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A B S T R A C T

We introduce the Multiscale Voter Model (MVM) to investigate clan influence at multiple scales—family, 
neighborhood, political party…—in opinion formation on real complex networks. Clans, consisting of similar 
nodes, are constructed using a coarse-graining procedure on network embeddings that allows us to control for the 
length scale of interactions. We ran numerical simulations to monitor the evolution of MVM dynamics in real and 
synthetic networks, and identified a transition between a final stage of full consensus and one with mixed binary 
opinions. The transition depends on the scale of the clans and on the strength of their influence. We found that 
enhancing group diversity promotes consensus while strong kinship yields to metastable clusters of same 
opinion. The segregated domains, which signal opinion polarization, are discernible as spatial patterns in the 
hyperbolic embeddings of the networks. Our multiscale framework can be easily applied to other dynamical 
processes affected by scale and group influence.   

1. Introduction 

Opinion dynamics can be modeled using interacting agents in social 
networks in order to investigate the spreading of attitudes, beliefs, and 
sentiments in society. In this context, the Voter Model (VM) is an 
archetypal stochastic nonequilibrium model that gives a standard 
framework for studying imitation as an underlying mechanism of 
opinion formation [1,2]. In networks, the small-world property sub-
stantially reduces the time to reach consensus in finite systems [3,4], 
and heterogeneous distributions of the number of neighbors also pro-
mote quick agreement [5]. Conversely, in real life scenarios we rarely 
find a large group of individuals easily coming to a consensus on sen-
sitive topics. This dichotomy has motivated generalizations of the VM 
that include more realistic features such as zealots, bounded confidence, 
noise or memory effects [6]. 

Here, we address this contradiction by introducing the Multiscale 
Voter Model (MVM), which assumes that the decisions of an individual 
are affected by the viewpoint of its own group. Although group-level 
information is known to affect behavioural responses in human [7] 
and even in animal [8] social networks, few models account for it. 
Among them, there is the q-voter model [9], where an agent takes the 
opinion of q connected neighbors that agree, the majority-vote model 
[10], where a node copies the state of the majority of its neighbors, and 

other models that introduce similar types of non-linearities [11]. Other 
alternatives use multiplex network representations [12,13], or couple 
individual information exchange with external information fields [14]. 
Instead, the MVM relies on the geometric embedding of a network [15] 
to define clans of similar nodes (not necessarily neighbors) at some 
specific granularity—family, neighborhood, political party, coun-
try—that influence the decision of adopting the opinion of a neighbor. 
The model interpolates in a natural way between states that reach 
consensus fast, as in the VM in small-world networks, and frozen 
disordered states typical of lattices, going through competition between 
opinion domains. 

In this contribution, the interpretation of a clan goes beyond the 
normative meaning of extended family to define a group that has a 
shared identity based on previous experiences. This definition directly 
links to topological properties: when a clan is made of individuals who 
have been in contact for a long time and gone through similar experi-
ences, sociology suggests that we should expect a high degree of clus-
tering within the members. This topological insight motivates using 
similarity distances in geometric embeddings of networks to assign 
nodes into clans. 

* Corresponding author at: Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain. 
E-mail address: marian.serrano@ub.edu (M.Á. Serrano).  
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2. The multiscale voter model 

In the MVM each node i holds one of two possible opinions si =

{ − 1,1}, and nodes interact by copying the opinion state of a randomly 
chosen neighbor. To avoid biases induced by heterogeneous degrees, we 
implemented a link update dynamics where links of the network are 
selected uniformly at random [16]. Then, one of the two linked nodes 
copies the opinion of its neighbor with a certain probability tuned by the 
influence of its own clan c. For that purpose, we introduce a distance 
di,c = |si − sc| ∈ [0, 2] between the opinion si of node i and that of its clan 
sc, which weights the probability of node i adopting the state of a 
neighbor, 

Pi =
1

1 + e
1
λ (1− di,c)

(1) 

The opinion of clan c, to which node i belongs, is continuous in [ −
1, 1] and given by the average sc =

