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Abstract

We prove a functional law of iterated logarithm for the following

kind of anticipating stochastic differential equations

ξut = Xu
0 +

1√
log log u

k
∑

j=1

∫ t

0
Au

j (ξ
u
s ) ◦ dW j

s +

∫ t

0
Au

0(ξ
u
s )ds,

where u > e, W = {(W 1
t , . . . ,W

k
t ), 0 ≤ t ≤ 1} is a standard k-

dimensional Wiener process, Au
0 , A

u
1 , . . . , A

u
k : Rd −→ R

d are functions

of class C2 with bounded partial derivatives up to order 2, Xu
0 is

a random vector not necessarily adapted and the first integral is a

generalized Stratonovich integral .
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1 Introduction

Consider the Stratonovich differential equation on R
d

Xt = X0 +

k
∑

j=1

∫ t

0

Aj(Xs) ◦ dW j
s +

∫ t

0

A0(Xs)ds, (1)

where W = {(W 1
t , . . . ,W

k
t ), 0 ≤ t ≤ 1} is a standard k-dimensional Wiener

process, A0, A1, . . . , Ak : Rd −→ R
d are functions of class C2 with bounded

partial derivatives up to order 2 and X0 is a random vector not necessar-

ily adapted to the filtration associated with the Wiener process. Here the

stochastic integral term is defined as an anticipating Stratonovich integral

(see, for instance, the paper of Nualart and Pardoux, 1988). Under some

smooth conditions on X0 and the coefficients, Ocone and Pardoux (1989)

prove the existence and uniqueness of solutions for (1).

Millet, Nualart and Sanz-Solé (1992) consider, for ε > 0, the following

family of perturbed anticipating stochastic differential equation

Xε
t = Xε

0 +
√
ε

k
∑

j=1

∫ t

0

Aj(X
ε
s ) ◦ dW j

s +

∫ t

0

A0(X
ε
s )ds. (2)

They show that a solution of (2) can be expressed as the composition of the

following adapted flow

ϕε
t (x) = x+

√
ε

k
∑

j=1

∫ t

0

Aj(ϕ
ε
s(x)) ◦ dW j

s +

∫ t

0

A0(ϕ
ε
s(x))ds, x ∈ R

d (3)

and the initial condition, that means Xε
t = ϕε

t(X
ε
0). They also obtain a large

deviatons principle (LDP) for the family of laws of {Xε}ε>0.

It is natural to study the existence of an almost sure functional law of

iterated logarithm generalizing the Strassen Theorem. This problem has
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been studied for diffusions by Baldi (1986), for parabolic SPDEs by Chenal

and Millet (1999) and for stochastic Volterra equations by Ait Ouahra and

Mellouk (2005). In this paper, following the ideas presented by Baldi (1986),

we prove a similar result for an anticipating stochastic differential equation.

The structure of the paper is the following. In Section 2 we recall some

notations and results of Millet, Nualart and Sanz (1992) about the large devi-

ations principle for anticipating stochastic differential equations. In Section

3 we present our equation and we adapt the results of Millet, Nualart and

Sanz (1992) to our framework. Finally, in Section 4, we present our law of

iterated logarithm.

2 Large deviations principle

In order to present a large deviation principle we borrow the notations of

Millet, Nualart and Sanz (1992). For any integer m ≥ 1 and x ∈ R
m, we

denote by Hm
x the set of absolutely continuous functions f ∈ C([0, 1];Rm)

with f0 = x and
∫ 1

0
|ḟs|2 ds < +∞. If x = 0 we write Hm instead of Hm

0 .

Given f ∈ Hk we consider the function g(x) ∈ Hd
x , which is the solution of

the differential equation

gt(x) = x+
k
∑

j=1

∫ t

0

Aj(gs(x)) ḟ
j
s ds+

∫ t

0

A0(gs(x))ds. (4)

Millet, Nualart and Sanz-Solé (1992) prove the following Theorem:
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Theorem 2.1 Assume that:

(h) The coefficients A0, A1, . . . , Ak, B and M = 1
2

∑k
j=1Aj∂Aj are of class

C2 with bounded partial derivatives up to order 2.

