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1 Introduction

Consider the following perturbed d-dimensional spatial stochastic heat equa-
tion on the compact set [0, 1]¢

Lut(t, ) = ea(uf (t, ) F(t,z) + B(ué(t, x)), t >0, z € [0,1]%,
u(t,z) =0, x € 90([0,1]%), (1.1)
uf(0,x) = 0, r € 1[0,1)%,

withe >0, L = % — A where A is the Laplacian on IR? and 9([0, 1]%) is the
boundary of [0, 1]%. We consider null initial conditions and the compact set
[0,1]% instead of [0,¢]¢, ¢ > 0, for the sake of simplicity.

Assume that the coefficients satisfy the following assumptions:

(C) the functions o and [ are Lipschitz.

The noise F' = {F(p), ¢ € D(RT)} is an L%(Q, F, P)-valued Gaussian

process with mean zero and covariance functional given by
o) = [ s [ dn [ dyels.o)f- i), (12
R R? R

and f : RY — IR, is a continuous symmetric function on IR? — {0} such
that there exists a non-negative tempered measure A on IR? whose Fourier
transform is f. The functional J in (1.2) is said to be a covariance functional
if all these asumptions are satisfied. Then, in addition,

/1R+ds/ AdE) Fio(s, )€ s, ) (©),

where F is the Fourier transform and Z is the conjugate complex of z. In (1.2)
we could also work with a non-negative and non-negative definite tempered
measure, therefore symmetric, instead of the function f but, in this case, all
the notation over the sets appearing in the integrals is becoming tedious. In
this paper, moreover, we assume the following hypothesis on the measure A:

A(d§)
M) [ <
W) foa T+ TP
for some 7 € (0,1]. For instance, the function f(z) = ||z| =", s € (0,d), sat-
isfies (H;)). As in Dalang [4] (see also Dalang and Frangos [5]) the Gaussian



process F' can be extended to a worthy martingale measure, in the sense
given by Walsh [23],

M = {M;(A), t e R, A € By(IR%)}.

Then, following the approach of Walsh [23], one can give a rigorous meaning
to (1.1) by means of a weak formulation. Assumptions (C) and (H;) will
ensure the existence and uniqueness of a jointly measurable adapted process
{uf(t,z), (t,z) € Ry x [0,1]9} such that

t
wt)= e[ [ G- smpalut(sm)Fdsd)
0 J[o,1)d

t (1.3)
_|_/0 ds/[oﬂd dyG(t—s,x,y)ﬁ(u (S,Q)),

where ¢ > 0 and G(t,z,y) denotes the fundamental solution of the heat
equation on [0, 1]%:

IG(tx,y) = NGt myy), >0, z,y€[0,1]%
G(t,z,y) =0, z € 0([0,1]%),
G(O,.fﬂ,y) = 5($ - y)

The stochastic integral in (1.3) is defined with respect to the Fi-martingale
measure M. Denote D% = [0,T] x [0,1]¢. If d > 1, the evolution equation
can not be driven by the Brownian sheet because G does not belong to
L%(D%) and we need to work with a smoother noise. The study of existence
and uniqueness of solution to this sort of equation (1.3) on IR? has been
analyzed by Dalang in [4]. Many other authors have also studied existence
and uniqueness of solution to d-dimensional spatial stochastic equations, in
particular, wave and heat equations (see, for instance, Dalang and Frangos
[5], Karszeswka and Zabszyk [12], Millet and Morien [15], Millet and Sanz-
Solé [16], Peszat and Zabszyk [17], [18]).

Assuming the above-mentioned hypothesis, (C) and (H,) for some 1 € [0, 1],
we will also check that the trajectories of the process are (vi,72)-Holder
continuous with respect to the parameters ¢ and z, satisfaying v; € (0, I_T”)
and v2 € (0,1 —n). The Holder continuity for the stochastic heat equation
on IR? has been studied by Sanz-Solé and Sarra [20], [21]. On the other
hand, the wave case has been dealt in [15], [16] and [20].

Under (C) and (H,)) for some 7 € (0,1), we will prove the most important
result of this paper: the existence of a large deviation principle (ldp) for



the law of the solution u® to (1.3) on C?7(D%), with v € (0, ITT") This
means that we check the existence of a lower semi-continuous function I :
C77 (D) — [0,00], called rate function, such that {I < a} is compact for
any a € [0,00), and

e2log P{u € O}
e?log P{uf € U}

—A(O), for each open set O,

>
< —A(U), for each closed set U,

where, for a given subset A € C77(D2),

A(A) = inf I(1).

(4) = inf I(D)

The proof of this goal is based on a classical result given by Azencott in [1]
(see also Priouret [19]), that allow us to go beyond a ldp from ¢F to u®.
Azencott’s method is the following:

Theorem 1.1 Let (E;,d;), i = 1,2, be two Polish spaces and X; : Q — Ej,
e>0,1=1,2, be two families of random variables. Suppose the following
requirements:

1. {X5, € > 0} obeys a ldp with the rate function I : By — [0, 00].

2. There exists a function K : {I; < oo} — Ea such that, for every
a < o0, the function
K {Il S (I} — E2

18 continuous.
3. For every R,p,a > 0, there exist 0 > 0 and g9 > 0 such that, for
h € Ey satisfying Iy (h) < a and € < g9, we have

P{dQ(Xg,K(h)) > p, di(XE,h) < 9} < exp (_g) . (14)

Then, the family {X5, € > 0} obeys a ldp with the rate function

I(¢) = inf{I;(h) : K(h) = ¢}.

Consequently, we will need to check that our initial Gaussian process satisfies
a ldp, the existence of a function K and, finally, to prove (1.4). We will
follow the approach of Freidlin and Wentzell [10] for diffusion process (see
also Dembo and Zeitouni [6]). Another remarkable article is Chenal and
Millet [3] where they prove the existence of a ldp for a one-dimensional



stochastic heat equation. Sowers has also studied this last equation but
using a different method. For more information about the study of one-
dimensional stochastic heat equations, we refer to Chenal and Millet [3].
Finally, Chenal [2] has checked a ldp for a stochastic wave equation on IR%.
The paper is organized as follows. In Section 2 we establish a ldp for our
Gaussian process (first point of Theorem 1.1). In Section 3 we state some
properties on u®(¢, ), mainly the Holder continuity. Section 4 contains the
proofs of some requirements on the skeleton of u® (second point of The-
orem 1.1). Section 5 is devoted to the proof of called Freidlin-Wentzell’s
inequality (third point of Theorem 1.1). All the arguments of this paper
need precise estimates of the fundamental solution G which will be enunci-
ated and proved in an appendix. Moreover, this appendix also contains an
exponential inequality used in Section 5.