∑

l∕=i
sl/(r − 1), l ∈ c, where node i is 

excluded and r indicates the total number of nodes in the group. 
Parameter λ ∈ [0,∞) in Eq.(1) controls the strength of the clan influence, 
which decreases as λ increases. The probability Pi is designed to reflect 
the tendency of individuals to refrain from adopting behaviours that 
contradict their group norm. Its Fermi-like functional form is also a 
popular updating protocol in evolutionary game theory, which consti-
tutes a reference framework for addressing stochasticity in human 
decision-making processes. Pi is symmetric around di,c = 1, so that a 
node that is very aligned with its environment (di,c→0) has less chances 
of copying a random neighbor, while the probability increases when the 
node is not aligned with the opinion of its own clan (di,c→0). When λ→0, 
Eq. (1) tends to a step-function, which leads the system to frozen 
disordered states. In the limit λ→∞, the MVM becomes the VM with a 
rescaled activation rate that slows the dynamics but eventually leads to 
consensus. The case with 0 < λ < ∞ is akin to introducing heteroge-
neous and dynamic activation rates dependant upon the states of nodes 
and their clans, and leads to competition between metastable opinion 
domains. 

The implementation of the MVM relies on clans made of similar 
nodes detected in network embeddings. To generate the embeddings, we 
used the tool Mercator [17] which produces a representation of a 
network in the hyperbolic plane. These embeddings are based on the 
geometric S1model [18], where every node i has a popularity-similarity 
pair of coordinates (κi, θi). Coordinate κi is proportional to the node's 
degree and can be mapped into a radial coordinate ri in the hyperbolic 
disc—where nodes with larger degrees lie closer to the center. The 
angular coordinate θi designates the node position in a circle where two 
nodes are more similar to each other when they have a shorter angular 
separation Δθij, see Supporting Information (SI) Fig. S1. 

Given the embedding of a network, clans are constructed by dividing 
the similarity circle in angular sectors containing r consecutive nodes 
(see Fig. 1). Notice, when N is odd the last clan will have less than r 
nodes. This coarse-graining procedure is at the core of the geometric 
renormalization group [19], which unfolds a network into a self-similar 
shell of layers with decreasing resolution for increasing r and progres-
sively more dominated by long range connections. This means that the 
size r of the similarity clans (SC) allows us to control for observation 
scale. 

Besides, we made random groups (RG), also of equal size r, in order 
to provide a null model to gauge unexpected behaviour. Lastly, groups 
were constructed based on geometrically detected communities identi-
fied by applying the Critical Gap Method (CGM) to network embeddings 
[20,21]. This was possible since hyperbolic embeddings of real networks 
present heterogeneously populated angular regions, which indicate 
meaningful communities of different sizes, see SI for further details. 

3. MVM simulations 

We simulated the MVM dynamics in real and synthetic networks, 
starting from a random uniform distribution of states with an initial 
density ρ(t0) = 0.5 of nodes in state s = 1. Notice that fixing ρ(t0) im-
plies correlated initial opinions. For a randomly picked link, the algo-
rithm selects with equal probability a node i, who then adopts the 
opinion of node j at the other end with Pi given by Eq. (1). At each 
simulation step, time is advanced by Δt = 1/E, where E is the number of 
links in the network. Although finite size effects will eventually lead the 
dynamics to an absorbing consensus state, some realizations can be 
extremely long-lived. Hence, we set a cutoff time tc, see Table S1 in SI. 
We measured the level of consensus in the network 〈Cons〉 =

〈|ρ(tc) − 0.5 |/0.5〉, where the average is over independent realizations, 

and computed the fluctuations χ =
(〈

Cons2〉 − 〈Cons〉2
)/

〈Cons〉, where 

we chose the normalization factor following Ref. [22]. Finally, we also 
evaluated the survival probability S, measuring the fraction of re-
alizations that did not reach consensus at tc, to elucidate how individual 
realizations contribute to the average level of consensus. 

3.1. Results for real networks 

We considered four data sets from different domains where clans find 
a natural interpretation: a New Zealand Members of Parliament political 
network [23] (NZ-MPs), a Facebook friendship network [24] (Face-
book), a social proximity network of bottlenose dolphins [25] (Dol-
phins), and the World Trade Web (WTW) [21]. 

