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Abstract
We define the discrete degree of symmetry disc-sym(X) of a closed n-manifold X as
the biggestm ≥ 0 such that X supports an effective action of (Z/r)m for arbitrarily big
values of r . We prove that if X is connected then disc-sym(X) ≤ 3n/2. We propose
the question of whether for every closed connected n-manifold X the inequality disc-
sym(X) ≤ n holds true, and whether the only closed connected n-manifold X for
which disc-sym(X)= n is the torus T n . We prove partial results providing evidence
for an affirmative answer to this question.

Mathematics Subject Classification (2010) 57S17 · 54H15

1 Introduction

Let X be a closed topological manifold and let μ(X) be the set of natural numbers m
for which there exists an effective action1 of (Z/r)m on X for arbitrarily large values
of r . In other words,m ∈ μ(X)means that there exists a sequence of integers ri → ∞
and an effective action of (Z/ri )m on X for each i . By the theorem ofMann and Su [47]
the set μ(X) is finite. Define the discrete degree of symmetry of X to be the number

disc-sym(X) := max({0} ∪ μ(X)).
The discrete degree of symmetry can be equivalently defined taking into account all

finite abelian groups that act effectively on a given manifold, and not only those of the
form (Z/r)m . Indeed, wewill prove in Lemma 2.7 that disc-sym(X) coincides with the
smallest nonnegative integer k for which there exists a constant C such that any finite
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abelian group A acting effectively on X has a subgroup A′ satisfying [A : A′] ≤ C
and which can be generated by k or fewer elements.

One can regard the discrete degree of symmetry as an analogue for finite groups of
the (topological) torus degree of symmetry [34, p. 132], which has been extensively
studied in the literature (see, e.g., [14, 34, 41, 45, 60]). For a closed manifold X ,
this is defined as the maximal n for which the torus T n admits a continuous effective
action on X (by convention T 0 = {1}). We denote it by tor-sym(X). The torus degree
of symmetry is also called in some references the toral rank, see, e.g., [45, §11.8.1],
although in some other references the expression toral rank is reserved for free actions.

It is well known that if X is a connected topological n-manifold then tor-sym(X) ≤
n, with equality if and only if X is homeomorphic to T n (see Sect. 12.2). Since (Z/r)m

is isomorphic to the r -torsion Tm[r ] < Tm and, for any sequence ri → ∞, the
union

⋃
i T

m[ri ] is dense in Tm , it seems natural to expect that a closed connected
manifold X satisfying disc-sym(X) = m should look somehow as if it supported an
effective action of Tm . This heuristic can be turned into an actual theorem in some
situations (see, e.g., Theorems 1.9 and 1.10), but it has its limitations: while trivially
disc-sym(X) ≥ tor-sym(X) for any closed manifold X , there are examples of closed
connected manifolds for which the inequality is strict, as we will see below (see
Theorem 1.11). Nevertheless, it may still be true that the bound tor-sym ≤ dim is also
satisfied by disc-sym. We thus ask the following.

Question 1.1 Is the inequality disc-sym(X) ≤ dim X true for every closed connected
manifold X? If a closed connected manifold X satisfies disc-sym(X) = dim X, is X
homeomorphic to a torus?

If one removes the condition that X is connected then there is no hope to bound
disc-sym(X) by a function on the dimension of X . For example, the disjoint union of
k copies of the circle supports an effective action of T k , where the action on the j-th
circle is given by the projection to the j-th factor T k = (S1)k → S1.

If one considers only free actions of (Z/r)m on connected manifolds, then the first
part of Question 1.1 follows from a theorem of Baumgartner and Carlsson [1, Theorem
1.4.14] (see Theorem 3.1) and a lemma of Minkowski (see Theorem 3.3).

In this paper we prove several results partially answering Question 1.1 in the affir-
mative, as well as other results related to the discrete degree of symmetry. More
evidence in favor of Question 1.1 is provided in [54].

One may consider variants of the discrete degree of symmetry by considering only
actions of (Z/p)m for p prime, by considering only free actions, or by combining
both restrictions. Some of these variations have been studied in the literature, see, e.g.,
[31].

An interesting class of closed manifolds with nonzero discrete degree of symmetry
are closed strongly regular self-covering manifolds [58, 63], i.e., closed manifolds
which are homeomorphic to a nontrivial (necessarily finite) regular covering of them-
selves and which satisfy the additional property that each iterated covering is regular.
There are interesting relations between some of the results in the present paper about
rationally hypertoral manifolds and some results in [58] (see below).
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1.1 A Bound on the Discrete Degree of Symmetry

Our first result is the following.

Theorem 1.2 For any closed connected n-manifold X we have disc-sym(X) ≤ 3n/2.

Quantitatively, the previous theorem stays far from the bound suggested by
Question 1.1, but it shows a qualitative difference between the discrete degree of
symmetry and the rank of individual groups acting effectively on a given manifold.
The theorem of Mann and Su [47] mentioned earlier implies that if X is a closed
connected manifold and (Z/r)m acts effectively on X thenm is bounded by a function
involving the Betti numbers of X . Although the bound given in [47] could possibly be
improved, there is no hope to replace it by a constant depending only on the dimension
of X , because any finite group acts freely (hence effectively) on some closed connected
surface.

1.2 Discrete Degree of Symmetry of Rationally Hypertoral Manifolds

A closed, connected and oriented n-dimensional manifold X is said to be rationally
hypertoral if it admits a continuous map φ : X → T n of nonzero degree. If the
map φ can be chosen of degree ±1, then X is said called hypertoral in [59, 60].
Equivalently, X is rationally hypertoral if it admits classes α1, . . . , αn ∈ H1(X; Z)

such that α1 � · · · � αn 	= 0, because T n = (S1)n and S1 is an Eilenberg-MacLane
space K (Z, 1). Similarly, X is hypertoral if it admits classes α1, . . . , αn ∈ H1(X; Z)

such that α1 � · · · � αn is a generator of Hn(X; Z). For example, if X is any closed,
connected and orientable n-manifold then the connected sum T n�X is a hypertoral
manifolds. Similarly, if X is a closed complex submanifold of C

n/�, where � is a
lattice, then X is rationally hypertoral (see [66, p. 243]). See Theorem 5.1 for examples
of non hypertoral rationally hypertoral manifolds.

Theorem 1.3 Let X be a rationally hypertoral n-manifold. We have:

(1) disc-sym(X) ≤ n;
(2) if disc-sym(X) = n then the universal abelian cover of X is acyclic and there is

an isomorphism of rings H∗(X; Z) � H∗(T n; Z).

We recall some standard terminology for the reader’s convenience. A covering
space Y → X is abelian if it is regular and its group of deck transformations is abelian.
Choose a base point in X , let π = π1(X) and let X ′ be the universal cover space of X .
A connected cover f : Y → X is abelian if f∗π1(Y ) contains [π, π ]. The universal
abelian cover of X can be identifiedwith X ′/[π, π ]. A connected abelian coverY → X
is isomorphic to the universal abelian cover of X if and only if H1(Y ) = 0.

The converse of (2) in Theorem 1.3 is not true. For example, if X is the connected
sum of T 3 and Poincaré’s sphere, then H∗(X; Z) � H∗(T 3; Z) and the universal
abelian cover of X is acyclic. However, disc-sym(X) = 0. Indeed, disc-sym(X) > 0
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would imply that X supports a circle action, by [56] and the geometrization of 3-
manifolds (see, e.g., the arguments in [68, §2]). But X does not support any circle
action, by [60, Theorem 5.1].

Statement (1) in Theorem 1.3 follows from a somewhat routine extension to con-
tinuous actions of the construction described in [51, §2.1] and [55, §8.1]. The proof
of (2) is based on the following result on commutative algebra (see Corollary 6.3),
which is perhaps of independent interest.

Theorem 1.4 Let M be a finitely generated module over A := Z[t±1
1 , . . . , t±1

n ]. Sup-
pose that for every 1 ≤ i ≤ n there exists a nonzero integer di , a sequence of integers
(ri, j ) j satisfyingri, j → ∞as j → ∞, and A-module automorphismswi, j : M → M

such that w
ri, j
i, j coincides with multiplication by tdii . Then M is finitely generated as a

Z-module.

A similar theorem was proved independently, with a rather different proof, by L.
Qin, Y. Su and B. Wang in [58, Theorem G] (both the first version of [58] and that of
the present paper were posted almost simultaneously in the arxiv). One can actually
derive Theorem 1.4 from [58, Theorem G].2 Since this derivation is nontrivial and
our proof of Theorem 1.4 is elementary, not longer, and different from that in [58,
Theorem G], it is perhaps worthwhile to keep it here.

Theorem 1.4 is also used in the proof of the following result.

Theorem 1.5 Let X be a rationally hypertoral manifold. Suppose that X is homeo-
morphic to (Y �Y ′) × Z, where Y ,Y ′, Z are closed connected topological manifolds
satisfying dim Y = dim Y ′ > 1. If neither Y nor Y ′ are integral homology spheres,
then disc-sym(X) ≤ dim Z.

An analogue of the previous theorem for tor-sym instead of disc-sym, and for
the case where both Y and Z are tori, was proved by Schultz in [60, Theorem 5.1]
(Schulz assumes that Y ′ is not a homotopy sphere, which is slightly weaker than our
assumption).

Using the topological rigidity of tori, we deduce from (2) in Theorem 1.3 the
following.

Corollary 1.6 Let X be a rationally hypertoral n-manifold such that π1(X) is virtually
solvable. If disc-sym(X) = n then X is homeomorphic to T n.

Topological rigidity of tori is the statement that if X is a closed connected manifold
then any homotopy equivalence X → T n is homotopic to a homeomorphism. If
n ≤ 2 this is a consequence of the classification of compact connected manifolds of
dimensions at most 2. It was proved for n ≥ 5 by Hsiang and Wall [37], for n = 4 by
Freedman [26, §11.5] (see also [5]), and in dimension n = 3 it is a consequence of
Thurston’s geometrization conjecture proved by Perelman (see [7, 50] for proofs of
the geometrization conjecture, and [40, §5] for the proof that geometrization implies
topological rigidity of T 3). Topological rigidity of tori is a particular case of Borel’s

2 I thank L. Qin, Y. Su and B. Wang for explaining this to me.
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conjecture (see, e.g., [46, §3] for a survey, [24, 25] for the case ofRiemannianmanifolds
with non-positive curvature, and also the recent textbook [19]).

The following result complements Corollary 1.6 in the smooth category.

Theorem 1.7 Let n 	= 4 be a natural number. Let X be a smooth manifold homeomor-
phic to T n. Then:

(1) X supports effective smooth actions of (Z/r)n for arbitrarily large values of r;
(2) there exists a number δ(n) (depending on n but not on X) such that if X supports

an effective smooth action of (Z/mδ(n))n for some nonzero integer m then X is
diffeomorphic to T n.

Statement (2) above is related to many results in the literature showing that home-
omorphic but not diffeomorphic manifolds need not support smooth effective actions
of the same finite or compact groups (see, e.g., [36] and the references therein for
systematic results on the case of the spheres and [15, 16] for analogous questions on
tori).

Combining Corollary 1.6 and Theorem 1.7 we obtain:

Corollary 1.8 Let n 	= 4 be a natural number. Let X be a closed, connected and ori-
ented n-dimensional rationally hypertoral smooth manifold. If X supports an effective
action of (Z/r)n for every natural number r and π1(X) is virtually solvable then X is
diffeomorphic to T n.

1.3 Holomorphic Discrete Degree of Symmetry of Compact Kaehler Manifolds

The following result answers affirmatively the analogue of Question 1.1 for holomor-
phic actions on Kaehler manifolds.

Theorem 1.9 Let X be a compact connected Kaehler manifold of real dimension n.
Suppose that, for some natural number m, X supports an effective holomorphic action
of (Z/r)m for arbitrarily large values of r . Then X supports an effective holomorphic
action of Tm. Furthermore, m ≤ n, and if m = n then X is biholomorphic to a
complex torus.

We will prove Theorem 1.9 using a result of Fujiki [28] on automorphism groups
of compact Kaehler manifolds and the following result on Lie groups.

Theorem 1.10 Let G be a (finite dimensional) Lie group with finitely many connected
components. For every natural number n the following properties are equivalent:

(1) G has a Lie subgroup isomorphic to T n,
(2) G has a subgroup isomorphic to (Z/r)n for arbitrary large integers r .

Theorem 1.9 seems to be new even for smooth projective varieties over the complex
numbers.One can also ask the analogous question for birational transformation groups.
Namely, if X is an n-dimensional variety defined over the complex numbers (or more
generally a field of characteristic zero) and the birational transformation group Bir(X)
contains subgroups isomorphic to (Z/r)m for arbitrarily large values of r , does it
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follow that m ≤ 2n? If m = 2n, does it follow that X is birational to an abelian
variety? 3

A partial result on the first question, due to Prokhorov and Shramov, appears in
[57, Theorem 1.10]. An analogue of the second question for rationally connected
varieties has been recently proved byXu [65, Theorem 1.3]: namely, if X is a rationally
connectedn-dimensional variety andBir(X) contains subgroups isomorphic to (Z/p)n

for sufficiently big primes p then X is rational.

1.4 Discrete Degree of Symmetry and Torus Degree of Symmetry

Corollary 1.6 proves that, at least in some particular situations, if disc-sym(X) =
dim X then tor-sym(X) = disc-sym(X). But there are examples of closed manifolds
forwhich tor-sym < disc-sym, as proved by a construction due toCappell,Weinberger
and Yan.

Theorem 1.11 Let X be any of the manifolds T (h) × H constructed in [17, §2]. We
have disc-sym(X) ≥ 1 and tor-sym(X) = 0.

The equality tor-sym(X) = 0 is the main result in [17]. The inequality disc-
sym(X) ≥ 1 follows from the existence of regular self coverings X → X of degree
d for every odd natural number d. The existence of such self coverings (for d = 3,
and hence also for d = 3k) is stated without proof in [63, Remark 1.3], and our con-
tribution in this paper is to provide a proof (actually, for any odd d) in Sect. 13. A key
ingredient in the proof is the topological rigidity of tori.