(c) There exists x0 ∈ R
d such that for any δ > 0

lim sup
ε→0

ε logP{|Xε
0 − x0| > δ} = −∞.

Then, the family {P ε, ε > 0} of laws of {Xε
· = ϕε

· (X
ε
0), ε > 0} satisfies a

large deviation principle with rate function

I(g) = inf{I(f); f ∈ Hk, g = Fx0
(f)}, (5)

where Fx0
(f) denotes the solution of the ordinary differential equation (4)

with initial condition x = x0 and

I(f) =







1
2

∫ 1

0
|ḟs|2 ds, if f ∈ Hk,

+∞, otherwise.
(6)

3 Structure of our equation

We denote by ϕt(x) the flow ϕε
t(x) of (3) when ε = 1. Following the methods

introduced in Millet, Nualart and Sanz (1992), it will be useful to express

now ϕt(x) using Itô integral. So, we can rewrite ϕt(x) in the following form

ϕt(x) = x+
k
∑

j=1

∫ t

0

Aj(ϕs(x)) dW
j
s +

∫ t

0

B(ϕs(x))ds, (7)

with B = A0 +
1
2

∑k

j=1Aj∂Aj and where the stochastic integral term is now

defined as an Itô integral.
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For u > e we define

φ(u) =
√

uL(u), with L(u) = log log u.

Let µu
t (x) = φ(u)−1ϕut(φ(u)x). Using a change of variable and the scaling

property we have that

µu
t

(

x

φ(u)

)

=
x

φ(u)
+

1

φ(u)

(

k
∑

j=1

∫ ut

0

Aj(ϕs(x)) dW
j
s +

∫ ut

0

B(ϕs(x))ds

)

=
x

φ(u)
+

1

φ(u)

k
∑

j=1

∫ t

0

Aj(ϕus(x)) dW
j
us +

u

φ(u)

∫ t

0

B(ϕus(x))ds

=
x

φ(u)
+

√
u

φ(u)

k
∑

j=1

∫ t

0

Aj(ϕus(x)) dŴ
j
s +

u

φ(u)

∫ t

0

B(ϕus(x))ds,

where Ŵ denotes a standard k-dimensional Wiener process that we will also

denote by W . Then, we can write

µu
t

(

x

φ(u)

)

=
x

φ(u)
+

1√
log log u

k
∑

j=1

∫ t

0

Au
j

(

µu
s

(

x

φ(u)

))

◦ dW j
s

+

∫ t

0

Au
0

(

µu
s

(

x

φ(u)

))

ds,

where

Au
j (z) = Aj(φ(u)z), j = 1, . . . , k,

Au
0(z) =

u

φ(u)

[

B(φ(u)z)− 1

2

k
∑

j=1

d
∑

l=1

(Aj)
l∂lAj(φ(u)z)

]

.

Consider now the stochastic flow

ηut (x) = x+
1√

log log u

k
∑

j=1

∫ t

0

Au
j (η

u
s (x)) ◦ dW j

s +

∫ t

0

Au
0(η

u
s (x))ds. (8)
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Denote Xu
0 = φ(u)−1X0 and ξut ≡ ηut (X

u
0 ). Notice that under nice conditions

on the coefficients (see for instance Theorem 3.1 in Millet, Nualart and Sanz,

1992), we have

ξut = Xu
0 +

1√
log log u

k
∑

j=1

∫ t

0

Au
j (ξ

u
s ) ◦ dW j

s +

∫ t

0

Au
0(ξ

u
s )ds. (9)

We can now state the following theorem.

Theorem 3.1 Assume that:

(H) The coefficients Au
0 , A

u
1 , . . . , A

u
k and Mu = 1

2

∑k

j=1A
u
j ∂A

u
j are of class

C2 with bounded partial derivatives up to order 2 and there exist Ã0, Ã1,

. . . , Ãk of class C1 such that

lim
u→+∞

Au
j (x) = Ãj(x), lim

u→+∞
∂Au

j (x) = ∂Ãj(x), ∀j = 0, 1, . . . , k,

uniformly on compact sets on R
d.

(C) For any δ > 0,

lim sup
u→+∞

1

log log u
logP{|Xu

0 | > δ} = −∞.