In this paper we fix T' > 0 and all constants will be denoted independently
of its value. We finish this introduction by giving some basic notations. We
write, for functions ¢, ¢’ : D4 — IR,

¢lloo = sup{|¢(t. )|, (t,x) € DF},

|¢(ta l’) B ¢(s?y>’
[t — s+ [z =yl

61202 = sup () # (s,9) € D} },

d711’72(¢7 ?b/) - H¢ - ¢/HOO + H¢ - ¢/H’Yly’Y2'

Then, we define the topology of (71,72)-Hélder convergence on D% by means
of dy, 5, Let C7172(DZ) be the set of functions ¢ : D¢ — IR such that

||¢”OO + H¢||’yl,72 < 00.
Finally, for # > 0, aset A C IR",n > 1 and ¢ : A — IR, we introduce the

following notation,

|p(w) = P(w')|

[9l.1 = sup 6(w)| + sup { =T w ' ww' € A (1)

2 Large deviation principle for the Gaussian pro-
cess

Let £ be the space of measurable functions ¢ : IR? — IR such that

/d dy/ LAz le@)If (y = 2)le(2)] < oo,
R R



endowed with the inner product
ovle= [ dy [ dzol)fy - 2)0(e)
R R4

Let ‘H be the completation of (£, (,)¢). For T > 0, let Hy = L2([0,T]; H).
| x

This space is a real separable Hilbert space such that, if ¢, € D([0,
RY),

T
E(F(SD)FW))Z/O (o(s,),9(s,))mds = (@, V)rr, (2.1)

where I’ is the noise introduced in Section 1.
For (t,z),(t',a2') € D2, set

~ A
L((t,z), (t',2")) :/0 ds/R( )dy/R( ) dz f(y — 2),

where R(z) is the rectangle [0, z] (here [0, z] is a product of rectangles). We
have I'((¢, z), (t',2")) = (pte, Pt 2t )y With

ot.2(8,Y) =N((0,x R(x)) (5, Y)-
One can easily check the following three conditions:
(i) T is symmetric.
(ii) For any c1,...,¢c, € R, (t1,21),..., (tn, ) € D%,
n n N
i=1 j=1
(iii) For any (¢,z), (¢',2') € D%,

L((t,2), (t,2))+D((t',2"), (¢',2")=2D((t, 2), (¢',2)) < Op(|t—t'[+[la—2"]).

Then, Example 1.2 in Watanabe [24] implies that, for any 4’ € [0, %), there
exists a Gaussian measure v on C7Y' (D%; R) such that

/ o w(t, z)w(t', 2 )dv(w) = T((t, z), (', z")).
¢ (Dd;R)



Moreover, if H denotes the autoreproducing space of v, (CVW/ (D%; R), H, V)

is an abstract Wiener space. For any (t,z) € D, set

r(t,x) / / F(ds,dy).
R(x)

Then, W is a Gaussian process with covariance function I'. The trajectories
of Wg belong to C7' (D4;R), this means that the law of the process Wp
is v. The space H is the set of functions A such that, for h € Hp and for
any (t,x) € D4, )
h(t, =) = ((o,gxR(x))> ) Hrs
with the following scalar product
<B7 ];:>H = <h7 k>HT

H is a Hilbert space isomorphic to Hr.
Classical results on Gaussian processes (see, for instance, Theorem 3.4.12
in [7]) show that, for 4/ € [0,1), the family {e¢Wpg, ¢ > 0} satisfies a large
deviation principle on C7'7'(D%; IR) with rate function
- hllg, ifheH,

400, otherwise.

Remark that, if I(h) = 1||h||3, for h € Hp, then I(h) = I(h) for h € H.

3 Properties on the solution

In this section we analyze the existence and uniqueness of solution (1.3) and
the Holder continuity with respect to the parameters.

Proposition 3.1 Assume (C) and (H1). Then (1.3) has a unique solution.
Moreover, for any T >0, p € [1,00),

sup sup E(Ju°(t,z)P) < oco. (3.1)
0<e<1 (t,z)eDZ

Proof: Define the following Picard’s approximations for n > 1,

ug(t,z) =0,

t
uf 4 (t,w) = 5/ o G(t — s,z,y)a(u;, (s,y)) F(ds,dy)

t
4 / ds / dy Gt — 5,2, y) B (5, ),
0 [0,1]¢

7



where G(t — s,z,y) is the fundamental solution to (1.1) described in the
Appendix. The proof of this result is almost the same as Proposition 2.4 in
[13] but adding the dependence on e.

g

Theorem 3.2 Assume (C) and (H,) for some n € (0,1). Then, for every
T>0,p€(2,0),0<e<l,tt€l0,T],z,2 €[0,1)% v € (0,52) and
Y2 € (Oa 1- 7])}
E (Ju®(t,z) —u®(t',z)[P) < C|t — /|7, (3.2)
E (Ju*(t,z) — u®(t,2)|P) < C|lz — '||7?P. (3.3)

Moreover, the trajectories of u® are a.s. (y1,v2)-Holder continuous in (t,x) €
D&, for v € (0, 1_777) and o € (0,1 —n).

Proof: We at first prove (3.2). For 0 <#' <t < T, z € [0,1]%, we have

4
B (luf(t,x) —uf (', z)]P) < C Y A,

. =
A =E < /Ot/ /Md e[GOl — s.2.9) G — s.2.)] 0w (s.9)) F(ds. dy) p) ,
4= E ( /t t /[0 G 8 )0l o, 1) Fds, p) ,

Ay= D ( [ [ vt s -6 - s o) ) ,
A= E < /ﬂt ds /[Wdy Gt — 5, 2,18 (5, 1) p) .

Burkholder’s and Hélder’s inequalities, (3.1) and (6.1.7) imply

A < C[1+ sup  sup E(!us(t,x)\p)]
0<e<1 (t,x)eD%

t/
><|:/ dS/ dy/ dZ|G(t—S,.’B,y)—G(t/—8,$,y)|f($—y)
0 [0,1]¢ [0,1]¢

xX|G(t — s,x,2) — G(t' — s, , z)|]

IN

Clt —t'|">.



Using similar arguments together (6.1.8), one can obtain
Ay < Clt —Ht/|mP.

In order to finish the proof of (3.2) we notice that A3 and A4 can be dealt
in a similar but easier way by means of (6.1.9) and (6.1.10), respectively.
We now examine (3.3). For 0 <t < T, z,2" € [0,1]%, we write

E(Ju(t,z) —us(t,2")|P) < C(By + Ba),

with
B =F ( /Ot /[071161 € [G(t —s,z,y) — G(t — s,7, y)} a(u®(s,y))F(ds,dy)

1)
- )

Then, the same steps as before but using (6.1.19) and (6.1.20) conclude the
proof of this theorem.

