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Abstract
A properly performing and efficient bond market is widely considered important for 
the smooth functioning of trading systems in general. An important feature of the 
bond market for investors is its liquidity. High-frequency trading employs sophis-
ticated algorithms to explore numerous markets, such as fixed-income markets. In 
this trading, transactions are processed more quickly, and the volume of trades rises 
significantly, improving liquidity in the bond market. This paper presents a com-
parison of neural networks, fuzzy logic, and quantum methodologies for predicting 
bond price movements through a high-frequency strategy in advanced and emerg-
ing countries. Our results indicate that, of the selected methods, QGA, DRCNN 
and DLNN-GA can correctly interpret the expected bond future price direction and 
rate changes satisfactorily, while QFuzzy tend to perform worse in forecasting the 
future direction of bond prices. Our work has a large potential impact on the pos-
sible directions of the strategy of algorithmic trading for investors and stakeholders 
in fixed-income markets and all methodologies proposed in this study could be great 
options policy to explore other financial markets.
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1 Introduction

Fixed-income markets represent an important financing source for govern-
ments, domestic and international organizations, banks, and both private and 
public companies with access to the fixed-income market. The development of 
fixed-income trading can contribute to financial stability in general, and enhance 
financial intermediation by increasing competition and developing the associ-
ated financial infrastructure, products, and services (Nunes et  al., 2019; Inter-
national Monetary Fund, 2021). Government bonds are the main instrument of 
most fixed-income asset markets, for developed and developing economies alike. 
In the United States, the main data source for public securities trading activ-
ity is GovPX and MTS for Europe. The MTS is a fully electronic, quote-driven 
interbank market comprising multiple trading platforms. All MTS platforms use 
identical technology for trading; however, every platform maintains its rules set, 
and market participants (Biais & Green, 2019; Friewald & Nagler, 2019). Fixed-
income securities are commonly traded over-the-counter (OTC), on inter-dealer 
wholesale platforms, and, less frequently, on retail platforms where liquidity is 
provided by pre-purchased dealers. Transactions are not anonymous and are bilat-
eral; therefore, the conditions of negotiation are determined by search and trading 
frictions, in the absence of a focal point, dealers have to proactively seek out and 
negotiate with possible counterparties to get the "best" offer (Darbha & Dufour, 
2013; Glode & Opp, 2020; Neklyudov, 2019).

Fixed-income trading has generally received less attention from research-
ers than equity market trading, even though fixed-income markets involve sig-
nificantly more capital raising in comparison to equity markets. The electronic 
ease of bond trading, however, is on the rise. The impact of electronically sup-
ported trading on the performance of the fixed-income market will be interesting 
to evaluate as its contribution expands. In addition, some liquidity providers for 
corporate bonds offer requests for trades under specific trade size limits using 
algorithms instead of human participants (Bessembinder et al., 2020).

Technological advances have transformed how investors can operate in the 
financial markets. High-Frequency Trading (HFT), which is algorithmic trading 
(AT) distinguished by high-speed trade execution, exemplifies these changes in 
technology (Frino et al., 2020). HFT is an approach to a financial market inter-
vention involving complex software tools, which are used to execute high-fre-
quency trades, guided by mathematical algorithms, in the markets for stocks, 
options, bonds, derivative instruments, commodities, etc. (Rundo, 2019). Hender-
shott et al. (2011) claim that AT reduces trading costs and increases quote infor-
mation. In addition, liquidity providers’ revenues also increase with AT, although 
this effect seems to be transitory. In conclusion, financial trading demands that 
the AT scans the environment for suitable and prompt decisions in the absence of 
monitored data (Aloud & Alkhamees, 2021).

In academic research, the term "high-frequency trading" is often used to 
refer to asset price windows of 10  min or 60  min, for example (Christiansen 
& Ranaldo, 2007). For instance, a study published in the Journal of Financial 
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Markets in 2013 defines high-frequency trading as "trading that takes place in 
intervals of a few seconds to a few minutes" (Aldrich, 2013). Similarly, a paper 
published in the Journal of Financial Economics in 2008 found that HFT can 
improve liquidity provision in corporate bond markets, particularly for less liquid 
bonds (Mahanti et al., 2008).

However, in practice, the term "high-frequency trading" is often used more 
strictly to refer to price windows with even shorter times. For example, in the US 
equities market, the Securities and Exchange Commission defines a high-frequency 
trader as someone who trades at least 2 million shares or $20 million in securities in 
a single day, with an average holding time of less than 0.5 s (SEC, 2014).

Despite the varying definitions of high-frequency trading used in academic 
research and in practice, there is general agreement that this type of trading has sig-
nificant implications for bond markets. Some studies have suggested that HFT can 
increase market efficiency and liquidity, while others have argued that it can exacer-
bate market volatility and lead to market instability (e.g., Frino et al., 2013; Schestag 
et al., 2016). As HFT continues to evolve and shape financial markets, it is likely 
that academic researchers and practitioners will continue to debate its effects and 
implications.

AT, both algorithms driven by fundamental and technical indicator analysis and 
algorithms supported by machine learning techniques, have been examined by sev-
eral researchers. According to Goldblum et al., (2021), Machine Learning (ML) is 
playing an important and growing role in financial business applications. Besides, 
Deep learning (DL), which is a subclass of ML methods that study deep neural net-
works, develops DL algorithms that can be used to train complex data and predict 
the output. Today numerous financial firms, ranging from hedge firms, investment 
banks, and retailers to modern FinTech providers, are investing in developing exper-
tise in data science and ML (Goodell e al., 2021).

As market turmoil and uncertainty in financial markets have increased consider-
ably, ML algorithms are quite applicable for the analysis of financial markets and, in 
particular, the fixed-income market. The marketplace is very complicated, and the 
only forecast that can be made is its unpredictability. The financial market’s unfore-
seeability is caused by the uncertainty of many episodes that occur in it (Goldblum 
et al., 2021). Deep Neural Networks draw knowledge from the data, that can then be 
utilised to forecast and produce further data. This feedback decreases unreliability 
by indicating specific problem-solving. ML is especially useful for handling prob-
lems where an analytical solution is not explicitly instructed to do so, such as com-
plicated categorisation techniques or recognition of trends (Ghoddusi et al., 2019). 
The benefit of Deep Neural Network methods over those offered by classical stat-
isticians and econometricians is that ML algorithms can handle a huge quantity of 
organised and non-structured information and provide quick predictions or conclu-
sions (Milana & Ashta, 2021).

Publications on the use of ML techniques with specific applications to fixed-
income markets are scarce. However, other financial areas have attracted much 
more interest in the research literature, particularly in the equity and foreign 
exchange markets (Nunes et  al., 2018). Most of these studies involve the stock 
market, mainly for forecasting with artificial neural networks (ANN), support 
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vector machines (SVM), and random forests (RF) models. These methods have 
proven to produce excellent results for financial time series forecasting (Deng 
et  al., 2021, 2022). For example, Kara et  al. (2011) suggested an ANN-based 
model for predicting the daily price movement in the stock market, and it yielded 
high accuracy in the forecast. Akyildirim et al. (2022) compare the trading behav-
iour of several advanced forecasting techniques, such as ANN, autoregressive 
integrated moving average (ARIMA), nearest neighbors, naïve Bayes method, and 
logistic regression to forecast stock price movements relying on past prices. They 
apply these methods to high-frequency data of 27 blue-chip stocks traded on the 
Istanbul Stock Exchange. Their results highlight that, among the chosen meth-
odologies, naïve Bayes, nearest neighbors, and ANN can detect the future price 
directions as well as percentage changes at a satisfactory level, while ARIMA and 
logistic regression perform worse than the random walk model. In addition, these 
authors establish a future line of research to test the chosen methods in other mar-
kets to achieve more accurate and widespread results.

Some authors have made predictions about the performance of fixed-income 
assets through neural networks. Vukovic et al. (2020) analyze the model of a neu-
ral network that forecasts the Sharpe ratio. Their results demonstrate that neu-
ral networks are accurate in predicting nonlinear series with an 82% precision 
in the test cases for forecasting the future Sharpe ratio dynamics and the posi-
tion of the investor’s portfolio. For future research, they propose analyzing more 
data in stronger artificial intelligence technologies, such as Long Short-Term 
Memory (LSTM) neural network technology. They conclude that these adaptive 
methodologies should provide more accurate analysis and forecasting and such 
an area of study requires additional attention and effort in the future. Li et  al. 
(2021) analyze sovereign CDS to prevent investment risks and propose a hybrid 
ensemble forecasting model. They employ Autoregressive Integrated Moving 
Average (ARIMA) model to predict trend elements, meanwhile, the Relevance 
Vector Machine (RVM) technique is used to forecast market volatility and noise 
elements, correspondingly, having the model excellent robustness. They estab-
lish that although the suggested model exhibits satisfactory prediction efficiency, 
there is scope for further improvement and apart from sovereign CDS time series, 
the prediction model provided may be applied to other financial time series to 
test the generalizability of the model. Nunes et  al. (2019) concentrate on yield 
curve forecasting, currently the centerpiece of the bond markets. They apply ML 
to fixed-income markets, specifically multilayer perceptrons (MLPs), to analyze 
the yield curve overall. They exhibit that MLPs could be effectively utilized to 
forecast the yield curve. They determine that, in terms of future work, an impor-
tant area of interest is to keep exploring multitask learning, as they believe that 
further research is required to identify the terms and conditions under which their 
methodology could be applied with enhanced performance.

To fill the gap in this research area, our study aims to predict bond price move-
ments based on past prices through high-frequency trading. We compare machine 
learning methods applied to the fixed-income markets (sovereign, corporate and 
high-yield debt) in advanced and emerging countries in the one-year bond market 
for the period from 15 February 2000 to 12 April 2023.
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Despite the limited number of observations at 10-min frequency, the methodolo-
gies applied in this work are capable of working and finally making estimates, some-
thing that would be impossible for conventional statistical methodologies and even 
for some simple computational methodologies. Some previous works have found 
more avaibility of this data from OTC markets. Although these limitations exist, 
several works have also appeared investigating corporate bond data with 10-min 
interval observations, such as Nowak et al. (2009), Aldana (2017), Gomber and Haf-
erkorn (2015), Holden et al. (2018), Gündüz et al. (2023).

We make at least two further contributions to the literature. First, we analyze the 
fixed-income market through HFT comparing a wide range of innovative computa-
tional machine learning methodologies, since most of the previous studies employ 
statistical and econometric methods. In addition, the prior literature deals with port-
folio optimization only with fixed-income assets is not too many, and even fewer are 
dealing with the use of HFT. Within the ongoing advancement of financial markets, 
HFT proportion has increased steadily in recent years, which is generally character-
ized by fast update frequency and high trading speed. HFT also will produce plenty 
of profitable market influence, like increasing market liquidity and improving risk-
handling ability (Deng et al., 2021). Second, our study has made predictions of bond 
price movements globally, and so not restricted to developed countries, being inter-
esting for those responsible for the economic policies of any country in the world. 
Whereas the relevance of public debt markets has led to innumerable papers on these 
markets in the United States and other advanced countries, comparatively limited 
research exists on emerging bond markets (Bai et al., 2013). In addition, our study 
has considered not only sovereign bonds but also corporate and high-yield debt.

The rest of the paper is organized as follows. In Sect. 2, the methodologies are 
described. Section 3 details the sample and data involved in the research. Section 4 
points out the results and findings obtained. By last, Sect. 5 finishes explaining the 
conclusions reached.

2  Methodologies

We have used different methods to predict bond price movements through HFT. The 
application of various techniques aims to obtain a robust model, which is tested not 
just via one categorisation technique but using those that have proven successful 
in prior literature and other areas. Specifically, this study applies Quantum-Fuzzy 
Approach, Adaptive Boosting, and Genetic Algorithm, Support Vector Machine- 
Genetic Algorithm, Deep Learning Neural Network- Genetic Algorithm, Quantum 
Genetic Algorithm, Adaptive Neuro-Fuzzy Inference System-Quantum Genetic 
Algorithm, Deep Recurrent Convolutional Neural Networks, Convolutional Neural 
Networks-Long Short Term Memory, Gated Recurrent Unit- Convolutional Neural 
Networks, and Quantum Recurrent Neural Networks. The techniques Deep Recur-
rent Convolutional Neural Networks and Quantum Genetic Algorithm have been the 
ones that have obtained the best results as will be shown in Sect. 4 of Results, there-
fore these methodologies will be explained below. The rest named are shown in the 
“Appendix 1” of this study.
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2.1  Quantum Genetic Algorithm (QGA)

The quantum evolutionary algorithm (QEA) is an evolutionary algorithm built on the 
concept of quantum computing. It introduces notions like superposition states in quan-
tum computing and incorporates the single encoding form to obtain improved experi-
mental results in the combinatorial optimisation problem. Nevertheless, when it comes 
to the optimisation of multimodal functions using QEA, in the specific, high-dimen-
sional multimodal function optimisation problem, it is likely to drop into local optimum 
and its computing efficiency is poor.

This study aims to improve the global optimisation capacity of the genetic algorithm 
and the local search ability according to the quantum probabilistic model to introduce a 
new type of quantum evolutionary algorithm, namely the "quantum genetic algorithm", 
to deal with the above deficiencies of QEA. This algorithm utilises the quantum prob-
abilistic vector encoding mechanism and takes the crossover operator of the genetic 
algorithm and the updating strategy of quantum computation simultaneously to opti-
mize the global search capacity of the quantum algorithm effectively.