Results for the four real networks are qualitatively similar, NZ-MPs 
and WTW are shown in Fig. 2, and Facebook and Dolphins in 
Figs. S2–S3. In Fig. 2(a)–(b), we show consensus heatmaps in the (λ, r)
configuration space for the MVM dynamics using similarity groups SC, 
and the control case of random groups RG in Fig. 2(c)–(d). For compa-
rability, rmax is chosen as the group size that divides a network in two 

Fig. 1. Illustration of the MVM model. In the network at the bottom, the link 
between a copycat node i with opinion si = 1 and its neighbor j with opposite 
opinion sj = − 1 is highlighted in green. Similarity clans in the middle (r = 3) 
and upper (r = 6) layers are colored according to their opinion, ranging from 
− 1 (all nodes blue) to 1 (all red) going through mixed composition (purple). In 
the middle layer, node i is completely aligned with the opinion of its clan c, so 
that when r = 3 the probability to copy j is low. For clans of size r = 6 at the 
top, the distance in opinion between node i and its clan increases and so does 
the probability to copy j. 
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portions of N/2. The heatmaps show areas of low, moderate and high 
levels of final agreement, with intermediate consensus values more 
predominant within λ ∈ [0.15,0.50] as r grows. In contrast, for smaller 
clans, r≲20, intermediate levels of consensus are more difficult to sus-
tain in all real networks, specially in the region λ ∈ [0.25,0.30]. This 
indicates that clan influence at smaller scales dictates more drastically 
whether the system evolves towards global agreement or not. Further-
more, when groups are random, all real networks display a transition 
centered at λcrit ≈ 0.15 independent of scale r, see also Fig. S1. This 
means that mixed opinion configurations are invariably less stable over 
time when groups do not capture actual similarities. 

In Fig. 2(e)–(f), we show a projection of the level of consensus against 
λ. All networks show a more abrupt transition for RG than for SC, and SC 
slopes show significant variation with r. The fluctuations χ in Fig. 2(g)– 
(h) show maxima around λcrit(r) < 0.2 for RG, while for SC peaks appear 
at higher values λcrit(r) > 0.2 and present lower maxima in all cases. The 
survival probability S, at the bottom of Fig. 2, shows a decreasing trend 
with λ which demonstrates agreement is more easily achieved as group 
influence is dissolved. However, the decay is more abrupt for RG curves, 
which indicates that at λcrit(r) the networks are in very low agreement 
configurations, but as soon as λ > λcrit(r) most simulation realizations 

reach full consensus before the cutoff time. Simulations with smaller r in 
Fig. 2(i)–(j) decay fast and continuously to 0 while the process is slower 
and less monotonous for larger values of r, see Fig. S4. Besides, 
compared to RG, SC curves show less overlap and are shifted towards 
larger values of λ, indicating a more progressive transition to consensus 
demanding more freedom from the group influence. 

Finally, we simulated the MVM dynamics using groups correspond-
ing to geometric communities detected via the Critical Gap Method [21]. 
Results of running the MVM dynamics for CGM communities are re-
ported using black solid lines on Figs. 2(e)–(j) and S3–S4. Interestingly, 
when examining 〈Cons〉, χ, and S, we identify a pattern that holds across 
networks despite their different nature, number of communities nc, and 
size of the largest community rc (see Table S1). This is, the results for 
CGM communities follow approximately the trend of the results for SC 
curves of r = rc. This means that the largest community of the network is 
effectively ruling the evolution and eventual outcome of the MVM 
dynamics. 

3.2. Results for synthetic S1 networks 

Additionally, simulations on S1 synthetic networks allowed us to 

(c) (d)

(g) (h)

i j

Fig. 2. MVM consensus in real networks. Consensus heatmaps 
using SC (a)–(b) and RG (c)–(d) over 100 realizations. 
Parameter space confined in r ∈ [2,N/4] and λ ∈

[
10− 5,0.7

]
. A 

white dashed line across the heatmap denotes the size rc of the 
largest community detected via the CGM. In plots (e)–(j) red 
curves correspond to SC and blue ones to RG. Darker tones 
indicate larger group sizes in both cases. Solid black lines 
denote groups corresponding to communities. Average 
consensus 〈Cons〉(e)–(f), fluctuations of average consensus 
level (g)–(h), and survival probability (i)–(j) against strength 
of group-influence λ for several group sizes r.   
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corroborate the results presented above and estimate the impact of 
specific topological features in the final stage of the dynamics. We 
generated S1 synthetic networks of sizes N = 1000,5000 nodes and 
realistic parameters γ and β, that control the scale-freeness of the degree 
distribution and the mean clustering coefficient, respectively. Consensus 
heatmaps, fluctuations, and the survival probability are shown in 
Fig. S5. As observed for real networks, SC clans undergo a progressive 
transition from low to high consensus within a range of λ values 
particular of each network and dependent on the group scale r, while RG 
groups exhibit a sharp transition localized at λcrit≲0.15 with unanimity 
dominating the majority of the phase space. We confirm that a minor 
increase in λ for small SC clans can lessen the strength of group influence 
enough to suddenly push the system towards fast consensus as happens 
with RG. Conversely, for larger SC clans, a higher rate of opinion ex-
change allows to sustain more intermediate levels of global consensus 
for a wider range of λ, see Fig. S5(g)–(h). In summary, we validated the 
results obtained for real networks and found that unanimity is usually 
harder to achieve as network topology becomes more homogeneous and 
clustered (increasing γ and β), see Figs. S6–S7. 