/Ot ds /[0,1]d dy [G(t —s,x,y) — G(t —s,2/, y)}ﬁ(ug(s,y))

O

4 Continuity of the skeleton

For any h € H, we consider the solution to the deterministic evolution
equation

Shta) = (Gt~ a)a(S" (). h)

t ~ (4.1)
— S8, h S
+/0 ds/[o’ﬂddyG(t ,2,)8(S"(s,y)),

for all (t,2) € D%, where (-, )3, is defined in (2.1).
Remark. We specify the formulation used in (4.1). Due to the kernel G,

(Gt =2, 90a(SH(,0),h) =

Hr

t -
[as [ ay [ @Gl sayals s )i - his.).
0 [0,1]¢ [0,1]¢



Then, in fact, ) can rewrite as follows

iL —Z S, 2
ht,z) /d/[o dy/m]ddza s, y)a(S™(s, )y — 2)h(s. )

B h
_|_/0 ds/[071}ddyG(t s,2,y)B(S"(s,v))-

In this section, we show that the map h — S" is continuous on 7172 (D%)
for some (71, 7v2) which will be given later. In order to obtain this goal we
will need the next proposition, we omit the proof of this result because it is
similar to Proposition 3.1 and Theorem 3.2.

Theorem 4.1 Suppose (C).
i) Assuming (Hy), for any a € [0,00), we have

sup sup \Si’(t,x)] <C. (4.2)
h:I(h)<a (tx)eDZ

ii) Assume (Hy) for some n € (0,1). For any v < and v <1—1,
there exists a constant C such that, for any (t,x), (t' ")y € D&,

[Sh(t,) = $"(t, ) < Ct =t + [z —'?). (4.3)

n

up
(h)<a

~n

h:

For s € [0,T],y € [0, 1]¢, we will use the following discretization in time and
space

n:sup{k 7. k17 <s1vo,

’ 2n

Yl = sup{#; £ <y},
forany i =1,...,d.
Set
t— s, =
27T it t< 27T

We give some obvious properties:

- {t—sn if t>2°"T,

s — s, <2 (1) s €[0,T7, (4.4)
f—sp>2"T, 0<s<t<T, (4.5)
=t — (s—w)| <|t—s], 0<u<s<t<T,  (46)
ly—ynll <27, yel0,17 (4.7)

10



The kernel is discretized as follows

Gn(t —s,z,y) = G(t — sn, T, Yn),

and we also use the following notation Sff(s, y) = Sﬁ(sn, Yn)-
The proof of the next theorem is the most important aim of this section.

Theorem 4.2 Assume (C) and (Hy) for some n € (0,1). Fiz T > 0 and

a > 0. Themaph — S" is continuous from {I <a} toC™"2(DE), (71,72) €
(0, 1TT77) x (0, 1—;1), where {I < a} is endowed with the topology of uniform
convergence.

Proof: In order to prove the continuity of S we decompose dn, , (S E, S9)
into two parts:

sup HSh<7x) _Sg('7x)H’yl,[0,T]7 (48)
z€[0,1]¢
and } i
sup [|S™(t, ) = S9(t, )|l (0,174- (4.9)
te[0,7)

We first examine (4.8). According to (1.5), if we want to study (4.8), we
need to deal with the following two functions, for ¢ € [0,T7],

Y(t) = sup ]Sh(s,m) — S9(s, )],
(s,x)€[0,t] x[0,1]4

1Sh(s,2) — S9(s,2) — S(r,x) + S9(r, z)|

Py, (t) = sup sup .
1 ze[0,1]4 51 € [O, t] ’S — r|’Yl
S#ET

We start the proof studying ¢(T). For (s,z) € D%, we have

s, = 0.0 = [ar [ dyls =z 0) [8(57 ) - 8570

+<G(S — %) [a(Sh(‘, %)) — (99, *M 79>

Hr

11



with

The usual argument based on Holder’s inequality together with (C)~ and the
estimates (6.1.5) and (6.1.6) imply that, for ¢t € [0, 7] and h,g € {I < a},

3

t
Bt < O+ gl3e,) /0 P(s)2ds +C> sup sup A(s, ).

i=1 s<t zel0,1]¢

Then, Gronwall’s lemma yields

- 3
$(T)= sup |S"(t,x) = SI(t,x)| <CY  sup Aift,z). (410

(t,x)eDS, i—1 (t,@)eD

The rest of the study of (T") consists in dealing with A;, for i = 1,2, 3.
For & € (0, I_T"), from hypothesis (C) and the estimates (4.2), (6.1.28) and
(6.1.29) it follows that

sup |Ai(t,z)| < Cllh—glln, sup [(G—Gn)(t = z,%)|n,
(t,x)eDS (t,x)eDS

< o2-an=1),
(4.11)
For & € (0,%5%) and & € (0,1—1), using (C), (4.3), (4.4), (4.7) and (6.1.5),

we have

sup |Az(t,x)| < Clh—gla, sup |S"(tw) — Sh(t,2)]
(t,x)e DL, (t.x)eDg (4.12)
< (27801 4 g9-En),

For i1,...,iq € {0,...,2™ — 1}, denote

5 i+ 1
Rih“_’id:{yZ(yl,...,yd)G[O,l]d —ngjg J ,j:1,...,d}.

12



Then,

271 )

Ag(t,l‘) = Z G 21,...,id))a(sh(0, (il,...,id)))

11500,8g=0

,,,,,

2n—1 ~
+ [ Y Gt (i, ., ia)a(S™0, (i1, - .. i)

,,,,,

(4.13)
By (C), (4.2) and (6.1.27),
sup |As(t,z)| < CQ%Q(dH)nHiL = Jlloo- (4.14)
(t,x)ED%
Then, (4.10) together with (4.11)-(4.14) ensure
3d -
W(T) <0 (27 + 2" E DR - gl ) (4.15)

for some & > 0.
We now analyze 1, (T). Fix z € [0,1]%, assume ¢, € [0,T], #' < t. Then,
from the Lipschitz property of (3, it follows

7
](5’3 _§9)(t,x) — (S - Sg)(t’,x)’ <cY B, (4.16)

i=1

with

t 7 ~
B - / ds / dy G(t — 5,2,y)|S" (s, y) — S9(s, y)|
t [0,1]¢

tl
+ ds/wdy\c —s5,2,9) ~ G — 5,2,9)[1"(5,9) ~ 57(5,9)],

By = ‘<{ (t—-x,%) — Gt — -,x,*)} {a(Sh(-,*)) —a(SZ(-,*))}7h>

)

Hr

13



By = <:G(t—-,x,*

)= Gt — - 2,%) — Gt — 2, %) + Co(t' — -z, *)}
xa<s’3(-,*)),h>

)

Hr
B = ([t~ 2.9 - Gult — szl )|
By = [([Galt—w0) = Gult )] [alSC ) — (83 #)] ),

Bg and By are the same terms as By and B, changing h and & for g and g,
respectively.
Applying (4.15), (6.1.9) and (6.1.10), we have, for all 71 € (0, 3),