Then, the family {P u, u > e} of laws of {ξu· , u > e} satisfies a large deviation

principle with rate function

Ĩ(g̃) = inf{I(f); f ∈ Hk, g̃ = F̃0(f)}, (10)

where I(f) is defined in (6) and F̃0(f) denotes the solution of the ordinary

differential equation

g̃t =

k
∑

j=1

∫ t

0

Ãj(g̃s) ḟ
j
s ds+

∫ t

0

Ã0(g̃s)ds. (11)
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Proof: The same proofs as in Millet, Nualart and Sanz (1992) changing

Au
0 , A

u
1 , . . . , A

u
k,M

u by A1, . . . , Ak, B, M , respectively, still work. The proof

is based on an inequality that we will give in Theorem 3.2. �

Recall the family {P u, u > e} of laws of {ξu· , u > e} satisfies a large

deviation principle with rate function Ĩ defined in (10) if Ĩ is lower semicon-

tinuous; for every a > 0 the set {g̃ ∈ C([0, 1];Rd); Ĩ(g̃) ≤ a} is compact; and

for any open set G and any closed F of the space C([0, 1];Rd).

lim inf
u→+∞

1

log log u
logP{ξu· ∈ G} ≥ − inf{Ĩ(g̃), g̃ ∈ G}, (12)

and

lim sup
u→+∞

1

log log u
logP{ξu· ∈ F} ≤ − inf{Ĩ(g̃), g̃ ∈ F}. (13)

In the sequel we will denote by ‖·‖ the supremum norm on C([0, 1];Rd)

and by ‖·‖O the supremum norm on C([0, 1]× O;Rd) for O ⊆ R
d.

Theorem 3.2 Assume (H). Fix λ > 0. Then, for every positive reals R, τ

and a compact subset O of Rd, there exist u0 > e and α > 0 such that, for

any u ≥ u0 and f ∈ Hk with I(f) ≤ λ, we have

P

(

‖ηu − g̃‖O > τ,

∥

∥

∥

∥

1√
log log u

W − f

∥

∥

∥

∥

≤ α

)

≤ exp (−R log log u) ,

where, for f ∈ Hk, g̃t is the solution of the ordinary differential equation (11)

and ηut is the adapted flow defined by (8).

Proof: Again, the proof follows the computations given in Millet, Nualart

and Sanz (1992) . �
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4 The law of iterated logarithm

The main result of this paper is the following.

Theorem 4.1 Assuming (H) and (C), the family {ξu· , u > e} is relatively

compact. Moreover, the a.s. limit set of {ξu} when u goes to infinity is

Θ = {g̃ ∈ C([0, 1];Rd); Ĩ(g̃) ≤ 1}.

In order to prove this theorem, following the method presented by Baldi

(1986), we need to check some preliminary lemmas. For the sake of com-

pleteness, we will give the main arguments.

Lemma 4.2 For every c > 1 and ρ > 0, there exists a.s. i0 = i0(ω) ∈ N

such that for every i > i0 we have

d(ξc
i

,Θ) := inf
g̃∈Θ

d(ξc
i

, g̃) < ρ, (14)

where

d(ξc
i

, g̃) = sup
0≤t≤1

|ξcit − g̃t|.

Proof: Let Θρ = {g̃ ∈ C([0, 1];Rd); d(g̃,Θ) ≥ ρ}. We first prove that there

exists δ > 0 such that

inf
g̃∈Θρ

Ĩ(g̃) > 1 + 2δ. (15)

Suppose that (15) is not true. Then there exists {g̃n, n ≥ 1} ⊆ Θρ such

that limn Ĩ(g̃n) = 1. For n large enough, g̃n belongs to the compact set

{g̃; Ĩ(g̃) ≤ 2}, and there exists a subsequence {g̃nk
, k ≥ 1} converging to g̃

in Θρ. As Ĩ is lower semicontinuous

1 = lim inf
k→+∞

Ĩ(g̃nk
) ≥ Ĩ(g̃),
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and we get that g̃ ∈ Θ. So d(g̃,Θ) = 0 what is a contradiction with the fact

that g̃ ∈ Θρ. Therefore, we can assume (15).