There are obvious analogues of the invariants disc-sym and tor-sym for locally
linear actions and for smooth actions on smooth manifolds, and in neither of these
categories does one have the equality disc-sym = tor-sym in general. For locally linear
actions there are counterexamples in dimension 4, by the work of Edmonds [23] and
Huck [38]. In the smooth category one may take X = T n�	, where 	 is an exotic
n-sphere. Then X is homeomorphic to T n , so disc-sym(X) = n by Theorem 1.7, but
tor-sym(X) = 0 by the main result in [2]. In contrast, for holomorphic actions on
compact Kaehler manifolds one does have disc-sym = tor-sym in general, as proved
by Theorem 1.9 below.

1.5 Discrete Degree of Symmetry and Covering Spaces

In the proof of statement (2) in Theorem 1.3 we reduce the general case to that in
which π1 is solvable using the following result.

Theorem 1.12 Let X be a closed connected manifold and let X ′ → X be a finite
covering. We have disc-sym(X ′) ≥ disc-sym(X).

The inequality in Theorem1.12 can be strict in some cases, as the following theorem
proves. Here and in the rest of the paperwe identify T n with (R/Z)n , sowe use additive
notation for the group structure on T n .

3 After this paper was finished, these questions have been answered in the affirmative by A. Golota, see
[29].
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Theorem 1.13 Fix natural numbers k, n satisfying 1 ≤ k ≤ n − 1. Consider the
free involution σ : T n → T n defined by σ(x1, . . . , xn) = (x1 + 1/2, . . . , xk +
1/2,−xk+1, . . . ,−xn). Let X ′ = T n and let X = T n/σ . The natural projection
ρ : X ′ → X is a covering map and we have disc-symX ′ = n and disc-symX = k.

For example, setting n = 2 and k = 1 the manifold X is the Klein bottle and X ′,
the 2-torus, is the orientation 2-cover of X .

1.6 Jordan Property and Bounds on Stabilizers for Hypertoral Manifolds

The tools used to prove (1) in Theorem 1.3 lead to other results of finite group actions
on rationally hypertoral manifolds.

If X is a set supporting an action of a group G we denote Stab(X ,G) = {Gx | x ∈
X} the set of stabilizers of points in X . The following result gives a positive answer
to [21, Question 1.8] for rationally hypertoral manifolds.

Theorem 1.14 Let X be a rationally hypertoral manifold. There exists a constant
C such that every finite group G acting on X has a subgroup G0 ≤ G satisfying
[G : G0] ≤ C and |Stab(X ,G)| ≤ C.

Recall that a group G is said to be Jordan if there exists a constantC such that every
finite subgroup G ≤ G has an abelian subgroup A ≤ G satisfying [G : A] ≤ C . The
following result extends to the topological category the first part of [51, Theorem 1.4],
and it also partially extends [67, Corollary 1.7].

Theorem 1.15 Let X be a rationally hypertoral manifold. Then the homeomorphism
group of X is Jordan.

1.7 Contents

Section2 contains a few elementary results on finite groups that will be used repeat-
edly in the paper. In Sect. 3 we prove Theorem 1.2. In Sect. 4 we prove a result relating
finite group actions and maps to tori of nonzero degree. This result is used in Sect. 5
to prove the first part of Theorem 1.3, and also to prove Theorems 1.14 and 1.15.
Section6 contains the proof of Theorem 1.4 (which is Corollary 6.3). In Sect. 7 we
prove
Theorems 1.12 and 1.13 on covering spaces. In Sect. 8 we prove that the homol-
ogy of some abelian covers is finitely generated as a module over the group ring of
the group of deck transformations. After these preliminaries, in Sect. 9 we prove
Theorem 1.3 and Corollary 1.6, and in Sect. 10 we prove Theorem 1.5. Section11
contains the proof of Theorem 1.7. In Sect. 12 we study the holomorphic analogues of
the discrete degree of symmetry of closed Kaehler manifolds, and we prove Theorems
1.10 and 1.9. Finally, in Sect. 13 we prove Theorem 1.11 on the existence of closed
manifold whose toral rank is strictly bigger than its discrete degree of symmetry.
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1.8 Notation

For every finite set S we denote by |S| the cardinality of S. We use additive notation
for abelian groups. For any natural numbers a, b we denote for convenience

�a,b := (Z/a)b.

2 Some Lemmas on Finite Abelian Groups

Lemma 2.1 Let a, b,C be natural numbers and suppose that �′ is a subgroup of �a,b

satisfying [�a,b : �′] ≤ C. There exists a subgroup �′′ ≤ �′ which is isomorphic to
�a′,b for some natural number a′ dividing a and satisfying C !a′ ≥ a.

Proof Let d = GCD(a,C !) and let a′ = a/d. Note that d ≤ C !, so C !a′ ≥ a. We
prove that d�a,b ≤ �′. Let γ ∈ �a,b and let 〈γ 〉 denote the subgroup generated by γ .
Let I = [〈γ 〉 : 〈γ 〉 ∩ �′]. Since |〈γ 〉| divides a, I divides a. Since I ≤ C , I divides
C !. Hence I divides d, which implies that dγ ∈ �′. Since d�a,b � �a′,b, the lemma
follows. ��

The next lemma follows easily fromPontryagin duality (see, e.g., [27, (A3),(A11)]).

Lemma 2.2 Let G, H be finite abelian groups. There is a subgroup of G isomorphic
to H if and only if there is a quotient of G isomorphic to H.

Combining Lemma 2.1 with the previous result we immediately obtain the follow-
ing.

Lemma 2.3 Let a, b,C be natural numbers and suppose given a surjection q : �a,b →
�′ satisfying |Ker q| ≤ C. There exists a subgroup �′′ ≤ �′ which is isomorphic to
�a′,b for some natural number a′ dividing a and satisfying C !a′ ≥ a.

Lemma 2.4 For any natural numbers b and C1 there exists a natural number C2 with
the following property. Suppose that� is a finite group and that N is a normal subgroup
of � satisfying |N | ≤ C1. Suppose that �/N � �a,b for some natural number a. Then
there is a subgroup �′ ≤ � which is isomorphic to �a′,b for some natural number a′
satisfying C2a′ ≥ a.

Proof By assumption there is a surjective morphism π : � → Q := �a,b whose
kernel is N . Let c : � → Aut N be the morphism given by the conjugation action
of � on N . Let �0 = Ker c. Then [�a,b : π(�0)] ≤ [� : �0] ≤ |Aut N | ≤ C1!. By
Lemma 2.1 there is a subgroup Q0 ≤ π(�0) which is isomorphic to �a0,b for some
natural number a0 satisfying (C1!)!a0 ≥ a. The kernel of the restriction π0 of π to �0
coincides with the center Z of N . Let �1 := π−1

0 (Q0). We have an exact sequence

0 → Z → �1
π0−→ Q0 � �a0,b → 0.
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Since this is a central extension, one can define a bilinear morphism β : Q0×Q0 → Z
by setting, for any two elements u, v ∈ Q0, β(u, v) = [̃u, ṽ], where ũ, ṽ ∈ �1 are
arbitrary lifts of u, v. Define a morphism of groups

φβ : Q0 → Hom(Q0, Z)

setting (φβ(u))(v) = β(u, v) for every u, v ∈ Q0. Now, Q0 can be generated by b
elements because Q0 � �a0,b, so we may bound

|Hom(Q0, Z)| ≤ |Z |b ≤ |N |b ≤ Cb
1 .

Consequently, Q1 := Kerφβ satisfies [Q0 : Q1] ≤ Cb
1 . By construction, π−1

0 (Q1)

is an abelian subgroup of �1. Using again Lemma 2.1 we deduce the existence of a
subgroup Q2 ≤ Q1 which is isomophic to �a′,b for some natural number a′ satisfying
(Cb

1 )!a′ ≥ a0. Then π
−1
0 (Q2) is a finite abelian group surjecting onto �a′,b, and hence

by Lemma 2.2 there is a subgroup �′ ≤ π−1
0 (Q2) ≤ � which is isomorphic to �a′,b.

Setting C2 = (Cb
1 )!(C1!)! we have

C2a
′ = (Cb

1 )!(C1!)!a′ ≥ (C1!)!a0 ≥ a.

This finishes the proof of the lemma. ��
The next two lemmas refer to finite subgroups of tori. Recall that we use additive

notation for the group structure on tori.

Lemma 2.5 Let � be a finite subgroup of T d satisfying aγ = 0 for some natural
number a and every γ ∈ �. Then |�| ≤ ad . In particular, if T d contains a subgroup
isomorphic to �a,b for some a ≥ 2 then b ≤ d.

Proof Let π : R
d → T d = R

d/Zd denote the projection. Then π−1(�) is a discrete
subgroup of R

d , so it can be generated by d or fewer elements, say g1, . . . , gd ′ with
d ′ ≤ d, see, e.g., [12, Chap I, Lemma (3.8)]. Let γi = π(gi ). Then γ1, . . . , γd ′ is a
generating set of �, so the morphism �a,d ′ → � sending (α1, . . . , αd ′) ∈ �a,d ′ to∑
αiγi is surjective (here αi ∈ Z and αi is the class of αi in Z/a). It follows that

|�| ≤ |�a,d ′ | = ad
′ ≤ ad . ��

Lemma 2.6 Let � be a finite subgroup of T d satisfying aγ = 0 for some natural
number a and every γ ∈ �. Let 1 ≤ j ≤ d be any integer and let

S = {(θ1, . . . , θd) ∈ T d | θi = 0 for i 	= j}.

Then |� ∩ S| ≥ |�|/ad−1.

Proof We can identify�/(�∩S)with a finite subgroup of T d/S � T d−1, all of whose
elements have order dividing a. Hence, by Lemma 2.5, we have |�/(� ∩ S)| ≤ ad−1.
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The exact sequence 0 → � ∩ S → � → �/(� ∩ S) → 0 then implies

|� ∩ S| = |�|
|�/(� ∩ S)| ≥ |�|/ad−1,

as we wished to prove. ��
Recall that the rank of a finite group G is the minimal size of a generating subset

of G. We denote the rank of G by rkG. If q : G → H is a surjection then clearly
rkG ≥ rkH . By Lemma 2.2, it follows that if G is a finite abelian group and H ≤ G
then rkH ≤ rkG.

The following result was mentioned in the introduction.

Lemma 2.7 Let X be a closed manifold. For any integer k the following are equivalent:

(1) disc-sym(X) ≤ k,
(2) exists a constant C such that every finite abelian group A acting effectively on X

has a subgroup A′ ≤ A satisfying [A : A′] ≤ C and rkA′ ≤ k.

Proof We prove (1) ⇒ (2). If disc-sym(X) ≤ k then there exists a natural number
r0 such that if �r ,k+1 acts effectively on X then r ≤ r0. By [47, Theorem 2.5] there
exists a natural number m0 such that, for any prime p, if �p,m acts effectively on X
then m ≤ m0. Let A be a finite abelian group acting effectively on X . There is an
isomorphism φ : A → Z/d1 ⊕ · · · ⊕ Z/dm , where di+1 divides di for each i and
dm ≥ 2. If m ≤ k, then rkA ≤ k. Suppose m > k. Then Z/d1 ⊕ · · · ⊕ Z/dk+1
contains a subgroup isomorphic to �dk+1,k+1, so dk+1 ≤ r0. Let p be a prime dividing
dm . Then Z/d1 ⊕ · · · ⊕ Z/dm has a subgroup isomorphic to �p,m , so m ≤ m0. Let
A′ = φ−1(Z/d1⊕· · ·⊕Z/dk). Then rkA′ = k and [A : A′] = |Z/dk+1⊕· · ·⊕Z/dm | ≤
dm−k
k+1 ≤ C := rm0

0 . The implication (2) ⇒ (1) follows from Lemma 2.1, the fact the
rank does not increase when passing from a finite abelian group to a subgroup, and
the fact that rk�a,b = b for any a ≥ 2 and b. ��

3 Proof of Theorem 1.2

Wefirst recall a few results that will be used in the proof of Theorem 1.2. The following
is [1, Theorem 1.4.14].

Theorem 3.1 Let p be a prime and let X be a paracompact topological space on which
�p,m acts freely and trivially on H∗(X; Z/p). Suppose there exists some i0 ∈ N such
that Hi (X/G; Z/p) = 0 for all i ≥ i0. Then m + 1 ≤ |{ j | H j (X; Z/p) 	= 0}|.

Theorem 3.1 was originally proved by Gunnar Carlsson in [18] for p = 2, and
later by Christoph Baumgartner for odd p in his PhD Thesis. The following is [54,
Corollary 3.3].

Lemma 3.2 Let X be a connected n-manifold, and suppose that a finite p-group G
acts continuously and effectively on X. If XG 	= ∅ then G is isomorphic to a subgroup
of GL(n,R).
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The following theorem is a consequence of a lemma of Minkowski which states
that the size of any finite subgroup of GL(n,Z) is bounded by a constant depending
only on n (see [49, 61]). For details, see [52, Lemma 2.6].

Theorem 3.3 Let X be a compact manifold. There exists a constant C such that,
for every action on X of a finite group G, there is a subgroup G ′ ≤ G satisfying
[G : G ′] ≤ C whose action on H∗(X; Z) is trivial.

Finally, this is [21, Theorem 1.3].

Theorem 3.4 Let X be a manifold with finitely generated H∗(X; Z). There exists a
constant C such that for every action of a finite p-group G on X there is a subgroup
H ≤ G containing the center of G and satisfying [G : H ] ≤ C and |Stab(H , X)| ≤ C.

We now begin the proof of Theorem 1.2. We will combine two results. This is the
first one.

Theorem 3.5 Let X be a closed connected manifold. For every prime p there exists a
constant C(X , p) such that if�pe,m acts effectively but not freely on X andm > dim X
then e ≤ C(X , p).