By < C|277% 4+ 2705 DB — oo | [t — ¢/, (4.17)

for some £ > 0.
In the sequel, &, € (0, T) Schwarz’s inequality, the Lipschitz property
of «, and the estimates (6.1.7), (6.1.8), (4.3), (4.4) and (4.7), imply

By+ Bs < C27™[t -/, £>0. (4.18)
From (4.2), (6.1.37) and (6.1.39),

/

Bs+ By <020V —¢| 3, g>0. (4.19)
Using (4.15), (6.1.38) and (6.1.40), we obtain
Bs < 0[2—”5 + 2|, — glloo] t—¢M,  £>0. (4.20)
Finally, we bound B, as follows
By < C(By1+ Bag),

with

By =

t -
/ ds / dy / 0z G(T oy 2 yn)a( S (s, 9)) Fly — 2)
' [0,1]4 [0,1]¢

X[h(87 Z) - 9(87 Z)] )

t/ P
B4,2 = ‘ / ds/ dy/ t_ Sn, T, yn) - G(tl - Smx,yn)
¢ Jo,1)4

xa(SE(s,y))f(y — 2)[h(s,2) — g(s,2)]|.

14




Computing as in (4.14) we can get
By < C2" D~ .

Then, Schwarz’s inequality and (6.1.27) imply

[SIE
N[

Bis1 = BZB

Ny
Ny

,1

)

~ 1 1
< C28F|h - g|%BE, (4.21)

n - 1
< C35CT R — gl|&le — |5,
By (6.1.40), By can be easily bounded as follows
Bya <27t -, £>0. (4.22)

Then, for y1 € (0, 252), (4.15)-(4.22) yield

. _ - 1
S[up}d HSh(-,x) - Sg(‘737)||71><[0,T} < C[Qiné + Zkl(d)n”h —gll&%], (4.23)
z€|0,1

for some £ > 0 and a positive constant k1(d) depending on the spatial
dimension.

We have just studied (4.8) and we now have to examine (4.9). From (6.1.19),
(6.1.20), (6.1.53) and (6.1.54), we can study (4.9) by means of similar argu-
ments as before and to prove that, for vo € (0, 177"),

sup [|S"(t,+) = S9(t, )y o2 < C|277¢ + 280D — glloo], (4.24)
t€[0,T]

for some ¢’ € (0, 1_777) and ka(d) > 0.
Finally, fixing p > 0 and choosing ng such that, for any n > ng, C(27 +
27%) < £ and § < £(27R(d) A 27mk2(d)) inequalities (4.23) and (4.24)
imply i
sup oy 1, (5", 59) < p.
h—glloo <6

This conclude the proof of this theorem.

15



5 The Freidlin-Wentzell inequality

In this section we will prove the inequality (1.4) of Theorem 1.1.

Proposition 5.1 Assume (C) and (H,) for somen € (0,1). ForallR,p,a >
0, 7" € (0, %) and 7 € (0, 11’7 A7), there exists § > 0 and €9 > 0 such that,
for any h € H satisfying f(ﬁ) <a and € < g9, we have

h P R
P{dV’V(uE’Sh) 2 P, dy y(eWr, h) < 5} < exp <6_2> .
Section 3, Theorem 4.2 and Proposition 5.1, by means of Theorem 1.1, allow

us to deduce the next theorem.

Theorem 5.2 Assume (C) and (H,) for some n € (0,1). Then, the law of
the solution u® satisfies on C?7(D%), v € (0, —) a large deviation principle
with the rate function

inf{I(h); Sh = g}, ifg € Im(S),

400, otherwise.

S(g) =

Proof of Proposition 5.1: We need to prove that,

VR,p,a> 0,9 € (0,3) and v € (0, 477/\7’),

s (5.1)
36,50 > 0, such that Vh € H satisfying I(h) < a and Ve < e,
we have
e_ gh 7 R
Pl = 8 2 p oW Bl <0} <o (-5 ). 62

In all the following steps of this proof we will assume the above-mentioned
conditions (5.1). We follow the classical proof of this kind of inequalities,
which follows several different steps.

Step 1. Using the stopping time

7 =inf< ¢, sup sup |u°(s,z)— Sﬁ(s,x)‘ >po AT,
s<t z€[0,1]¢

and by applying a usual localization procedure (see, for instance, Proposition
3.9 in [14]) we can assume that the coefficients a and [ are bounded.
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Step 2. Given h € H such that f(iz) <a and ¢ < g,

~ t -
eh(t ) = / G(t — 5,2, y)(v™" (5, ) F(ds, dy)
0 Jo,1]4

+<G(t — o x, %) a(vS (-, %)), h>HT

t -
+ [ s [ G s m ) s))
0 [0,1)4

An extension of Girsanov’s Theorem (see, for instance, Section IV.5 in [2])
allows us to reduce the proof of (5.2) to establishing the following

o R
A L ) B )

Step 3. We will now observe that (5.3) is equivalent to

7 R
Pl 2 p Wil <0} <en (-5 ). (65

where

- t
Kbt = [ [ 6= s oo p)Fs )

given (t,z) € D%. In order to check this equivalence we proceed as in
Theorem 4.2. We will give the basic ideas of the proof. Schwarz’s inequality,
the Lipschitz property on a and 3, (6.1.5), (6.1.6) and Gronwall’s Lemma
yield i i i

[0 = SM|oo < Clle™"|oo. (5.5)

It only remains to study the Holder property, that means to deal with

vt z) — SP(t, ) — oo 2!) + ShH, o))

for (t,z) # (t',2') € D4. Then, Schwarz’s inequality, the Lipschitz property,
(5.5), (6.1.7)-(6.1.10), (6.1.19) and (6.1.20) imply the equivalence between
(5.3) and (5.4).

Step 4. Here the stochastic integral =" will be discretized as follows

. t
Ko (t,2) = / GE o, 2, y) (6" (50, y)) F (ds, dy).
0 J[o,1]4
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We will also consider the sets
= {lletceh = KMy > £,
By = {IeK%" |y > & 1Wrllyy < 6.
It is immediate to check that
{1kl = p, Wrlly e < 6} € 45U BE,

In order to conclude the proof of this proposition we need to prove the next
two facts:

1) There exists ng such that, for n > no,
R
P(A2) < exp <_€_2> | (5.6)

2) For any n > 0, we can choose § > 0 such that, considering
Bi(0) = {leki 1y > &, 1eWrllyr <6}, (57)

then BE(6) = 0.

