
Physics of the Dark Universe 36 (2022) 101035

a

b

c

i
p
m
o
e
v
c
p
i
l
m
S
s
d

p
m
e
t
o
S

0

r

h
2

Contents lists available at ScienceDirect

Physics of the Dark Universe

journal homepage: www.elsevier.com/locate/dark

The quantumde Sitter root of quasi de Sitter observables
Cesar Gomez a, Raul Jimenez b,c,∗

Instituto de Física Teórica UAM-CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
ICC, University of Barcelona, Marti i Franques 1, 08028 Barcelona, Spain
ICREA, Pg. Lluis Companys 23, Barcelona, E-08010, Spain

a r t i c l e i n f o

Article history:
Received 30 November 2021
Received in revised form 2 May 2022
Accepted 2 May 2022

Keywords:
Quantum information
de Sitter
Inflation

a b s t r a c t

In inflationary cosmology the quasi de Sitter graceful exit allows us to measure the quantum features
of the primordial dS phase, in particular, the lack of scale invariance parametrized by the spectral
index ns. In this article we summarize previous work on how the underlying primordial scaling law
is implemented in the dS quantum Fisher information of the dS planar ground state (dSQFI). At large
scales the dSQFI unequivocally sets, without any qdS input, the value of ns to be 0.9672. This value is
independent of the tensor to scalar ratio whose value requires model dependent input. In addition the
dSQFI predicts, at large scales, a small running compatible with the current experimental results. Other
phenomenological consequences of the dSQFI for small scales, will be discussed in a future publication.

© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

One of the greatest achievements of inflationary Cosmology
s to encapsulate the early source of the Universe present com-
lexity into a pure number: the spectral index. This number
easures the anomalous scale invariance of the power spectrum
f primordial scalar quantum curvature fluctuations. Quantum
ffects in an early phase of exponential expansion lead to cur-
ature fluctuations that are adiabatic, almost Gaussian and very
lose to scale invariant. Once a graceful exit of the expanding
hase is implemented, the primordial anomalous scale invariance
s enhanced by gravitational instability delivering the observed
arge scale structure of the present Universe. This structure can be
easured using Cosmic Microwave Background (CMB) and Large
cale Structure (LSS) data setting the experimental value of the
pectral index with high precision (see Fig. 1 for the last available
ata from LSS using galaxies and QSOs).
In the present inflationary paradigm, the value of 1 − ns de-

ends on phenomenological input: the particular quasi-de-Sitter
odel used to define an early expanding phase with a graceful
xit. Generically, these models are fully determined by the po-
ential energy of the inflaton field with the different gradients
f the potential defining the slow-roll signature of the quasi de
itter phase. The key information on the curvature quantum
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fluctuations is encoded in the corresponding power spectrum
P . This power spectrum satisfies a Renormalization-Group (RG)
equation

k
d
dk

P = (1 − ns)P (1)

here the spectral index (1 − ns) plays the role of a formal beta
unction with scale invariance corresponding to ns = 1, a case
nown as the Harrison Zeldovich spectrum.
This analogy with the RG motivates a natural question,

amely, the universality of the spectral index. Our experience
ith the physics of critical phenomena, as described using the
ilsonian renormalization group, teaches us that around scale

nvariant critical points the departures from criticality are de-
ermined by scaling laws of the type (T − Tc)γ with the critical
xponent γ enjoying a high degree of universality only depen-
ent on symmetries and dimensionality. This universality of the
xponents contrasts with the microscopic dependence of the
articular value of, for instance, the critical temperature Tc . Thus
t looks natural to ask ourselves :
s 1 − ns the analog of a ‘‘critical exponent’’ for a ‘‘de Sitter
niversality Class’’ only depending on space–time dimension and
he quantum implementation of de Sitter symmetries? Or perhaps
n more concrete terms: Is Eq. (1) describing the anomalous
uantum implementation of scale transformations in de Sitter?
The answer to this question will be yes. Moreover, we will

how how this approach predicts unequivocally the value of 1−ns
n a fully model independent way deeply rooted in the renormal-
zation group equation. The rest of this article, based on recent
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Fig. 1. The power spectrum of galaxies and QSOs as derived from the latest LSS data from the BOSS and eBOSS surveys. (Hector Gil-Marin, private communication).
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lectures, will intend to provide, in a pedagogical manner, the basic
technical tools used in [1–4] to demonstrate this statement.1

. Brief review on inflation

Historically, we can identify two basic initial approaches to In-
lation. One approach, initiated by Starobinsky, Mukhanov,
hivisov and others [8–11] was motivated by the initial singular-
ty problem and was based on the study of the General Relativity
onsequences of the contribution of the vacuum polarization
ffects to the trace of the energy momentum tensor. The other
pproach, initiated by Guth [12] and further developed by Linde,
lbrecht and Steinhardt [13–15] was concerned with the horizon
nd flatness problem. In this approach, the key conceptual ingre-
ient was the notion of false vacuum and bubble supercooling.
he merging of these two approaches happened very soon only a
ew years later [16]. Since there are many excellent reviews of in-
lation we will focus on this section on some concrete comments
elevant for the future discussion on the spectral index.2 We first
ocus on the model independent predictions of inflation.

.1. Model independent considerations

.1.1. Curvature fluctuations
We briefly review the power spectrum of scalar curvature

luctuations as originally derived in [11]. This derivation was done
n the framework of the first Starobinsky model characterized
y the parameters H and M as defined by the trace anomaly.
rrespectively of the trace anomaly meaning of M as defined
y the value of k3 let us take M as a free phenomenological
arameter, this ensures that it will be model independent in the
ense that the value of M will be later fixed by observations. In
he large scale regime we can use the Sachs–Wolfe [18] effect
o relate the temperature fluctuations of the CMB δT

T along a

1 For previous work on the potential use of quantum information in
osmology see [5–7].
2 The other definitive prediction of inflation is the value of non-gaussianities;

n single field inflation this is equal, in the squeezed limit, to precisely 1 − ns .
For some recent works on the observability of this feature see e.g. [7,17].
2

given direction e and location x0 with the curvature fluctuations
χ through the relation