Proof Suppose that G := �pe,m acts effectively but not freely on X . By [21, Corollary
1.5] (see also [21, Remark 1.6]) there exists some constant C ′, depending only on
X , such that U = {x ∈ X | Gx = {1}} satisfies dimZ/p H∗(U ; Z/p) ≤ C ′. The
set U is a proper subset of X because by assumption the action of G on X is not
free, and (since X is connected) U does not contain any connected component of
X . U is also open, so it is a manifold of the same dimension as X with no closed
connected component; consequently Hi (U ; Z/p) = 0 for i ≥ dimU = dim X . The
image of the morphism G → Aut H∗(U ; Z/p) induced by the action of G on U
is a p-subgroup, so it is contained in a Sylow p-subgroup of Aut H∗(U ; Z/p). We
can identify Aut H∗(U ; Z/p) with a subgroup of GL(C ′,Z/p), which admits as a
Sylow p-subgroup the group of upper triangular matrices with 1’s in the diagonal.
The exponent4 of such group is pC(p,X), where C(p, X) := �logp C ′�. This implies
that K := pC(p,X)G acts trivially on H∗(U ; Z/p). If e > C(p, X) then K contains
a subgroup isomorphic to �p,m so, by Theorem 3.1, we have m ≤ dim X . ��

For the second result needed to prove Theorem 1.2 we have to introduce some
notation. Given natural numbers 0 < k < n define the polynomial Cn,k(x) :=
∏k−1

i=0 (x
n − xi ). The rational function Qn,k := Cn,k/Ck,k is a polynomial, because

for any root of unity ζ the multiplicity of ζ as a root of Cn,k is not smaller than its
multiplicity as a root of Ck,k , as the reader can easily check. Furthermore, Qn,k is
monic of degree k(m − k). Let Sp,m,k = {H ≤ �p,m | H � �p,k}. Given � ≤ �p,m

let Sp,m,k(�) = {H ∈ Sp,m,k | H ∩ � = 0}.
Lemma 3.6 We have |Sp,m,k | = Qm,k(p). If � ≤ �p,m satisfies � � �p,s then
|Sp,m,k(�)| = Qm−s,k(p)pks .

4 Recall that the exponent of a finite group is the lcm of the orders of the elements of the group.
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Proof We consider �p,m as an m-dimensional vector space over Z/p. Let Fp,m,k =
{(v1, . . . , vk) linearly independent elements of �p,m}. The map σ : Fp,m,k → Sp,m,k

sending (v1, . . . , vk) to its span is surjective, and for every H ∈ Sp,m,k we can
identify σ−1(H) with Fp,k,k using any isomorphism H � �p,k . Hence |Sp,m,k | =
|Fp,m,k |/|Fp,k,k |, so it suffices to prove that |Fp,m,k | = Cm,k(p). This follows from
induction on k. The initial case k = 1 is obvious. For the induction step, observe that,
given (v1, . . . , vk−1) ∈ Fp,m,k−1, the set of vk ∈ �p,m such that (v1, . . . , vk) ∈ Fp,m,k

is equal to the set�p,m \σ(v1, . . . , vk−1), which has pm − pk−1 elements. This proves
the first formula in the lemma.

Now suppose that � ≤ �p,m satisfies � � �p,s . Choose �′ ≤ �p,m such that
�p,m = � ⊕ �′ and pick an isomorphism f : �′ → �p,m−s . Let π : �p,m =
� ⊕ �′ → �′ be the projection. For each H ∈ Sp,m,k(�), π(H) ≤ �′ is isomorphic
to �p,k , so f ◦ π defines a map φ : Sp,m,k(�) → Sp,m−s,k . The map φ is surjective,
and given K ∈ Sp,m−s,k we can identify φ−1(K ) with the set M of linear maps
h : f −1(K ) → � (by associating to h its graph). Since |M| = pks , we obtain the
desired formula for |Sp,m,k(�)|. ��

For each 0 < k < m and s ≤ m − k the polynomial Rm,k,s := Qm,k − Qm−s,k xks

has degree less than k(m−k). For each� ≤ �p,m letDp,m,k(�) = Sp,m,k \Sp,m,k(�).
By the previous lemma we have |Dp,m,k(�)| = Rm,k,s(p), where � � �p,s .

Theorem 3.7 Let X be a closed connected n-dimensional manifold and let m =
[3n/2] + 1. There exists a constant C ′(X) such that for every prime p ≥ C ′(X)
and any effective action of �p,m on X there exists a subgroup H ≤ �p,m isomorphic
to �p,n+1 which intersects trivially all stabilizers of the action of �p,m on X.

Proof Let C be the constant given by applying Theorem 3.4 to X . Let m = [3n/2] +
1. For each 1 ≤ s ≤ [n/2] there exists some Cs such that for every t ≥ Cs we
have Rm,n+1,s(t) < C−1Qm,n+1(t), because Qm,n+1 is monic and deg Rm,n+1,s <

deg Qm,n+1. We claim that C ′(X) := 3 + max{Cs | 1 ≤ s ≤ [n/2]} has the desired
property. Indeed, suppose that p ≥ C ′(X) is a prime and G := �p,m acts effectively
on X . By Theorem 3.4 we have |Stab(G, X)| ≤ C . For every K ∈ Stab(G, X)
there exists some x ∈ X such that Gx = K , so, by Lemma 3.2, K is isomorphic to
a subgroup of GL(n,R). Since p ≥ 3, this implies that dim K ≤ [n/2]. Hence, by
Lemma 3.6 we have |Dp,m,n+1(�)| = Rm,n+1,s(p) < C−1Qm,n+1(p), which implies
that

⋃
K∈Stab(G,X)Dp,m,n+1(K ) 	= Sp,m,n+1. Consequently there exists some H ∈

Sp,m,n+1 that does not belong toDp,m,n+1(K ) for any K ∈ Stab(G, X). Equivalently,
H intersects trivially each K ∈ Stab(G, X). ��

We are now ready to prove Theorem 1.2. Let X be a closed and connected n-
manifold. Let m = [3n/2] + 1. Arguing by contradiction, suppose that there exists a
sequence of integers ri → ∞ and an effective action of �ri ,m on X for each i .

Let P = {p prime | p divides ri for some i}. We distinguish two possibilities. If
P is infinite, then we can take a sequence of primes p j belonging to P and satisfying
p j → ∞. Each p j divides ri j for some i j , so �p j ,m is isomorphic to a subgroup
of �ri j ,m and hence by restricting the action of the latter to the former we obtain,
for each j , an effective action of �p j ,m on X for each j . By Theorem 3.7 we get a
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free action of �p j ,n+1 on X for big enough j . By Theorem 3.3, if j is big enough
then the action of �p j ,n+1 on H∗(X; Z), and hence on H∗(X; Z/p j ), is trivial. This
contradicts Theorem 3.1.

The second possibility is that P is bounded. In that case, there exists some p ∈ P

and a sequence of natural numbers e j → ∞ such that pe j divides ri j for some i j .
Arguing as before, this gives an effective action of �pe j ,m on X for each j . This
contradicts Theorem 3.5, so the proof of Theorem 1.2 is finished.

4 Equivariant Maps to the Torus

In all this section X denotes a closed, connected and oriented n-dimensional manifold.
We identify T n with the quotient R

n/Zn , and we use additive notation for the group
structure on T n . Suppose that G is a group, η : G → T n is a group homomorphism,
andG acts on a space X . A map φ : X → T n will be called η-equivariant if it satisfies
φ(g · x) = η(g)+ φ(x) for every x ∈ X and g ∈ G.

Theorem 4.1 Let X be a closed, connected and oriented n-dimensional topological
manifold. Let φ : X → T n be a continuous map of nonzero degree. Let G be a finite
group. Suppose that X is endowed with an effective action of G inducing the trivial
action on H1(X; Z). Then there is a morphism of groups η : G → T n with these
properties:

(1) the map φ is homotopic to an η-equivariant map ψ : X → T n,
(2) |Ker η| divides degφ.
Before proving the theorem we prove three auxiliary lemmas. The first lemma is

a topological analogue of the construction at the beginning of [51, §2.1]. We identify
S1 with R/Z and accordingly we use additive notation for the group structure on S1.

Lemma 4.2 Let α : X → S1 be a continuous map. Let θ be a generator of H1(S1; Z).
Suppose that a finite group G acts continuously on X preserving α∗θ . Let r be the
cardinal of G and let μr ⊂ S1 denote the group of r-th roots of unity. There exists a
morphism of groups ξ : G → μr and a continuous map β : X → S1 homotopic to α
such that β(g · x) = ξ(g)+ β(x) for every x ∈ X and g ∈ G.

Proof Define ζ : X → S1 by ζ(x) = ∑
g∈G α(g · x) for every x ∈ X . Then ζ

is continuous and constant on G-orbits. Let ρg : X → X be the homeomorphism
induced by the action of g ∈ G. By assumption ρ∗

gα
∗θ = α∗θ for every g ∈ G. We

have ζ ∗θ = ∑
g∈G ρ∗

gα
∗θ = rα∗θ .

Let � = {(x, t) ∈ X × S1 | ζ(x) = r t}. Let be the restriction π : � → X be
the restriction of the projection map X × S1 → X . The action of μr on � given
by (x, t) · θ = (x, tθ) endows π : � → X with a structure of principal μr -bundle.
We claim that it is a trivial principal bundle. This is equivalent to the triviality of the
monodromy of π , which we denote by ν : π1(X , x0) → μr , where x0 ∈ X is an
arbitrary base point. If there existed some λ ∈ π1(X , x0) such that ν(λ) 	= 0 then the
pairing of ζ ∗θ with [λ] ∈ H1(X; Z) would not be divisible by r , which contradicts
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the fact that ζ ∗θ = rα∗θ . Hence ν is trivial and consequently the bundle π : � → X
is trivial, so we may choose a section σ : X → �.

Define β : X → S1 by the condition that σ(x) = (x, β(x)). Then β is continuous
and we have rβ(x) = ζ(x) for every x ∈ X . For any g ∈ G define χg : X → S1 by
χg(x) = β(g · x)− β(x). We have rχg(x) = rβ(g · x)− rβ(x) = ζ(g · x)− ζ(x) =
0 because ζ is G-invariant. Hence χg takes values in μr , and consequently, being
continuous, it is a constant map. We may thus define a map ξ : G → μr by the
condition that ξ(g) = χg(x) for every x ∈ X . Let g, g′ ∈ G and let x ∈ X . We have

χgg′(x)=β(gg′ ·x)−β(x)=β(gg′ ·x)−β(g′ ·x)+β(g′ ·x)−β(x)=χg(g′ ·x)+χg′(x),

which proves that ξ(gg′) = ξ(g) + ξ(g′), so ξ is a morphism of groups. Now the
formula β(g · x) = ξ(g) + β(x) follows immediately from the definition of ξ . To
conclude the proof, note that rβ∗θ = ζ ∗θ = rα∗θ , so r(β∗θ − α∗θ) = 0. Since
H1(X; Z) has no torsion we conclude that β∗θ = α∗θ . Hence β and α are homotopic,
because S1 is a model for K (Z, 1). ��
Lemma 4.3 Let G be a finite group acting effectively, continuously and preserving the
orientation on X. Let X∗ ⊆ X be the set of points with trivial stabilizer. Then X∗ is
connected.

Proof For any g ∈ G denote Xg = {x ∈ X | g · x = x}. Let g1, . . . , gs be the
(nontrivial) elements of G of prime order. Since any nontrivial element of G has some
power belonging to the set {g1, . . . , gs}, we have X∗ = X \ ⋃

i X
gi . Define X1 = X

and Xi = X \ (Xg1 ∪ · · · ∪ Xgi−1) for 2 ≤ i ≤ s + 1. Then Xi is an open subset of
X for each i . We prove that Xi is connected for every 1 ≤ i ≤ s + 1, using ascending
induction on i . Since X∗ = Xs+1, this will imply the lemma. Clearly X1 is connected.
Now suppose that 1 ≤ i ≤ s and that Xi is connected. Let pi be the order of gi . Since
G acts on X preserving the orientation, by [10, Chap V, Theorem 2.3] and [10, Chap
V, Theorem 2.5], Xgi is a Z/pi -cohomology manifold of dimension di , where n − di
is even. Arguing as in the proof of [10, Chap V, Theorem 2.6] we conclude that di < n,
and consequently di ≤ n − 2. Applying [10, Chap I, Corollary 4.7] we conclude that
Xi+1 = Xi \ (Xi ∩ Xgi ) is connected, so the lemma is proved. ��

The following result generalizes [22, Lemma 2.5].

Lemma 4.4 Suppose that a finite groupG acts effectively, continuously, and preserving
the orientation on X. Let π : X → X/G denote the quotient map. Let r denote the
cardinal of G. The image of the map π∗ : Hn(X/G; Z) → Hn(X; Z) is contained in
r Hn(X; Z).

Proof Denote as in the previous lemma by X∗ the open subset of X consisting of points
with trivial stabilizer. Since X/G is endowed with the quotient topology, π(X∗) =
X∗/G is an open subset of X/G. Let F = X \X∗. Consider the following commutative
diagram, where H∗

c (·; Z) denotes cohomology with compact support, the rows are
portions of the long exact sequences for the inclusions X∗ ↪→ X ←↩ F and X∗/G ↪→
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X/G ←↩ F/G (see, e.g., [10, Chap I, (2) in §1.1]), and the vertical arrows are pullback
morphisms induced by proper maps:

Hn
c (X

∗; Z)
j

Hn
c (X; Z)

r
Hn
c (F; Z) 0

Hn
c (X

∗/G; Z)

π∗

jG
Hn
c (X/G; Z)

π∗

rG
Hn
c (F/G; Z) 0,

The morphism j is an isomorphism because, by Lemma 4.3, X∗ is connected (see
[10, Chap I, Theorem 4.3]). By the exactness this implies that Hn

c (F; Z) = 0. The
long exact sequence for X∗ ↪→ X ←↩ F and the fact that dim X = n imply that
Hk
c (F; Z) = 0 for every k ≥ n (here we are using [10, Chap I, (3) in §1.2]). From

[10, Chap III, Theorem 5.2] it follows that Hk
c (F/G; Z) for every k ≥ n. Hence

jG is surjective. Consequently it suffices to prove that the image of the morphism
π∗ : Hn

c (X
∗/G; Z) → Hn

c (X
∗; Z) is contained in r Hn

c (X
∗; Z).