Now using (13) and (15) we have

lim sup
u→+∞

1

log log u
logP{ξu· ∈ Θρ} ≤ −(1 + 2δ),

then, for i large enough,

P{ξci· ∈ Θρ} ≤ exp
{

−(1 + 2δ) log log ci
}

≤ C

i1+δ
,

for some positive constant C. Finally, the lemma is an immediate conse-

quence of the Borel-Cantelli lemma. �

For every i ≥ 1 and c > 1 such that ci−1 > e, define

Γi = sup
ci−1≤u≤ci

d

(

ξu· ,
φ(ci)

φ(u)
ξc

i

·

)

Lemma 4.3 For every ρ > 0 there exists cρ > 1 such that for c ∈ (1, cρ) we

have

P {∃ i0(ω) s.t. Γi < ρ whenever i > i0} = 1.

Proof: We will prove that

P (lim sup
i→∞

{Γi ≥ ρ}) = 0.

From Lemma 4.2 it is enough to check that

P (lim sup
i→∞

{Γi ≥ ρ}, ‖ξci‖ ≤ C) = 0,

9



for some positive constant C.

First, notice that

ηut (X
u
0 ) =

1

φ(u)
ϕut(X0).

Then, for every δ > 0, taking i large enough, we get that φ(ci)
φ(ci−1)

≤ √
c(1 + δ)

and so by means of this fact and using that φ is nondecreasing we have, if c

is small enough,

{Γi ≥ ρ, ‖ξci‖ ≤ C} =

{

sup
ci−1≤u≤ci

d

(

ϕu·(X0)

φ(u)
,
ϕci·(X0)

φ(u)

)

≥ ρ, ‖ξci‖ ≤ C

}

⊆
{

sup
0≤s≤1

sup
s
c
≤t≤s

φ(ci)

φ(ci−1)

∣

∣

∣

∣

ϕcit(X0)

φ(ci)
− ϕcis(X0)

φ(ci)

∣

∣

∣

∣

≥ ρ, ‖ξci‖ ≤ C

}

⊆
{

sup
0≤s≤1

sup
s
c
≤t≤s

∣

∣

∣
ξc

i

t − ξc
i

s

∣

∣

∣
≥ ρ

2
, ‖ξci‖ ≤ C

}

= {ξci· ∈ ∆ρ},
(16)

where

∆ρ =

{

g̃ ∈ C([0, 1];Rd); sup
0≤s≤1

sup
s
c
≤t≤s

|g̃t − g̃s| ≥
ρ

2
, ‖g̃‖ ≤ C

}

.

Consider f ∈ Hk such that g̃ = F̃0(f) and g̃ ∈ ∆ρ. By (11), there exist

s ∈ [0, 1] and t ∈ [ s
c
, s) such that

k
∑

j=1

∫ t

s

|Ãj(g̃v)||ḟ j
v | dv +

∫ t

s

|Ã0(g̃v)|dv ≥ |g̃t − g̃s| ≥
ρ

4
.

On the other hand, using the hypothesis of the coefficients (H) and assuming

that c < 2, we have

k
∑

j=1

∫ t

s

|Ãj(g̃v)| |ḟ j
v | dv +

∫ t

s

|Ã0(g̃v)|dv ≤ C1

√

2|t− s| I(f) + C2|t− s|,

10



for some positive constants C1 and C2. Therefore

I(f) ≥ 1

C1

√

2(t− s)

(ρ

4
− C2(t− s)

)

,

and this implies the existence of cρ > 1 such that, if c ∈ (1, cρ), then I(f) > 2.

Then

inf{I(g̃); g̃ ∈ ∆ρ} ≥ 2.

Finally, for i large enough, since ∆ρ is closed, the last estimate together with

(16) and (13) yield that

P (Γi ≥ ρ, ‖ξci‖ ≤ C) ≤ P (ξc
i

· ∈ ∆ρ) ≤ exp
{

−2 log log ci
}

≤ C

i1+τ
,

for some τ > 0, and we can conclude this lemma by means of the Borel-

Cantelli lemma. �

Lemma 4.4 For every, ρ > 0 there exists a.s. u0(ω) > e such that, for

every u ∈ (u0,+∞), we have

d(ξu,Θ) < ρ.