The quantum genetic algorithm steps are:

2.1.1  Step 1: Population Initialisation

The lowest unit of information in QGA is a quantum bit. The state of a quantum bit can 
be 0 or 1, expressed as:

being � , � two complex numbers corresponding to the likelihood of happening of 
the respective state: 

(|�|2 + |�|2 = 1
)
, |�|2, |�|2 symbol the likelihood of the quan-

tum bit in the 0 and 1 state accordingly.
The most commonly adopted coding techniques in EA include binary coding, deci-

mal coding, and symbolic coding. In QGA, a new method of coding is introduced using 
the quantum bit, namely the use of a pair of complex numbers to describe a quantum 
bit. A system with m quantum bits is expressed as

In the equation, ||�i||2 + ||�i||2 = 1 (i = 1, 2, …, m). This method of display may be 
applied to describe any linear superposition of states. For instance, a system of three 
quantum bits having the next probability amplitudes:
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2.1.2  Step 2: Conduct Individual Coding and Measuring of the Population 
Generating Units

QGA is a probabilistic algorithm analogous to EA. The algorithm is 
H(t) =

{
Qt
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h
,…Qt

l

}
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Considering a non-binary optimization problem with a chromosome composed of 
three real-valued parameters  × 1, ×2, and ×3, the fitness function for this problem 
would be defined as:

The objective in this case would be to minimize the fitness function. To accom-
plish this, the QGA would search for a set of parameter values that produce the 
minimum fitness value. The process would be similar to that for a binary problem, 
with the genetic operators applied to the real-valued parameters rather than binary 
strings.

2.1.4  Step 4: Apply Genetic Operators to Create New Individuals

The crossover operator is applied by swapping some of the qubits between two chro-
mosomes. One of the most commonly used crossover operators in QGA is the uniform 
crossover, which selects each qubit from one of the two parent chromosomes with a 
certain probability. The crossover operator can be represented mathematically as:

where α∣ψparent1⟩ + β∣ψparent2⟩ are the two parent chromosomes, ∣ψchild⟩ is the 
resulting child chromosome, and α and β are complex coefficients determined by the 
crossover probability.

The mutation operator randomly flips some of the qubits in a chromosome. Math-
ematically, the mutation operator can be represented as:

where Um is a single-qubit unitary gate that applies a random rotation around the 
Bloch sphere axis for the qubit to be mutated. The mutation rate determines the 
probability of applying the mutation operator to each qubit in a chromosome.

It’s important to note that the application of genetic operators in QGA can be done 
in different ways, and the specific equations used can vary depending on the implemen-
tation and problem being solved.

2.1.5  Step 5: Apply An Appropriate Quantum Rotation Gate U(t) to Update S(t)

The conventional genetic algorithm utilises mating and mutation operations, etc. 
to keep the population diverse. The quantum genetic algorithm uses a logic gate 
to the likelihood amplitude of the quantum state to preserve the diversity of the 

(6)f(x1, x2, x3) = (x1 − 3)2 + (x2 + 1)2 + (x3 − 2)2

(7)
�ψchild⟩ = α�ψparent1⟩ + β�ψparent2⟩�ψchild⟩ = α�ψparent1⟩ + β�ψparent2⟩

(8)�ψmutated⟩ = Um�ψoriginal⟩�ψmutated⟩ = Um�ψoriginal⟩
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population. Hence, the method of updating by a quantum gate is the essence of 
the quantum genetic algorithm. The binary system, adaptation values, and the 
probability amplitude comparison technique are utilised for updating using a 
quantum gate in the classical genetic algorithm. This approach to updating via a 
quantum gate is adequate for solving combinatorial optimisation problems with 
an in-principle optimum. Nevertheless, for real optimisation problems, especially 
those optimisation problems of multivariable continuous functions, whose best 
solutions are in principle not available beforehand. Hence, a quantum rotation 
gate of the quantum logic gate for the new quantum genetic algorithm is assumed 
here.

being � the quantum gate rotation angle. Its value is shown as

We consider k as a variable linked to the evolution generation to adjust the 
mesh size in a self-adaptive way. Let t be the evolution generation, π is an angle, 
itermax is a constant that relies on the complexity of the optimization problem. 
The aim of the function f

(
�i, �i

)
 serves to cause the algorithm to seek the best 

direction. It is based on the idea of gradually bringing the actual search solution 
closer to the optimal solution and thus setting the direction of the quantum rota-
tion gate.

Thus, the process of implementing the quantum rotation gate to the entire prob-
ability amplitude for the individual object in the population, namely by applying 
the quantum rotation gate U(t) to update S(t), in the quantum genetic algorithm 
may be written as:

being t the evolution generation, U(t) represents the  tth generation quantum 
rotation gate, S(t) symbols the  tth generation probability amplitude of a certain 
object, S(t + 1) denotes the t + 1th generation probability amplitude of the rel-
evant object.

(9)U =

[
cos � sin �

sin � cos �

]

(10)� = k ⋅ f
(
�i, �i

)

(11)k = � ⋅ exp

(
−

t

itermax

)

(12)S(t + 1) = U(t) × S(t)
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2.1.6  Step 6: Perturbation

Since QGA is inclined to get caught at a better local extreme value, we disturb the 
population. QGA analysis has shown that if the best individual of the present gen-
eration is a local extreme value, the algorithm is very difficult to free. Thus, the 
algorithm is stuck at the local extrema if the best individual remains unchanged in 
subsequent generations.

Finally, we show how is the pseudocode for the implementation of this method 
for the problem studied and the flowchart (Fig. 1) with the steps to follow as it 
has been described previously.

Pseudocode of Quantum Genetic Algorithm
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Fig. 1  Flowchart of quantum genetic algorithm
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2.2  Deep Recurrent Convolutional Neural Network (DRCNN)

The RCNN model consists of a stack of RCLs and may include max pooling layers. To 
save on computational resources, the first layer is a standard forward convolutional layer 
with no recurrent connections, followed by a max pooling layer. Four RCLs are used with 
a max pooling layer in the middle, and there are only feed-forward links between adjacent 
RCLs. Both clustering operations have a stride of 2 and a size of 3. The fourth RCL’s 
output tracks a global maximum clustering layer that produces the maximum of each fea-
ture map, resulting in a feature vector to represent the image. This approach differs from 
Krizhevsky et al. (2017) model, which uses fully connected layers, and Lin et al. (2013) 
and Szegedy et al.’s (2017) models, which use global average pooling. Finally, a softmax 
layer is used to classify the feature vectors into C categories, with the output consisting of:

being yk the predicted probability belonging to the kth category, and x the feature 
vector generated by the global max pooling.

RNNs have been deployed in many fields in time series forecasting with success 
owing to their enormous predictive power. The standard RNN framework is struc-
tured by the output, which depends on its past estimations (Wan et al., 2017). The 
standard RNN framework uses a hidden state to store information about past inputs, 
which is combined with the current input to make a prediction for the output at the 
current time step. The RCNN model incorporates the standard RNN framework by 
using Recurrent Convolutional Layers (RCLs) to capture the temporal dependencies 
in sequential data. The output of each RCL is a sequence of hidden states that can be 
used to make predictions about future inputs. The DRCNN model extends the RCNN 
model by stacking RCLs to create a deep architecture, with each layer applying a con-
volutional operation to the hidden states generated by the previous layer. The output 
of the last layer is then fed into a supervised learning layer to produce a prediction for 
the output at the current time step. the output of this RNN can be written as:

where yt is the output at time step t, st is the hidden state at time step t, Wy is the 
weight matrix connecting the hidden state to the output, by is the bias term, and f is 
the activation function.

An input sequence vector x, the hidden states of a recurrent layer s, and the out-
put of a unique hidden layer y, can be obtained from formulas (14) and (15).

being Wxs , Wss , and Wso the weights from the input layer x to the hidden layer s, 
the hidden layer to itself, and the hidden layer to its output layer, respectively. by rep-
resent the biases of the hidden layer and output layer. Formula (16) points out � and 
o as a symbol of the activation functions.

(13)yk =
exp

�
WT

K
X
�

∑
K� exp

�
WT

K
X
� (k = 1, 2,… , C)

(14)yt = f
(
Wy ∗ st + by

)

(15)st = �
(
Wxsxt +Wssst−1 + bs

)

(16)yt = o
(
Wsost + by

)
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where z(t) denotes the vibration signals, ω(t) symbols the Gaussian window function 
focused around 0. T(τ, ω) represent a complex function defining the vibration sig-
nals over time and frequency. To compute the hidden layers with the convolutional 
operation formulas (17) and (18) are used.

being W the convolution kernels. Below we show the pseudocode of activation func-
tion of these RCNNs:

Pseudocode for Activation function

# Activation function for identifying and ranking values
# Input: Characteristics from convolution layer
# Output: Removal of negative values
activation_function = lambda y: 1.0/(1.0 + np.exp(-y))
input_func = np.random.random((2, 3))
K1, a1 = np.random.random((4, 2)), np.random.random(4)
K2, a2 = np.random.random((1, 4)), np.random.random(1)
K3, a3 = np.random.random((1, 1)), np.random.random(1)
layer1 = activation_function(np.dot(K1, input_func) + a1)
layer2 = activation_function(np.dot(K2, layer1) + a2)
output = np.dot(K3, layer2) + a3

To establish a deep architecture, the recurrent convolutional neural network (RCNN) 
can be stacked and form the DRCNN (Huang & Narayanan, 2017). In this combination 
case, the last part of the model is a supervised learning layer, set by formula (19).

being Wh the weight and bh the bias, respectively. The error of predicted and actual 
observations in the prediction training data may be estimated and fed back into 
model training (Ma & Mao, 2019). Stochastic gradient descent is implemented to 
optimise parameter learning. Assuming that the real data at time t is r, the loss func-
tion is given in the formula (20).

The number of filters is the number of neurons, since each neuron performs a dif-
ferent convolution on the input to the layer. It can also be distributed as multiples of 
32, with a range limit of 32–512. The size of the filter defines how many neighboring 
data points there are in a convolutional layer. The most used sizes in this work have 
been 3 × 3 and 5 × 5. Stride and padding are a parameters of the neural network’s filter 

(17)STFT{z(t)}(�,�) =
+∞

∫
−∞

z(t)�
(
t − �)e−j�tdt

)

(18)St = �
(
WTS ∗ Tt +WSS ∗ St−1 + Bs

)

(19)Yt = o
(
WYS ∗ St + By

)

(20)r̂ = 𝜎
(
Wh ∗ h + bh

)

(21)L(r, r̂) =
1

2
‖r − r̂‖2

2
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that modifies the amount of movement over observations. In this work and usually, a 
stride size no greater than 2 × 2 and a padding no greater than 1 × 1 have been used. 
Finally, we provide a flowchar of the steps to complete in order to run this DRCNN in 
the Fig. 2.

Fig. 2  Deep recurrent convolutional neural network flowchart



2277High‑Frequency Trading in Bond Returns: A Comparison Across…

3  Sample and Data

We employ bond prices for a one-year bond market in the period from February 15th, 
2000 to April 12th, 2023. The sample consists of ten sovereign bonds in five advanced 
economies (Germany, United States, Italy, Spain, and Japan) and five emerging coun-
tries (Turkey, Mexico, Indonesia, Nigeria, and Poland); ten corporate bonds in five 
advanced economies (Walmart, Johnson & Johnson, Verizon, Unilever PLC, Rito Tinto 
PLC) and in six emerging economies (Air Liquid, Ambev, Cemex, Turkish Airlines, 
KCE Electronics, Telekomunikacja Polska), and finally, ten high-yield bonds in five 
developed countries (Caesars Resort Collection LLC, Asurion LLC, Intelsat Jackson 
Holdings, Athenahealth Group, Great Outdoors Group LLC) and in five developing 
markets (Petroleos Mexicanos, Petrobas, Sands China Ltd, Indonesia Asahan Alumini, 
Longfor Properties). “Appendix 3” displays a detailed information about the features 
of every bond used in the sample. We have got data on the bond prices from the Eikon 
database from Refinitiv. The data on trades in Refinitiv comprises information on exe-
cuted trades such as price and volume, which are timestamped up to the microsecond 
with tools like Refinitiv Tick History. On the other hand, the information on order book 
includes the limit price and order volume for both the bid and ask sides, covering lim-
its one to ten. This information has been used by recent studies from Clapham et al. 
(2022), Hansen and Borch (2022), and Dodd et  al. (2023). Table 1 summarizes the 
sample according to every category of the fixed-income market used.

We categorize all trades that happen in the continuous session across the day as 
"continuous trades" and build "all trades" aggregating the trades performed in the open 
and close sessions to the "continuous trades". To avoid dealing asynchronously, we dis-
play our data at 10, 30, and 60 min.

In addition, we measure the cost-effectiveness of our selected forecasting techniques 
by the following ratios.

3.1  Sign Prediction Ratio (SPR)

Correctly predicted price direction change is assigned 1, and − 1 otherwise. This ratio 
is defined as:

being “matches” the following

being the “sign function” that assigns + 1 for positive arguments and -1 for negative 
arguments.