Denote G∗ = G \ {1}. We are going to prove that there exists a connected open
subsetU ⊂ X∗ such that gU∩U = ∅ for every g ∈ G∗. Fix some point x ∈ X∗. Since
X∗ is Hausdorff, for every g ∈ G∗ there exists disjoint open subsets Ag, Bg ⊂ X∗
such that x ∈ Ag and gx ∈ Bg . Let C = ⋂

g∈G∗ Ag . Then gx /∈ C for every g ∈ G∗,
because C ∩ Bg = ∅. This implies that x belongs to the open set D := C \⋃

g∈G∗ gC .
Let U ⊂ D be a connected open subset containing x . Then for every g ∈ G∗ we
have gU ⊂ gC because U ⊂ C , and consequently gU ∩ D = ∅, which implies that
gU ∩U = ∅.

Let V = π(U ), so that π−1(V ) = GU = ⋃
g∈G gU . Consider the following

commutative diagram:

Hn
c (GU ; Z)

jGU
Hn
c (X

∗; Z)

Hn
c (V ; Z)

π∗
V

jV
Hn
c (X

∗/G; Z),

π∗

where jGU and jV are the covariant morphisms induced by open embeddings and
the vertical arrows are pullback morphisms induced by proper morphisms. By [10,
Chap I, Theorem 4.3] jV is an isomorphism, so it suffices to prove that the image of
jGU ◦π∗

V is contained in r Hn
c (X

∗; Z). Since gU ∩U = ∅ for every g ∈ G∗, the open
subsetGU contains r = |G| connected components, which are {gU | g ∈ G}. Denote
by ig : gU → GU the inclusion. The pullback morphisms i∗g : Hn

c (GU ; Z) →
Hn
c (gU ; Z) combine to give an isomorphism Hn

c (GU ; Z)
�−→ ⊕

g∈G Hn
c (gU ; Z).

Let jgU : Hn
c (gU ; Z) → Hn

c (X
∗; Z)be themorphism inducedby the open embedding

gU ↪→ X∗. We have jGU = ∑
g∈G jgU ◦ i∗g , so if we prove that jgU ◦ i∗g ◦ π∗

V =
jhU ◦i∗h ◦π∗

V for every g, h ∈ G then wewill be done. Take two elements g, h ∈ G and
let ρ : X∗ → X∗ be the map given by ρ(x) = gh−1 · x . Then ρ is a homeomorphism
and it restricts to a homeomorphism ρ : hU → gU . The induced morphism ρ∗ :
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Hn
c (X

∗; Z) → Hn
c (X

∗; Z) is the identity because G acts on X (and hence on X∗)
preserving the orientation. Now, the desired equality follows from the commutativity
of the following diagram:

Hn
c (hU ; Z)

jhV
Hn
c (X

∗; Z)

Hn
c (V ; Z)

i∗j ◦π∗
V

i∗g◦π∗
V

Hn
c (gU ; Z)

ρ∗

jgU
Hn
c (X

∗; Z)

ρ∗=Id

The triangle commutes becauseπV ◦ih = πV ◦ig◦ρ and the square commutes because
ρ is a homeomorphism and the inclusion hU ↪→ X∗ is equal to the composition of
the inclusion gU ↪→ X∗ and ρ. ��

We are now ready to prove Theorem 4.1. Let φi : X → S1 be the composition of
φ with the projection to the i-th factor T n = (S1)n → S1. Since G acts trivially on
H1(X; Z), in particular it fixes φ∗

i θ , where θ ∈ H1(S1; Z) is any generator. Applying
Lemma 4.2 to φi we obtain the existence of a morphism of groups ηi : G → S1 and a
mapψi : X → S1 homotopic toφi such thatψi (g ·x) = ηi (g)+ψi (x) for every x ∈ X
and g ∈ G. Define ψ = (ψ1, . . . , ψn) : X → T n and η = (η1, . . . , ηn) : G → T n .
Then ψ is homotopic to φ and it is η-equivariant.

Let G0 = Ker η. The map ψ factors as a composition

X
π−→ X/G0

ψ0−→ T n,

where π is the natural quotient map. Hence ψ∗ = π∗ ◦ ψ∗
0 , so the image of

ψ∗ : Hn(T n; Z) → Hn(X; Z) is contained in the image of π∗ : Hn(X/G0; Z) →
Hn(X; Z). By the definition of degree, the image of ψ∗ : Hn(T n; Z) → Hn(X; Z)

is equal to (degψ)Hn(X; Z), and by Lemma 4.4 the image of π∗ is contained in
|G0| · Hn(X; Z). It then follows that |G0| divides degψ . But degψ = degφ because
ψ and φ are homotopic. So the proof of the theorem is now complete.

Remark 4.5 The previous results have been independently proved by Csikós, Pyber
and Szabó, lifting φ to a map ζ from the universal cover of X to that of T n, and
defining ψ as the average the translates of ζ by lifts of the action of elements of G to
the universal covers of X and T n.

5 Some Consequences of Theorem 4.1

Let X be a closed, connected and oriented n-dimensional manifold. Choose a continu-
ous map φ : X → T n satisfying | degφ| = min{| degψ | | ψ : X → T n, degψ 	= 0}.
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Suppose that a finite group G acts continuously on X . Let G ′ be the kernel of the
induced morphism G → Aut H1(X; Z). By Theorem 3.3 we have [G : G ′] ≤ CX for
some constantCX depending only on X . ByTheorem4.1 there is amorphismof groups
η : G ′ → T n satisfying |Ker η| ≤ | degφ| and an η-equivariant map ψ : X → T n

homotopic to φ. The existence of the η-equivariant mapψ implies that for every x ∈ X
we have Gx ≤ Ker η (if g ∈ Gx then η(g) = ψ(g · x)−ψ(x) = ψ(x)−ψ(x) = 0),
so the previous bound implies that |Stab(X ,G)| ≤ 2| degφ|. This proves Theorem 1.14.

Suppose that the group in the previous argument is G = �a,b. By Lemma 2.1 there
is a subgroup of G ′ isomorphic to �a′,b where a′ divides a and a′ ≥ a/CX !. By
Lemma 2.5 we have |η(�a′,b)| ≤ an , and hence (a/CX !)b ≤ |�a′,b| ≤ |Ker η| · an ≤
| degφ|an . Since | degφ| only depends on X (and not on a and b), we conclude that,
assuming a is big enough, b ≤ n. This implies statement (1) in Theorem 1.3.

To prove Theorem 1.15 note that η(G ′), being a subgroup of T n , is abelian and can
be generated by n or fewer elements. If degφ = 1 then G ′ � η(G ′), so G ′ is abelian.
This implies that Homeo(X) is Jordan in this case. For other values of degφ, we apply
[51, Lemma 2.2] to the exact sequence

1 → Ker η → G ′ → η(G ′) → 1

and since |Ker η| divides degφ we deduce the existence of an abelian subgroup G ′′ ≤
G ′ such that [G ′ : G ′′] is bounded above by a constant depending only on n and
degφ. Since n and degφ only depend on X , [G : G ′′] is bounded above by a constant
depending only on X . Hence Homeo(X) is Jordan.

If degφ = 1 Theorem 1.15 can also be proved using [30, Theorem 2.5].
Theorem 4.1 can also be used to give examples of rationally hypertoral manifolds

which are not hypertoral. Let k ≥ 2 and n ≥ 2 be integers. Let πL : L → T n be a
complex line bundle, and let σ be a smooth section of L⊗k intersecting transversely
and nontrivially the zero section. Let Y = {v ∈ L | v⊗k = σ(π(v))}. Then Y
is a smooth connected n-manifold. Let G be the group of k-th roots of unity. The
action of G on L by multiplication preserves Y . Let γ ∈ G be a generator. Let
X = (Y × R)/ ∼ where (v, t + 1) ∼ (γ · v, t). Let πR : R → R/Z be the projection.
Then πL × πR : Y × R → T n × R/Z = T n+1 descends to a continuous map
X → T n+1 of degree k. Hence X is rationally hypertoral. The following theorem
implies that X is not hypertoral.

Theorem 5.1 For any continuous map φ : X → T n+1 the degree of φ is divisible by
k.

Proof The diagonal action of G on Y × R (trivial on R) descends to an action of G
on X with nonempty fixed point set (because σ−1(0) 	= ∅). Let γ ∗ : H∗(Y ; Q) →
H∗(Y ; Q) be induced by the action of γ . For every k there is a G-equivariant exact
sequence

0 → Coker(1 − γ ∗)|Hk−1(Y ;Q) → Hk(X; Q) → Ker(1 − γ ∗)|Hk(Y ;Q) → 0.

The actions of G on Coker(1 − γ ∗)|Hk−1(Y ;Q) and Ker(1 − γ ∗)|Hk (Y ;Q) are trivial.
SinceG is finite, it follows that the action ofG on Hk(X; Q) is trivial. Since H1(X; Z)



I. Mundet i Riera

is torsion free, the action of G on H1(X; Z) is also trivial. Let φ : X → T n+1 be
any continuous map. By Theorem 4.1 there is a morphism η : G → T n+1 such that
φ is homotopic to an η-equivariant map X → T n+1. Since the fixed point set of
G is nonempty, η is necessarily the trivial map. It follows that degφ is divisible by
|Ker η| = |G| = k. ��

6 Finitely Generated Z[t±1
1 , . . . , t±1

1 ]-Modules

Theorem 6.1 Let A be a Noetherian ring and let M be a finitely generated A[z]-
module. Suppose that there exists a sequence of integers r j → ∞ and A[z]-module
morphisms w j : M → M such that w

r j
j coincides with multiplication by z. Then M

is finitely generated as an A-module.

Proof Let S ⊂ M be a finite A[z]-generating set. Let M0 ⊆ M be the A-submodule
generated by S. Define an increasing sequence of A-submodules of M

M0 ⊆ M1 ⊆ · · · ⊆ Md ⊆ . . .

by the condition that Md = Md−1 + zMd−1 for every positive integer d. Define
also Md = 0 for negative integers d. For each d the quotient Md/Md−1 is a finitely
generated A-module, because Md is a finitely generated A-module.

For any d ≥ 1, multiplication by z gives a surjective morphism

μd : Md−1/Md−2 → Md/Md−1.

Consider the composition

νd = μd ◦ · · · ◦ μ1 : M0 → Md/Md−1,

and define Kd = Ker νd . Each Kd is an A-submodule of M0, and there are inclusions

K0 ⊆ K1 ⊆ K2 ⊆ . . . .

Since A is Noetherian and M0 is a finitely generated A-module, there exists some
d0 such that Kd = Kd−1 for d ≥ d0. If for some d the morphism μd fails to be an
isomorphism, then Ker νd is strictly bigger than Ker νd−1, because νd = μd ◦ νd−1
and νd−1 is surjective. It follows that μd is an isomorphism for any d ≥ d0.

Let N = Md0/Md0−1. If N = 0 then M = Md0−1, so M is finitely generated as an
A-module and we are done.

Suppose fromnowon that N 	= 0. Since A is Noetherian and N is finitely generated,
there exists a filtration by A-submodules

0 = N0 ⊂ N1 ⊂ · · · ⊂ Nr = N (1)

in such a way that N j/N j−1 � A/p j for primes p1, . . . , pr ∈ Spec A (see [3, Chap
7, Exercise 18] or [48, Theorem 6.4]). Let p be a minimal element of {p1, . . . , pr }.
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Denote as usual by Ap the localisation of A at p and by kp its residual field. For any
A-module R we denote Rp = R⊗A Ap. Since Ap is a flat A-module, for any inclusion
of A-modules R′ ⊆ R we have Rp/R′

p � (R/R′)p. Since p is a minimal element of
{p1, . . . , pr }, for every i we have

(A/pi )p �
{
kp if pi = p,
0 if pi 	= p.

Hence, (A/pi )p is a simple Ap-module for every i . So if we tensor by Ap the elements
of the filtration (1) and we ignore the resulting inclusions that are actually equalities,
we get a composition series for Np of length

λ := |{i | pi = p}| ≥ 1

(see, e.g., the paragraph before Proposition 6.7 in [3]).
To conclude the proof of the theorem we are going to prove that there is no A[z]-

module morphism w : M → M satisfying wr = z for any r > λ. Arguing by
contradiction, let us assume that there exists an A[z]-module morphism w : M → M
satisfying wr = z for some r > λ.

Let M ′
0 = M0 and define recursively M ′

δ for positive integers δ as M
′
δ = Mδ−1 +

wMδ−1.Define alsoM ′
δ = 0 for negative integers δ. The action ofw defines a surjective

A-module morphism μ′
δ : M ′

δ−1/M
′
δ−2 → M ′

δ/M
′
δ−1. Arguing as we did for Md , we

prove the existence of some δ0 such that μ′
δ is an isomorphism for any δ ≥ δ0. Let

N ′ = M ′
δ0
/M ′

δ0−1.
Denote by A[z]≤d (resp. A[w]≤δ) the A-module of polynomials in z (resp. w) of

degree at most d (resp. δ). We have

Md = A[z]≤dM0, M ′
δ = A[w]≤δM0. (2)

Since wr = z, we have A[z]≤d ⊆ A[w]≤rd for every d. This implies that

Md ⊆ M ′
rd

for every nonnegative d. Suppose that S = {m1, . . . ,ms}. Since m1, . . . ,ms generate
M as an A[z]-module, there exist polynomials Pi jk ∈ A[z] for i = 1, . . . , k − 1 and
j, k = 1, . . . , s such that

wim j = Pi j1m1 + · · · + Pi jrms .