Proof: Let c > 1 and i ∈ N such that e < ci−1 < u ≤ ci, the triangular

inequality gives

d(ξu,Θ) ≤ d

(

ξu,
φ(ci)

φ(u)
ξc

i

)

+ d

(

φ(ci)

φ(u)
ξc

i

, ξc
i

)

+ d(ξc
i

,Θ) := β1 + β2 + β3.

(17)

We first deal with β1. Taking c ∈ (1,+∞) close to 1 and i large enough,

Lemma 4.3 yields

β1 = d

(

ξu,
φ(ci)

φ(u)
ξc

i

)

<
ρ

3
. (18)
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Study now β2. Lemma 4.2 implies that, for i large enough, ‖ξcit ‖ is bounded.

For every δ > 0 there exists i large enough such that

1 ≤ φ(ci)

φ(u)
≤ φ(ci)

φ(ci−1)
≤

√
c(1 + δ).

Then, using these two facts, for c close enough to 1, we have that

β2 = d

(

φ(ci)

φ(u)
ξc

i

, ξc
i

)

= sup
0≤t≤1

∣

∣

∣

∣

φ(ci)

φ(u)
ξc

i

t − ξc
i

t

∣

∣

∣

∣

≤ sup
0≤t≤1

|ξcit |
∣

∣

∣

∣

φ(ci)

φ(u)
− 1

∣

∣

∣

∣

<
ρ

3
. (19)

Lemma 4.2 implies that, for i large enough,

β3 = d(ξc
i

,Θ) <
ρ

3
. (20)

So, we finish the proof of this lemma applying (18)-(20) to (17). �

Lemma 4.5 Consider g̃ ∈ Θ such that Ĩ(g̃) < 1. Then, for every ρ > 0,

there exists cρ > 1 such that, for every c > cρ, we have

P
{

d(ξc
i

, g̃) < ρ, infinitely often
}

= 1.

Proof: Let f ∈ Hk such that F̃0(f) = g̃ and I(f) < 1. For fixed ρ > 0,

define for ν > 0

Υi =

{
∥

∥

∥

∥

∥

1
√

ci log log ci
Wci· − f

∥

∥

∥

∥

∥

≤ ν

}

and Λi =
{
∥

∥ξc
i − g̃

∥

∥ ≤ ρ
}

.

Since P (lim supi→∞Υi) = 1, following the same argument as in Lemma 2.6

of Baldi (1986) and as a consequence of the scaling property, we only need

to prove that
∑

i

P (Υi ∩ Λc
i) < ∞. (21)

12



Notice first that

P (Υi ∩ Λc
i) = P

(

∥

∥

∥
ξc

i − g̃
∥

∥

∥
> ρ,

∥

∥

∥

∥

∥

1
√

log log ci
W − f

∥

∥

∥

∥

∥

≤ ν

)

≤ P1 + P2,

with

P1 = P

(

∥

∥

∥
ξc

i − g̃
∥

∥

∥
> ρ,

∥

∥

∥

∥

∥

1
√

log log ci
W − f

∥

∥

∥

∥

∥

≤ ν, |Xci

0 | ≤ τ

)

,

P2 = P
(

|Xci

0 | ≥ τ
)

.

For any τ , set Oτ the closed ball B(0, τ). Fixed ρ and τ , using Theorem 3.2,

there exits ν > 0 and i0 such that, for any i ≥ i0,

P1 ≤ P

(

∥

∥

∥
ηc

i − g̃
∥

∥

∥

Oτ
> ρ,

∥

∥

∥

∥

∥

1
√

log log ci
W − f

∥

∥

∥

∥

∥

≤ ν

)

≤ exp(−2 log log ci) ≤ C

i2
. (22)

On the other hand, hypothesis (C) yields

P2 ≤ exp(−2
√

log log ci) ≤ C

i2
, (23)

for i big enough.

Putting together (22) and (23), we easily obtain (21). �

Proof of Theorem 4.1: Lemma 4.4 implies that {ξu}u is relatively compact.

Moreover, Lemma 4.5 ensures that all the points of Θ are limit points.

�
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