With the purpose of correcting the possible deficiencies of the model in terms 
of its precision regarding the direction of the trend of the movements in the prices 

(22)SPR =

∑M

j=1+M∕2
matches

�
Yj, Y

�
j

�

M∕2

(23)matches
(
Yj, Yj�

)
=

{
1 if sign

(
Yj
)
= sign

(
Yj�

)
0 otherwise
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of the securities, we have incorporated a modification of the previous equation 
by adding the Moving Average Convergence Divergence (MACD) model. The 
MACD model is commonly calculated using the following equation:

The MACD line represents the difference between the 12-day EMA and the 
26-day EMA. The EMA is a type of moving average that gives more weight to 
recent data points. By subtracting the longer-term EMA from the shorter-term EMA, 
the MACD line aims to capture the momentum and trend direction of the underlying 
asset (Chong & Ng, 2008; Ramlall, 2016; Sezer & Ozbayoglu, 2018).The approach 

(24)
MACD Line = 12-day Exponential Moving Average (EMA) − 26-day EMA

Table 1  Sample of bonds used

Sovereign bonds Advanced economies Germany
United States
Italy
Spain
Japan

Emerging economies Turkey
Mexico
Indonesia
Nigeria
Poland

Corporate bonds Advanced economies Walmart
Johnson & Johnson
Verizon
Unilever PLC
Rio Tinto PLC

Emerging economies Air Liquide
Ambev
Cemex
Turkish Airlines
KCE Electronics
Telekomunikacja Polska

High-yield bonds Advanced economies Caesars Resort Collection LLC
Asurion LLC
Intelsat Jackson holdings
Athenahealth group
Great outdoors group LLC

Emerging economies Petróleos Mexicanos
Petrobras
Sands China Ltd
Indonesia Asahan Alumini
Longfor Properties



2279High‑Frequency Trading in Bond Returns: A Comparison Across…

of using MACD as a correction factor in the SPR can be modeled using the follow-
ing equation:

where SPR is the original sign prediction ratio, MACD is the signal generated by the 
MACD model, and 1-MACD is used as a correction factor. The term (1-SPR) repre-
sents the complement of the original SPR, reflecting the portion of the original SPR 
that is not considered accurate. The term (1-MACD) represents the complement of 
the MACD signal, reflecting the extent to which the MACD signal indicates a poten-
tial reversal or correction in the market. The intuition behind this equation is that 
when the MACD signal is positive, it is likely that the market is trending upwards 
and the original SPR is more accurate. However, when the MACD signal is nega-
tive, it suggests a market reversal or a correction, and the original SPR may not be 
as accurate. In this case, the correction factor is used to adjust the SPR downward to 
reflect the possibility of a trend reversal (de Almeida & Neves, 2022; Ramlall, 2016; 
Slade, 2017).

By adding the correction factor to the original SPR, the adjusted  SPRAdjusted takes 
into account the possibility of trend reversals or corrections indicated by the MACD 
signal. When the MACD signal is positive, the original SPR is considered more 
accurate and is only slightly adjusted. However, when the MACD signal is negative, 
indicating a potential trend reversal, the original SPR is adjusted more significantly 
downward to reflect the increased likelihood of a reversal.

This approach aims to combine the predictive power of the original SPR with 
the insights provided by the MACD signal, adjusting the SPR to account for poten-
tial trend changes. It recognizes that the MACD signal can act as a corrective fac-
tor when the market conditions indicate a higher likelihood of a trend reversal or 
correction.

3.2  Ideal Profit Ratio (IPR)

Is the ratio between the total Return and the maximum return.

The Total Return is computed in the following formula, where “sign” denotes the 
“sign function” and the better the forecasting approach, the higher the total return 
will be.

The maximum return is determined by summing all absolute expected figures and 
reflects the maximum achievable return, considering a perfectly foreseeable forecast. 
This ratio is defined as:

(25)SPRAdjusted = SPR + (1 − SPR) ∗ (1 −MACD)

(26)IPR =
Total Return

Maximum Return

(27)Total Return =

M∑
j=1+M∕2

sign
(
Y �
j

)
∗ Yj
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Nelson-Siegel model, which was introduced by economists Nelson and Siegel in 
1987. The model is based on the idea that the yield curve can be decomposed into 
three factors: the level factor, the slope factor, and the curvature factor. These factors 
capture the average level of interest rates, the steepness of the yield curve, and the 
degree of curvature, respectively. The model can be expressed mathematically as 
follows:

where r(t) represents the yield on a bond with time to maturity t, and β1, β2, β3, and 
τ are parameters to be estimated. The parameter β1 represents the long-term mean 
level of interest rates, β2 represents the slope of the yield curve at short maturities, 
β3 represents the curvature of the yield curve, and τ represents the time scale over 
which the yield curve adjusts to its long-term mean.

The rolling regression method involves estimating the relationship between the 
excess returns of the bond portfolio and changes in the yield curve over a specified 
rolling time period, such as one month or one quarter. The slope of the regression 
line represents the expected excess return of the portfolio for a given change in the 
yield curve (Grinold & Ronald, 1999; Ibbotson & Kaplan, 2000).

The equation for the rolling regression model can be written as follows:

where Excess Return is the excess return of the bond over the risk-free rate, typically 
estimated using a 3-month U.S. Treasury bond as the benchmark (Campbell et al., 
2001). Yield Curve Change is the change in the yield curve over the rolling time 
period, calculating the yields for each maturity point based on the Nelson-Siegel 
model for both yield curves. The term α is the intercept of the regression line, which 
represents the expected excess return of the bond when the yield curve change is 
zero. The term β is the slope of the regression line, which represents the expected 
excess return of the bond for a one-unit change in the yield curve. The term ε is the 
residual error term, which represents the deviation of the actual excess return from 
the predicted excess.

For its part, a modification of the Ideal Profit Ratio equation has been made fol-
lowing what has been done in works such as Elton et al. (1995) y Grinold and Ron-
ald (1999). The ideal profit ratio is a measure of the performance of an investment 
strategy relative to a benchmark. It is calculated as the difference between the total 
returns of the strategy and the maximum returns of the benchmark, divided by the 
maximum returns of the benchmark.

To incorporate the excess return based on the yield curve into the calculation of 
the ideal profit ratio, you could modify the equation as follows:

(28)Maximum Return =

M∑
j=1+M∕2

abs
(
Yj
)

(29)
r(t) = β1 + β2 ∗

[
1 − exp(−t∕τ)

]
∕(t∕τ) + β3 ∗

[
(1 − exp(−t∕τ))∕(t∕τ) − exp(−t∕τ)

]

(30)Excess Return = α + β ∗ Yield Curve Change + ε

(31)
Ideal Profit Ratio = (Total Return − Expected Return)∕Maximum Return
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This modified equation measures the performance of the investment strategy rela-
tive to the benchmark, while taking into account the impact of the yield curve on the 
expected return of the portfolio. A higher ideal profit ratio indicates better perfor-
mance relative to the benchmark.

Finally, after calculating the aforementioned equation of the Ideal Profit Ratio, 
its final result will be the net value after applying the transaction cost. In our case 
we used the difference between the average customer buy and the average customer 
sell price on each day to quantify transaction costs according to the specification of 
Hong and Warga (2000) and Chakravarty and Sarkar (2003):

where Pbuy∕sell
t  t is the average price of all customers buy/sell trades on day t. We 

calculate  TCAvgBidAsk for each day on which there is at least one buy and one sell 
trade and use the monthly mean as a monthly transaction cost measure following the 
specifacions of previous works (Schestag et al., 2016).

4  Results

From our data described in the previous section, we collect a sample at 10, 30- and 
60-min intervals, and afterward, we implement ten different methods defined in 
Sect. 2. The size of the training sample for the whole daily forecasting time horizon 
appears as 50% of the total sample size approximated to the nearest integer value, 
while the other 50% is used as an out-of-sample data set.

We introduce two key measures, defined in Sect.  3, of the performance of the 
methodologies. First, is the sign prediction rate, representing the proportion of 
times that the corresponding methodology accurately estimates the direction of the 
future price (up or down). Since correctly guessing the future price change would 
not ensure better results, we should contrast the performance of different prediction 
methodologies with a correct prediction of price changes. Thus, the ideal profit ratio 
is the relationship between the profitability generated by a particular method and a 
perfect sign forecast.

We implement the process mentioned above for "continuous operations" in the 
sample period and, in addition, we also apply it for "all operations" to test for robust-
ness. Tables 2, 3, 4, 5, 6, and 7 display the results achieved for each bond at different 
time scales and for "continuous trades”. The results for the "all trades" case scenario 
are presented in “Appendix 2” via Tables 10, 11, 12, 13, 14, 15.

Table 2 reports the sign prediction accuracy ratios of continuous trading for the 
ten techniques on the considered bonds for 10 min. We remark that QGA performs 
the best with 31 bonds, with an accuracy rate of over 0.772 and a mean of 0.881. 
DRCNN and DLNN-GA and are the second and third methods that correctly predict 
the change in bond price direction, with an average of 0.850 and 0.847 respectively. 

(32)TCAvgBidAsk =
P
buy

t − Psell
t

0.5 −

(
P
buy

t − Psell
t

)
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SVM-GA may also be regarded as a reference model for the other machine learn-
ing algorithms, being the fourth best in the comparison. We notice that the fuzzy 
approach ise the worst-performing techniques, with an overall mean of 0.770 for the 
Qfuzzy method.

Table 3 shows the results of the ideal profit ratios for the selected bonds and for a 
time scale of 10 min for every methodology. It is noted that, in line with the success 
rates in Table 2, QGA is again the best-performing method, as all bonds have a posi-
tive ideal profit ratio with a mean value of 0.0175. Nevertheless, in contrast to the 
results of the accuracy rates, QRNN becomes the second-best performing method 
this time, as all bonds also have a positive ideal profit ratio and a mean of 0.0140. 
QRNN is followed by the ANFIS-QGA method with an average of 0.0134. In this 
case, SVM-GA and CNN-LSTM are the worst-performing models regarding profit 
generation for continuous 10-min trades. The maximum value of the ideal profit 
ratio among sovereign bonds is 0.0212 and is reached by QGA in Turkey. Among 
corporate bonds, Telelomunikacja Polska is the one that reaches a maximum value, 
being 0.0192, again in the QGA method. Finally, among high-yield bonds, Caesars 
Resort Collection LLC stands out with a value of 0.0192, also in the QGA method.

Table 4 presents the results concerning the success ratios of continuous opera-
tions with a frequency of 30 min. We note that, as in the case of the 10-min fre-
quency, the QGA method is once again the most performing in terms of mean bond 
success ratio, with an average of 0.860. In the QGA method, among sovereign 
bonds, Germany has the highest ratio at 0.906. Looking at corporate bonds, also 
in the QGAs method, Ambev’s is the highest value at 0.918, and among high-yield 
bonds, Caesars Resort Collection LLC ranks highest with a value of 0.849, also in 
the QGA method. The next methods that present a correct forecast of the future 
direction of bond prices are DLNN-GA and DRCNN, with a mean of 0.839 and 
0.829 respectively. SVM-GA could also be accepted as a good model for the sign 
prediction ratio. On the other hand, we notice that, as with the 10-min frequency, the 
method Qfuzzy show low sign prediction capacity, with mean value of 0.750.

If we examine the results of the ideal profit ratio for continuous 30-min trades in 
Table 5, we observe that QGA emerges as the best model yielding the greatest profit 
ratio, with an average of 0.0193 with all bonds having a positive ratio. This result is 
following the success rates of the QGA method in Table 4. However, if we look at 
the techniques that worst predict the future direction of bond prices, in this case, this 
is not the fuzzy one but GRU-CNN and AdaBoost-GA. Both have a mean value of 
0.0063 and 0.0080 respectively.

On considering a sampling frequency of 60  min, Table  6 reveals that, in line 
with the previous results, the QGA is better than the other methods regarding the 
mean sign prediction ratio, with an average of 0.838. As in the case of the 10-min 
and 30-min time scales, the maximum success ratio for all bonds through this 
QGA method is achieved for the corporate bond "Ambev". Moreover, DRCNN and 
DLNN-GA correctly predict all bonds with a rate above 0.701. Furthermore, we 
remark that, as with the 10-min frequency and the 30-min frequency, the Qfuzzy 
method displays a weak sign prediction ability, with mean values of 0.732.

If we analyze Table 7, it is evident that the genetic algorithms are the ones that 
obtain the best results for the 60-min frequency in the ideal profit ratio. QGA, 
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ANFIS-QGA, and SVM-GA are those that reflect, in this order, the highest ideal 
profit ratio with all of the bonds having a positive ratio. DRCNN and DLNN-GA 
come after with an average ratio of 0.0131 and 0.0128, respectively. The lowest val-
ues, in contrast to the previous table, are those achieved in the GRU-CNN and CNN-
LSTM methods, with an average value of 0.0032 and 0.0048 respectively.

When we examine continuous trading time series at 10, 30, and 60 min, we can 
reveal the impact of the sampling frequency on the prediction. We note in Fig.  3 
that all methods show better results concerning the Sign Prediction Ratio at lower 
frequencies. Nevertheless, the case is otherwise, as illustrated in Fig. 4, for the Ideal 
Benefit Ratio, as AdaBoost-GA, SVM-GA, ANFIS-QGA and DRCNN perform the 
best model for trading strategy setting at 60 min of sampling, and QGAperforms the 
best for 30 min of sampling. Following our results, not only the bonds and meth-
odology but also the prediction intervals are important. As a consequence, we may 
conclude that one method is not suitable for everything. While a method may be 
suitable for raw data, it may not be appropriate for fine data.