Let e = maxi, j,k deg Pi jk . We have wim j ∈ Me for every i = 1, . . . , k − 1 and
j = 1, . . . , s, and this implies that for any d we have A[w]≤δM0 ⊆ A[z]≤[δ/r ]+eM0,
or equivalently

M ′
δ ⊆ M[δ/r ]+e.

Following [3, Chap 6] (see the proof of [3, Proposition 6.7]) for any Ap-module R
we denote by l(R) the length of R. This is defined to be ∞ if R has no composition
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series of finite length and it is equal to n if R has a composition series of lenght n. This
is well defined by [3, Proposition 6.7]. Furthermore, for any inclusion of Ap-modules
R ⊆ R′ we have l(R′) = l(R)+ l(R′/R) (see [3, Proposition 6.9]). For example, we
have l(Np) = λ, and if d ≥ d0 then l((Md+k)p/(Md)p) = kλ for every k.

To simplify our notation wewill denote Mi,p = (Mi )p and M ′
i,p = (M ′

i )p for every
i . Fix some value of d satisfies both d ≥ d0 and [d/r ] ≥ δ0. Let k be a big number, to
be specified later. The inclusions Md+k,p ⊆ M ′

r(d+k),p ⊆ Md+k+e,p imply

0 ≤ l(Md+k+e,p/M
′
r(d+k),p) = l(Md+k+e,p/Md+k,p)− l(M ′

r(d+k),p/Md+k,p)

≤ l(Md+k+e,p/Md+k,p) = eλ. (3)

Using the additivity of l and the filtration

Md,p = M ′
rd,p ⊆ M ′

rd+1,p ⊆ · · · ⊆ M ′
r(d+k),p ⊆ Md+k+e,p

we have

(k + e)λ = l(Md+k+e,p/Md,p) = l(M ′
r(d+k),p/M

′
rd,p)+ l(Md+k+e,p/M

′
r(d+k),p)

= rk l(N ′
p)+ l(Md+k+e,p/M

′
r(d+k),p)

and using (3) we have

λ

r
= (k + e)λ− eλ

rk
≤ l(N ′

p) ≤ (k + e)λ

rk
.

The lower bound for l(N ′
p) belongs to the interval (0, 1), and if k is big enough so

that (k + e)/k < r/λ then the upper bound for l(N ′
p) also belongs to (0, 1). This

contradicts the fact that l(N ′
p) is an integer, so the proof that r cannot be bigger than

λ is now finished. ��
Corollary 6.2 Let M be a finitely generated module over A := Z[t±1

1 , . . . , t±1
n ]. Sup-

pose that for every 1 ≤ i ≤ n there exists a sequence of integers (ri, j ) j satisfying
ri, j → ∞ as j → ∞, and A-module automorphism wi, j : M → M such that w

ri, j
i, j

coincides with multiplication by ti . Then M is finitely generated as a Z-module.

Proof Let B = Z[z1, . . . , z2n] and let φ : B → A be themorphism of rings defined by
φ(z2i−1) = ti and φ(z2i ) = t−1

i . We can look at M as a finitely generated B-module
via φ, and the automorphisms wi, j in the statement are B-module automorphisms
satisfying

w
ri, j
i, j = multiplication by z2i−1, (w−1

i, j )
ri, j = multiplication by z2i .

Let B0 = Z and Bj = Z[z1, . . . , z j ] for 1 ≤ j ≤ 2n. Then B2n = B, and we
can prove that M is finitely generated as a Bj -module for any 0 ≤ j ≤ 2n using
descending induction on j , applying Theorem 6.1 in the induction step. It follows that
M is finitely generated as a B0-module. ��
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Corollary 6.3 Let M be a finitely generated module over A := Z[t±1
1 , . . . , t±1

n ]. Sup-
pose that for every 1 ≤ i ≤ n there exists a nonzero integer di , a sequence of integers
(ri, j ) j satisfyingri, j → ∞as j → ∞, and A-module automorphismswi, j : M → M

such that w
ri, j
i, j coincides with multiplication by tdii . Then M is finitely generated as a

Z-module.

Proof Suppose that M is generated as an A module by s1, . . . , sr ∈ M . Let A′ =
Z[t±d1

1 , . . . , t±dn
1 ]. Then M is generated as an A′-module by the set

{ta11 ta22 . . . tann si | 1 ≤ i ≤ r , 0 ≤ ai ≤ |di | − 1 for each i},

so M is finitely generated as an A′-module. Applying Corollary 6.2 to M viewed as
an A′-module, we conclude that M is a finitely generated Z-module. ��

7 Coverings and Discrete Degree of Symmetry

7.1 Proof of Theorem 1.12

Let X ′ → X be a covering, where X is a closed and connected manifold. It suffices
to prove that for every natural number b there is a constant C , depending on X ′ → X ,
such that, for every natural number a, if �a,b acts effectively on X then there is a
natural number a′ satisfying Ca′ ≥ a and an effective action of �a′,b on X ′.

Let k be the degree of X ′ → X . Assume that � := �a,b acts effectively on
X . Arguing as in [51, §2.3] it follows that there is a subgroup �0 ≤ � satisfying
[� : �0] ≤ C0, where C0 only depends on X and k, and an exact sequence

1 → F → �′
0

π−→ �0 → 1

where |F | ≤ k! and �′
0 acts effectively on X ′. By Lemma 2.1 there is a subgroup �1 ≤

�0 isomorphic to �a1,b for some integer a1 satisfying C0!a1 ≥ a. Let �′
1 = π−1(�1).

By Lemma 2.4 there is a subgroup �′′ ≤ �′
1 isomorphic to �a′,b for some natural

number a′ satisfying C ′a′ ≥ a1, where C ′ only depends on k (through the bound
|F | ≤ k!) and b. Setting C = C0!C ′ we have Ca′ ≥ a. Since �′

0 acts effectively on
X ′, so does �′′, so the proof is complete.

7.2 Proof of Theorem 1.13

Let AffZnR
n denote the group of affine transformations of R

n that send the lattice
Z
n to some translate of itself. The action of AffZnR

n on R
n descends to an action on

R
n/Zn = T n . Denote the resulting group of transformations of T n as Aff T n . There

is an exact sequence

0 → T n τ−→ Aff T n μ−→ GL(n,Z) → 1,
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where τ sends a ∈ T n to the translation b �→ a + b. The morphism σ : GL(n,Z) →
Aff T n induced by the action of GL(n,Z) onR

n is a section ofμ. If A ∈ GL(n,Z), the
action ofσ(A) on H1(T n; Z) coincides, via the natural isomorphism H1(T n; Z) � Z

n ,
with A. The next lemma follows from [44, Corollary to Lemma 1] and [44, Theorem
3].

Lemma 7.1 Suppose that a finite group� acts effectively on T n. Letρ : � → GL(n,Z)
be the morphism given by the action of � on H1(T n; Z) � Z

n. Then there is an
embedding of groups η : � ↪→ Aff T n such that μ ◦ η = ρ.

Fix natural numbers k, n satisfying 1 ≤ k ≤ n − 1. Recall that σ ∈ Aff T n is the
involution defined by σ(x1, . . . , xn) = (x1 + 1/2, . . . , xk + 1/2,−xk+1, . . . ,−xn),
and that X ′ = T n , X = T n/σ and ρ : X ′ → X denotes the projection.

Since �r ,n acts effectively on X ′ for every r , we have disc-sym X ′ ≥ n. In Sect. 5
we proved that disc-sym X ′ ≤ n, so disc-sym X ′ = n.

The action of �r ,k on T n given by

(a1, . . . , ak) · (x1, . . . , xn) = (x1 + a1/r , . . . , xk + ak/r , ak+1, . . . , an)

commutes with σ , and hence defines an action of �r ,k on X . This action is effective if
r is odd, and hence disc-sym X ≥ k. Let us prove that disc-sym X ≤ k. Let T n

σ = {x ∈
T n | τ(x)σ = στ(x)}. Let ι : T k → T n

σ be ι((x1, . . . , xk)) = (x1, . . . , xk, 0, . . . , 0).
Since (x1, . . . , xn) ∈ T n belongs to T n

σ if and only if 2xi = 0 for every i ≥ k + 1, we
have T n

σ /ι(T
k) � �2,n−k . Hence, there is a short exact sequence of the form

0 → T k ι−→ T n
σ → �2,n−k → 0. (4)

Suppose that �r ,m acts effectively on X . The arguments in the proof of
Theorem 1.12 imply the existence of a constant C ′ depending only on k and n, a
subgroup �0 ≤ �r ,m satisfying [�r ,m : �0] ≤ C ′, and a central extension of groups

1 → Z → �′
0 → �0 → 1

such that �′
0 acts effectively on T

n , and Z = {Id, σ }. So the order of every element of
�′
0 is smaller than or equal to 2r . Let ρ : �′

0 → GL(n,Z) be the morphism induced
by the action of �′

0 on H1(T n; Z) � Z
n . By Lemma 7.1 there is a monomorphism

η : �′
0 → Aff T n satisfying ρ = μ ◦ η. By Theorem 3.3 �′′

0 := Ker ρ satisfies
[�′

0 : �′′
0 ] ≤ C for some C depending only on n. Then η(�′′

0 ) ≤ τ(T n
σ ), so by

Eq. 4 there is a subgroup �′′′
0 ≤ �′′

0 satisfying [�′′
0 : �′′′

0 ] ≤ 2n−k and an embedding
�′′′
0 ↪→ T k . By Lemma 2.5 we have |�′′′

0 | ≤ (2r)k because �′′′
0 ≤ �′

0, so

rm = |�r ,m | ≤ C ′|�0| = C ′

2
|�′

0| ≤ C ′

2
C2n−k(2r)k = C ′C2n−1rk .

Consequently, if r > C ′C2n−1 then m ≤ k.
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8 Finite Generation of the Homology of Abelian Covers

Denote by π : R
k → T k = R

k/Zk the quotient map. Given a topological space X
and a continuous map φ : X → T k we denote by

Xφ = {(x, u) ∈ X × R
k | φ(x) = π(u)}

the pullback to X of the covering R
k → T k . The projection

ρφ : Xφ → X , ρφ(x, u) = x

is an unramified covering map. We can also look at ρφ : Xφ → X as a principal Z
k-

bundle, where Z
k acts on Xφ as follows: if ν ∈ Z

k and (x, u) ∈ Xφ then ν · (x, u) =
(x, u + ν). Hence, Xφ is an abelian cover. Standard results on fiber bundles imply the
following.

Lemma 8.1 Suppose that X is paracompact. If two continuous maps φ,ψ : X → T k

are homotopic then there is a Z
k-equivariant homeomorphism ζ : Xφ → Xψ such

that ρφ = ρψ ◦ ζ .

We identify the group ring Z[Zk] with the additive group of finitely supported
functions Z

k → Z with ring structure given by convolution. Let e1, . . . , ek denote
the canonical basis of Z

k , and let ti ∈ Z[Zk] denote the characteristic function of
{ei } ⊂ Z

k . Then Z[Zk] � Z[t±1
1 , . . . , t±1

k ]. The action of Z
k on Xφ induces an action

on H∗(Xφ; Z) or, equivalently, a structure on H∗(Xφ; Z) of module over the group
ring Z[Zk] � Z[t±1

1 , . . . , t±1
k ].

Lemma 8.2 Let X be a closed topological manifold, and let φ : X → T k be a
continuous map. Then H∗(Xφ; Z) is finitely generated as a Z[t±1

1 , . . . , t±1
k ]-module.

Proof Since compact topological manifolds are Euclidean Neighborhood Retracts
(see, e.g., [32, Corollary A.9]) we can identify homeomorphically X with a closed sub-
set of some Euclidean spaceR

N in such a way that there exists an open subsetO ⊂ R
N

containing X and a retraction r : O → X . For any x ∈ X let Bx ⊂ O be an open ball
centered at x . By compactness we may choose a finite set of points x1, . . . , xs ∈ X
such that X ⊂ Y := Bx1 ∪ · · · ∪ Bxs . Let Bi = Bxi and let ψ = φ ◦ r : Y → T k .

Let A := Z[t±1
1 , . . . , t±1

k ]. For every i the space Bi is contractible, so by Lemma 8.1
the principal Z

k-bundle (Bi )ψ → Bi is trivial. Hence, for every subspace S ⊆ Bi we
have an isomorphism of A-modules H∗(Sψ ; Z) � H∗(S; Z)⊗Z A. So if S ⊆ Bi has
the property that H∗(S; Z) is a finitely generated abelian group, then H∗(Sψ ; Z) is a
finitely generated A-module. It also follows that H∗((Bi )ψ ; Z) is a free A-module of
rank 1.
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Let B≤ j = B1∪· · ·∪ Bj . We next prove that H∗((B≤ j )ψ ; Z) is a finitely generated
A-module for every j , using ascending induction on j . The case j = 1 has been
already been proved. Suppose that j > 1 and that the claim is true for j − 1. The
Mayer–Vietoris exact sequence (MVES)

· · · → Hk((B≤ j−1)ψ ∩ (Bj )ψ ; Z) → Hk((B≤ j−1)ψ ; Z)⊕ Hk((Bj )ψ ; Z) →
→ Hk((B≤ j )ψ ; Z) → Hk−1((B≤ j−1)ψ ∩ (Bj )ψ ; Z) → . . .

is an exact sequence of A-modules, by the naturality of theMVES and the fact that the
A-module structure on each term comes from an action ofZ

k on the spaces commuting
with the inclusions

(B≤ j−1)ψ ←↩ (B≤ j−1)ψ ∩ (Bj )ψ ↪→ (Bj )ψ

and
(B≤ j−1)ψ ↪→ (B≤ j )ψ ←↩ (Bj )ψ .