δT
T

∼
1
5
χ (ηe − e(ηe − η0) + x0) (2)

ith ηe the emission conformal time and η0 the present confor-
al time. The curvature fluctuation χ is defined as

=
Φ

a
√
2ϵMP

(3)

with ϵ the first slow roll parameter and Φ satisfying [19]

Φ ′′

k +

(
k2 −

z ′′

z

)
Φk = 0 (4)

with z = a
√
ϵ. Let us now define the simplest one parameter

amily of slow roll models characterized by

z ′′

z
=
β(β + 1)
η2

(5)

with β = −2 − δ. Solving (4) for the case |kη| ≪ 1 and after
imposing, as initial condition, Φk =

1
√
2k
eikη for |kη| ≫ 1 yields

k3|Φk(kη)|2 ∼
1
η2

(kη)−2δ (6)

The power spectrum for scalar perturbations is now defined as
follows. For a given momentum k we define the ‘‘horizon exit’’
time by the condition kη = 1. The amplitude of the power
spectrum Pχ (k) at this time is given by

χ (k) =
H2

ϵM2
p

(7)

with H and ϵ evaluated at the time the mode of momentum k
exits the horizon. Let us now set a pivot time scale η0 =

1
k0
. The

power spectrum for k close to the pivot scale k0 is then given
using (6) as

Pχ (k; k0) =
H2

0
2 (

k0 )2δ ≡ Pχ (k0)(
k0 )2δ (8)
ϵ0Mp k k
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ith H0 and ϵ0 the values of H and ϵ at the pivot time scale,
amely at the time the pivot momentum k0 exits the horizon.
he spectral index (1 − ns) at this pivot scale is given by

− ns = 2δ (9)

he renormalization group meaning of (8) is now pretty obvious.
f we take the pivot scale as the analog of the renormalization
oint and we define the RG as the independence on the pivot
cale we get

0
dPχ (k0)

dk0
= 2δPχ (k0) (10)

that leads to the well known relation between the spectral index
and the slow roll parameters

δ = 3ϵ − η (11)

with ϵ and η the first and second slow-roll parameters evaluated
at the pivot scale. In summary the Schrodinger equation (4) for
the metric (5) sets the value of δ and the RG equation determines
the relation between δ and the slow roll parameters ϵ and η.

2.1.2. Quasi de Sitter metric
Let us now repeat the former exercise introducing the notion

of quasi de Sitter metric formally defined by the equation:

a′′

qdS

aqdS
≡

z ′′

z
=
β(β + 1)
η2

(12)

ith again β = −2 − δ.3 Note that aqsS = a
√
ϵ however in (12)

we only introduce as input the value of δ. The solution to (12) can
be written as

aqdS =
−1
H0η

1
(k0η)δ

√
ϵ0 (13)

here at this level H0 and
√
ϵ0 are simply two integration con-

stants with the only difference that H0 has dimensions of energy
hile ϵ0 is dimensionless and k0 is a pivot scale. The power
pectrum is now simply defined as

χ (k; k0) =
1

M2
P a

2
qdS

k3|Φk(kη)|2 (14)

hat leads to the former relation, namely

χ (k; k0) =
H2

0

ϵ0M2
P
(
k0
k
)2δ (15)

ith the integration constants H0 and ϵ0 representing the values
of H and ϵ at the pivot scale k0.

In the regime of large scales where we use the Sachs–Wolfe
relation to define the observed spectrum of energy fluctuations,
the pivot scale kCMB exits the horizon before the end of inflation.
he key property supporting inflation is that for these scales the
uantum fluctuations leaving the horizon before recombination
ehave coherently [22,23]; a necessary condition to create the
coustic CMB picks. Moreover, in this regime, the variation of the
alue of the slow roll parameters is very small and therefore we
an locally parametrize the CMB region using a quasi de Sitter
etric of the type described above. Thus, we can describe the

arge scale fluctuations around the CMB scale with a quasi de
itter defined by a δCMB with (1 − ns)CMB = 2δCMB.
In this sense the key question we want to address is:
Can we predict the value of δCMB using only pure quantum de

itter information?
Although the rest of this article will be dedicated to review

he way to answer technically this question, it could be useful to

3 See [20,21] and references therein.
3

provide some intuition first. As stated in the previous paragraphs,
the spectral index contains crucial information about the observed
spectrum after reentering. In this sense, it encodes the infor-
mation about the primordial spectrum that is safely transferred
to the reentering moment and therefore observable. For that
to work, the coherence of phases is, as already mentioned, a
necessary ingredient. On the basis of this intuition we can try
to extract the maximal quantum information we can have in
pure de Sitter on what, for a local observer, exits the horizon.
Using the notion of quantum Fisher information, to be discussed
later, we are able to extract this information. Imposing that this
information is, for large scales, precisely the one we observe at
reentering time uniquely sets the value of δCMB.

2.2. Model dependent considerations

2.2.1. Vacuum polarization and trace anomaly
It is due to Starobinsky [9] the key observation that once the

effects of vacuum polarization for conformal matter are included
in the Einstein equations, there exists a solution of de Sitter type.
The effect of vacuum polarization for conformal matter is fully
encoded in the trace anomaly (see [24] for references and a nice
review):

⟨Tµµ ⟩ = −
1

2880π2

(
k1CiαlmC iαlm

+ k2

(
RiαRiα

−
1
3
R2

)
+ k3□R

)
(16)

ith the coefficients k1, k2, k3 being determined by the matter
ontent. If we assume a conformally flat space–time geometry
s2 = −dt2 + a2(t)dx2, then Einstein field equations

ik −
1
2
gikR = 8πG⟨Tik⟩ (17)

have a de Sitter solution with a =
−1
ηH , η the conformal time and

with Hubble parameter H2
=

360π
Gk2

for G the Newton constant.
In addition, the piece of the trace anomaly with coefficient k3
provides the needed information to analyze the stability of this
particular solution. Indeed, this component of the trace anomaly
leads to the existence of the so called scalaron with mass given
by M2

=
−360π
Gk3

. Roughly speaking, the quantum life time of this
calaron gives us the expected stability time of this particular
e Sitter solution. In this sense, the quantum effects encoded in
he trace anomaly seem to provide the needed ingredients to
ive rise to a primordial de Sitter phase with a graceful exit set
y the value of the scalaron mass. In the original approach by
tarobinsky, the existence of a de Sitter solution was welcomed as
natural solution to the initial singularity problem and not as the
urrent inflationary mechanism to solve the horizon and flatness
roblem. This beautiful picture is, however, too much constrained
y the particular spectrum of conformal matter contributing to
he trace anomaly. For the model to work, k3 must be negative
nd |k3| ≫ k2 something that is generically difficult to achieve in
ealistic models (see for a more recent discussion [25]).