4. Opinion domains 

Following, we show that similarity clans in the MVM dynamics 
trigger the formation of meta-stable clusters of homogeneous opinion in 
similarity space, which prevent rapid collapse into consensus. Fig. 3(a)– 
(b) show the evolution of the average density 〈ρ〉 of nodes in state s = 1 
in equally sized angular bins for the NZ-MPs and WTW, respectively. 

Initially, two opinions, s = { − 1, 1}, were homogeneously spread across 
the similarity space of both networks. As time passed, 〈ρ〉 increased in 
the NZ-MPs on a wide region (red area), while the opposite opinion 
(blue) prevailed in the remaining angular space. For the WTW, two 
clusters of s = 1 (notice continuous boundary conditions) remained for 
most of the simulation separated by two other clusters of opposite 
opinion s = − 1, which eventually joined ends making 〈ρ〉 = 0. See also 
the evolution of the average group opinion over time for similarity 
groups in Fig. S8. For both networks, we observe a remarkable corre-
spondence between angular proximity of clans and the establishment of 
polarized opinions. 

In SI Fig. S9, we report WTW results for various clan sizes r while 
fixing λ = 0.6. We find that opposite opinions tend to develop in sepa-
rate angular regions independently of r until one colonizes the space of 
the other or a big fluctuation drives the system to sudden full consensus. 
In general, we rarely observe more than one angular domain per opinion 
such as displayed in Fig. 3(b). Besides, we fixed the group size to r = 10 
for both datasets, expanded the range of λ values used to simulate the 
evolution of 〈ρ〉 and compared SC and RG prescriptions in Figs. S10–S11. 
Importantly, we found that random groups do not sustain geometric 
domains over time. Instead, a higher or lower 〈ρ〉 may alternate at times 
but always spreading homogeneously across all angular bins. Besides, all 
RG simulations last significantly shorter on average than the ones with 
similarity clans. We, thus, confirm that similarity between nodes is key 
to support metastable opinion clusters. 

In Fig. 3(c)–(d), the hyperbolic maps showcase the spatial distribu-
tion of opinions in network snapshots for a single realization of the 

Fig. 3. Geometric opinion domains of the NZ-MPs (left colum) and the WTW (right colum) networks. (a)–(b) Time evolution of average density of nodes in state s =

1, 〈ρ〉, in 20 equally sized bins of the angular coordinate θ. (c)–(d) Hyperbolic maps of a snapshot of the MVM dynamics using SC. Two angular domains of different 
opinion are visible. Red for state s = 1 and blue for state s = − 1. In both cases r = 10, λ = 0.45. 
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dynamics. Akin to domain formation in lattice topologies, we visualize 
the emergence of clusters of homogeneous opinion along the angular 
dimension of the hyperbolic disc. Furthermore, we provide two ani-
mations comparing the MVM temporal evolution of node states in the 
hyperbolic maps of the WTW, under SC and RG respectively [26]. The 
animation for SC clearly features two spatial clusters sustained over 
time. We note also that nodes alternating state most frequently are 
positioned at the borders of the two adjoining opinion domains. On the 
contrary, the animation using RG does not exhibit any opinion segre-
gation of node states along the circle and the dynamics evolves without 
nodes being more active in any particular region. 