Tables 8 and 9 show the results of Sovereign bonds at 1 and 5 min frequency 
intervals. If we observe Table 8, the methodology with the best results is QGA 

Fig. 3  Sign Prediction Ratio for continuous trades at different sampling frequencies of each method
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for both ratios, sign prediction and ideal profit. In the case of the sign predic-
tion ratio for a one-minute frequency, German sovereign bonds are the ones that 
reach the highest value (0.924) and for the 5-min frequency case, Italian sov-
ereign bonds with a ratio of 0.946. With reference to the ideal profit ratio, the 
best result is obtained by Turkey for a frequency of 1 min (0.0229), and Spain 
for a frequency of 5 min (0.0247). For all trades, Table 9 illustrates that the best 
sovereign bond performance in sign prediction ratio at 1-min frequency is Japan 
(0.930) in the Qfuzzy method. However, at a frequency of 5 min, the DLMM-
GA method performs best, with Germany having the highest ratio. Regarding 
the ideal profit ratio, QRNN is the best methodology, with Turkey obtaining the 
highest values at both frequencies, 0.0244 at a 1-min frequency and 0.0195 at a 
5-min frequency.

In comparison with other works, Vukovic et  al. (2020) obtain an accuracy 
of 82% on test cases for predicting future Sharpe ratio dynamics with neural 
networks. Nunes et al. (2019) achieve RMSE reductions compared to the model 
without synthetic data in the range of 11% to 70% (mean values, for forecast 
horizons of 15 and 20 days) for predicting the bond market yield curve, using the 

Fig. 4  Ideal profit ratio for continuous trades at different sampling frequencies of each method
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Multilayer Perceptrons method. In summary, our study has high precision, and 
also exceeds the accuracy level of previous work, being the genetic algorithms 
the ones that obtain the best results, especially the QGA method. Moreover, pre-
vious literature dealing with fixed-income assets is not concerned with the use 
of HFT. The results of our study show that bond market transactions through 
HFT are executed faster and trading volume increases considerably, enhancing 
the liquidity of the bond market.

Finally, we analyse the cumulative net profits for each bond market (sover-
eign, corporate and high-yield) and according to each price window (10-min, 
30-min, 60-min and 1-min, 5-min). These results are presented in “Appendix 4” 
via Figs.  5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15. Over the span of two decades 
under examination, all models encountered drawdowns of varying magnitudes, 
ranging from 5 to 15% at different points in time. On average, these drawdowns 
persisted for approximately 2.5  months. Instances of model underperformance 
became evident during periods of extreme market volatility, exemplified by the 
2008 financial crisis, which witnessed model losses surpassing the 20% mark. 
Similarly, unexpected geopolitical events posed challenges, with losses reaching 
up to 18%. Our models demonstrated a propensity to falter when confronted with 
’black swan’ events of exceptional magnitude that surpassed historical data, as 
exemplified by the impact of the COVID-19 pandemic (Papadamou et al., 2021). 
Moreover, these models reduce their performance a little in forecasting abrupt 
market shifts induced by unprecedented occurrences, such as major regulatory 
changes. Despite these limitations in predicting and achieving profits, our mod-
els achieve a higher and more consistent level of cumulative profits over time 
than previous work on algorithmic trading models, especially high-frequency 
trading models (Dixon et  al, 2018; Rundo, 2019; Lahmiri & Bekiros, 2021; 
Goudarzi & Bazzana, 2023).

Sovereign Bonds exhibit a fluctuating pattern over the years, with a negative start 
in 2001 but a significant shift towards positive gains in 2002. This positive trend 
continued until 2006, followed by intermittent fluctuations. By 2023, net gains had 
stabilized at a relatively positive level, demonstrating the resilience of these bonds. 
Corporate Bonds also had a negative start in 2001 but saw notable improvements in 
2002, with consistent gains until around 2006. There was volatility in the subsequent 
years, with lucrative moments such as in 2010 but also difficulties. By 2023, corpo-
rate net gains appear to have regained a positive trajectory. High-Yield Bonds started 
in the negative in 2001 and remained mostly so until 2003. They then experienced 
a period of consistent gains until around 2011, followed by volatility. In 2023, they 
maintain positive cumulative gains, albeit more moderate.

At the beginning of the 2000s, central banks, particularly the U.S. Federal 
Reserve, had a more neutral monetary policy stance. Interest rates were relatively 
higher compared to the 2010s (Jarrow, 2019). However, following the burst of the 
dot-com bubble and the September 11 attacks in 2001, central banks, including the 
Federal Reserve, lowered interest rates to stimulate economic growth. These rate 
cuts resulted in lower yields on government bonds (Fabozzi & Fabozzi, 2021).

Bond yields, especially in the U.S., remained relatively low during the first half of 
the decade but started to rise as the economy improved. The latter part of the 2000s 
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was marked by the U.S. housing bubble and the subsequent global financial crisis 
of 2008. These events led to a flight to safety, with investors seeking refuge in gov-
ernment bonds, particularly U.S. Treasuries (Gilchrist et al., 2019). This increased 
demand for government bonds drove prices up and yields down.

Corporate bonds in the early 2000s offered higher yields compared to govern-
ment bonds, reflecting the risk premium associated with corporate debt. However, 
during the financial crisis, corporate bond yields rose significantly as investors 
became concerned about the creditworthiness of corporations (Jarrow, 2019). Bond 
spreads, which measure the difference in yields between corporate bonds and gov-
ernment bonds, widened substantially during this period. Emerging market bonds 
experienced mixed performance during the 2000s. Some emerging market econo-
mies attracted foreign investment, leading to lower yields on their bonds. However, 
there were instances of bond market turmoil in emerging markets, driven by factors 
such as currency devaluations and political instability (Beirne and Sugandi, 2023).

Regarding the 2010s decade, central banks, particularly in developed economies 
like the United States, Europe, and Japan, implemented accommodative monetary 
policies in response to the global financial crisis of 2008 (Albagli et  al., 2018). 
These policies included near-zero or negative interest rates and large-scale bond-
buying programs (quantitative easing) aimed at stimulating economic growth. As 
a result, yields on government bonds, which serve as benchmarks for other fixed-
income securities, remained historically low (Blanchard, 2023). The low yield 
environment prompted investors to seek higher-yielding assets, which sometimes 
led to increased demand for riskier bonds, such as high yield or corporate bonds. 
This increased demand pushed up bond prices and drove yields lower. The global 
economy experienced a prolonged period of low inflation and, at times, deflation-
ary pressures during the 2010s. Low inflation expectations are often associated with 
lower yields on fixed-income securities (Fabozzi & Fabozzi, 2021).

Regulatory changes in the financial industry, such as Basel III banking regula-
tions, encouraged financial institutions to hold more high-quality liquid assets, 
including government bonds (Ranaldo et al., 2019). This increased demand for gov-
ernment bonds also contributed to lower yields. While low yields were a prominent 
feature of the 2010s bond market, it’s essential to note that not all bonds experienced 
the same level of yield compression. The extent of yield compression varied among 
different types of bonds, and some segments of the bond market, like high yield 
or emerging market bonds, offered higher yields to compensate for increased risk 
(Fabozzi & Fabozzi, 2021).

5  Conclusions

This study has developed a comparison of methodologies to predict bond price 
movements based on past prices through high-frequency trading. We compare ten 
machine learning methods applied to the fixed-income markets in sovereign, cor-
porate and high-yield debt, in both developed and emerging countries, in the one-
year bond market for the period from 15 February 2000 to 12 April 2023. Our 
results indicate that QGA, DRCNN and DLNN-GA can correctly interpret the 
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expected bond future price direction and rate changes satisfactorily. Curiously, 
QFuzzy is not adequate for forecasting high-frequency returns and dealers ought 
to avoid these models in their trading decisions, for the sample bond market.

Our study shows that all methods show better results concerning the Sign Pre-
diction Ratio at lower frequencies. Thus, considering 10  min of frequency, the 
QGA method is the best performer with all the bonds, with an accuracy rate 
higher than 0.772 and a mean of 0.881. DRCNN and DLNNN-GA are the second 
and third methods that correctly predict the change in bond price direction, with 
an average of 0.850 and 0.847 respectively. However, for the Ideal Profit Ratio, 
not all methods show better results at the highest frequency. Some methods such 
as SVM-GA, ANFIS-QGA and DRCNN, perform the best model for the trading 
strategy configuration at 60-min sampling, and QGA performs the best for 30 min 
of sampling. Therefore, it is important to consider that depending on the sam-
pling frequency and the objective of the approach, one method does not fit all, 
and a mixture of different alternative techniques must be examined.

In contrast to previous research, this study has achieved better accuracy results 
and has made a comparison of innovative methods of ML with the use of HFT, 
not been applied in the bond market so far. ML algorithms have become widely 
available for fixed-income market analysis, especially since uncertainty in the 
financial markets has risen sharply. In addition, our study has made predictions of 
bond price movements globally, hence it is not exclusively focused on industrial-
ized countries. Finally, our study includes not only sovereign bonds but also cor-
porate and high-yield debt, making it of interest to policymakers in any country.

Our study provides important benefits in the field of finance. From an insider 
trading perspective, it strengthens the implementation of reliable and fast forecast 
systems on the bond prices, including the pursuit of returns and volatility target-
ing, and can analyse the information of indirect market-based monetary policy 
instruments and the macro environment. Adequate bond price predictability can 
reduce medium- and long-term debt servicing costs through the development of 
a deep and liquid market for government securities. At the microeconomic level, 
the development of a robust bond price prediction model can increase overall 
financial stability and enhance financial intermediation via increased competition 
and the development of related financial infrastructure, products, and services. 
In addition, more generally, financial crises tend to arise in credit markets. Our 
model has the potential to provide financial institutions with information on the 
effects of policy measures on the credit market’s fragility and to provide a better 
understanding of how market trends influence liquidity provision, implementation 
costs, and the impact on transaction prices.

In summary, our paper has a great perspective impact It can facilitate the work 
of professionals from financial institutions dedicated to trading as well as possible 
private investors and other stakeholders. This research makes an important contribu-
tion to high-frequency trading, as the conclusions have important implications both 
for investors and market participants as they seek to derive economic and financial 
profits from the bond market.

Our work has limitations in data availability for 10- and 30-min price frequen-
cies for corporate debt securities. In order for this type of research to have greater 
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generalizability for fixed income market practitioners, greater data availability 
would be necessary. We leave this issue as a reason to explore future research in 
which more complex trading strategies can be organized to test and demonstrate the 
effectiveness of the techniques presented in this work for trading in debt securities.

Besides, further research should broaden the scope of the comparative analysis of 
methodologies to cover the field of crypto-assets, such as cryptocurrencies and fan 
tokens, since, in recent years, financial institutions have increasingly incorporated 
crypto-assets in their portfolios.

Appendix 1: Other Methodologies

Quantum‑Fuzzy Approach (QFuzzy)

Singh et  al. (2018) and Singh and Huang (2019) proposed recently the quantum 
optimization algorithm (QOP) modeled on the ’’entanglement’’ concept of quan-
tum mechanics. In the present research, QOP is enhanced to resolve the multi-objec-
tive optimization problem (MOOP) and is called QFuzzy. In the case of MOOP, 
the major goal of QFuzzy is to choose the optimal solution set. For the operation 
of selecting a set of solutions, all the solutions are placed in a memory where they 
could be utilized to acquire the Pareto-optimal front screening out all the non-
dominated optimal solutions. The concept of an archive is developed in this pro-
cess, which stores all the non-dominated Pareto-optimal solutions (AONDPS). Sub-
sequently, a selection criterion is assumed to choose the most prominent solution 
regarding the position of the quantum of the file. We then formulate a generalized 
MOOP to prove the application of QFuzzy toward seeking optimized solutions for 
the MOOP.

A MOOP has two goals formulated:

Under linear restrictions

In Eq. (33), there are M objective functions: Θ(x) =
(
D1(x),D2(x),… ,DM(x)

)T . 
In Eq.  (34), there are N objective functions: �(x) =

(
Y1(x), Y2(x),… , YN(x)

)T . In 
this case, the objective function must be minimized or maximized. A solution x is a 
vector of n decision variables, where x = (x1, x2, x3 … , xm)

T . The space extended by 

(33)Optimize (Max. orMim.)Θ(x) = Dm(x), x ∈ ℚ
n

(34)Optimize (Max. or Mim.)�(x) = Yn(x), x ∈ ℚ
n

(35)Dm(x) ≥ 0,m = 1, 2,… ,M

(36)Yn(x) ≥ 0, n = 1, 2,… ,N

(37)x
(LB)

i
≤ xi ≤ x

(UB)

i
, i = 1, 2,… , n
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the xi is called the quantum system ℚn , whereas the space created by the Θ(x) and 
�(x) values are named the solution space. Finally, the last condition stated here indi-
cates the restriction of the variable that limits the value of each xi . For these restric-
tions, a condition set for a decision variable xi is described as G(LB) ≤ xi ≤ G(UB) that 
constrains the value of each xi within the lower bound ( G(LB) ) and the upper bound 
( G(UB) ). To optimize the above MOOP with QFuzzy we have the following steps.

Step 1 Quantum initialization in the quantum system: Start every search agent 
according to the next equation of Schrodinger (1935) as follows:

In Eq. (6), Qk(e) denotes the k-th quantum with an epoch e, and k = 1; 2; …; q; 
being q the total number of quanta in the ℚn . Q1k(e) and Q2k(e) are two wave func-
tions for the k-th quantum; � = a + ib indicates a complex number, a and b denote 
real numbers in [0,1] and i is the imaginary unit i =

√
−1 . In the representation of 

a complex number, multiplication by -1 refers to a 180-degree rotation about the 
origin of the k-th quantum. Therefore, the multiplication by i refers to a 90-degree 
rotation of the k-th quantum in the ‘‘positive”, in the counterclockwise direction 
(Berezin & Shubin, 2012). Because the complex number ∅ cannot be used straight-
forwardly to start the quantum in the search space, its absolute value is employed in 
the computational procedure, which is defined as ����� =

√
a2 + b2 . Q1k(e) and Q2k(e) 

could be related as:

where r1 ∈ [0, 1] and r2 ∈ [0, 1] are two different random functions, correspondingly.