This difficulty was surpassed by the observation that the k3
erm in the trace anomaly can be re-absorbed by adding a local
erm

L =
M2

pR
2

96πM2 (18)

o the Einstein Lagrangian [16]. The so defined R2 gravity prop-
gates, in addition to the spin two graviton, a scalar field that
lays the role of the inflaton field for the, now known, as the
tarobinsky model.4

4 The inflaton potential for this model is given by: V (φ) =
3
4M

2
PM

2(1 −

e
√

2
3 φ/MP )2 . Where as usual MP is the Planck mass and φ is the canonically

normalized field [26] (see [27] for a recent discussion on R2 gravity).
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.2.2. Tensor fluctuations
Before ending let us say few words about tensor fluctuations

nd the ratio r of tensor to scalar. The first thing to be noticed is
that the Schrodinger equation for each polarization of the tensor
fluctuations is the same as for the scalar fluctuations namely
(4). Up to numerical factors irrelevant for the present general
discussion the power spectrum for tensor modes is given by

Pt (k; k0) = ϵ(k; k0)Pχ (k; k0) (19)

ith

(k; k0) = ϵ0(
k0
k
)∆ (20)

ith ∆ = 2η (η the second slow-roll parameter) being again
etermined by the renormalization group invariance of Pt (k; k0)
ith respect to changes in the pivot scale. This is the well known
esult that sets both the tensor to scalar ratio r as well as the
ensor spectral index to be O(ϵ).

Note that neither r nor the tensor spectral index is uniquely
etermined by the value of δ. This will be important for our future
iscussion.

.2.3. Tilt and de Sitter time scales
Regarding the relevant time scales of de Sitter is important to

istinguish three different cases:

• The time scale of quantum instability of pure dS.
• The time scale on which an initial quasi de Sitter metric

enters into a Friedman expansion phase.
• The number of e-foldings between the moment the scale

kCMB exits the horizon and the end of inflation.

oncerning quantum instability of pure de Sitter this scale de-
ends on the quantummodel of de Sitter space time as a coherent
tate of gravitons defined relative to a fundamental Minkowski
pace [28–30]. This scale is known as quantum break time and it
s given by

qb =
M2

P

H3 (21)

different approach to define an intrinsic quantum instability
f pure de Sitter is based on defining for de Sitter the analog
f Unruh vacuum [31,32] instead of the eternal Bunch Davis
acuum.
Moreover one can define a different quantum time scale based

n what we can denote as de Sitter anomalies [33,34]. Generically
hese anomalies are defined by the variance of de Sitter genera-
ors that are not closed on the static patch of a given observer.
hese variances are non zero due to the discreteness of the
pectrum of the static patch Hamiltonian. These anomalies lead to
ypical recurrence times. Finally, another quantum time scale that
an be defined ab initio is the one based on the so called trans-
lanckian censorship [35] (see [36] for a recent review and [37]).
n this case, the time scale is set by imposing that transplanckian
odes cannot exit the de Sitter horizon.
With respect to the typical time scale on which an initial quasi

e Sitter enters into a Friedmann expanding phase the original
iscussion is contained in [11]. The simplest way to get this time
cale (see Fig. 1 in [11] and Fig. 2) is using the tilt of the power
pectrum to define an effective scalaron mass as
2(η) = M2(k0η)(1−ns) (22)

nd to define the time scale by M2(η) ∼ M2
P . This leads to

tqdS =
1
H

1
(1 − ns)

ln(
M2

P

M2 ) (23)

with (1 − n ) =
2M2

.
s 3H2 (

4

Fig. 2. Time scale in inflationary models. The length of the inflationary patch
Lpl is plotted as a function of increasing time |η|.

Fig. 3. de Sitter space–time metric.

Finally, we have the time scale associated with the number
of e-foldings NCMB measuring the time between the moment the
CMB scale kCMB exits the horizon and the end of inflation. This
quantity is expected to be between 50 and 60 for our Universe. As
already pointed out in [11] in the Starobinsky model this quantity
is given in terms of the tilt by the relation

(1 − ns)CMB ∼
2

NCMB
+ O(

1
N 2

CMB
) (24)

s discussed above our target will be to discover the quasi de
itter parametrization 2δCMB = (1 − ns)(CMB). Note that δCMB is
elated to the Starobinsky slow roll parameters through relation
11).

. de Sitter Geometry and Vacuum

de Sitter space–time in d dimensions is defined as the hyper-
oloid (see Fig. 3)

dS) = −X2
+ X2

+ · · · + X2
= l2 (25)
α 0 1 d
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Fig. 4. The causal past of S-observer and the casual future of N-observer. Points
x and x̃ are related by an antipodal mapping (see text for further details).

in d + 1 Minkowski with coordinates (X0...Xd). We can define
lobal coordinates as

s2 = −dη2 + cosh2(τ )dΩd−1 =
1

cos2 T

(
−dT 2

+ dΩ2)
−π/2<T<π/2

(26)

The Penrose diagram associated to this metric is given in Fig. 4.
We can consider two different observers located at the north and
south pole. The causal past and causal future of these observers
are the two triangular patches in the figure. An important prop-
erty of classical de Sitter space time can be directly extracted from
its Penrose diagram. Namely, in order to define asymptotic data
on both I+ and I− we need the two observers that are causally
disconnected. This creates the classic problem on the standard
definition of a de Sitter S-matrix. Another interesting aspect is the
existence of isometries in the de Sitter group that are connecting
the causal future and causal past of the two observers. This will
have an immediate consequence once we try to define quantum
field theory on dS (see [38,39]). Namely, quantum states invariant
under these transformations will be associated with quantum
entanglement between the north and the south observer.