We first show (5.6). Before we need to see that, for any u > 0, there exists

N such that, for n > ng,
R
> ,u} < exp (—8—2> . (5.8)

P { sup
(t,x)eDS,
Z et

vgﬁ(t7x) —v® (tnvxn)

Set

va’ﬁ(t, x) — tn, Tn)

with

~ t ~
pihte) = [Las [ ay|o s, Gt a0 50 0,00

Lyn(to) = ‘<[G<t = %) = Gltn =y, 0) [ a0 (), )

?

Hr

Lih () = |e(K=F (2, ) — KM (b, @) .
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Since (3 is bounded, from (6.1.9), (6.1.10), (6.1.20), (4.4) and (4.7), we obtain

sup L7 (t x) < C2™ 01"Hﬁ||oo,
(t,x)eDS

for 6; € (0,1).
On the other hand, Schwarz’s inequality together with (6.1.7), (6.1.8), (6.1.19),
(4.4) and (4.7) imply

L5h(ta) < Cllallo||GlE =+ 2,%) = Glta = - w0, %)

T

< C7%" oo,

for 6 € (0, 52).
Then, assuming C (279"|8]|o +272"||a[|c) < & and using these two last

bounds, we have
sup LEZ (t,z) > > £
(t,x)eDS 2

sup
(t,m)eD‘%
7]
C {1k l0s00 > 5575 |

-3 21 nds

Ue’il (t,z) — vE’E(tn, Zn)

with 63 € (0, 152).
So, (5.8) will follows from the bound of this last set {H&]CE’BH93793 > 321%7193}
For any (t,z),(¥,2') € D2, (6.1.7), (6.1.8) and (6.1.19) yield

< CllallZ [t = 2% + llz — /|2

then, if -t > 205\\04\\000(03)0(03) and 0 < ¢ < 1, Lemma 6.2.1 for
7 =T ensures

PJ sup >
(t,x)ED%

2
0
<K — :
< Ko (g o)

UE’E(t, x) — va’ﬁ(tn, Tn)

One can choose 7y such that for any n > ng, (5.8) is satisfied.
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Now, we will use (5.8) to prove (5.6). Let

Kot ) — K5, 2) = K30 (8, @) + K52 (8, @),

with
5 t 3
Kihta) = [ s [ G- sm)a@ i)
0 [0,1]¢
— a(vg’il(sn, yn))] F(ds,dy),
~ t -
K:;:Z(t,.ﬁlﬁ) = / dS/ |:G(t—8,£lj,y) _G(t_snax7yn)
0 [0,1]¢
X a(vs’i‘(sn,yn))F(ds,dy).
Define

h
45, = {llexth

vV
)
—

VY =
p
w2 4},

vs,ﬁ(t’ $) - Us’ﬁ(tm -Tn)

h
455 = {leKcsh

D; = sup
(t@)eDS

It is obvious that

<uf.

A5 C AL UAS, C (A5, ND5) U (DS U AS,.

The set (D)€ has alredy bounded in (5.8). Proving that there exists g
such that, for any n > ng,

R
P (A5, ND;) <exp <—€2> , (5.9)

P(45,) < exp <_§> , (5.10)

we can conclude (5.6) for any n > ng being ng = ng V no.
Set

75 = inf {t >0, 3(s,z) € D4, s <, |v€’ﬁ(s,x) - va’ﬁ(sn,xnﬂ > u} AT.
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For any (t, ), (t',2') € by (6.1.7), (6.1.8) and (6.1.19) we have

2

1'5’

H Gt =/, )] [ ) = o ()]

< Cu [rt—t/\2v+||x—:c/m,

Hr

for v € (0, Tn) and with vy (s y) = h(sn, Yn). Then, if § > QC%MC’(V)CN'(W)
and 0 < ¢ < 1, Lemma 6.2.1 gives

2
p
P (A5, ND;) < Kexp (——28%202(7)62) :
For any R > 0 we can choose p > 0 such that (5.9) is proved.
For any (t,z),(¥,2') € D2, (6.1.39) and (6.1.53) yield

2

H (Gt = s,5) = Galt =+, ,4) = G(t' = .0/, 5) + Gt =+, 2", )] @i (-, %))

Hr
< Cllafi%, [t = #° + |}z — &[0 | 270D,

for 7o € (0,45%). Then, if £ > 207 |allwC(¥,70)C(7,70)2” 2 "~V and
0 < e <1, Lemma 6.2.1 implies

2
p
P (AS < K —
(4n2) < eXp( 280|rauaoc<w,fm2vo<n%2)’

for v € (0, %) what means v € (0, —Tl) Choosing ny, large enough, for any
n > ny, we have (5.10).

Consequently, (5.6) is completely proved. In order to conclude the proof of
Proposition 5.1 we have to check (5.7), that means that, for any n > 0, we
can find 6 > 0 such that

)
B = { ekl > . 1eWelyr <6} =0 (31

The proof of (5.11) is similar in some aspects to the argument used in The-
orem 4.2. We give a brief sketch of this proof. We have to work with the
difference

= (Kl o) - KA ()

for x, 2’ € [0,1]%,¢,#' € [0,T]. We assume x = 2’ and #' < t for the sake of
simplicity. Then,
e (K (1) = KMt ) ) = M+ M3

n
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with

t ~
Myt = 6/ Gt = 8, T, Yn ) (V™" (5, yn ) ) F (ds, dy),
’ t J[o,1]¢

- t
i —
MQE:’N = / /[ 877«7 T y’ﬂ) G(t/ — Sny T, yn)
0,1]¢

xa(v® (Sm Yn))F'(ds, dy).

Decompositions similar to (4.13) for stochastic integrals allow us to study
these two terms and to obtain

e (K5 (1) — K3 (V)

< OOl =t + flo =2/ | |eWlly

for a positive constant k(d) depending on the spatial dimension. In this last
inequality we can not get an estimation in terms of ||eWr| o, that is the
unique difference between the proof of (4.13) and the study of (5.11).

This argument finishes the proof of Proposition 5.1.

6 Appendix

6.1 Study of the kernel

Here we will enunciate and prove all the results on the kernel G used in this
paper. Recall that G denotes the fundamental solution of the heat equation

DGt x,y) = MGt z,y), >0, 7,y € [0,1]%
G(t,r,y) =0, z € 9([0,1]%), (6.1.1)
G(0,2,y) = 6(z — y).

The details about the construction of the fundamental solution G can be
found in Chapter 1 of [11], more specifically in Section 4. This fundamental
solution G is non-negative and can be decomposed into different terms as
follows:

G(t—s,z,y)=H(t—s,z,y) + R(t —s,z,y) —i—ZH —-s,x—vy), (6.1.2)

i€ly

where H is the heat kernel on IR

H(t,z) = <ﬁ>dexp (%) ,
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R is a Lipschitz function, Iy = {i = (i1,...,iq) € {-1,0,1}¢ = {(0,...,0)}}
and '
Hz<t — 57— y) = (_1)kH(t — 57— yl)a

d
with k=) " [ij and
j=1

i.:

Y; = Yj, if i;=0,

yo =y, if =1,

Yo =2—y;, if i =-1
This decomposition is given in [9)].