Step 2 Quantum localization: The acquired localization of the Qk(e) is given by 
Mk(e) , and may be stated as follows:

Step 3 The motion of the quantum: The motion displayed by the Qk(e) is indicated 
by Mk(e) , and may be described as:

being mf  the “quantum movement factor”, which can be in [0,1].

(38)Qk(e) = � ⋅ Q1k(e) +
(
1 − �

)
⋅ Q2k(e)

(39)Q1k(e) =
{
GUB + r1 ⋅

(
GUB − GLB

)}

(40)Q2k(e) =
{
GLB + r2 ⋅

(
GUB − GLB

)}

(41)Lk(e) =
1

Qk(e)
e−2∕Qk(e)

(42)Mk(e) =
||||Qk(e) −

Lk(e)

2
ln
(
1∕mf

)||||



2306 D. Alaminos et al.

Step 4 Quantum shift: The displacement of Qk(e) is indicated by Dk(e) , and may be 
defined as:

Step 5 Evaluation of the suitability of the shift: A fitness value is established for 
Dk(e) , and updated if a solution better than the preceding one is available.

Step 6 Extension of the quantum search range: The extension of the motion, that is, 
Mk(e) for the next epoch, e + 1 is expressed as Mk(e + 1) , and can be stated as:

being

In this case, � is named the “quantum acceleration factor”, expressed as:

Being itr = 1,2,…,Itr. Itr indicates the maximum number of iterations set for 
the algorithm. Here, �min and �max can be taken in [0.1,0.9], where �max > �min . In 
formula (14), pBDk(e) is the personal best displacement that Dk(e) has reached 
since the first epoch. In formula (15), gBDk(e) is the global best displacement 
achieved so far among the displacements. In formulas (14) and (15), r3 ∈ [0, 1] 
and r4 ∈ [0, 1] show two different random functions, correspondingly.

Step 7 Updating the quantum offset: The offset adjustment, that is, Dk(e) for the next 
epoch is denoted by Dk(e + 1) , and may be stated as:

Step 8 Put AONDPSs into the file. Employing the AONDPSs, this algorithm starts 
by scanning the Pareto Optimal Front. Two components are integrated with the file 
to examine the optimal solutions as Knowles and Corne (2000): Controller and 
Grid. The addition of a particular solution to the file is determined by the controller. 
The information in the file is regarded as up to date according to one of the below 
conditions:

(43)Dk(e) = 2 ⋅ ||Lk(e) −Mk(e)
||

(44)Mk(e + 1) = M1 +M2 +M3

(45)M1 = � ⋅Mk(e)

(46)M2 = ln
(
1∕mf

)
⋅ r3 ⋅

[
pBDk(e) − Dk(e)

]

(47)M3 = ln
(
1∕mf

)
⋅ r4 ⋅

[
gBDk(e) − Dk(e)

]

(48)� = �max − itr ×
||�max − �min

||
Itr

(49)Dk(e + 1) = Dk(e) +Mk(e + 1)



2307High‑Frequency Trading in Bond Returns: A Comparison Across…

Condition 1: If the optimal non-dominated Pareto solution is missing and the file is 
empty, then the present solution should be adopted.

Condition 2: If an optimal solution is mastered by any other factor within the file, 
that particular solution must be rejected.

Condition 3: If a Pareto optimal solution is not mastered by the external factor, then 
the particular solution should be adopted and kept in the file.

Condition 4: If the optimal solutions are controlled by the new element, they are 
removed from the file.

Finally, the other component is Grid: When the AONDPS are positioned in the file, 
a solution space is generated for every objective. Recursively bisecting the solution 
space produces an individual placement called a grid location. A grid location helps 
identify how many non-dominated Pareto solutions are in a grid and where they are 
located.

Step 9 Stop the algorithm if the stop condition is satisfied; if not, go back to step 7.

Adaptive Boosting and Genetic Algorithm (AdaBoost‑GA)

According to the conventional AdaBoost algorithm, every base classifier’s weight is 
set after being computed; and the classifier adaptivity of each base classifier is not 
regarded (Wang et al., 2011). Hence, in this research, the GA is utilised in the adap-
tive integration procedures of the base classifiers. The number of decision groups is 
the number of weak classifiers Adaboost, and the weight of every weak classifier is 
the starting population of GA.

Both crossover probability and mutation probability significantly impact the algo-
rithm’s optimization effect (Cheng et  al., 2019). To choose the suitable crossover 
likelihood and mutation likelihood, based on the literature (Drezner and Misevicius, 
2013), we describe the crossover likelihood and mutation likelihood as:

being � a regulatory factor.
The fitness function was described as:

(50)Pc = �

(51)Pm = 0.1(1 − �)

(52)fit =

∑N

i=1
I
�
y
�
Xi

�
= yi

�
N
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AdaBoost‑GA

The function of Adaboost is to build various base classifiers using training the data 
distribution and thereafter allocate weights to these base classifiers by the error rate. 
Adaboost uses the decision group as the base classifier to enlarge the system diver-
sity of the ensemble set and uses the GA algorithm to maximise the weight of each 
base classifier by combining all the base classifiers.

Given 
{
�m,j|i = 1, 2,… ,N;m = 1… ,M

}
 , which is the weight of every sample 

in the base classifier. �m,j symbols the weight of the ith sample in mth base classi-
fier. Let ym(x) and Y(x) be a base classifier and strong classifier, respectively. �m 
denotes the weight of mth classifier. �m represents the error function of mth base 
classifier. And M constitutes the number of base classifiers. The AdaBoost-GA sug-
gested algorithm could be explained below.

Input:

-Training sets

-Validation sets

-�1,i ∶ The weight of each training sample

Output:

Y(.): The final strong classifier:

1. Initialize �1,i = 1∕N.

2. For i = 1 to N do.

3.

4.

(53)Y(x) = sign

(
M∑
j=1

�jyj(x)

)

(54)�m =

N∑
i=1

�m,iI
(
ym
(
Xi

)
≠ yi

)

(55)�m = 1n

{
1 − �m

�m

}
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if �m ≥ 0 then �m increases with the decrement of �m . End if

5.

where

6. end for

Return Y(x).

Support Vector Machine‑ Genetic Algorithm (SVM‑GA)

The problem of SVM parameter setting has been addressed by several approaches 
ranging from raw force to more refined metaheuristics, one of the best known of 
which is genetic algorithms (GA). The major benefit of GAs compared to sim-
pler methods is their ability to deliver stochastic near-optimal solutions at modest 
cost, while simultaneously optimising multiple parameters with no prior knowl-
edge (Goldberg, 1990). Similarly, every parameter in the search space is encoded 
as an allele or gene in a GA, and the complete configuration of a specific solution 
has termed a chromosome. The native formulation of GAs encodes every gene in 
binary form (binary genetic algorithms, BGAs) so that multiple evolutionary opera-
tors can be successfully implemented. Such encoding, however, leads to needless 
computational expense because it transforms real values into their binary value, and 
conversely; the storage expense is raised because operators such as mutation and 
crossover require only a single pair of bits to fulfil their function (Chih-Hung et al., 
2009). Another method that improves storage and computational costs is called real-
valued genetic algorithms (RGA). The latter type of coding is employed in the pre-
sent work.

However, GAs suffer from some disadvantages, such as early conversion to local 
optima owing to their genetic operators, and their robustness is only obtained when 
parameters such as the population size or the number of generations are adjusted. In 

(56)�m+1,i =
�m,i

Zm
exp

(
−�myiym

(
xi
))

(57)Zm =

N∑
i=1

�m,i exp
(
−�myiyg

(
xi
))

(58)�m = GA(�)

(59)Yx = sign

(
M∑
j=1

�jyj(x)

)
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addition, GA outcomes become less reproducible and need a statistical process to 
assure solution configuration conversion. Moreover, by keeping the optimal solution 
in the population, a GA is capable of converging to the global optimum (Sivaraj & 
Ravichandran, 2011).

Thus, key features in the development of evolutionary algorithms are the genetic 
operators like selection, crossover, and even the random number generator (RNG) 
they employ. The choice operator sets the search neighbourhoods, whereas the oper-
ators of recombination and mutation search for a particular space. In this work, we 
suggest a new Boltzmann operator that similarly describes a cooling scheme that 
the linear schedule suggested by Kirkpatrick et al. (1983). Besides, the convergence 
properties of a genetic algorithm may be improved by applying the chaotic number 
generators (Caponetto et al., 2003). In this study, three chaotic sequences have been 
also employed by SV RGBC genetic operators.

SVR
GBC

 Approach

A major stage in developing an efficient support vector model for ranking or regres-
sion is the adjustment of the parameters. Typically, this procedure accounts for 
the error compensation constant (C), the choice of a kernel, and its related kernel-
specific constants. The easiest way to conduct this fitting procedure is called grid 
search (GS). This approach involves generating multiple SVM models starting from 
the learning step with a set step for the parameter values. Best values are achieved 
through a test of each model on a validation set and the choice of the best result. 
However, this method has various disadvantages, the most important of which are: a 
priori knowledge, large computational expense, local optima, and the uncertain dis-
tribution of the parameter values. An alternative method for SVM parameter adjust-
ment is GA techniques; these are capable of coping with the above detractors owing 
to their demonstrated efficiency in the contextual handling of the model constants. 
GAs performs a non-linear query of the solution space based on no knowledge of 
the model’s characteristics.

For the SVR hyperparameter setting in the volatility prediction task, our novel 
approach considers a triplet of parameters composed of the kernel type and a set of 
kernel-specific constants. Starting with an original population of chromosomes pro-
duced by a pseudo-random or chaotic distribution, the process begins. Every chro-
mosome is composed of an integer-valued and a real-valued part. The method of 
choosing individuals for the mating pool in each generation can be elitism, roulette, 
or the suggested Boltzmann choice method. The rest of the mating pool is filled with 
an n-point crossover operator and a boundary mutation technique (Chih-Hung et al., 
2009; Ping-Feng et al., 2006), employing pseudorandom and chaotic sequences.

Genetic Operators

SVRGBC is a mix of an integer-valued and a real-valued genetic algorithm; it uses 
various genetic operators such as selection, crossover, and mutation to generate off-
spring from the population of real solutions. Three methods of selection are included 
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in our process: Elitism, the roulette wheel, and a new selection method named 
Boltzmann selection. Such systems are employed to select the best offspring to pro-
ceed with the development cycle. The chosen individuals are then gathered into a 
breeding pool and the crossover and mutation operators are performed on them. An 
inconvenience of the GA crossover operation in the SVR parameter setting prob-
lem is chromosomal heterogeneity. A solution to this problem is the employment 
of a dominance scheme, as indicated by Lewis et al. (1998). Every gene’s value is 
determined by its kernel together with an upper and lower limit of the allele. The 
mutation is the following stage, where several chromosomes are targeted for a muta-
tion to yield changed clones that will be incorporated into the new population. The 
present work is based on a uniform mutation, represented as:

being cold and cnew a chosen chromosome before and after mutation accordingly; n 
enumerates the number of genes in the chromosome structure; cnew

i
 represents the 

new value for the i allele after mutation; r symbols a random number in the range 
[0,1], produced by one of the available probability distributions; LBi and UBi are the 
lower and upper bound of the i allele. The various ranks and kinds of SVR param-
eters require an integer-valued mutation and a real-valued mutation (Chih-Hung 
et al., 2009). The former is employed to handle the kernel type KT owing to its inte-
ger encoding, whereas the latter changes P1 or P2 values. For these ends, a minor 
alteration of the displayed mutation operator is needed: a rounding function is intro-
duced right after the perturbation of allele i to guarantee correct values.

Boltzmann Selection

As Kirkpatrick et al. (1983) found, the solution acceptance function constitutes an 
essential feature of simulated annealing (SA). Once the SA procedure is looped for 
a sufficient amount of time, the solution acceptance distribution function follows the 
Boltzmann distribution. SA is comprised of three items: A probabilistic acceptance 
criterion, a neighbourhood exploration approach, and a cooling function to reach 
thermal balance.

Goldberg (1990) suggested that the SA-like mechanism will improve the capa-
bilities of the GA given the thermal equilibrium afforded by the cooling function, 
and the effectiveness of the Boltzmann distribution demonstrated to be an explo-
ration heuristic (Goldberg, 1990; Kirkpatrick et al., 1983). Guided by the work of 
Goldberg (1990), we suggest Boltzmann selection, used to choose the surviving 
set of mats based on the temperature of the system given by a cooling schedule. 
Every solution is either accepted or refused following the Boltzmann distribution, 
defined by (29)

(60)

cold =
{
c1, c2,… , ci,… cn

}

cnew
i

= LBi + r ∗
(
UBi − LBi

)

cnew =
{
c1, c2,… , cnew

i
,… cn

}
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being k the Boltzmann constant, ΔE represents the energy among the best and the 
present solution, and T denotes the actual system temperature. The latter parameter 
is achieved in SA by utilising a cooling function from the classical exponential or 
linear options of annealing schemes (Kirkpatrick et al., 1983). In this work, a cool-
ing scheme linked to the linear cooling function for the AG, which correlates the 
temperature with the present generation and the number of total generations of the 
AG, is presented.

Fitness Function

The optimisation procedure of the SVR parameters via the GA needs a fitness 
function to assess and choose the chromosomes for the matting set. In this paper, 
x MSE is employed to evaluate the quality of every solution to maintain a good 
genetic material. This is determined by (30), being �t the observed volatility for 
period t,�̂�t represents the forecasted volatility for period t, and n symbols the total 
forecasted time frame.