A transformation that will play an important role in the defi-
nition of de Sitter invariant vacua is the anti-podal map:

X = (X0, Xi) → X̃ = (−X0,−Xi) (27)

The geodesic distance in dS, between two points with Minkowski
coordinates x and x′ is defined by cosD(x, x′) ≡ P(x, x′) = ηijxixj.
rom this we observe that points separated by null intervals
orrespond to P(x, x′) = 1. Moreover since P(x, x′) = −P(x, x̄′) for
wo points related by the antipodal map we get P(x, X̃) = −1.

.1. de Sitter invariant vacua

Next, we will be interested in defining a quantum field theory
QFT) in dS. Let us consider the case of a free scalar field Φ̂ .
he QFT will be defined by the Wightman function W (x, x′) =

Φ̂(x)Φ̂(x′)⟩. We should expect that this Wightman function de-
ends on the geodesic distance between x and x′ i.e. to be a

function of P(x, x′) analytic except for points separated by null
intervals i.e. for P = 1. The equation of motion satisfied by W (P)
for a free scalar field of mass m is given by [40,41]

2 2 2
1 − P )∂P W − dP∂PW − m W = 0 (28) d

5

Since this equation is invariant under the antipodal transforma-
tion P → −P if W (P) is a solution then W (−P) is also a solution
nd consequently also any linear combination of both. Using the
uclidean continuation of de Sitter we get the Euclidean solution
E(P). For the corresponding mode expansion

ˆ (x) = aEnΦ
E
n (x) + aE†n Φ

E∗

n (x) (29)

e define the Heisenberg algebra

aEn, a
E†
m ] = δn,m (30)

nd the Euclidean vacuum aEn|0⟩ = 0 in such a way that WE(x, x′)
= ⟨0|Φ̂(x)Φ̂(x′)|0⟩. Choosing the euclidean modes satisfying
Φn(x)∗ = Φn(x̃) we can define the family of α vacua [42–48] using
the linear superpositions of Wightman functions

Wα(x, x′) = C2(α)(WE(x, x′) + eα+α∗

WE(x′, x)

+ eαWE(x, x̃′) + eα
∗

WE(x̃, x′))
(31)

With C2(α) =
1

1−eα+α∗ . The α vacua |α⟩ associated with this family
of Wightman functions is given by

|α⟩ = Ce{
∑

n
1
2 e
α∗(aE†n )2}

|0⟩ (32)

hese are de Sitter invariant vacua with the Euclidean vacua
orresponding to Re(α) = −∞. Note also that for non vanish-
ing Im(α) the corresponding vacuum breaks CPT. There exist an
xtensive discussion in the literature on the physical meaning of
hese vacua, in particular if we consider a self-interacting scalar
ield (see [46,47]). We will not enter into this discussion. An
mportant aspect of the so defined α vacua is that the exponent
in (32) is independent of the mode n.

.2. Quantum Fisher information about the α parameter

The introduction of de Sitter invariant α−vacua provides a
ood excuse to introduce some basic notions on Quantum Fisher
nformation (QFI) [for a review see [49] and Appendix]. Irrespec-
ively of the physical meaning of the α parameter, the α−vacua
re a good example of a family of quantum states described by a
arameter that is not associated with any self-adjoint observable.
n other words, we do not have any observable whose eigenvalues
an be associated with the actual value of the parameter α. In
hese conditions a fair question is: How much information can
e have about the actual value of α using as input the results of
n arbitrary set of measurements for self-adjoint observables? The
pper bound on this information is what defines the quantum
isher information about this parameter.5 In the case of de Sitter

invariant α−vacua this question is purely academic and formal.
The reason is that the de Sitter invariant vacua are globally
defined and the corresponding information cannot be associated
with one observer. Thus this formal quantum Fisher will be a
sort of meta-information in a similar way that meta-parameters
are used in hierarchical Bayesian estimation theory. In any case,
although we will not use this particular global quantum Fisher
information, we think it is a good place to introduce the notion
of quantum Fisher.

In order to do that let us first introduce the generator associ-
ated with changes of α, namely the α−Hamiltonian

∂

∂αI
|α⟩ = H I

|α⟩ (33)

5 A natural example of a similar phenomena is the θ parameter in QCD.
n this case it was suggested in [50] that the quantum Fisher information is
etermined by the topological susceptibility.



C. Gomez and R. Jimenez Physics of the Dark Universe 36 (2022) 101035

t

H

w
Q
i

F

T
i
m
p

⟨

N
d

t

o

w

Fig. 5. North and South static patches. The arrows depict the time flow in the
Penrose diagram of de Sitter.

Fig. 6. Hypersurfaces of constant η.

hat yields

I
=

−i
2

∑
n

(aE†n )2eα
∗

+ c.c. (34)

here we only care about changes in the imaginary part of α. The
FI for the α parameter is simply defined as the variance of H I

.e.

(α) = ⟨α|(H I )2|α⟩ −
(
⟨α|H I

|α⟩
)2

(35)

his formal quantity measures, as already pointed out, the max-
mum information we can get on the value of α performing
easurements (and meta-measurements) on the |α⟩ vacua. More
recisely for the quantum estimator of α let us call it Oα6 we have

∆O2
α⟩ =

1
F(α)

(36)

ote that this is not equal to the standard statistical variance
efined as 1

MF(α) for M the number of actual measurements.
In what follows we will define a modified notion of the QFI

hat accounts for the actual information accessible to a physical

6 This is the self adjoint operator formally playing the role of the conjugate
f H I .
 m

6

observer. Before doing this it is worth to briefly discuss the
interplay between de Sitter invariance and entanglement.

3.3. de Sitter invariant vacua and quantum entanglement

Let us now consider the static patches for the north and
south observers as depicted in Fig. 5. On these patches we have
globally defined time as shown by the arrows in the figure. Let
us formally define for the North and South observers the corre-
sponding Hamiltonians and assume a discrete energy spectrum
EN
i , E

S
i . A globally de Sitter invariant |α⟩ vacua will correspond to

a particular quantum state, living in the tensor product of the two
static Hilbert spaces, of the type∑

Ci,j(α)|EN
i ⟩|ES

j ⟩ (37)

Tracing over the North will define a density matrix for the South
observer with the corresponding von Neuman entropy.