Finally, it is well-known that

FH(t, )& = /Rd e S (t, x)dx = exp (—47T2tH§||2) , (6.1.3)

where F is the Fourier transform.
The proof of following bounds of G, D;G and D,G can be found in Theorem
1.1 of [8].

Lemma 6.1.1 There exists a positive constant C such that
G(t—s,z,y) < CH(t—s,z—y), (6.1.4)

_d+2 2 —yl?
_ < — TTAY
IDG(t=s,2,y)] < Clt—s)7"2 exp( At —s) )’

HD$G(t—s,x,y)H < C(t—s)_%exp<—%>.

In the sequel we give new results on G.

Lemma 6.1.2 Assume (H1). There exist positive constants C1 and Cy such
that, for any 0 < s <t < T, z € [0,1]¢,

HG(t — X, %) ’

IN

Ch, (6.1.5)

Hr

/[0 ” dyG(t —s,xz,y) < Ca. (6.1.6)
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Proof: The first bound (6.1.5) is a consequence of (6.1.4) and Example 8
in [4]. The estimate (6.1.6) becomes from (6.1.4).
O

Lemma 6.1.3 Assume (H,)) for some n € (0,1). There exists a positive
constant C' such that, for any 0 < t' <t < T, z € [0,1]¢, v, € (0, 1_777) and
Y2 € (07 %)7

2
I C|t — >, (6.1.7)

t/
/ ds HG(t —s,x,%) — G(t' — 5,1, %)
0

t 2
/ ds HG(t — S, T, %) " < Clt -t (6.1.8)
t/

t/
/ ds/ dy ‘G(t —s,x,y) — G(t' — s,x,y)’ < Clt—t)?2, (6.1.9)
0 [0,1]¢
t
/ ds/ dyG(t — s,z,y) < C|t —t|. (6.1.10)
t/ [0,1]¢
Remark. Recall that the fundamental solution G of (6.1.1) satisfies
HG(t —x,k) — Gt — -z, %)

t/
+/ ds
0

Proof of Lemma 6.1.3: Observe that (6.1.2) implies

2 t
- / ds |Gt — s, %)|2
Hr t

2
G(t—s,m,%) — G(t' — s, 2,%) "

2

HG(t —x,x) — G(t' — s, x, %) y
2
< (30 + 1)[HH(t—s,x— )= H(t —s,0 =)

) (6.1.11)

2

H}
In order to check (6.1.7) we only need to bound the right-hand side of
(6.1.11). The terms H; can be studied using the same arguments as H.

+HR(t —s,x—x%)— R(t' — s,x — %)

Hr

+ZHHl-(tfs,x—*)—Hi(t'fs,x—*)

i€ly
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Let L be the Lipschitz constant of the function R. Clearly

t 2
/ dsHR(t —s,w—*)— R(t' — 5,2 — %) " <L*OT|t-t (6.1.12)
0

where

o- dy/ d=f(y - 2).
[0,1]¢ [0,1]¢

and f is defined in Section 1.
Now we analyze the term with H. First of all, from (-, -)# is a scalar product,
we have

t/ 2
/ dsHH(t—s,:L‘—*)—H(t’—s,x—*) " < 2(A1 + Ag), (6.1.13)
0

with

/t’ds/m wf -2 s 1
A R )
[p( 'g;Z"Q) Xp( ”272!2)},

n o= [ [ [ e [(M(;_ 5)

Since t' < t, using basic tools of mathematical calculus and (6.1.3), we obtain

[V]IsH

% 2
B (47r(t’1—s)> ]

t/
A < 2/ ds/ dy/ dzH(t — s,z —y)f(y—2)H({t — s,z — 2)
R? R

v t'—s
—2/ ds/ dy/ dz( > H({' — s,z —vy)
Rd Rd —

H{t' — s,z —2)
< 2/tlds/ A(dE) exp (—4n2 (¢ — 8)€]12) (1— (i__éf)d)
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t/ t—
= 2/ ds/ A(d€) exp (—4m* (¥ — s)[1€]%) <1— 8)
0 Rd t—S
t'—s ' —s\? ¢ — s\t
1 .
% +t—s+<t—s) * +(t—s>
For 1 € (0,15%) and s < ¢/, we have

t—t'\" =t
< < 1,
t—s t—s

and then,

t/
Ay z2dfe-tPr [ds [ @ e (<4 - )l (- 5>
0 R4

1
— 27 — - -
< Clt—¢PrT( 271)/Rd>\(d£)m|2(1_2m
< Clt —t)*n,
(6.1.14)
where I' is the Gamma function.
On the other hand, (6.1.3) again yields
t’ J 1 3 1 3 ?
< r_ —
Ay _/0 ds/]Rd)\(df)(t s) <ts) (t’s)
x exp (=472 (¢ — s)[I€]1*)
t Vi=s \’
_ 204 2 _
_/0 ds/]Rd)\(dg)exp( A (t' = s)[1€]1%) <m 1>

X <1+%+<\/g)2+...+(%)d_1>2.

The next inequality

Vi—s—Vt —s<\t—t,
and similar computations to the study of A; show that
Ay < Clt —t/P, (6.1.15)

for all ;1 € (0, 1_777)
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Then, (6.1.7) follows from (6.1.12)-(6.1.15).
Now we prove (6.1.8). Set

t 2
/dsHG(t—s,x,*) . < (3" D[B1+ By + By, (6.1.16)
tl
with
t 2
Blz/ dsHR(t—s,m—*) ,
t H
t 2
BQZ/ dsHH(t—s,:c—*) ,
t H
¢ 2
By = d HHit— -
3 Z/t/ s||Hi(t — s, @ — %) "

i€ly

As before the study of By is obvious and we can deal with Bs by means of
Bs. Then, we will only need to work with Bs.
From (6.1.3), by integrating we obtain

By, < / ds /R A(de)exp (47 (t — 5)]€]%)

_ —ex 771_2 oyt 2 ;
_/]Rd)\(df) (1 p( dr=(t —t)[[€]] )) Ar2||E|)2

Since
1—e?*<u, Vo > 0, (6.1.17)

the hypothesis (H,), implies, for 1 € (0, 1;277)a

IN

By <L [ () (1 exp (—am¥(t — ¢)¢]?))"

An? Jpa 1€]2
1 t—#|%2n M (472)2m
Ar? e €]
< Clt —t'Pn.

Then, (6.1.8) follows from (6.1.16) and (6.1.18).