5. Analytic results 

Finally, we were able to obtain equations for the time evolution of a 
clan using mean field approximations. At the microscopic level, the 
dynamical state of a node i after a time interval dt is 

si(t+ dt) = si(t)(1 − μi(dt) )+ μi(dt)ξi (2)  

where μi(dt) and ξi are two independent binary stochastic variables that 
define the transitions between states. The variable μi(dt) takes the value 
1 or 0 depending on whether i was activated for a change or not. In case 
node i was activated, ξi takes the value 1 if i copies a neighbor with state 
1, and − 1 otherwise. Thus, μi(dt) and ξi have probability distributions 

P(μi(dt) ) = Pi(t)kidtδμi ,1 +(1 − Pi(t)kidt )δμi ,0 (3)  

P(ξi) = Φi(t)
/

kiδξi ,1 +(1 − Φi(t)/ki )δξi ,− 1 (4)  

with Φi(t) =
∑

jaij
(
sj(t) + 1

)/
2. A factor ω/(N〈k〉 ) been reabsorbed in 

the definition of dt, where ω is the constant rate for the occurrence of 
events, which follow an independent Poisson process for each node. 
These equations together with Eq. (1) give a complete but untractable 
description of the evolution of the system. To gain some understanding 
we perform an ensemble average over realizations conditioned to the 
state of the system at time t and obtain the mean field equation for the 
evolution of the state of a node 

ṡi(t) = Pi(t)[ − si(t)ki + 2Φi(t) − ki ], (5)  

where we have made the assumption that the averages of the different 
quantities can be taken as independent. The expressions above are valid 
for any network topology. 

Next, we consider a clan and use Eq. (5) to obtain the evolution of its 
state sc by averaging over members of the clan, 

ṡc =
1

1 + e1
λ

[

kc(sc + 1) +
2
r

∑

l ϵ c
Φl

]

, (6)  

where kc is the average degree of nodes in the clan and we have dropped 
the time dependence to ease the notation. 

To analyze the stability of a clan, we assume the most extreme sit-
uation in which all the nodes in the clan hold the same opinion (state 1), 
which is the opposite to that of the rest of the network (state − 1), and we 
find 

ṡc = −
1

1 + e1
λ

[
kext

c (sc + 1)
]
≡ − F

(
λkext

c

)
[sc + 1] (7)  

where kext
c is the average degree of the nodes in the clan restricted to 

connected neighbors outside the clan. Eq. (7) can be used to estimate the 
time until the clan aligns with the outside opinion. The solution sc =

2e− Ft − 1 has a characteristic time 1/F, which depends on the strength of 
the clan influence λ and on the strength of external connections of nodes 
in the clan, such that the exponential decay to the external state is faster 
when a clan is more connected with the environment or has a weaker 
clan influence on its members. 

6. Conclusions 

We have shown that MVM dynamics on real and synthetic networks 
can reach mixed binary opinions or full consensus depending on the 
scale of the groups and on the strength of their influence. Specifically, 
bigger similarity clans can sustain for longer mixed opinion configura-
tions while a large number of small clans yields a more abrupt transition 
between very low and very high levels of consensus as group influence 
diminishes. This behaviour is also found for random groups of any size. 
Beyond group scale and strength of influence, group composition radi-
cally affects the ease of reaching consensus. Although large differences 
in backgrounds and perspectives might be expected to contribute to 
gridlock, we found that the dynamics typically survived longer without 
reaching global agreement when groups consisted of affine nodes. This is 
due to the formation of metastable domains of same opinion, which 
create visible spatial patterns in the angular dimension of the hyperbolic 
maps of networks. On the contrary, when groups where randomized the 
opposite was true. This indicates that group diversity can help promote 
global agreement by reducing friction between sectors of like-minded 
individuals that pull in opposite directions. Indeed, real observations 
support the ability of diverse interdisciplinary teams to operate 
smoothly [27]. 

Consensus is, thus, easier within more diverse groups, and diversity 
can be achieved either by partitioning or mixing the groups, which helps 
explain why we do not observe that big structured populations easily 
come to a full consensus in the real world. However, lack of consensus is 
not always detrimental in society and the coexistence of a plurality of 
opinions can also be beneficial [28]. Consequently, an interesting 
research venue would be to investigate whether mechanistic behav-
ioural rules that help preserve some degree of diversity pose significant 
advantages to the system's efficient organization, thus suggesting a 
possible evolutionary origin. 

Our multiscale framework can be exported to other dynamical pro-
cesses where scale and group influence may have a role. For instance, to 
understand how social acceptance is modified depending on the backup 
tribe of the influencer. Another possibility is to include multiscale 
zealots to mimic political parties with stringent ideologies, or add 
multiple discrete opinions. At the same time, a complete characteriza-
tion of the MVM model, including the nature of the observed transition 
and the existence of conserved quantities, would be interesting and re-
mains for future work. 
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