The particular euclidean vacua is the TFD (thermo-field dou-
ble) state and the corresponding density matrix, after tracing over
one of the two static observers is just the GH (Gibbons–Hawking)
thermal density matrix with vN entropy equal to the well known
GH de Sitter entropy [51]. As shown in the Penrose diagram this
euclidean |α⟩ vacua describes the eternal AdS black hole.

To induce any form of quantum instability i.e. evaporation of
this black hole requires to break some de Sitter symmetries as it is
the case with Unruh like vacua (recall discussion in Section 3.3).

Moreover, for the static observer we can easily introduce the
notion of de Sitter anomalies. Take any generator G of the de
Sitter group that moves points in one of the static patches, for
instance the South patch, out of the patch. The anomaly will
be simply defined by the variance of this generator relative to
the energy ground state chosen by the south observer. We will
not enter into this subtle discussion, the interested reader can
see [34] and references therein.7

4. Inflation in the planar patch

The de Sitter metric describing an expanding Universe is de-
fined using planar coordinates

ds2 = −dt2 + a(t)2dx2 =
1

H2η2

(
−dη2 + dx2

)
(38)

here the conformal time η =
−1
aH . These coordinates are only

covering what we can denote the planar patch that corresponds
to either the causal past of the north observer or the causal future
of the south observer. In terms of the Minkowski coordinates they
are defined by:

η =
−1

H2(X0 + X4)
(39)

xi =
Xi

H(X0 + X4)
= −XiηH (40)

with X0+X4 > 0. In the so defined planar patch we can introduce
a conformal time foliation using hypersurfaces with fixed value of
η (see Fig. 6). Clearly the Killing vector ∂

∂η
is not globally defined

in the planar patch. Hence the corresponding time evolution will
lead to the standard creation of particles and will be characterized
by a Bogolioubov transformation. We will introduce another nat-
ural foliation of the planar patch in terms of hypersurfaces having
constant value of Λ = kηH . In Fig. 7 we present the Penrose
cartoon showing how quantum fluctuations are stretched until
they exit the horizon.

7 A different form of entanglement entropy associated with tracing over
odes in the planar patch was discussed in [52–54].
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.1. Planar quantum Fisher information

In order to define quantum fields in the planar patch we will
tart by introducing for a generic value of |k| two Heisenberg
lgebras (ingoing and outgoing) [20] with creation-annihilation
perators a|k|,± and a†

|k|,± with

a|k|,+a
+†
|k′|,+] = δ(|k| − |k′

|) = [a|k|,−, a
†
|k′|,−] (41)

hese operators define the mode expansion in planar coordinates
, x. We can now formally define a planar α vacua as

α⟩ ≡ ρ
∫
|k| C(α)a

†
|k|,+a†

|k|,− |0⟩ (42)

he reason we refer to these states as formal α vacua is because
he coefficient C(α) entering into the exponent is independent of
k|. Let us now introduce the |η⟩ vacua associated with a given
onformal time as

η⟩ ≡ ρ
∫
|k| CdS (η,|k|)a

†
|k|,+a†

|k|,− |0⟩ = Π |k, η⟩ (43)

here CdS(η, |k|) is determined by the condition

|k|,+(η)|η⟩ = a|k|,−(η)|η⟩ = 0 (44)

or all |k| and with the algebra of creation annihilation operators
t time η being defined by the Bogolioubov transform

|k|,+(η) = A(|k|, η)a|k|,+ + B(|k|, η)a†
|k|,− (45)

he coefficients A and B are determined by the de Sitter equations
f motion and they have values [20]

(|k|, η) = e−iθ (|k|,η) cosh(r(|k|, η)) (46)

nd

(|k|, η) = eiθ (|k|,η)eiΦ(|k|,η) sinh(r(|k|, η)) (47)

eading to

dS(η, |k|) = tanh(r(|k|, η))e2iΦ(|k|,η) (48)

ith the squeezing parameter r(|k|η) = − sinh−1( 1
2|k|η ) and with

he phase given by

(|k|η) = −
π

−
1
tan−1(

1
) (49)
4 2 2|k|η i

7

The global rotation e−iθ (|k|,η) will not enter in the definition of
the state |η⟩ if we choose |0⟩ rotationally invariant. Since the
Bogolioubov coefficients depend on |k|η we can define for a fixed
value of Λ = |k|ηH the |Λ⟩ vacua as

|Λ⟩ = ρ
∫
|k| CdS (Λ)a†

|k|,+a†
|k|,− |0⟩ (50)

ote that the so defined state is a formal planar α vacua of the
ype defined above. By that we mean that the coefficient CdS(Λ) is
ndependent on the mode label |k|. Moreover the corresponding
(Λ) is characterized by

m(α(Λ)) = Φ(Λ) = −
π

4
−

1
2
tan−1(

H
2Λ

) (51)

Using the former ingredients we can define the de Sitter renor-
malization group generator as

d|Λ⟩

dΛ
= HRG

|Λ⟩ (52)

where HRG(Λ) = CdS(Λ)a†
|k|,+a

†
|k|,− + c.c.. Thus we can define the

Planar Quantum Fisher Information as

FQ (Λ) ≡ Var[HRG(Λ)] (53)

here Var[HRG(Λ)] ≡ ⟨Λ|(HRG)2|Λ⟩ −
(
⟨Λ|HRG

|Λ⟩
)2. Before

ntering into the numerical evaluation of this quantity let us
tress some important differences between this quantity and the
ormal Quantum Fisher defined in (35). First of all, the Planar
uantum Fisher Information defines a form of information that is
ccessible to a physical observer and is obtained on the basis of
he statistical analysis of measurements performed on a causal
atch. Secondly, the modes used in the expansion are the ones
efined for the planar coordinates with well defined value of |k|.
hird, the role of the formal α angle is now played by the physical
omentum Λ = |k|ηH . Finally we use HRG to define the planar
uantum Fisher or equivalently we parametrize with this Fisher
nformation standard dilatations of the physical momentum.
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. Numerical evaluation of the planar quantum Fisher infor-
ation