Finally, the proof of (6.1.9) is similar to (6.1.7) and the estimate (6.1.10) is
an immediate consequence of (6.1.4).

g
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Lemma 6.1.4 Assume (Hy;) for some n € (0,1). There exists a positive
constant C' such that, for any 0 <t < T, z,z' € [0,1]%, v; € (0,1 —17) and
Y2 € (07 %);

t 2
/ dsHG(t —s,z,%) — G(t — 5,2, %) y < Cllz — 2|, (6.1.19)
0

t
/ ds/ dy}G(t—s,x,*)—G(t—s,x',*) < Cllz —2'||*2. (6.1.20)
0 [0,1)4 H

Proof: Asin (6.1.11) we only need to check (6.1.19) replacing G by H. Let

2

t
D:/dSHH(ts,x*)H(ts,x'*) :
0 H

If v1 € (0,1 —7n), then

with
t , M 1-m||?
Dlz/ds ‘H(t—s,x—*)—H(t—s,x—*) ‘H(t—s,aj—*) ,
0 H
t , m , 1- ||?
DQZ/dS ’H(t—s,aj—*)—H(t—s,x—*) H(t —s,x" — %) :
0 H
(6.1.22)

We first analyze D;. We have

t 1 d
D —/ds/ dy/ dzf(y — z (4>
' 0 [0,1]¢ [0,1]d ( ) dr(t — s)

. 4(t — s)
"
|l — |2 2" — 2| (1 =)z — 2|
x| exP ( At —s) ) P\ T an ) P A(t — s) '
It is well-known that, for any =z > 0,
x < e (6.1.23)
et < (6.1.24)
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By the mean-value theorem, (6.1.23), (6.1.24) and (H,,), we get
Dy <Cla- xwﬂ/V“/ Ay [ st - 2)
[0,1]¢ [0,1]¢
1 (L =)z —y|? (1 —y)lz — #]?
8 <47r(t— 5)) eXp( A0t — ) xp A0t — )
t
<Clla = [ds [ Mag)(t— 5 exp (<ax(0 - )€
0 R4

A(d€)
_ |2y _ S St VA
< Cllz — &P T(1 ’Yl)/}Rd =

< Clla — /2.

(6.1.25)
Analogously,
Dy < Cllz — 2| (6.1.26)
Then, (6.1.19) follows from (6.1.21)-(6.1.26).
The proof of (6.1.20) is very similar to (6.1.19).
O

Consider the same discretization in time and space as in the Section 4.
By (6.1.4) and (4.5) we have

|Gn(t — 5,2, 9)| = |G(E— 5p, 2, yn)| < ClE— 55|72 <C2"%,  (6.1.27)
forany 0 < s <t <T, xy¢€|0,1]%

Lemma 6.1.5 Assume (H;) for some n € (0,1). There exists a positive
constant C such that, for any (t,x) € D% and ~y € (0, 77),

2
/ dsHG — Sp, &, %) — G(t — s, 2, %) " < 02—l (6.1.28)
¢ P 2
/ dsHGn(t —s,x,%) — G(t — sp, T, %) " < C2m, (6.1.29)
0

Proof: Asin (6.1.7) we can prove (6.1.28). In order to check (6.1.29) we
will only need the next inequality, for all v € (0, 17777),

t . 2
E = / dsHHn(t —s,x—x)— H(t — sp,x — %) " <C272" (6.1.30)
0
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o —

where H,(t —s,x —y) = H(t — Sp, = — Yn).
If v € (0,1), then

t —_— '7
E S/ds ’Hn(t—s,x—*)—H(t—sn,x—*)
0
S 172 6.1.31
x’Hn(t—s,x—*)—H(t—sn,x—*) ! ( )
H
SC(E1+E2)7
where
E1:/ ds )Hn(t—s,x—*)—H(t—sn,x—*) ‘H(t—smx—*) HH’
0
t _— v 1—v(2
Eg—/ dSH)Hn(t—s,x—*)—H(t—sn,x—*) ‘Hn(t—s,x—*) HH
0

Similar arguments to the computation of the estimate (6.1.25) together with
(4.7) imply
By <c27m (6.1.32)

for all v € (0, 1572).
Now we examine Fo. First of all, we can ensure the existence of a positive
constant C' such that

lym — 2l > Clly —al?, Yy € Bz,3- 27", (6.1.33)
Then, the mean-value theorem and (6.1.23) ensure
Ey < C(Ea1 + E), (6.1.34)

where

t
Ey < 02_27”/ ds/ dy/ dz (
0 B(z,3-2-m)e B(z,3-2- )¢

—_—
t— sp

)y —2)

A T N e N Ay e
A (t— sp) T )

t
By <C2m / ds / dy / dz (F=50) " fly - 2)
0 B(z,3-2—m) B(z,3-2—")
d

R R ARt W ) e
X<4w<t/—?n>> p( A(F— ) ) p( A=)
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By (6.1.33) we can easily study Fs;. Indeed, (6.1.33) yields

t
By <C2727 / ds / dy / dz (
0 B(z,3-2—n)° B(x,3-2—n)¢

() e (O o (Ol
A (l— sn) M= s i )

. . . 1—
Now, same computations as in (6.1.25) give, for all v € (0, =2),

—_—
t— sp

) fly—2)

By < 02727, (6.1.35)

Let v € (0, 177") From (6.1.24) and (4.5), we obtain by integrating with

respect to s and changing to polar coordinates,

t
By < 02_27”/ ds/ dy/ dzf(y — 2)(
0 B(x,3-2—") B(z,3-27")
t
< C’2_27”+d”/ ds(t — 5)7/ dy/ dzf(y — 2)
0 B(z,3-2—") B(z,3-2—")

< 02~ 2ymtdn / dy / dzf(y — 2)
B(x,3-2—") B(z,3-2—")

1
= C’2_27”+d"_d"/ r= @D f () dr
0

—_—
t— sp

)=

< o7,
(6.1.36)
Hence, the estimates (6.1.31)-(6.1.36) prove (6.1.30).
g

Lemma 6.1.6 Assume (H,) for some n € (0,1). There exists a positive
constant C' such that, for any 0 <t' <t < T, z € [0,1]¢ and v € (0, 177”),

t 2
/ ds‘ Gt — s,x,x) — Gp(t — s, 2, %) " < 027D 7, (6.1.37)
t/

¢ 2
/ ds‘ Gn(t — s,x, %) " <Clt-t|*, (6.1.38)
t/

t/

ds ‘G(t —8,x,%) — Gp(t — s,2,%) — G(t' — 5,2, %)
0

2
+G(t' — s, %) LS c2 =N — ¢y, (6.1.39)
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t 2
/ dsHGn(t—s,x,*)—Gn(t'—s,:z:,*)
0 H

< C|t—t'>.