By the induction hypothesis Hk((B≤ j−1)ψ ; Z)⊕ Hk(Bj )ψ ; Z) is a finitely generated
A-module. We have (B≤ j−1)ψ ∩ (Bj )ψ = (B≤ j−1 ∩ Bj )ψ , B≤ j−1 ∩ Bj is obviously
a subset of Bj , and H∗(B≤ j−1 ∩ Bj ; Z) is finitely generated (because B≤ j−1 ∩ Bj is
the union of finitely many convex subsets of R

N ). Hence, Hk((B≤ j−1)ψ ∩ (Bj )ψ ; Z)

is a finitely generated A-module.
Since A isNoetherian, the previous considerations and the exactness of the sequence

imply that Hk((B≤ j )ψ ; Z) is a finitely generated A-module for every k. Finally,
(B≤ j )ψ is an N -dimensional topologicalmanifold, so its homology vanishes in dimen-
sions bigger than N . It follows that the entire homology H∗((B≤ j )ψ ; Z) is a finitely
generated A-module, so the proof of the claim is complete.

To conclude the proof note that the inclusion ι : X ↪→ Y and the retraction r :
Y → X induce Z

k-equivariant maps ι′ : Xφ ↪→ Yψ and r ′ : Yψ → Xφ satisfying
r ′ ◦ ι′ = IdXφ . It follows that H∗(Xφ; Z) is an A-submodule of H∗(Yψ ; Z). Since A
is Noetherian and H∗(Yψ ; Z) is finitely generated, it follows that H∗(Xφ; Z) is also
finitely generated. ��

9 Proofs of Theorem 1.3 and Corollary 1.6

Statement (1) of Theorem 1.3 was proved in Sect. 5, so we only need to prove (2). Let
X be a rationally hypertoral n-dimensional manifold satisfying discsym(X) = n, so
that X supports effective actions of �r ,n = (Z/r)n for arbitrarily large integers r . Fix
a continuous map φ : X → T n of nonzero degree. Let

d = | degφ|.

Define the principal Z
n-bundle Xφ → X as in the previous section. As we explained,

H∗(Xφ; Z) has a structure of module over Z[Zn] and, by Lemma 8.2, H∗(Xφ; Z) is
finitely generated as a Z[Zn]-module. Recall that Z[Zn] � Z[t±1

1 , . . . , t±1
n ], where ti

is the characteristic function of the i-th element of the canonical basis of Z
n .
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The following lemma describes how certain homeomorphisms of X lift to home-
omorphisms of Xφ . Recall that for any a ∈ Tm we denote by τ(a) : Tm → Tm the
translation τ(a)(t) = t + a.

Lemma 9.1 Let ψ : X → Tm be a map. Let f : X → X be a homeomorphism of
order r satisfying τ(a) ◦ ψ = ψ ◦ f for some a ∈ Tm, which necessarily satisfies
ra = 0. Let v ∈ R

m satisfy π(v) = a. There exist a lift of f , g : Xψ → Xψ , satisfying
gr (x, u) = (x, u + rv) for every (x, u) ∈ Xψ . Furthermore, g commutes with the
action of Z

m on Xψ .

Proof Recall that Xψ = {(x, u) ∈ X ×R
m | ψ(x) = π(u)}. Define g : Xψ → Xψ by

g(x, u) = ( f (x), u+v). The equality τ(a)◦ψ = ψ ◦ f guarantees that this is indeed
a well defined homeomorphism of Xψ . It is immediate that gr (x, u) = (x, u + rv)
for every (x, u) ∈ Xψ and that g commutes with the action of Z

n . ��
Lemma 9.2 For every 1 ≤ j ≤ n there exists a nonzero integer d j and a sequence
of natural numbers oi, j satisfying oi, j → ∞ as i → ∞, and isomorphisms of
Z[Zn]-modules wi, j : H∗(Xφ; Z) → H∗(Xφ; Z), such that w

oi, j
i, j coincides with

multiplication by t
d j
j .

Proof Let C be the number given by applying Theorem 3.3 to X . Let 0 < r1 < r2 <
. . . be the infinite sequence of integers such that X supports an effective action of
Gi := �ri ,n for every i . Then G ′

i := Ker(Gi → Aut H1(X; Z)) satisfies [Gi : G ′
i ] ≤

C . By Lemma 2.1 there is a subgroup G ′′
i ≤ G ′

i such that G ′′
i � �si ,n for a natural

number si satisfying C !si ≥ ri . In particular, si → ∞ as i → ∞.
Applying Theorem 4.1 to the action of G ′′

i on X we obtain a morphism of groups

ηi : G ′′
i → T n

and an ηi -equivariant map ψi : X → T n which is homotopic to φ. Also, |Ker ηi |
divides d, so |η(G ′′

i )| ≥ sni /d. For every 1 ≤ j ≤ n let S j = {(θ1, . . . , θn) ∈ T n |
θk = 0 for k 	= j}.

By Lemma 2.6 we have

oi, j := |η(G ′′
i ) ∩ S j | ≥ sni

d · sn−1
i

= si
d
.

Recall that π : R
n → R

n/Zn = T n is the quotient map, and that e j ∈ R
n denotes

the j-th element of the canonical basis. The element ei, j = π(e j/oi, j ) ∈ T n is a
generator of η(G ′′

i ) ∩ S j . Let
fi, j : X → X

be the homeomorphism given by the action of an element of η−1(ei, j ) ⊆ G ′′
i . We have

ψi ◦ fi, j = τ(e j/oi, j )◦ψi . The order of fi, j is oi, j = di, j oi, j , where di, j is a natural
number dividing d. Passing to a subsequence and relabelling accordingly we may
assume that all natural numbers d1, j , d2, j , . . . are equal to the same number d j . By
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Lemma 9.1 there is a homeomorphism gi, j : Xψi → Xψi such that g
oi, j
i, j : Xψ → Xψ

coincides with the action of d j e j on Xψ given by the structure of principal Z
n-bundle

on Xψ .
Since ψi is homotopic to φ, by Lemma 8.1 there is a Z

n-equivariant homeomor-
phism ζi : Xφ → Xψi . Let wi, j : H∗(Xφ; Z) → H∗(Xφ; Z) be the isomorphism
induced by the homeomorphism ζ−1

i ◦ gi, j ◦ ζi : Xφ → Xφ. Then w
oi, j
i, j coincides

with multiplication by t
d j
j . Since oi, j ≥ si/d and si → ∞ as i → ∞, we conclude

that oi, j → ∞ as i → ∞. ��
Combining the previous lemma with Corollary 6.3, it follows that H∗(Xφ; Z) is a

finitely generated Z-module.

Lemma 9.3 We have Hk(Xφ; Z) = 0 for every k > 0.

Proof Suppose that Hk(Xφ; Z) 	= 0 for some k > 0. By the universal coefficient
theorem, there exists some prime p such that Hk(Xφ; Z/p) 	= 0 for some k > 0.
The action of Z

n on Xφ induces a morphism αp : Z
n → Aut(H∗(Xφ; Z/p)). Since

H∗(Xφ; Z) is a finitely generated Z-module, H∗(Xφ; Z/p) is a finite group, so � =
Kerαp has finite index in Z

n .
Consider the action of� on Xφ ×R

n given by λ · ((x, u), v) = (λ · (x, u), v−λ) =
((x, u + λ), v − λ), and let Xφ ×� R

n denote the quotient space. We have maps

R
n/� Xφ ×� R

n� �
Xφ/� ,

where � is induced by the projection Xφ × R
n → R

n and � is induced by the
projection Xφ × R

n → Xφ . The map � is a fibration with fiber Xφ . The map �
is a fibration with fiber R

n and hence is a homotopy equivalence. (This is of course
a general phenomenon: Xφ ×� R

n is the Borel construction for the action of � on
Xφ , and the fact that Xφ ×� R

n is homotopy equivalent to the quotient Xφ/� is a
consequence of the fact that � acts freely on Xφ .) Since Xφ/� is an n-dimensional
manifold, we have

Hk(Xφ ×� R
n; Z/p) = Hk(Xφ/�; Z/p) = 0 for every k > n. (5)

Since � acts trivially H∗(Xφ; Z/p), the monodromy action of π1(Rn/�) � � on
the homology with Z/p-coefficients of the fibers of � is trivial. Consequently, the
homology Serre spectral sequence for the fibration � takes the form

Ha(R
n/�; Hb(Xφ; Z/p)) � Ha(R

n/�; Z/p)⊗Z/p Hb(Xφ; Z/p) �⇒ Ha+b(Xφ ×� R
n; Z/p).

Let l = max{k | Hk(Xφ; Z/p) 	= 0}. By our choice of p, we have l > 0.
Then Hn(R

n/�; Z/p) ⊗Z/p Hl(Xφ; Z/p) is a nonzero entry in the second page
of the spectral sequence, and for dimension reasons it is contained in the kernel
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of every differential and none of its elements is killed by any differential; conse-
quently, Hn(R

n/�; Z/p)⊗Z/p Hl(Xφ; Z/p) can be identified with a subquotient of
Hn+l(Xφ ×� R

n; Z/p). Hence (5) implies that l = 0, which is a contradiction. ��
Since H0(Xφ; Z) is finitely generated, π0(Xφ) is finite. Since X � Xφ ×Zn R

n ,
the space Xφ ×Zn R

n is connected. The projection � : Xφ ×Zn R
n → R

n/Zn is a
fibration with fiber Xφ , so the monodromy action of Z

n on π0(Xφ) is transitive. The
monodromy action coincides with the action naturally induced by the action of Z

n on
Xφ . So we have proved the following lemma.

Lemma 9.4 π0(Xφ) is finite, and the action of Z
n on Xφ induces a transitive action

on π0(Xφ).

Fix an arcconnected component X0
φ ⊆ Xφ . Since Hk(Xφ; Z) = 0 for every > 0,

X0
φ is acyclic. Let V ≤ Z

n be the subgroup consisting of those elements of Z
n whose

action of Xφ maps X0
φ to itself. By the previous lemma, V has finite index in Z

n and

we have X = Xφ/Zn = X0
φ/V . Since H1(X0

φ) = 0, it follows that X0
φ is isomorphic

to the universal abelian cover of X .
Since V has finite index inZ

n , the quotientRn/V is homeomorphic to T n . Arguing
as in the definition of Xφ ×� R

n we prove that X = X0
φ/V is homotopy equivalent

to X0
φ ×V R

n , where the latter is defined exactly as Xφ ×� R
n but replacing Xφ resp.

� with X0
φ resp. V . The fibers of the projection Q : X0

φ ×V R
n → R

n/V can be

identified with X0
φ , and hence are acyclic; it follows that Q induces an isomorphism in

integral homology. So H∗(X; Z) = H∗(X0
φ/V ; Z) is isomorphic to H∗(Rn/V ; Z) �

H∗(T n; Z). This finishes the proof of statement (2) of Theorem 1.3.
We next prove Corollary 1.6, using the notation of the previous arguments. Assume

first thatπ1(X) is solvable. The projection X0
φ → X is a covering space, so it identifies

π1(X0
φ) with a subgroup of π1(X). Hence, π1(X0

φ) is solvable. Since X0
φ is acyclic,

the abelianization of π1(X0
φ) is trivial, which implies that π1(X0

φ) itself is trivial. By

Hurewicz’s theorem, X0
φ is contractible (see, e.g., [32, Corollary 4.33]).

Remark 9.5 This is the only point where we use thatπ1(X) is (virtually) solvable. Note
that there exist non-contractible acyclic manifolds. Indeed, by a result of Kervaire [39,
Theorem1] any finitely generated acyclic group is the fundamental group of an integral
smooth homology sphere of dimension n > 4, and there are plenty of examples of such
groups (see, e.g., [6]). Removing a point from such manifold we obtain an acyclic
manifold with the same fundamental group. It is not clear, however, whether a non
simply connected acyclic n-dimensional manifold can support a free action of Zn with
compact quotient (let alone that its quotient by Z

n supports free actions of (Z/r)n for
arbitrarily large r). So it could be the case that our assumption that π1(X) is virtually
solvable is unnecessary.

It follows that Q : X0
φ ×V R

n → R
n/V is a homotopy equivalence. Precomposing

it with a homotopy inverse of the projection X0
φ ×V R

n → X0
φ/V = X we obtain a

homotopy equivalence X → R
n/V . By topological rigidity of tori, X is homeomor-

phic to T n .
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To conclude, let us prove Corollary 1.6 in the general case. Suppose that X is a
rationally hypertoral manifold satisfying disc-sym(X) = n and that π1(X) is virtually
solvable. Then there is a finite covering r : X ′ → X such that π1(X ′) is solvable.
Let φ : X → T n be a map of nonzero degree and let φ′ = φ ◦ r . Then degφ′ =
degφ · deg r 	= 0 and we have a Cartesian diagram

X ′
φ′

rφ

ρφ′

Xφ

ρφ

X ′ r
X .

In particular, rφ is a finite (unramified) covering space. By Theorem 1.12 we have
disc-sym(X ′) ≥ n. Applying the previous discussion to X ′ we conclude that the
connected components of X ′

φ′ are contractible. Let X0
φ be any connected component

of Xφ and denote by (X ′
φ′)0 its preimage under rφ . Let π = π1(X0

φ), so that X0
φ =

(X ′
φ′)0/π , where π acts freely on (X ′

φ′)0. Note that π is finite, because rφ is a finite
covering. The freeness of the action implies that π acts freely on the set of connected
components of (X ′

φ′)0 because by Smith’s theory a homeomorphism of primer order
of a contractible manifold has necessarily some fixed point (see, e.g., [10, Chap III,
Corollary 4.6]). Hence, X0

φ is also contractible, so the same argument as in the case
of solvable fundamental group allows to prove that X is homeomorphic to T n .

10 Proof of Theorem 1.5

We will need the following two lemmas.

Lemma 10.1 Let X ,Y be two closed connected topological manifolds. Then X ×Y is
rationally hypertoral if and only if both X and Y are rationally hypertoral.