Using the former set of ingredients we will proceed to evaluate

Q (Λ̃) =

∑
N

|C(Λ̃)|
2N

(
N
∂Φ

∂Λ

⏐⏐⏐⏐
Λ=Λ̃

)2

−

[∑
N

|C(Λ̃)|
2N

N
∂Φ

∂Λ

⏐⏐⏐⏐
Λ=Λ̃

]2 (54)

Note that expression (54) is simply the variance of the genera-
or defining changes in Im(α(Λ)). Before evaluating this quantity
we will introduce a pivot scale |k0| by Λ = |k0|ηH and project the
variation in Λ at fixed |k0| by variation in |η|. This leads to

FQ (|k0|η) ≡ |k0|2FQ (Λ = |k0η|) (55)

Using now the de Sitter data defined above, namely: C(Λ) =

anh(r(Λ)) with the squeezing parameter r(Λ) = − sinh−1( H
2Λ )

and with the phase Φ(Λ) = −
π
4 −

1
2 tan−1( H

2Λ ) we will proceed
o the numerical evaluation of this quantity introducing a cutoff
in the sum. The result is given by

Q (|k0|, η,N ) =
1
η2

1
(|k0|η)6−2αF

. (56)

ith the quantum tilt αF (|k0|η;N ). Before proceeding further let
us make some general comments. First of all the quantum tilt is
fully determined by the numerical evaluation as a function on
|k0|η and the cutoff N of the sum in (54). In Fig. 8 we plot the
numerical value of αF evaluated usingN of orderO(109). Defining

FQ (|k0|, η,N ) = (|k0|η)6FQ =
1
η2

1
(|k0|η)−2αF

(57)

we extract the anomalous scale dependence of the planar quan-
tum Fisher information that we can encode in the following
renormalization group equation:

|k0|
d

d|k0|
FQ (|k0|, η,N ) = 2αF (|k0|η;N )FQ (|k0|, η,N ) (58)

. The quantum tilt αF and N sensitivity

The numerical result for αF (|k0|η;N ) for N of the order of 109

is plotted in Fig. 8. Before discussing the sensibility of this numer-
ical result on the cutoff N let us comment on some significant
aspects of this plot. The first thing we observe is the existence
of an almost flat region where the value of αF is almost constant
nd very small. As we will discuss later, this region is the one
e can associate with large scales of the order of the CMB scale.
hen we move to the left, we move into much larger scales
r smaller momentum. The first curious fact we find when we
ove into this IR regime is the sudden change of the value of αF .
hat is the meaning of this jump at super larger scales? Super

arger scales corresponding to deep IR values of the momentum
ill normally be interpreted as providing us information about
he initial conditions of inflation. In other words, in a generic
cenario based on an inflaton potential, these superlarge scales
epend on the characterization of the initial conditions of in-
lation since these scales exit the horizon very early. If we take
eriously the numerical plot the point in the IR where αF jumps
an be interpreted as the larger scales that exit the primordial
orizon. However in order to take seriously this IR region a crucial
ecessary previous ingredient is to know the sensibility of the
lot in this region on the numerical cutoff N .
8

As shown in Fig. 9 the sensibility relative to the value of N
s very important in the IR regime by contrast to what happens
n the UV regime that is very stable with respect to changes of
. What we observe numerically is that when we send N to
xtreme large values the jump in the IR takes place around 1

√
N
. A

potentially interesting conjecture could be to put an upper bound
on the value of N based on the standard GH entropy for the de
Sitter space. The logic underlying this conjecture is to impose that
the entropy of N entangled pairs contributing to the quantum
planar Fisher information is at most of the order of GH entropy.
This is just a very qualitative conjecture that requires more input
and further analysis.

Concerning the UV part of the plot we observe an interesting
change of regime with αF becoming negative at small scales or
large values of the momentum. We will make below some general
comments later on the physical meaning of this change of regime.

7. Model independent derivation of spectral index

At this point, we arrive to the central core of this article,
namely the attempt to provide a model independent derivation
of the cosmological spectral index we measure using CMB data.
A priori, this attempt seems futile for several reasons. As already
discussed, this is based on suspecting some form of universality
of the spectral index in the same way we are used to think in
universality when treating with critical phenomena. In the partic-
ular case of the cosmological spectral index, the bold claim about
model independence seems to indicate that the type of informa-
tion encoded in the spectral index, that becomes observationally
manifest in the CMB, is already secretly contained in the quantum
statistical properties of pure de Sitter. The obvious reason for
which this claim sounds a priori bizarre is that the spectral index
we observe, at CMB scales, seems to be directly related with
the number of e-foldings lasting between the moment this scale
leaves the primordial de Sitter horizon and the end of inflation.
However, in pure de Sitter there is not any classical notion of
graceful exit. Hence, the standard view that relates the spectral
index with a classical graceful exit seems to immediately rule
out our model independence expectations. Moreover, what we
actually observe depends on working with a particular large scale
regime, the CMB scale, where the simplified Sachs–Wolfe repre-
sentation of temperature fluctuations is working. So, why pure
de Sitter should know about this peculiar features underlying the
actual observations? The answer to this question is summarized
in the following steps:

1. The first step is based on the observation that a planar
quantum Fisher information for pure de Sitter immediately
allows us to define an intrinsic energy uncertainty, sta-
tistical in origin, in the dispersion relation of the modes
defining the Mukhanov–Sasaki gauge invariant variable for
pure dS. This statistical uncertainty in the time dependent
frequency carries the key information on what we have de-
noted as the quantum tilt αF , that as stressed several times,
is a pure de Sitter information. Moreover this statistical
uncertainty in the frequency depends non trivially on the
conformal time η and the pivot scale |k0|.