In addition, the MSE is computed using a statistical estimate of the generalisa-
tion error named k-fold cross-validation (CV). This refers to a method of calculat-
ing the parameter values of a model based on a training sample (Kohavi, 1995; 
Refaeilzadeh et al., 2009). The sample, taken in the simplest case, is split into k 
independent subsets of equal size. Using k − 1 of these, a model is trained and 42 
is computed over the residual subset. This procedure is repeated for the remaining 
k − 1 left samples, and then the mean is calculated. At last, the model that reduces 
the CV value to the minimum is the optimal one (Refaeilzadeh et al., 2009).

Deep Learning Neural Network‑ Genetic Algorithm (DLNN‑GA)

The procedure of multiple forward dispersion is defined in the next linear model 
linking the incident optical modes and the transferred optical modes (Vellekoop 
& Mosk, 2008).

being En the nth complex incident mode with amplitude ||En
|| and phase �n , while 

Em represents the mth complex optical mode transferred from the dispersion media. 
tmn symbols one element in the complex transmission matrix which constitutes light 

(61)P(xi) = e

(
−ΔE

KT

)

(62)MSE =

∑n

i=1

�
𝜎t − �̂�t

�2
n

(63)Em =

N∑
n=1

tmnEn =

N∑
n=1

||tmn|| exp
(
i�mn

)||En
|| exp

(
i�n

)



2313High‑Frequency Trading in Bond Returns: A Comparison Across…

scattering paths. The phase values fulfil �n =  − �mn (Bossy & Gigan, 2016). The 
light will focus perfectly on the selected location when it is set to this condition.

The procedure of using the GA for wavefront modelling involves five steps: ini-
tialisation, classification, reproduction, mutation, and iteration. First, a given num-
ber G of phase patterns is generated, each phase value being selected from a uniform 
pseudo-random distribution. Next, these standards are marked using a specially 
designed fitness function. Following formula (32), the fitness function is described 
as the intensity of the light at a given location (Conkey et al., 2012)

being An the amplitude of En . Phase patterns are classified according to the results 
of the fitness function assessment. High scores lead to higher rankings. The second 
step is breeding. Offspring is produced by offspring = T × ma + (1 − T) × pa, with T 
being a random binary template and ma and pa being parental parents. Both parents 
are sorted under the rule that higher-ranking parents are more likely to be adopted. 
After reproduction, certain sections of the offspring become mutated and changed 
by chance. The mutation rate R declines with growing generations n to prevent over 
mutation, as follows R =

(
R0 − Rend

)
× exp (−n∕�) + Rend, , being R0 , Rend , and λ 

the initial mutation rate, the final mutation rate, and the decay factor, for each of 
them (Conkey et al., 2012). The progeny shall also be assessed by the fitness func-
tion. In each generation, a certain number of offspring will be replicated to substi-
tute already existing patterns with inferior scores (Conkey et al., 2012). Then, the 
G-stage patterns are all reclassified based on their scores. The previous reproduction 
and mutating proceedings will be repeated several times before the final condition 
is fulfilled. Usually, the iteration ceases when a prespecified amount of generations 
is replayed or the result of the fitness function evaluation meets a certain level of 
threshold.

The advantages of the AG are important. The AG manages to identify a suitable 
solution quickly. In addition, GA is robust to noise, as it updates the largest number 
of pixels rather than adjusting pixels one by one. While GA results are significantly 
affected by many factors, such as the mutation and reproduction rate, the fitness 
function, and particularly the number of phase patterns employed in every genera-
tion, namely the size of the population, matching the right parameters is not trivial 
and needs time and experience. Furthermore, several scenarios haphazard introduce 
start patterns, potentially in the neighbourhood of one or more local minima. GA 
is susceptible to getting locked into a local minimum, as it is a staged optimisation 
process and descendants reproduce themselves by replicating and mutating existing 
patterns. This involves the risk that likely better solutions cannot be probed. Con-
sequently, the use of a good initialisation is crucial to reach global optima (Boden-
hofer, 2003).

Deep learning, which is a data-driven process, employs a separate strategy to esti-
mate the phase pattern for focusing the light. The poor proposal and nonlinearity of 
inverse scattering problems show that direct inversion is impractical, which makes 

(64)Im = ||Em
||2 = 1

N

||||||

N∑
n=1

tmnAn exp
(
i�n

)||||||

2
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the requirements of iterative algorithms with regulation (Wei & Chen, 2018) to be 
as below:

being H the forward scattering model, y represents the recorded speckle intensity, W 
symbols a transformation, and p denotes transformation coefficients so that x̂ = Wp 
is the desired reconstruction.

Nearly every state-of-the-art iterative algorithm for back-scattering problems 
are cascades of linear convolutions and pointwise nonlinear transactions, (McCann 
et  al., 2017), resembling the structure of convolutional neural networks (CNNs). 
Examples of a representative implementation are the well-known iterative shrink-
age-thresholding algorithms (ISTAs) founded on model blocks as follows:

being L the Lipschitz constant. The iterative optimization governed by formula (60) 
can be handled as a convolutional procedure with kernel I − 1

L
W ∗ H ∗ HW and 

bias (1/L)W * H * y, followed by a nonlinear activation function A� . So, CNNs can 
be regarded as inherently suitable for solving the problem of reverse dispersion (Li 
et al., 2018; Wei & Chen, 2018).

Conventional iterative algorithms are successful and warrant the use of CNNs as 
a way to approach light via scattering media. Deep CNNs (DCCNs) have been dem-
onstrated powerful in solving inverted problems (Li et al., 2018; Lucas et al., 2018).

Therefore, DCNNs can model the H -1 reverse scattering process through super-
vised learning, disclosing the connection between the transferred speckles and the 
incident x optical phase patterns. The inputs of the DCNN are the measured inten-
sity distributions of the transferred speckles captured with a camera, and the outputs 
are their incident phase patterns modified by a spatial light modulator (SLM). Upon 
training, the DCNN will accurately map the speckle to the incident phase patterns, 
and therefore the DCNN can forecast the phase pattern needed to target the light via 
a particular dispersion media.

Using the DL approach is easier, as the relation of speckle to incident phase pat-
terns is acquired directly via training. However, its output is influenced strongly by 
the training samples. Accordingly, these samples are typical to represent the com-
plete scattering processes only when the training sample size is large enough, and 
thus, the DCNN can forecast the best phase pattern for the light focus following 
the training. However, the supervised learning method experiences the dilemma of 
achieving the global optimum because it is imprudent to incorporate every conceiv-
able phase pattern and speckle for training, and sample topics are hard to estimate as 
well. Despite this, the DCNN results can be considered a good initialisation for the 
GA. Concerning the GA, maximum global convergence is obtained under the con-
straint that the initial figure is close to the global optima (Bodenhofer, 2003).

The suggested GeneNNN contains two parts. The first part consists of gathering 
samples to train a DCNN. Following the training, an early focus mote with the phase 
pattern predicted by the DCNN can be obtained. The second part is the adoption of 

(65)argmin
p

y − HW2
p2
+ �p1

(66)pm+1 = A�

[
1

L
W ∗ H ∗ y +

(
I −

1

L
W ∗ H ∗ HW

)
pm

]
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the GA for optimising the focused process. We present two methods for building 
early phase patterns, each employing the DCNN results. The first method, called 
GeneNNv1, adopts the pattern foreseen by the DCNN for one of the starting pat-
terns, whereas other patterns are generated according to a uniform pseudo-random 
distribution (Conkey et  al., 2012). The DCNN pattern will undoubtedly have the 
strongest classification, thus having the highest chance of being selected for breed-
ing. With the other method, called GeneNNNv2, all starting patterns are built 
according to the DCNN patterns predicted by the DCNN but adding several extra 
phase patterns to this general basis, whereas all additional patterns are generated 
with a uniform pseudo-random distribution as well.

Adaptive Neuro‑Fuzzy Inference System‑Quantum Genetic Algorithm 
(ANFIS‑QGA)

For this method, the likelihood amplitudes of every qubit are considered to be two 
genes, each chromosome comprises two gene strings, and every gene string stands 
for an optimisation solution. The number of genes is fixed by the number of opti-
misation parameters. With each qubit of the optimal chromosome as a target, sin-
gles are actualised by quantum rotation gates and mutated by non-quantum gates 
so that population diversity is increased. The mutation procedure was performed by 
the non-quantum gates and the crossover and selection operations were performed 
by the quantum rotation gates. The varying tendency of the fitness function at the 
search point is transferred into the rotation angle calculation function design. If the 
change ratio of the fitness function at a certain search point is larger than that at 
other points, the rotation angle is decreased appropriately. With this method, each 
chromosome can be made to advance in the flatness of the search process to quicken 
the conversion and hurry in the sweep of the searching operation to prevent losing 
the globally optimal solution (Cao & Shang, 2010).

The key steps of the suggested model are outlined in Algorithm 1.
Algorithm 1: Suggested model
Step 1: Data Pre-processing (Phase one) Step 2: Generate random population 

Step 3: Calculate the value of Radii Step 4: Initialize Anfis model Step 5: Perform 
optimization algorithm using DCQGA (Phase two). Step 6: Finding the best accu-
racy and performance. Step 7: Stop.

The application of the suggested model comprises two major steps.
Phase one: Data Pre-processing: This stage consists of a procedure that trans-

forms the raw inputs and outputs into an acceptable form before the training process. 
It is mainly used to decrease the dimensionality of the input data and to improve the 
performance of the generalisation (Bishop, 1995).

The original data are assigned to [0,1] using min–max normalisation:

(67)X(i) =
x(i) − m

M − m
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for the time series data x, m = min{x}, M = max(x). Four types of time series, for 
example, the opening price, the closing price, the highest price, and the lowest price 
are separately standardised in the experiment.

Phase two: Optimization algorithm: The algorithm used in this step is inspired 
by the double-stranded quantum genetic algorithm (Cao & Shang, 2010) and is 
designed as below:

1. Produce the original angle to create the double strand from it.

being yi,n a random number between 0 and 2π, Pi,1 named cosine solution and 
Pi,2 called sine solution.

2.  Execute solution space transform

where i = 1: m, j = 1: n, m is the number of qubits, and n is the population size
3.  Compute fitness value being equivalent to

4.  Renovate the best composition.

5.  Execute quantum rotation gates to renovate corresponding qubits on the actual 
chromosome for every chromosome.

  Being Δ�0 the initial value of rotation angle,

  Therefore, the rotation angle Δθ can be fixed by rules such as the following: if 
A ≠ 0, then sgn (Δθ) = −sgn(A), else if A = 0, the direction of Δθ is arbitrary,

(68)Pi,1 =
(
cos

(
yi,1

)
, cos

(
yi,2

)
,… , cos

(
yi,n

))

(69)Pi,2 =
(
sin

(
yi,1

)
, sin

(
yi,2

)
,… , sin

(
yi,n

))

(70)X(i,j)c = 0.5∗
[
bi
(
1 + �i,j

)
+ ai

(
1 − �i,j

)]

(71)X(i,j)s = 0.5∗
[
bi
(
1 + �i,j

)
+ ai

(
1 − �i,j

)]

(72)
1

1 +MSE

(73)Δ�i,j = −sgn(A)Δ�0exp

⎛⎜⎜⎝
−

���∇f
�
Xi,j

���� − ∇fimin

∇fimax − ∇fimin

⎞⎟⎟⎠

(74)A =
||||
�0 �1
�0 �1

||||

(75)∇f
(
Xi,j

)
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f
(
Xi,p

)
− f

(
Xi,c

)
(
Xi,j

)p
−
(
Xi,j
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being Xi,p and Xi,c ith vector in solution space like the parent colony and child 
colony, and 

(
X1,j

)p , and 
(
X1,j

)c , denotes the jth variable of the vector Xi,p and 
Xi,c , correspondingly.

6.  Mutate qubits based on the likelihood of mutation (Pm = 0.1) equivalent to 1 over 
the population size (pop size = 10) and these figures are derived experimentally 
for acceptable speed and efficiency for the model.

The above-listed methods have been used to determine the optimal value for the 
optimisation parameter utilizing the double-string quantum genetic algorithm and to 
compute the fitness function by the ANFIS model employing subtractive clustering 
to cause initial FIS for the ANFIS system.

Convolutional Neural Networks‑Long Short‑Term Memory (CNN‑LSTM)

CNN is characteristic of attending to very evident properties within the sight line, 
therefore, it is extensively applied in engineering. LSTM features the characteristic 
to expand based on the time sequence, and it makes a large use in the time series. 
Following the characteristics of CNN and LSTM, a value forecasting model based 
on CNN-LSTM is constructed.

CNN was developed as a network model by Lecun et al. in 1998. CNN is a type 
of feed-forward neural network, which performs well in both image and natural lan-
guage processing (Kim & Kim, 2019). CNN could successfully be implemented in 
time-series forecasting. CNN local sensing and distribution of weights may reduce 
the parameter number to a large extent, thereby increasing the learning efficiency 
of the model (Qin et  al., 2018). CNN consists of two parts mainly: the convolu-
tion layer and the clustering layer. The convolution layer each holds a multiplicity 
of convolution kernels, and its formula of calculation is given in Eq. (46). Following 
the convolution operation of the convolution layer, features are removed from the 
data, however, the dimensions of the separated characteristics become high, there-
fore, to resolve this issue and decrease the training cost of the network, a clustering 
layer is inserted directly after the convolution layer for reducing the dimension of 
the characteristics:

(76)∇fimax = max

(||||||
f
(
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(
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being lt the output value after convolution, tnh represents the activation function, xt 
stands for the input vector, kt means the weight of the convolution kernel, and bt 
symbols the bias of the convolution kernel.