Proof Let πX , πY be the projections from X × Y to X ,Y respectively. Let m =
dim X and n = dim Y . If X and Y are rationally hypertoral then there exist classes
α1, . . . , αm ∈ H1(X; Z) and β1, . . . , βn ∈ H1(Y ; Z) such that α1 � · · · � αm 	= 0
and β1 � · · · � βn 	= 0. Then π∗

Xα1 � · · · � π∗
Xαm � π∗

Yβ1 � · · · � π∗
Yβn 	= 0

by Künneth, so X × Y is rationally hypertoral. Conversely, suppose that there exist
classes γ1, . . . , γm+n ∈ H1(X ×Y ; Z) such that γ1 � · · · � γm+n 	= 0. By Künneth
wemaywrite γi = δi +εi where δi ∈ π∗

X H
1(X; Z) and εi ∈ π∗

Y H
1(Y ; Z). Expanding

the product γ1 � · · · � γm+n = (δ1+ε1) � · · · � (δm+n+εm+n) the only terms that
are not automatically zero are equal (after reordering terms) to terms of the form δi1 �

· · · � δim � ε j1 � · · · � ε jn where {i1, . . . , im} ∪ { j1, . . . , jn} = {1, . . . ,m + n}.
Some of these monomials is different from zero, and hence both X and Y are rationally
hypertoral. ��
Lemma 10.2 Let X ,Y be closed connected topological manifolds of the same dimen-
sion. Suppose that X�Y is rationally hypertoral. Then at least one of the manifolds
X ,Y is also rationally hypertoral.
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Proof If n = 1 the statement is obvious, and if n = 2 it follows from the classification
of closed connected surfaces. Suppose that n ≥ 3 and that Z := X�Y is rationally
hypertoral. Let X0,Y0 be the complementaries of open balls in X ,Y respectively, so
that ∂X0 ∼= Sn−1 ∼= ∂Y0.We identify Z with X0∪∂X0∼=∂Y0Y0. Denote by iX : X0 ↪→ Z
and iY : Y0 ↪→ Z the natural inclusions.

Let W := iX (X0) ∩ iY (Y0), choose a homeomorphism ξ : W → Sn−1, and let E
be the result of attaching to Z an n-disk Dn along its boundary ∂Dn = Sn−1, using ξ .
Let φ : Z → T n be a map of nonzero degree. Since πn−1(T n) = 0, the restriction of
φ to W is homotopically trivial, so φ extends to a continuous map ψ : E → T n . By
contracting Dn ⊂ E we obtain a map c : E → X ∨Y that is a homotopy equivalence.
Composingψ with a homotopy inverse of cweobtain amap ζ : X∨Y → T n . Themap
φ coincides up to homotopy with the composition ζ ◦ (c|Z ) : Z −→ X ∨ Y −→ T n .

Since the degree of φ is nonzero, it follows that the restriction of ζ to one of the two
summands X ⊂ X∨Y or Y ⊂ X∨Y has to be nonzero, so the correspondingmanifold
is rationally hypertoral. ��

We now prove Theorem 1.5. Let X = (Y �Y ′) × Z be a rationally hypertoral
manifold, where dim Y = dim Y ′ = k and dim Z = n−k for some integer 0 ≤ k < n.
Since X is orientable, Y ,Y ′, Z ′ are orientable. By Lemma 10.1 both Y �Y ′ and Z are
hypertoral, and by Lemma 10.2 at least one of themanifolds Y ,Y ′ (say, Y ) is rationally
hypertoral. Assume that H∗(Y ′; Z) is not isomorphic to H∗(Sk; Z). Choose maps of
nonzero degree φY : Y → T k , φZ : Z → T n−k and let φ = (φ′

Y , φZ ) : X =
(Y �Y ′) × Z → T k × T n−k = T n , where φ′

Y = φY ◦ cY ′ : Y �Y ′ → T n−k and
cY ′ : Y �Y ′ → Y is the map collapsing Y ′. Then d := degφ is nonzero.

We prove that disc-sym(X) ≤ n − k by contradiction. Assume that there exists a
sequence of natural numbers ri → ∞ such that �i := �ri ,n−k+1 acts effectively on
X . Arguing as in the end of Sect. 3, we may assume without loss of generality that,
for each i , ri = peii for some prime pi and a natural number ei .

By Theorem 3.3, Theorem 4.1 and Lemma 2.1, there exists a constant C and, for
every i , a subgroup�′

i ≤ �i isomorphic to�r ′
i ,n−k+1, with r

′
i dividing ri and satisfying

Cr ′
i ≥ ri , a morphism ηi : �′

i → T n satisfying |Ker ηi | ≤ d, and an ηi -equivariant
map

φi : X → T n

homotopic to φ. By Lemma 2.3 applied to the map ηi : �′
i → ηi (�

′
i ), there is a

constant C ′ and, for each i , a subgroup �′′
i ≤ ηi (�

′
i ) isomorphic to �si ,n−k+1 with

C ′si ≥ r ′
i .

We identify T k with the subgroup of T n consisting of elements whose last n − k
coordinates vanish. Let Q : T n → T n/T k � T n−k be the quotient map. We claim
that there exists an element γi ∈ T k ∩ �′′

i of order si . Otherwise, T k ∩ �′′
i would be

included in pi�′′
i . Then Q(�′′

i ) � �′′
i /(T

k ∩�′′
i ) would have a quotient isomorphic to

�′′
i /pi�

′′
i � �pi ,n−k+1. By Lemma 2.2, Q(�′′

i ) would have a subgroup isomorphic to
�pi ,n−k+1, which contradicts Lemma 2.5. Let π j : T k → S1 denote the projection to
the j-th factor. Since si is a prime power, for each i there exists some ji ∈ {1, . . . , k}
such that the order of π ji (γi ) is equal to the order of γi , i.e., to si . Passing to a
subsequence we may assume that all ji are equal to some j ∈ {1, . . . , k}.
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Define maps X → S1 by ψi = π j ◦ φi and ζ = π j ◦ φ. Then Xψi → X is a
Z-principal bundle and H∗(Xψi ; Z) is a finitely generated Z[Z] = Z[t±1] module
by Theorem 6.1. The maps ψi and ζ are homotopic, so there exists a Z-equivariant
homeomorphism χi : Xζ → Xψi .

Let π : R → R/Z = S1 be the quotient map. Replacing each γi by some power
γ
ai
i with ai not divisible by pi , we may assume that π j (γi ) = π(s−1

i ). Let γ̃i ∈ �′
i

satisfy ηi (γ̃i ) = γi . Let oi be the order of γ̃i . Then si divides oi and oi divides ri , so
we may write oi = δi si with 1 ≤ δi ≤ CC ′. Passing to a subsequence we may assume
that oi = δsi for some 1 ≤ δ ≤ CC ′. By Lemma 9.1 there is a homeomorphism
θi : Xψi → Xψi lifting the action of γ̃i and such that θoii coincides with the action of
δ = oi/si on Xψi . Let wi = (χ−1

i ◦ θiχi )∗ : H∗(Xζ ; Z) → H∗(Xζ ; Z). Then wi is
an automorphism of H∗(Xζ ; Z) as a [Z±t ]-module, and woi

i is equal to multiplication
by tδ . Since oi → ∞, Corollary 6.3 implies that H∗(Xζ ; Z) is a finitely generated
Z-module.

Let κ be the composition cY ′ ◦ πY �Y ′ : X = (Y �Y ′) × Z → Y �Y ′ → Y where
πY �Y ′ is the projection to the first factor. Define ψY = π j ◦ φY . Then ζ = ψY ◦ κ , so
Xζ can be identified with (YψY �(Y

′ × Z))× Z , the product of Z with the connected
sum of YψY with countablymany copies of Y ′. Since H∗(Y ′; Z) 	� H∗(Sn; Z), making
connected sumwith Y ′ increases the size of the homology, so H∗(Xζ ; Z) is not finitely
generated over Z, contradicting our previous conclusion. This finishes the proof that
disc-sym(X) ≤ k.

11 Proof of Theorem 1.7

In dimensions up to three any topological manifold has a unique smooth structure, so
we assume that n ≥ 5. According to [64, §15A], for any smooth n-manifold X and
any simple homotopy equivalence h : X → T n one can define a “characteristic class”

c(h : X → T n) ∈ An := H3(T n; Z/2)⊕
⊕

i≤n

Hi (T n;πi (PL/O))

with the property that if h′ : X ′ → T n is another simple homotopy equivalence and
c(h : X → T n) = c(h′ : X ′ → T n) then X and X ′ are diffeomorphic. The piece of the
characteristic class in H3(T n; Z/2) accounts for the PL structure of X , whereas that in
Hi (T n;πi (PL/O)) accounts for the different choices of smooth structure compatible
with the given PL structure. If c(h : X → T n) = 0 then X is diffeomorphic to the
standard torus, and if π : T n → T n is a covering and π∗h : π∗X → T n is the
pullback of h then

c(π∗h : π∗X → T n) = π∗c(h : X → T n)

(note that π∗h : π∗X → T n is also a simple homotopy equivalence). The homotopy
groups πi (PL/O) are finite and hence so is the group An .

Let X be a smooth n-manifold and suppose that h : X → T n is a homeomor-
phism. Then h is a simple homotopy equivalence by Chapman’s theorem (see, e.g.,



Discrete Degree of...

the Appendix in [20]), so we have a characteristic class c(h : X → T n) ∈ An . Let k be
any natural number and let r = k|An|+1.Multiplication by r is the identitymap on An ,
so if πr : T n → T n is the covering space defined by πr (x1, . . . , xn) = (r x1, . . . , r xn)
(where xi ∈ R/Z) then π∗

r c(h : X → T n) = c(π∗
r h : π∗

r X → T n) = c(h : X →
T n). Hence there exists a diffeomorphism φr : X → π∗

r X . The manifold π∗
r X has

a free and smooth action of (Z/r)n given by deck transformations of the covering
π∗
r X → X . This action can be transported via φr to a free action of (Z/r)n on X . This

proves statement (1) of Theorem 1.7.
Let us now prove (2). Let X be a smooth manifold homeomorphic to T n , and fix a

homotopy equivalence h : X → T n . By Theorems 3.3 and 4.1 there exists a natural
number C such that for any action of a finite group � on X there is a subgroup �0 ≤ �

satisfying [� : �0] ≤ C , a map ψ : X → T n homotopic to h, and a monomorphism
η : �0 → T n such that ψ is η-equivariant. In particular, the action of �0 on X is free.

Suppose that |An| = pe11 . . . pekk , where p1, . . . , pk are pairwise distinct prime
numbers and each ei is a natural number. Let fi be the smallest natural number such
that p fi

i ≥ C !. Define δ(n) = pe1+ f1
1 . . . pek+ fk

k .

Let r be an integer multiple of δ(n) and suppose that �′ is a subgroup of �r ,n
satisfying [�r ,n : �′] ≤ C . By Lemma 2.1 there exists a subgroup�′′ ≤ �′ isomorphic
to �s,n for some s dividing r and satisfying C !s ≥ r . Let pgii (resp. phii ) be the biggest
power of pi dividing s (resp. r ). We have hi ≥ ei + fi because r is divisible by δ(n),
and hi ≥ gi because s divides r . Since r/s ≤ C ! ≤ p fi

i and phi−gi
i divides r/s, we

have hi − gi ≤ fi , so gi ≥ hi − fi ≥ ei . Hence s is divisible by |An|.
If the group �r ,n acts smoothly and effectively on X then there is a monomor-

phism η : �s,n → T n and an η-equivariant map ψ : X → T n homotopic to
h. The quotient T n → T n/η(�s,n) is a covering map and T n/η(�s,n) is home-
omorphic to T n . So the map ψ descends to a continuous map ζ : X/�s,n →
T n/η(�s,n) ∼= T n . The projection map identifies π1(X) (resp. π1(T n)) with a
subgroup of π1(X/�s,n) (resp. π1(T n/η(�s,n)), and via these identifications ζ∗ :
π1(X/�s,n) → π1(T n/η(�s,n)) extends ψ∗ : π1(X) → π1(T n). Since ψ∗ is an
isomorphism, [π1(X/�s,n) : π1(X)] = |�s,n| = [π1(T n/η(�s,n)) : π1(T n)], and
π1(X/�s,n) � π1(T n/η(�s,n)) � Z

n , it follows that ζ∗ is an isomorphism. Both
X/�s,n and T n/η(�s,n) are aspherical spaces, so ζ is a homotopy equivalence. By the
topological rigidity of tori, ζ is homotopic to a homeomorphism ξ : X/�s,n → T n .
Since ξ is homotopic to ζ , it can be lifted to a homeomorphism θ : X → T n that
makes the following diagram commutative:

X
θ

T n

q

X/�s,n
ξ

T n .

The map q is given by q(x1, . . . , xn) = (sx1, . . . , sxn), so its action on Hk(T n; Z)

is multiplication by sk . Since s is divisible by |An|, the universal coefficients theorem
implies that c(θ : X → T n) = q∗c(ξ : X/�s,n → T n) = 0, so X is diffeomorphic
to T n .
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12 Holomorphic Finite Group Actions on Kaehler Manifolds

12.1 Proof of Theorem 1.10

The implication (1)⇒(2) is immediate, as the r -torsion of T n is isomorphic to (Z/r)n .
To prove the converse implication (2)⇒(1) it is enough to consider the case in which
G is compact. Indeed, if G is an arbitrary Lie group with finitely many connected
components then the existence and uniqueness up to conjugation of maximal compact
subgroups (see, e.g., [33, Theorem 14.1.3]) implies the existence of a compact sub-
group K ≤ G with the property that any compact (in particular, any finite) subgroup
of G is conjugate to a subgroup of K . Hence, replacing G by K we assume from now
on that G is a compact Lie group.