(6.1.40)

Proof: As usual, we will only check the inequalities (6.1.37)-(6.1.40) chang-

ing G by H. We start proving (6.1.37). Clearly

2

t
/dsHH(t—s,x—*)—Hn(t—s,x—*) Hg(F1+F2),
tl
where
t o 2
Flz/ dsHH(t—s,x—*)—H(t—sn,x—*) "
t/
t . 2
ng/ dsHH(t—sn,x—*)—Hn(t—s,x—*) o
t/

Basic calculus as in Lemma 6.1.3 give
Fy < C(F11 + Fia),

where

d
= /t’ds/[()l]d /[01 (47r t—sn)> fy==)
o (=) - (5
x — z|? x — z|?
oo (=) o (L)

As in (6.1.7) we can obtain

/t'ds/[oud /[01 <4ﬂf18n)>2_<4ﬂ(/\)>2

xf(y — z)exp <_%> exp (_%> |

(6.1.41)

(6.1.42)

(6.1.43)

! )
Fny SQ/tl ds/]Rd A(d€) exp (—4m?(t — 5)[1€]1%) |(t S:/\

Notice that, for all z > 0

et <z p > 0.
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Since v € (0, T") (6.1.44), by integrating with respect to the time and the
assumption (H,) ensure

t
Fy < 02400 /t ds /R [ Adg) exp (—Am?(t = s)[[¢]1%) (t — 5) 77

I S
o ® e e 1T

t
d—vy(n— f) 1+
< o2 ”/Rd Hsuﬂm/ﬂd“‘s) !

- Rre [[€][2=27)

< 027D — /|7,

(6.1.45)
Analogously, we can prove
Flg <0277 D g ¢/ (6.1.46)
and, moreover,
Fy <27/ =D —¢/|7, (6.1.47)
Then, the estimate (6.1.37) follows from (6.1.41)-(6.1.47).
We now prove (6.1.38). Using the set B(x,3-27"), we have
t 2
/ dsHGn(t —sa || <+ (6.1.48)
tl

where

t
J1 :/ ds/ dy/ dzf(y — 2)G(t — Sn,x,ypn)
¢/ B(z,3-2—m) B(z,327m)

XG(E= 5n, 3, 2n),

/ds/ / dzf(y—z)G(t/—?n,x,yn)
t’ B(z,3-2—n)¢ B(x,3-2—m)¢

( Sny Ty Zn).
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Now, (6.1.4), (6.1.24) and (4.5) yield

t
no<cfasf ay [ AT o) (y - 2)
t B(z,3-2—n) B(z,3-2—m)

§C2d"\t—t'\/ dy/ dzf(y — 2)
B(z.32-7)  JB(z327)

<Clt—t|.

(6.1.49)

On the other hand, since s, < s, (6.1.4) again, (6.1.3), (6.1.44) and (H,)

1—
ensure, for all v € (0, 57),

t
b < / ds / dy / d=f(y — DH{T sz — ) f(y — )
t B(z,3-2-m)e B(z,3-2-m)e
X H [— s,

(t —Sn, T — Z)
t
<c [ as / A(dE) exp (—4r|[€]|[t — 5n])
v R4

t
<C [ ds [ @) exp (~anelPle - s
t/ R4

' A(d€)
=C), /]Rd €]20 =20 (¢ — )12

<Ot —t|».

(6.1.50)
Then, the estimates (6.1.48)-(6.1.50) imply (6.1.38).
Finally, we check (6.1.39). Let

t/ 2
K:/ dsHG(t—s,x,*)—Gn(t—s,a:,*)—G(t'—s,:p,*)—I—Gn(t'—s,:r,*) y
0

On the one hand, we have
K=K, +K

where
2

)

tl
Klz/ dsHG(t—s,x,*)—G(t’—s,x,*)
0

) ¢ 2
Klz/ dsHGn(t—s,x,*)—Gn(t/—s,x,*)
0 H
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On the other hand, we also have
K = Ky + Ko,

where
2

t/
Ky = / dsHG(t — 8,2, %) — Gp(t — s, 2, %)
0 H

. ¢/ 2
K2:/ dsHG(t’—s,x,*)—Gn(t’—s,x,*) ’
0

As in (6.1.7) we can obtain, for all v € (0, 1572),

K = Ki+K <Clt—t», (6.1.51)
K = Ky+ K, <2701, (6.1.52)

Hence, Schwarz’s inequality together with (6.1.51) and (6.1.52) imply (6.1.39).

The analysis of K; also gives (6.1.40).
O

Finally, we enunciate a lemma that can be proved using similar arguments
as before.

Lemma 6.1.7 Assume (H,) for some n € (0,1). There exists a positive
constant C' such that, for anyt € [0,T], z,2' € [0,1]% and ~ € (0, 1_7"),

t
/ds
0

< C2770 e 2|7,

2
Gt —s,2,%) — Gp(t — 8,2, %) — G(t — 8,2, %) + G (t — 5,2, %) "

(6.1.53)

t 2
/ ds|| Gt = 5,2.5) = Gt = s,0', %) < Clla =22
0

(6.1.54)
O

6.2 Extension of Garsia’s Lemma

In this subsection we give a new version of Garsia’s Lemma that is a very
slight modification of a result given by Chenal in [2].
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Lemma 6.2.1 Let F = {F(p), ¢ € DR} be an L*(Q, F, P)- valued
Gaussian process with mean zero and covariance functional given by

0= [ [t [ e,

where f has the same condition as in (1.2).
Denote by F; the o-field generated by {F([0,s] x A); s <t, A € B(IR%)}.
Consider
Z:Qx (R; x RY)? - R
an a.s. continous Fi-adapted process such that a.s
Z(w,t,x,s,y) =0 when s >t or z € ((0,1)%)¢ or y € ((0,1)%)°.
Let 7 < T be an F,-stopping time, C > 0 and o > 0 satisfying, for any
(t,2), (t',2') € DF,

H]I[O’T](') [Z(w, tox,x) — Z(w, t', 2, *)} Hj-lT (6.2.1)
< Ofjt— v + o - 10).

with Hr defined in Section 3. For (t,x) € D%, let

I(t, ) / /o1]d tox, s, y)F(ds, dy).

Then, for any v € (0,70), there exist strictly positive constants C(~y,~o) and
C(7,v0) such that for M > 20%0(7,70)0(7,70),

M2
P{HIH'%'Y;T Z M} S KeXp <ZWW> s (622)

where

’I(t’x) _I(t,7x,)| ro d
I|[ynyr = . (¢, t, DY
H H%% sup { |t _ t/|»y + Hx _ nyY ( LL’) 7& ( $) €

Proof: It is a particular case of Corollary B.5 of [2].

g

Remark. In some cases, we will see that (6.2.1) will be satisfied for €
(0, I_T") and then, we will be able to ensure (6.2.2) for any v € (0, )
In these cases, to lighten notation, we will denote by C(v) and C(y )
constants C(v,7) and C(v,70), respectively.
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