LSTM is aimed at overcoming the long-standing explosion and vanishing gradi-
ent problems in Recurrent Neural Networks (RNNs) (Ta et al., 2020). It has been 
largely employed in speech detection, sentiment analysis, and text processing since 
it has a unique memory and can make relatively precise predictions (Gupta & Jalal, 
2020). The LSTM contains three parts: the forgetting gate, the input gate, and the 
output gate.

The computational procedure of the LSTM follows:

1. The output last time value and the input current time value are entered into the 
forgetting gate, and the output forgetting gate value is determined after calcula-
tion, according to the equation below:

being the value range of ft (0,1), Wf  symbols the weight of the forget gate, and bf  
represents the bias of the forget gate, xt is the input current time value, and ht−1 
is the output last time value.

2.  The output last time value and the input current time value are entered in the 
input gate, and the output value and the status of the input gate candidate are 
derived after the calculation, illustrated by the below equations:

  Being the value range of it (0,1), Wi represents the weight of the input gate, bi 
symbols the bias of the input gate, Wc is the weight of the candidate input gate, 
and bc represents the bias of the candidate input gate.

3.  Update the current cell state as follows:

where the value range of Ct is (0,1).
4.  The output ht−1 and input xt are taken at time t as the input values of the output 

gate, and the output ot of the output, the gate is determined by:

being the value range of ot (0,1), Wo symbols of the weight of the output gate, 
and bo represents the bias of the output gate.

5.  The LSTM output value is achieved by computing the output of the output gate 
and the cell status, based on the formula below:

(79)ft = �
(
Wf .

[
ht−1, xt

]
+ bf

)

(80)it = �
(
Wi ⋅

[
ht−1, xt

]
+ bi

)

(81)C̃t = tanh
(
Wc ⋅

[
ht−1, xt

]
+ bc

)

(82)Ct = ft ∗ Ct−1 + it ∗ C̃t

(83)ot = �
(
Wo ⋅

[
ht−1, xt

]
+ bo

)
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The principal stages of the CNN-LSTM training and prediction procedure are 
listed below:

 1. Enter the necessary data for the training of the CNN-LSTM.
 2.  Since the gap in the input data is large, for better training of the model, the 

z-score standardisation approach to standardise the input data is assumed, illus-
trated by the formulas below:

   being yi the standardized value, xi represents the input data, x symbols the 
average of the input data, and s is the standard deviation of the input data.

 3.  Initiate the weighting of each layer of the CNN-LSTM and biases.
 4.  Input data passes successively via the convolution layer and the clustering 

layer in the CNN layer, the input data is feature extracted and the output value 
is acquired.

 5.  The CNN layer output data is computed via the LSTM layer, and the output 
value is given.

 6.  LSTM layer output value is fed into the complete connection layer to obtain the 
output value.

 7.  The output value computed via the output layer is checked against the actual 
value of this dataset, resulting in the respective error.

 8.  The completion conditions are that a specified number of cycles are reached, 
that the weight is below a specified limit and that the forecast error rate is below 
a specified limit. If one of the end conditions is achieved, the training shall be 
fulfilled, the entire CNN-LSTM network shall be updated and go to step 10; if 
not, proceed to step 9.

 9.  Propagates the computed error in reverse, maintains the weight and bias of 
every layer, and proceeds to step 4 to further train the network.

 10.  Save the model trained for the forecast.
 11.  Enter input data needed for the forecast.
 12.  The input data are normalised by Eq. (40).
 13.  Input the calibrated data into the CNN-LSTM trained model, and subsequently 

obtain an output value for it.
 14.  The output value provided by the CNN-LSTM model is the normalised value, 

and the normalised value is subtracted from the original value. As given by for-
mula (41), where xi the restored normalised value, yi is the CNN-LSTM output 
value, s is the standard deviation of the input data, and x is the mean value of 
the input data.

 15.  Issue the results restored for completing the prediction procedure.

(84)ht = ot ∗ tanh
(
Ct

)

(85)
yi =

xi − x

s

(86)xi = yi ∗ s + x
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Gated Recurrent Unit‑ Convolutional Neural Networks (GRU‑CNN)

RNN is a type of artificial neural network suitable for processing and analysing 
temporal data sequences, in contrast to classical neural networks, which rely on 
the weighting connection between the layers. The RNN implements the hidden 
layers to retain the information of the prior time, and the output is affected by the 
present states and the memories of the prior time. The structure of the unrolled 
RNN is presented as follows:

being at the output of one single hidden layer at time t, and �t
aa

 , �t
ax

 , and �t
ay

 are the 
hidden layers’ weight matrixes, the input weight matrixes, and the output weight 
matrixes, respectively. ba and by symbol the bias vectors of one single hidden 
layer and the output, respectively, and g1 and g2 represent the nonlinear activation 
function.

The RNN works properly if the output is near its related inputs; nevertheless, 
with a long-time-interval and a great number of weights, the input shall not have 
much effect on the output owing to the problem of disappearing gradient. To 
resolve the gradient vanishing problem and the simple structure of the RNN hid-
den layer, we proposed a particular kind of RNN called GRU.

The GRU consists of a variation of the LSTM with a closed RNN structure, 
and in comparison, to the LSTM, there are two gates (update gate and reset gate) 
in the GRU and three gates (forget gate, entry gate, and exit gate) in the LSTM 
(Alaminos et al., 2022a; Gao et al., 2019).

The GRU equations are:

being �u , �r , and �c the training weight matrix of the update gate, the reset gate, and 
the candidate activation c̃t , respectively and bu , br , and bc represent the bias vectors.

The Establishment of CNN Module

CNN is often employed in visual image and video recognition, and text categori-
sation. To keep the spatial information of the data registered by sensors and smart 
appliances in the power system, the spatio-temporal matrix was suggested. Its 
data are based on the sensors’ location and time sequence. The spatio-temporal 
matrix appears like this:

(87)
at = g1

(
𝜔aaa

t−1 + 𝜔axx
t−1 + ba

)

ŷt = g2
(
𝜔aya

t + by
)

(88)

Γu = 𝜎
�
𝜔u

�
c⟨t−1⟩, x⟨t⟩

�
+ bu

�
,

Γr = 𝜎
�
𝜔r

�
c⟨t−1⟩, x⟨t⟩

�
+ br

�
,

c̃⟨t⟩ = tanh
�
𝜔c

�
Γr ∗ c⟨t−1⟩, x⟨t⟩

�
+ bc

�
,

c⟨t⟩ =
�
1 − Γu

�
∗ c⟨t−1⟩ + Γu ∗ c̃⟨t⟩,



2321High‑Frequency Trading in Bond Returns: A Comparison Across…

being k the k th smart sensor, n is the n th time sequence, and Xk(n) symbols of 
the data recorded by the k th a smart sensor at n time. For extracting the charging 
characteristic from the spatio-temporal matrix, CNN was utilised for processing the 
spatio-temporal matrix.

First, numerous two-dimensional space–time matrices are piled into blocks of 
three-dimensional matrices, followed by applying these blocks with a convolution 
operation. The convolution operation aims to obtain a strongly abstract feature, then 
after the convolution operation, the results of the convolution operation are applied 
to the grouping operation. The pooling operation makes no change to the entry 
matrix depth, though it may decrease the size of the matrices as well as the number 
of nodes so that the parameters in the complete neural networks are reduced. Fol-
lowing the repeated convolution and pooling operations, the highly abstract feature 
was extracted and smoothed to a one-dimensional vector, hence it can be linked to 
the whole layer connected. Next, the weights and bias parameters within the glob-
ally connected layer can be computed iteratively. Lastly, the forecasting outcomes 
are provided by the output of the activation function.

The GRU‑CNN Hybrid Neural Networks

Our proposed GRU-CNN hybrid neural networks framework is composed of a 
GRU module and a CNN module. Inputs are the time sequence data information 
and spatio-temporal matrices recorded from the power system; outputs represent 
the forecasting of the future load value. As for the CNN module, it is good for 
processing two-dimensional data, such as spatio-temporal matrices and images. 
CNN module employs local connection and weight sharing to extract local char-
acteristics of the data directly from the spatio-temporal matrices and get an 
efficient presentation using the convolution layer and the clustering layer. CNN 
module structure contains two convolution layers and one flattening operation, 
with each convolution layer containing one convolution operation and one clus-
tering operation. Following the second clustering operation, high-dimensional 
data is smoothed into one-dimensional data, and the outputs of the CNN module 
become linked to the connected layer. Moreover, the purpose of the GRU mod-
ule is to catch the long-term dependency, and the GRU module could gather 
helpful information in the historical data over a long period via the memory cell, 
while the useless data will be ignored by the oblivion gate. GRU module inputs 
are the temporal sequence data; the GRU module holds plenty of closed recur-
rent units, and the outputs of all these closed recurrent units are linked with the 
connected layer. At last, the load forecasting outcomes may be achieved with the 
average value of all the neurons in the gated layers.

(89)x =

⎡
⎢⎢⎣

X1(1) ⋯ Xn(n)

⋮ ⋱ ⋮

Xk(1) ⋯ Xk(n)

⎤
⎥⎥⎦
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Quantum Recurrent Neural Network (QRNN)

A quantum system on n qubits exists in the n-fold Hilbert space of tensor prod-
uct H =

(
ℂ2

)⊗d with resulting dimension 2d . A quantum state represents a unit 
vector �  ∈ H , commonly described in quantum computing in bra-ket nota-
tion ��⟩ ∈ H |; its conjugate transpose with ⟨�� = ��⟩† ; then the inner product 
⟨���⟩ = ‖�‖2

2
 means the square of the 2-norm of � ⋅

�
�⟩⟨�� then denominates 

the outer product, yielding a tensor of rank 2. The computational ground condi-
tions correspond to |0 = (1, 0), �1⟩ = (0, 1), and compound ground states are for 
example set by �01⟩ = �0⟩⊗ �1 = (0, 1, 0, 0).

Thus a quantum gate becomes a unitary operation � on H ; where the opera-
tion nontrivially operates on a subset � ⊆ [n] of qubits, then ����

(
2|�|

)
 ; to oper-

ate on H we expand � to operate as identity on the remainder of the space, i.e. 
�� ⊗ 1[n]⧵� . This extension is usually ignored, and indicates if the gate oper-
ates in a quantum circuit: the first gate R(θ) represents a unitary of a qubit that 
operates on the second qubit from below, and which depends on the parameter 
θ. The dotted line extending from the gate designates a "controlled" operation, 
if the control, for example, acts only on a single qubit denominates the single 
block-diagonal unitary map �0⟩⟨0�⊗ 1 + �1⟩⟨1�⊗ℝ(𝜃) = 1⊕ℝ(𝜃) it stands for 
“if the control qubit is in state |1 apply ℝ(�) “. The gate sequences are computed 
as matrix products, and the circuits.

The projective measures of a single qubit are provided by a hermitian 2 × 2 matrix 
P, such as M �1⟩⟨1�= diag(0, 1); the complementary outcome is then M⊥ = 1 − M. 
They are measured by metres in the circuit. Considering a quantum state ��⟩ , the 
post-measurement state is M��⟩∕p /p with probability p = ‖M��‖2 . This is also the 
post-selection likelihood to ensure a measured result M; this likelihood may be 
extended close to 1 using ∼ 

√
1∕p rounds of amplitude amplification (Alaminos 

et al., 2022b; Grover, 2005).
The quantum recurrent neural networks within this proposal are all runnable 

on classical hardware in which the “hidden state” on n qubits is expressed by 
an array of size 2n, and the set of parameters is provided by the collection of all 
parameterized quantum gates in the process, leading to matrices with parameter-
ised inputs. To run a QRNN conventionally, we employ a series of matrix–vec-
tor multiplications for the gates, and matrix–vector multiplications with subse-
quent renormalisation of the status for norm 1 for the measure and post-select 
transactions. Running on quantum hardware, matrix multiplications are "free", 
and the hidden state in n qubits, which classically requires exponential memory, 
may be contained in ∼ n qubits only.

Parametrized Quantum Gates

Quantum VQE circuits are very compact, meaning that they alternate single-qubit 
parameterised gates with entangled gates, such as controlled-no transactions. Hence, 
this offers the advantage of packing many parameters in a rather dense circuit. 
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Moreover, although these circuits are known to form a universal family, their high 
entanglement gate density, as well as the missing correlation between the param-
eters, results in very over-parameterised models which are difficult to train in sorting 
tasks for inputs of more than a few bits (Benedetti et al., 2019).

We build a highly structured parameterised quantum circuit in which a few 
parameters are reused again and again. It is mainly based on a new type of quantum 
neuron that spins its target lane following a non-linear activation function attached 
to the polynomials of its binary inputs. The cell consists of a composite of an input 
stage that, at every step, puts the actual input into the state of the cell. Multiple work 
steps follow which calculate the input and the cell state, plus a concluding output 
step that generates a density of probability on possible forecasts. The application 
of these QRNN cells in an iterative fashion over the input sequence in a recurrent 
model is very similar to traditional RNNs.

In training we implement quantum amplitude amplification (Guerreschi, 2019) on 
the output vias, to make sure we measure the right token of the training data at all 
steps. Although the measures are usually non-unitary operations, using the ampli-
tude amplification step ensures that the measures while training remains as close to 
unitary as we want them to be.

A Higher‑Degree Quantum Neuron

The power of classical neural networks arises from the implementation of non-linear 
activation factors to the related converse transformations in the layers of the net-
work. Instead, because of the nature of quantum mechanics, any quantum circuit 
would inevitably be a linear operation.