2. The second step identifies the standard contribution to the
mode frequency due to modifying de Sitter in the form of a
generic qde Sitter that we parametrize, in terms of t δqdS . As
discussed before, this qde Sitter parametrization in terms
of δqdS , of a generic one field inflaton potential, contains
information about the whole set of the corresponding slow

roll parameters in the region of large scales.
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Fig. 9. The effect of the number of pair production N on the cosmological tilt 1−ns . The red, blue, orange and black curves are for N = 1, 10, 1000, 105 respectively.
The nearly scale invariant tilt is produced by the increase in N . See text for more details on how to set N and end inflation. (For interpretation of the references
o color in this figure legend, the reader is referred to the web version of this article.)
3. In the final step we identified the statistical Fisher uncer-
tainty of the mode frequency with the qde Sitter expres-
sion. In other words, we ask ourselves what δqdS accounts
for exactly the quantum Fisher statistical uncertainty. As
we will show this condition uniquely sets the value of δqdS
as well as the value of |k0|η for which this quasi de Sitter
effective description is working.
9

4. The former solution is identified with the CMB large scale
where our quasi de Sitter parametrization is obviously
working.

Although the results we will present are in perfect agreement
with the observations, it is obvious that a priori we do not have
any solid reason to expect such agreement. It could be perfectly
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ossible that the statistical Fisher uncertainty leads to a smaller
alue of the spectral index. That this is not the case seems to
ave a deep meaning. Quantum Fisher defines an upper bound,
o if this procedure gives a smaller deviation, relative to what we
bserve, from scale invariance, it will indicate that the primordial
nformation transfer to the moment of reentering is bigger than
he maximal pure de Sitter information we can have about the
cale invariant features of what exits the primordial horizon
uring the inflationary era. Note that we are only trying to catch
cale dependence but not the concrete values of the amplitudes.
Let us now go through all these steps in detail. First of all, let

s focus on the phases of the state |Λ⟩ given by (49) and let us
ntroduce a formally conjugated energy by

(|k0|η) ≡ ηE(|k0|η) (59)

he quantum Fisher variance ⟨∆E2
⟩ of E(|k0|η) for each mode is

etermined by the quantum Fisher, hence we get

FE(|k0|η) =
1
2

√
FQ =

1
2η

(|k0|η)αF (|k0|η) (60)

here we introduce the factor 1
2 to account for the energy of one

of the two modes we have introduced in (41). Note that to define
the uncertainty of E(|k0|η) we use the square root of the quantum
Fisher information. The reason for this is that we are interested
in extracting the Fisher uncertainty for the frequency square of
the modes at first order. This will be defined as

ω0δFE(|k0|η) (61)

with ω0 = |k0|. Finally, in order to define the physical energy
uncertainty we use the pure de Sitter metric leading to

∆FE2(|k0|η) ≡
|k0|δFE(|k0|η)

a2dS
=

1
2
|k0|ηH2(|k0|η)αF (|k0|η) (62)

his is the quantity that we want to compare with the quasi de
itter contribution. In order to define this quantity we work in a
eneric qde Sitter parametrized by a generic δqdS . The qde Sitter
ffect on frequencies is:

2
qdS − w2

dS =
3δqdS + δ2qdS

η2
(63)

ow to define the qde Sitter contribution to the physical energy
e use the metric ãqdS ≡

aqdS
√
ϵ0

with aqdS defined in (13).8 This
eads to

qdSE2(|k0|η) =
(3δ + δ2)
η2ã2qdS

= (3δ + δ2)H2(|k0η)2δ (64)

The final step is to look for the values of δqdS and |k0| |η| such
hat

FE2(|k0|η) = ∆qdS(E2(|k0|η)) (65)

his leads to two simple equations

(3δ + δ2) = |k0|η (66)
αF (|k0|η) = 2δ (67)

hat we can solve using as data the pure de Sitter quantum tilt
F (|k0|η). Note that both equations combine into an almost fixed
oint equation

F (6δ + 2δ2) = 2δ (68)

ith unique solution 2δqdS = 0.0328 and |k0||η| = 0.1. Using
ow the qde Sitter parametrization of (1 − ns) as 2δqdS we get
he desired prediction on the spectral index as well as the corre-
ponding value of |k0| |η| (see Fig. 10 for the recent experimental
esults on the allowed values of the spectral index).

8 Note that locally the physical metric is defined by aqdS
√ .

ϵ0

10
7.1. Confronting with observational data

Recall first how the value of ns is obtained experimentally. This
s done in a fully model dependent way. First a parametric shape
f the primordial power spectrum is adopted. In the simplest case
power law with power ns. Then using this primordial power

pectrum, a Boltzmann hierarchy and a cosmological model, a
rediction is made for the observed power spectrum of the CMB
nd LSS. This is fit to the data using a Bayesian method and the
est value of ns extracted (see [55]). One can use a more sophis-
icated model and add running, i.e., ns(k) depends on scale. Or
an go a step ahead and fit the least parametric possible way by
sing spline reconstruction (see [56] for the original idea and [57]
or latest results). Obviously, as the method becomes more model
ndependent, the constraints on ns become less restrictive [55,57].
ote that the above method to extract information on the value
f ns is independent of the inflation model. Using the number of
-folds for a given scale between exit and re-entering the horizon
o constrain ns is fully specific to the particular model of inflation
onsidered.
In order to confront our result with observational data let us

evisit how the prediction in the Starobinsky model works. Once
e fix the scale where we perform observations by kCMB, the
pectral index at that scale is given by

1 − ns)CMB =
2

ln(kCMBηend)
(69)

here ηend is the conformal time at the end of inflation. This pro-
uces the right experimental result if (and only if) the number of
-foldings between the moment the scale kCMB exits the horizon
nd the end of inflation is between 50 and 60.9 In the language
f R2 gravity the former expression reduces to

1 − ns) =
4
3
e−

√
2/3φi (70)

or φ the canonically normalized inflaton field and with the value
i in (70) the one associated to the time at which the CMB scale
xits the horizon. This formula is approximate and assumes that
he value of φ at the end of inflation is much smaller than φi.10

In the above discussion on the model independent derivation
f the spectral index we observed that Quantum Fisher fits the
uasi de Sitter result in what we can denote the fixed point regime.
ore specifically, given αF (x) where we denote the argument of
F as x the fixed point regime is characterized by