The proof can be finished with elementary arguments using the exponential map
and the adjoint representation. Instead, we give a short but overkill argument. Let
T ≤ G be a maximal torus. Then G/T has a natural structure of smooth manifold and
χ(G/T ) is nonzero (see, e.g., [13, Prop. 17.4]). By [54, Theorem2.5] there exists some
constant C such that any finite group � acting continuously on G/T has a subgroup
�′ ≤ � satisfying [� : �′] ≤ C and fixing some point in G/T . Now suppose that,
for some integer a ≥ C ! + 1, G has a subgroup � isomorphic to �a,n . Consider the
action of � on the left on G/T . There is a subgroup �′ ≤ � fixing a point gT ∈ G/T ,
so g�′g−1 is contained in T . By Lemma 2.1 there is a subgroup of �′ isomorphic to
�a′,n for some a′ satisfying C !a′ ≥ a, hence a′ ≥ 2. By Lemma 2.5 it follows that
dim T ≥ n.

12.2 Proof of Theorem 1.9

Let X be a compact connectedKaehlermanifold of real dimension n. Let Aut X denote
the group of biholomorphisms of X . A theorem of Bochner and Montgomery [9, §9]
states that Aut X has a natural structure of Lie group. Letω denote the Kaehler form of
X and let ω denote the cohomology class in H2(X; R) represented by ω through the
de Rham isomorphism. Let AutωX denote the subgroup of Aut X consisting of those
biholomorphisms fixing the class ω. According to a theorem of Fujiki [28, Theorem
4.8], AutωX has finitely many connected components.

By Theorem 3.3 there exists a constant C depending only on X such that for any
action of a finite group� on X then there is a subgroup�′ ≤ � satisfying [� : �′] ≤ C
and whose action on H2(X; Z), and hence on H2(X; R), is trivial. In particular, if �
acts effectively on X by biholomorhic transformations, so that we can identify � with
a subgroup of Aut X , then [� : AutωX ∩ �] ≤ C .

Now assume that for some natural number m the group Aut X contains subgroups
isomorphic to�r ,m for arbitrarily large values of r . Arguing as in the preceding subsec-
tion (applying the existence of the constantC and using Lemma 2.1) wemay conclude
that AutωX contains subgroups isomorphic to�s,m for arbitrary large values of s. This
implies, by Theorem 1.10, that AutωX contains a torus T of satisfying dim T ≥ m.

By the principal orbit theorem (see, e.g., [62, Theorem (5.14)]), if anm-dimensional
torus T acts effectively on an n-dimensional connected topological manifold X then
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m ≤ n, and if m = n then X is homeomorphic to a torus. A Kaehler manifold
homeomorphic to a torus is biholomorphic to a complex torus (see, e.g., [4, Theorem
B] for a nice exposition of a more general result), so the proof of Theorem 1.9 is now
finished.

13 Regular Self Coverings of theManifolds in Theorem 1.11

Let d be an odd natural number. The manifolds constructed in [17] are products
T (h)× H , where T (h) is the mapping torus of a self homeomorphism h of a closed
topological manifold V and H is a closed hyperbolic manifold. So it suffices to prove
that T (h) supports a regular self covering of degree d. The structure of mapping torus
on T (h) gives a map T (h) → S1, and the regular self covering we claim to exist is
the pullback, via this map, of the covering S1 → S1 sending θ to d θ . This pullback
can be identified with the mapping torus T (hd), so all we need to prove is that T (h)
and T (hd) are homeomorphic.

The manifold V is W ∪T (T n × [0, 1]) ∪T ′ W ′, where W and W ′ are (n + 1)-
dimensional manifolds with boundaries T and T ′ respectively, and where n ≥ 5. Here
both T and T ′ denote the torus T n with involutions hT : T → T and hT ′ : T ′ → T ′.
The involution hT is a linear involution, whereas hT ′ is exotic, i.e., not conjugate to
a linear action. Both hT and hT ′ have nonempty fixed point set (see [8, §2.1] for a
concrete description of the involutions hT and hT ′ used in [17]). The maps hT and hT ′
are homotopic. In the definition of V we glue T ⊂ W with T n × {0} and T ′ ⊂ W ′
with T n × {1}.

The involutions hT and hT ′ extend to involutions hW : W → W and hW ′ : W ′ →
W ′ respectively, and there is a self homeomorphism hC of C := T n × [0, 1] whose
restriction to C0 := T n × {0} resp. C1 := T n × {1} coincides with hT resp. hT ′ .
To justify the existence of hC it suffices to prove the existence of a homeomorphism
φ : C → C such that φ|C0 = IdT n and φ|C1 = ψ := h−1

T ◦ hT ′ , for then hC :=
(hT × Id[0,1]) ◦ φ has the desired property. Now, ψ is homotopic to IdT n so the
mapping tori T (ψ) and T (IdT n ) are homotopy equivalent. Since T (IdT n ) = T n+1,
the topological rigidity of tori implies that T (ψ) and T (IdT n ) are homeomorphic. The
existence of φ now follows from combining: [43, Theorem 1], the observation that
invertible cobordism are h-cobordisms, the s-cobordism theorem, and the vanishing
of the Whitehead group of π1(T n).

Unlike hT and hT ′ , hC is not an involution. However, we have the following:

Proposition 13.1 If we chose hC suitably, then h2C and IdC are homotopic rel. ∂C.

Proof We identify T n with R
n/Zn , so the universal covering space C� of C can be

identified with R
n × [0, 1]. Let C�

i = R
n × {i} for i = 0, 1. Let f , g : C → C

be continuous maps such that f |∂C = g|∂C . Choose lifts f �, g� : C� → C� of
f , g respectively. Then g�|

C�i
− f �|

C�i
is equal to some constant λi ∈ Z

n , because

g|Ci = f |Ci . Let
λ(g, f ) := λ1 − λ0.

The vector λ(g, f ) ∈ Z
n is independent of the chosen lifts of f , g.
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Lemma 13.2 f and g are homotopic rel. ∂C if and only if λ(g, f ) = 0.

Proof The “only if” part of the lemma is an easy exercise. For the “if” part, note
that there is a linear map ρ : Z

n → Z
n such that for every p ∈ R

n , μ ∈ Z
n and

s ∈ [0, 1], both f �(p + μ, s) − f �(p, s) and g�(p + μ, s) − g�(p, s) are equal
to (ρ(μ), 0). (Actually ρ can be identified with the morphism H1(T n) → H1(T n)

induced by f or g.) It follows that the map C� × [0, 1] → C� sending ((p, s), t) to
(1 − t) f �(p, s) + tg�(p, s), which is a homotopy between f � and g�, descends to a
homotopy rel ∂C between f and g. ��

Now suppose that ζ : C → C is a homeomorphism satisfying ζ |C0 = hT and
ζ |C1 = hT ′ . Since both hT and hT ′ have fixed points, there exist x ∈ C0 and y ∈ C1
such that ζ(x) = x and ζ(y) = y. Choose lifts x�, y� ∈ C� of x, y respectively. There
is a unique lift ζ � : C� → C� satisfying ζ �(x�) = x�. As before, there is amorphism of
groups ρ : Z

n → Z
n such that ζ �(p+μ, s) = ζ �(p, s)+(ρ(μ), 0) for all p, μ, s. Let

o : C� = R
n × [0, 1] → R

n denote the projection and let ν := o(ζ �(y�)− y�) ∈ Z
n ,

so that ζ �(y�) = y� + (ν, 0). Then:

λ(ζ 2, Id) = o(ζ �ζ �(y�)− y�) = o(ζ �ζ �(y�)− ζ �(y�)+ ζ �(y�)− y�)

= o(ζ �(y� + (ν, 0))− ζ �(y�)+ (ν, 0)) = ρ(ν)+ ν.

By the previous lemma, in order for ζ 2 to be homotopic to IdC rel. ∂C we need
ρ(ν) + ν to vanish. This need not be the case, but if we define ξ� : C� → C� as
ξ�(p, s) = ζ �(p) − sν then we have ξ�(p + μ, s) = ξ�(p, s) + (ρ(μ), 0) for all
p, μ, s, so ξ� descends to a homeomorphism ξ : C → C satisfying ξ |∂C = ζ |∂C .
Furthermore, ξ�(x�) = x� and ξ�(y�) = y�, so λ(ξ2, Id) = 0. Consequently, hC := ξ

has the desired property. ��
Assume from now on that hC has been chosen in such a way that h2C is homotopic

to IdC rel. ∂C , which implies that hdC and hC are homotopic rel. ∂C . The involution
h : V → V is defined by the condition that its restriction to the subspaces W , T n ×
[0, 1], W ′ is given by hW , hC , hW ′ respectively.

Since hW and hW ′ are involutions, the restrictions of the maps h and hd to W and
W ′ are equal. Hence, to prove that T (h) and T (hd) are homeomorphic it suffices to
prove the existence of a homeomorphism of mapping tori φ : T (hC ) → T (hdC )whose
restriction to ∂T (hC ) is the natural homeomorphism ∂T (hC ) → ∂T (hdC ) resulting
from the equalities hT = hdT and hT ′ = hdT ′ .

By definition T (hC ) is the quotient of C × [0, 1] by the relation that identifies
(x, 1) with (hC (x), 0) for every x ∈ C . For i = 0, 1, let Ti (hC ) ⊂ T (hC ) be the
image of Ci × [0, 1] under the projection map C × [0, 1] → T (hC ). Then T0(hC )
resp. T1(hC ) can be identifiedwith T (hT ) resp. T (hT ′). Since hT is a linear involution,
T (hT ) supports a non-positively curvedRiemannianmetric. Now, T (hT ′) is homotopy
equivalent to T (hT ), because hT and hT ′ are homotopic. Hence, by topological rigidity
[24, Theorem 14.1], there is a homeomorphism ψ : T (hT ′) → T (hT ). Choosing ψ

appropriately, we may and do assume that the compositions of maps T (hT )
ψ−1

−→
T (hT ′) = T1(hC ) ↪→ T (hC ) and T (hT ) = T0(hC ) ↪→ T (hC ) are homotopic.
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We claim the existence of a homeomorphism

ξ : T (hC ) → T (hT × Id[0,1]) = T (hT )× [0, 1]

whose restriction to T0(hC ) resp. T1(hC ) coincides with IdT (hT ) resp. ψ . Once we
prove the claim the existence of φ will follow immediately, since by [24, Theorem
14.1] topological rigidity applies to T (hT ) × [0, 1] (again because T (hT ) supports
a metric of non-positive curvature) and the existence of a homotopy hdC ∼ hC rel.
∂C gives a homotopy equivalence T (hC ) → T (hdC ) whose restriction to ∂T (hC ) is a
homeomorphism.

To prove the existence of the homeomorphism ξ : T (hC ) → T (hT ) × [0, 1] we
rely once again on the topological rigidity of T (hT )×[0, 1], so we only need to prove
the existence of a continuous map χ : T (hC ) → T (hT )× [0, 1] whose restriction to
T0(hC ) resp. T1(hC ) coincides with IdT (hT ) resp. ψ (these properties imply that χ is
a homotopy equivalence).

If Y ⊆ X is an inclusion of topological spaces and f , g : X → X are maps
preserving Y , satisfying f |Y = g|Y , and f , g are homotopic rel. Y , then there is
a continuous map ε : T ( f ) → T (g) whose restriction to T ( f |Y ) is the natural
identification between T ( f |Y ) and T (g|Y ). Indeed, suppose that H : X × I → X
satisfies H(x, 0) = g(x), H(x, 1) = f (x) and H(y, t) = f (y) = g(y) for every
x ∈ X , y ∈ Y , t ∈ [0, 1]. Then ε is defined by the map ε̃ : X × [0, 1] → X × [0, 1]
given by

ε̃(x, t) =
{
(x, 2t) if t ∈ [0, 1/2],
(H(x, 2t − 1), 0) if t ∈ [1/2, 1].

Using the previous principle, and the facts that hC and hT ×Id[0,1] are homotopic rel.
C0 and hC and hT ′ × Id[0,1] are homotopic rel. C1 (which can be proved by lifting the
maps toC� as in the proof of Proposition 13.1 and interpolating linearly),we deduce the
existence of maps χ0 : T (hC ) → T (hT )× [0, 1] and χ1 : T (hC ) → T (hT ′)× [0, 1]
such that χi restricted to Ti (hC ) is the identity for i = 0, 1. Furthermore, χ0 and
(ψ × Id[0,1]) ◦ χ1 are homotopic.

The universal cover of T (hC ) can be identified with R
n × [0, 1] × R, and that of

T (hT ) × [0, 1] with R
n × R × [0, 1]. Fix a lift h�T : R

n → R
n of hT : T n → T n .

Crucially, h�T is an affine isomorphism, because hT is a linear involution. The group
� = π1(T (hT )× [0, 1]) � π1(T (hT )) � Z

n
� Z acts on R

n × R × [0, 1] preserving
the affine structure induced by the inclusion R

n × R × [0, 1] ⊂ R
n+2: the factor Z

n

acts by addition on the first factor of R
n × R × [0, 1], and the action of the second

factor is generated by the transformation (z, t, s) �→ (h�T (z), t − 1, s).
Choose lifts of χ0 and (ψ× Id[0,1])◦χ1 to the universal coverings, and call them θ0

and θ1 respectively, so that θi : R
n ×[0, 1]×R → R

n ×R×[0, 1]. Since θ0 and θ1 are
homotopic there exists a morphism of groups ρ : π1(T (hC )) → π1(T (hT )× [0, 1])
such that both θ0 and θ1 are ρ-equivariant, meaning that θi (γ ·w) = ρ(γ ) · θi (w) for
every γ ∈ π1(T (hC )) and w ∈ R

n × [0, 1] × R. Define θ : R
n × [0, 1] × R → R

n ×
R×[0, 1] as θ(p, s, t) = (1−s)θ0(p, s, t)+sθ1(p, s, t). Then θ satisfies the same ρ-
equivariance property as θi , because the action ofπ1(T (hT )×[0, 1]) onR

n×R×[0, 1]
is affine. This implies that θ descends to a map χ : T (hC ) → T (hT )× [0, 1], and by
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construction the restriction of χ to T0(hC ) resp. T1(hC ) coincides with IdT (hT ) resp.
ψ . This finishes the proof of the theorem.
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