift between consecutive areas of 8
pixels. The execution of the deblurring algorithm with these
settings lasted circa 3 h. The processing time was strongly
influenced by the value of the stride. In this way for smaller
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Fig. 5. Edge analysis performed on ferritin imaged via LTEM in TEM mode. (A) Raw image as provided by the K2 showing the region of interest ROI area
(red rectangle) selected near the edge. (B) Selected ROI in the four different images displayed in (C) Interpolated pixel profiles averaged along the vertical
direction. The edge profile extracted from the raw, the PID denoised, Yuan’s deblurred and LED deblurred images are shown in blue, red, yellow and
purple respectively.

Fig. 6. Membrane analysis of PEG-PMET polymer nanoparticle obtained via LTEM in STEM mode dark field. (A), (E) Original raw images as provided
by the microscope detector in STEM mode. (B), (F) PID filtered images obtained from (A) and (E), respectively, corresponding to the outcome of the first
stage of the pipeline. (C), (G) Deblurred images, corresponding to the output of the pipeline. (D) Zoomed area of (C) highlighting how the membranes is
only present in the vesicular structures and not on micelles. The red halos highlight the membranes, while the red arrows point at the micelles. (H) The
kernel estimated during the deblurring process of (C) were set in input to the deblurring process of (G). The result (H) is an image with a very high level of
distortion and showing no membranes.

strides, the execution times were longer but delivered better
results than for larger strides. Thus, the previous values were
set as standards for further computations.

The most significant outcome achieved by the proposed im-
age analysis method arises in its ability to unveil details in
images of organic materials obtained by LTEM, details that

are otherwise hidden below noise and blur effects. An ex-
ample of the output generated by the different stages of the
pipeline is illustrated in Figure 6. The noisy image in Fig-
ure 6(A) depicts PEG-PMET vesicles and micelles in solution
obtained via LTEM in STEM mode. The raw images in Fig-
ures 6(A), (E) display aggregation of spherical nanoparticles,
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but it is not possible to discern whether the nano structures are
membrane-bound that is vesicles or solid-core spherical struc-
tures that is micelles. The application of the full pipeline in-
cluding the LED deblurring algorithm highlights the presence
of the vesicle membranes and makes them physically measur-
able (Figs. 6C,G). To ensure that the membrane features are
not artefacts introduced by the deconvolution algorithm, we
run two different tests. In Figure 6, the intermediate results of
the pipeline are presented. Figures 6(A), (E) show the two raw
images used for the membrane analysis, Figures 6(B), (F) the
corresponding PID denoised images and Figures 6(C), (G) the
deblurred images. First, the image containing polymer vesicles
and micelles in Figure 6(A) was processed, following the same
procedure as described above. Figure 6(D) depicts a zoomed
region of the deblurred Figure 6(C), containing vesicles with
membranes highlighted by the red halos, and micelles where
there is no presence of membranes, pointed by the two red ar-
rows. Second, the kernels that were estimated while processing
the image in Figure 6(C) were constrained as input to the de-
blurring process of the image in Figure 6(F). The result was
shown in Figure 6(C) and it clarified how a different kernel dis-
torts the original image, without generating any membranes.
Accordingly, the membranes seen in Figure 6(G) were not
thought to be artefacts produced by the deconvolution, which
removed only the blur introduced by the liquid nature of the
sample.

Conclusions

The pipeline presented here proposes a novel method for restor-
ing images of soft organic materials obtained by LTEM both in
TEM and STEM modes, which are highly corrupted by noise
and distorted by the liquid nature of the samples. In addition
to noise and distortion effects, low exposure times and fast
imaging conditions required to capture sample dynamics adds
undesired effects to the LTEM imaging process. The end-to-end
image analysis method has the ability to recover the original
images together with their sharpness, without introducing
any artefacts. Most notably, the deconvolution involved in the
deblurring algorithm offers the great advantage of unveiling
image details, which allows a better understanding of the na-
ture, structure and ultimately the function of the investigated
structures. Moreover, this fully automatised method efficiently
allows to process dozens of images in few hours, without the
need of any human interactions, boosting the performance of
LTEM image analysis.
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