F (6x) ∼ 2x (71)

hus the first ingredient we use to confront our results with the
xperiment is to associate the fixed point regime of αF with the
MB regime of large scales where (69) and (70) are working i.e.

ixed point regime of αF → CMB large scales

Let us now come back to (69). How to extended this formula
o scales smaller or larger than CMB? This is a crucial question
n order to contrast experimentally the whole picture beyond
he current experimentally accessible scales. For us this ques-
ion translates into: How to interpret αF beyond the fixed point
egime? Here we can only offer a conjecture that leads to well
efined experimental predictions. Namely, setting the CMB scale
y the fixed point condition corresponding to x ≡ |k0| |η| ∼ 0.1

9 In this model the value of the scalar tilt is fine tuned to the number of
-folds, so if the tilt was to be measured with, say, four significant figures, the
umber of e-foldings would have to be fine-tuned to one part in 107 .
10 Using φ =

√
3/2 ln(1 +

R
4M2M2

P
) one recovers, in this approximation, the

relation (1 − n ) =
2M2

.
s 3H2
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Fig. 10. Figure adapted from the latest BICEP/Keck Array results [58]. The blue
shaded region is their stringent constraint on ns . The red arrow depicts our
prediction. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

we suggest, working in a linear approximation, that (1 − ns) at
scales akCMB for a a numerical proportionality factor is given by

(1 − ns)(akCMB) = αF (x =
a
10

) (72)

Using the qualitative relation (72) we can extract some qualitative
information on the region out of the CMB fixed point regime.
lthough we will not cover in this article this phenomenology, let
s just mention two interesting facts. On one side we can evaluate
he running of the spectral index in the region of large scales that
urns out to be −0.0019 which is in perfect agreement with the
lanck18 bounds. The typical scale at which we expect a change
f regime from red tilted to blue tilted is of the order of 1 Mpc.
We must stress once more the logic underlying these results.

he expected spectral index of the primordial power spectrum
or values of the momentum larger than the CMB momentum is
ssumed to be determined universally by the quantum tilt αF .
owever, we are aware that in regions of large momentum where
e cannot use Sachs–Wolfe approach what we observe can differ

rom our prediction due to the departure from the Sachs–Wolfe
elation. This is a subtle issue to study so the former predictions
re just qualitative.

.2. A comment on tensor modes

What we have shown in the previous sections is how to use
he quantum Fisher information to fix the value of δ defining
he scaling of z′′

z . This uniquely fixes the spectral index for scalar
erturbations. However as discussed in section I-E the power
pectrum for the tensor modes is not fully determined by the
alue of δ and requires extra information on ϵ. This extra infor-
ation is model dependent and cannot be extracted using only

the quantum Fisher information. This is phenomenologically very
interesting. Indeed quantum Fisher fixes (1 − ns) in a model
independent way but not the tensor spectral index that we have
not yet experimentally observed. The technical reason for that is
easy to understand. The power spectrum for the tensor modes
11
requires to disentangle the correction to the frequency into two
pieces the one associated with ϵ and the one determined by η.
However the quantum Fisher correction gives us the global value
of δ and is not allowing us to disentangle both contributions
in a model independent way. In other words the tensor modes
encode primordial information that goes beyond the quantum
Fisher information setting the scalar spectral index. Actually the
primordial dS planar quantum Fisher information is consistent
with a tensor to scalar ratio as small as we wish. Thus even if
tensor modes are not observed the quantum Fisher prediction for
(1 − ns) presented here will be unaffected.

. Concluding remarks

The main conceptual lesson we learnt from our analysis is
hat the anomalous scale dependence of the primordial spectrum
f curvature scalar fluctuations is fully determined by the scale
ransformations of the pure de Sitter quantum Fisher informa-
ion reduced to the planar patch. In more technical words: the
nomalous scale invariance of the primordial spectrum is en-
oded in the variance, for a planar observer Hilbert space, of
he generator of dilations of physical momentum. This primordial
uantum information on primordial de Sitter captures what a
raceful exit quasi de Sitter mechanism makes observable after
eentering. We insist that this only affects the scale dependence
nd not the amplitudes. As already mentioned, the predictions on
cales different from the CMB scale depend on how the transfer
unctions defining through convolution the observable spectrum
ehave in those scales.
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ppendix. Quantum Fisher information

In this appendix we introduce the basics of Quantum Fisher
nformation. Consider P(x) the probability distribution of x for an
external parameter θ . Then the classical Fisher information F is:

F (θ ) =

∫
dsP(x; θ )

(
d ln P(x; θ )

dθ

)2

=

∫
dx

(
dP
dθ

)2

P−1 (A.1)

This provides the statistical information about the external
parameter θ . The minimum error on the parameter can be no
smaller than F−1/2. Let us illustrate this with one example. Imag-
ine a dice that is loaded in such a way that the loading depends
purely on the temperature of the room where the dice is rolled.
The classical Fisher is simply the sum over all trial where the dice
is rolled in rooms at different temperatures.

Let us now move onto the quantum case. Let us write down a
pure quantum state depending on the external parameter θ as

|ψ(θ )⟩ =

∑
c (θ )eiφn(θ )|n⟩ (A.2)
n
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ith P(n; θ ) = |cn(θ )|2. The Quantum Fisher Information is the
ame as the classical but now we define a pure quantum piece
sing the phases of the probability amplitude, such that

Q (θ ) =

∑
P(n; θ )

(
∂φn

∂θ

)2

−

(∑
P(n; θ )

∂φn

∂θ

)2

≡ Var

[(
∂φn

∂θ

)2
] (A.3)

Let us illustrate this with an example. Take eiφn(θ ) = eiEnt then
Q = ⟨E2

⟩ − ⟨E⟩
2. In general we will have that

Q = ⟨H2
θ ⟩ − ⟨Hθ ⟩2 (A.4)

Now it is very easy to see that for the dS case, the Quantum
isher information is simply

Q = ⟨E2(kη)⟩ − ⟨E(kη)⟩2 (A.5)

ith E the oscillator energy with comoving momentum defined
t fixed k at time η.
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