Nevertheless, nonlinear behaviour does not happen anywhere in quantum 
mechanics: a simple example is a single-qubit gate R(θ) = exp(iYθ) for the Pauli 
matrix Y (Nielsen & Chuang, 2001), acting as a

namely like a rotation within the two-dimensional space covered by the computa-
tional basis vectors of a single qubit, {|0, |1} . Meanwhile, the rotation matrix itself 
remains linear, we observe that the state amplitudes — cos � and sin �—depend non-
linearly on the angle θ. Lifting the rotation to a checked operation cR(i, �i ) condi-
tional on the ith qubit of a state |x for x ∈ {0, 1}n , we obtain the map

Hence, this corresponds to a rotation by an infinite transformation of the basis 
vector �x⟩ with x =

{
x1,…,xn

}
∈ {0, 1}n , by a parameter vector � =

(
�0, �1,… , �n

)
. 

The process is linearly expanded to the base and target state superpositions, and 
owing to the form of R(θ) all changes in amplitude just introduced are true-valued.

(90)R(�) = exp

(
i�

(
0 −i

i 0

))
=

(
cos � sin �

− sin � cos �

)

(91)

R
�
�0
�
cR

�
1, �1

�
… cR

�
n, �n

��x⟩�0 = �x⟩(cos(�)�0⟩ + sin(�)�1⟩)

for � = �0 +

n�
i=1

�ixi
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This transformation of the cosine of the amplitudes through a checked transac-
tion is already non-linear; however, a sine function is not especially sharp, lacking 
also a sufficient "flat" region where the activation stays constant, as is the case of a 
linear rectifier unit. Cao et al. (2017) suggested an approach to implement a linear 
map into a set of qubits that produces amplitudes that exhibit these steeper slopes 
and plateaus, in a manner very similar to a sigmoidal activation function. The acti-
vation has a parameter of order ord ≥ 1 governing the tilt, the circuit resulting in 
the activation amplitude. This quantum neuron in pure states is rotated by an angle 
f (�) = arctan

(
tan(�)2ord

)
 , where ord ≥ 1 is the order of the neuron. Assuming an 

affine transformation η for the input bitstring xi as shown in formula (93), this rota-
tion is translated into the amplitudes.

which arises by standardising the transform �0⟩ ↦→ cos (�)2
ord �0⟩ + sin (�)2

ord �1⟩ as 
can be seen clearly. For ord = 1, the circuit is shown on the left; for ord = 2 on the 
right. Superior orders are recursively buildable.

A so-called repetition-to-success (RUS) circuit is this quantum neuron, indicat-
ing that the measured ring signals if the circuit has been performed correctly. If the 
result is zero, the neuron has been committed. A correction circuit returns the state 
to its original configuration when the result is one. Beginning with a pure state (e.g. 
�x⟩ for x ∈ {0, 1}2 and recurring every time a 1 is measured, an arbitrarily high prob-
ability of success is reached.

Alas, for control in superposition, such as a state �x⟩ +�y∕
√
2 , this does not work for 

x ≠ y two bit-strings of length n. The amplitudes within the overlap, in this case, will 
rely on the success story. A technique called fixed-point oblique amplitude amplifi-
cation (Tacchino et al., 2019), essentially post-selects in the measurement of result 0 
while preserving the unitarity of the operation with arbitrary precision. There is the 
additional cost of multiple rounds of these quantum circuits, whose number will depend 
on the chance of a zero being measured in the first place. This depends obviously on the 
parameters of the neuron, θ, and the input state is given. We stress that by selecting suf-
ficiently large individual post-selection probabilities, there is no exponential reduction 
in the overall probability of success across the number of quantum neurons employed.

We extend this quantum neuron in this paper with an increase in the number of 
check terms. More precisely, η as provided in formula (89) is an affine transform of 
the boolean vector x =

{
x1,…,xn

}
 for xi ∈ {0, 1}. When we introduce multi-control 

gates—having their own parameterised rotation, labelled by a multi-index θ_I that 
varies depending on the qubits i ∈ I on which the gate conditions—we get the option 
of incorporating higher-degree polynomials, i.e.

(92)cos (f (�)) =
1√

1 + tan (�)2×2
ord

and sin (f (�)) =
tan (�)2

ord

√
1 + tan (�)2×2

ord
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being d the degree of the neuron; for d = 2 and n = 4 an example of a checked rota-
tion that increase to this higher-order transformation �′ on the bit string xi. So, higher 
degree boolean logic operations could be directly encrypted inside a unique condi-
tional rotation: an AND operation between two bits x1 and x2 is simply x1x2.

QRNN Cell and Sequence to Sequence Model

The identified quantum neuron becomes the central component in building our quan-
tum recurrent neural network cell. As for conventional RNNs and LSTMs, we pro-
vide such a cell to be applied successively to the input submitted to the network. In 
particular, the cell consists of input and output lanes that are restored following each 
step, plus a cell-internal state that is transmitted into the next iteration of the network.

To implement the constructed QRNN cell, we require an iterative application of 
the QRNN cell to a sequence of input words in1,in2, … , inL.

The outgoing lanes outi label a discrete distribution measuring pi over the class 
labels. The distribution could be entered into an assigned loss function, like cross-
entropy or CTC loss.

Appendix 2: Results for the ‘All Trades’ Scenario

This supplement reports the results of the main forecasting techniques implemented 
to "all trades" rather than just those produced in the continuous trading situation.

See Tables 10, 11, 12, 13, 14, 15.

(93)
𝜂� = 𝜃0 +

n∑
i=1

𝜃ixi +

n∑
i=1

n∑
j=1

𝜃ijxixj +⋯ =
∑

I ⊆ [n]

|I| ≤ d

𝜃I

∏
i∈I

xi



2326 D. Alaminos et al.

Ta
bl

e 
10

  
Si

gn
 p

re
di

ct
io

n 
ra

tio
 (1

0 
m

in
) f

or
 a

ll 
tra

de
s

Q
fu

zz
y

A
da

B
oo

st-
G

A
SV

M
-G

A
D

LN
N

-G
A

Q
G

A
A

N
FI

S-
Q

G
A

D
RC

N
N

C
N

N
-L

ST
M

G
RU

-C
N

N
Q

R
N

N

G
er

m
an

y
0.

81
0

0.
84

2
0.

86
6

0.
90

7
0.

89
3

0.
87

2
0.

90
3

0.
86

0
0.

89
6

0.
88

5
U

ni
te

d 
St

at
es

0.
80

4
0.

84
0

0.
86

0
0.

90
3

0.
88

7
0.

86
6

0.
89

6
0.

85
9

0.
88

8
0.

88
0

Ita
ly

0.
80

0
0.

83
9

0.
85

4
0.

89
7

0.
87

9
0.

86
2

0.
88

9
0.

85
4

0.
88

4
0.

88
0

Sp
ai

n
0.

79
4

0.
83

7
0.

85
1

0.
88

9
0.

87
3

0.
85

8
0.

88
7

0.
84

8
0.

88
0

0.
87

6
Ja

pa
n

0.
79

1
0.

83
6

0.
84

6
0.

88
6

0.
86

8
0.

85
0

0.
88

3
0.

84
1

0.
87

9
0.

86
9

Tu
rk

ey
0.

78
6

0.
83

2
0.

83
9

0.
88

0
0.

86
3

0.
84

4
0.

87
9

0.
83

9
0.

87
8

0.
86

4
M

ex
ic

o
0.

78
3

0.
82

9
0.

83
9

0.
87

5
0.

85
9

0.
83

9
0.

87
3

0.
83

6
0.

87
0

0.
86

0
In

do
ne

si
a

0.
77

5
0.

82
7

0.
83

5
0.

87
0

0.
85

1
0.

83
8

0.
86

9
0.

83
6

0.
86

4
0.

85
5

N
ig

er
ia

0.
77

1
0.

82
6

0.
82

9
0.

87
0

0.
84

9
0.

83
7

0.
86

6
0.

83
1

0.
86

2
0.

85
0

Po
la

nd
0.

76
6

0.
81

8
0.

82
3

0.
86

3
0.

84
5

0.
83

0
0.

86
3

0.
82

7
0.

85
3

0.
84

8
W

al
m

ar
t

0.
76

4
0.

81
8

0.
81

7
0.

86
2

0.
83

8
0.

82
6

0.
86

3
0.

82
7

0.
84

6
0.

84
1

Jo
hn

so
n 

&
 Jo

hn
so

n
0.

76
3

0.
80

3
0.

80
8

0.
86

1
0.

82
3

0.
82

4
0.

84
6

0.
82

1
0.

84
4

0.
83

0
Ve

riz
on

0.
77

1
0.

80
8

0.
81

5
0.

86
3

0.
83

2
0.

82
4

0.
85

1
0.

83
1

0.
85

7
0.

84
5

U
ni

le
ve

r P
LC

0.
78

6
0.

82
5

0.
83

1
0.

86
3

0.
84

6
0.

84
1

0.
86

6
0.

84
5

0.
87

3
0.

84
9

R
io

 T
in

to
 P

LC
0.

79
3

0.
83

6
0.

84
1

0.
87

1
0.

85
2

0.
85

3
0.

86
7

0.
84

6
0.

88
8

0.
85

1
A

ir 
Li

qu
id

e
0.

79
6

0.
84

2
0.

84
8

0.
87

6
0.

85
8

0.
86

6
0.

88
3

0.
84

7
0.

89
8

0.
86

0
A

m
be

v
0.

80
4

0.
85

9
0.

85
6

0.
88

5
0.

86
5

0.
87

3
0.

89
0

0.
86

1
0.

90
1

0.
84

7
C

em
ex

0.
80

2
0.

84
8

0.
83

3
0.

86
3

0.
85

0
0.

85
3

0.
87

8
0.

85
2

0.
89

0
0.

84
4

Tu
rk

is
h 

A
irl

in
es

0.
78

3
0.

83
8

0.
82

5
0.

85
2

0.
83

0
0.

83
9

0.
85

5
0.

84
9

0.
87

5
0.

84
0

K
C

E 
El

ec
tro

ni
cs

0.
76

8
0.

82
0

0.
80

6
0.

85
0

0.
80

6
0.

82
8

0.
84

0
0.

84
2

0.
86

8
0.

82
3

Te
le

ko
m

un
ik

ac
ja

 P
ol

sk
a

0.
76

1
0.

79
3

0.
80

2
0.

83
9

0.
78

1
0.

81
7

0.
83

6
0.

82
3

0.
85

0
0.

80
8

C
ae

sa
rs

 R
es

or
t C

ol
le

ct
io

n 
LL

C
0.

76
0

0.
79

0
0.

79
5

0.
83

5
0.

75
5

0.
81

2
0.

82
6

0.
82

2
0.

82
1

0.
80

4
A

su
rio

n 
LL

C
0.

76
0

0.
78

5
0.

77
1

0.
80

9
0.

73
5

0.
78

9
0.

81
3

0.
81

7
0.

81
2

0.
79

3
In

te
ls

at
 Ja

ck
so

n 
H

ol
di

ng
s

0.
74

6
0.

76
4

0.
76

9
0.

80
1

0.
71

8
0.

76
9

0.
80

0
0.

80
1

0.
80

4
0.

79
4



2327High‑Frequency Trading in Bond Returns: A Comparison Across…

Ta
bl

e 
10

  (
co

nt
in

ue
d)

Q
fu

zz
y

A
da

B
oo

st-
G

A
SV

M
-G

A
D

LN
N

-G
A

Q
G

A
A

N
FI

S-
Q

G
A

D
RC

N
N

C
N

N
-L

ST
M

G
RU

-C
N

N
Q

R
N

N

A
th

en
ah

ea
lth

 G
ro

up
0.

73
0

0.
75

6
0.

74
6

0.
79

4
0.

69
6

0.
76

7
0.

78
1

0.
78

2
0.

78
8

0.
76

9
G

re
at

 o
ut

do
or

s G
ro

up
 ll

c
0.

70
4

0.
74

4
0.

73
7

0.
77

4
0.

68
1

0.
75

2
0.

75
3

0.
76

2
0.

78
5

0.
76

7
Pe

tró
le

os
 M

ex
ic

an
os

0.
68

7
0.

73
4

0.
72

9
0.

76
5

0.
65

9
0.

73
1

0.
74

1
0.

73
4

0.
77

6
0.

75
2

Pe
tro

br
as

0.
68

0
0.

72
8

0.
71

7
0.

76
0

0.
63

5
0.

72
9

0.
73

5
0.

72
8

0.
75

8
0.

74
8

Sa
nd

s C
hi

na
 L

td
0.

67
4

0.
71

5
0.

69
5

0.
73

8
0.

61
4

0.
72

2
0.

71
2

0.
70

0
0.

73
5

0.
74

6
In

do
ne

si
a 

A
sa

ha
n 

A
lu

m
in

i
0.

65
6

0.
69

3
0.

69
4

0.
71

4
0.

59
7

0.
71

8
0.

69
0

0.
67

8
0.

72
6

0.
72

3
Lo

ng
fo

r P
ro

pe
rti

es
0.

63
5

0.
68

3
0.

69
3

0.
70

9
0.

59
0

0.
70

8
0.

68
0

0.
66

3
0.

72
0

0.
72

0



2328 D. Alaminos et al.

Ta
bl

e 
11

  
Id

ea
l p

ro
fit

 ra
tio

 (1
0 

m
in

) f
or

 a
ll 

tra
de

s

Q
fu

zz
y

A
da

B
oo

st-
G

A
SV

M
-G

A
D

LN
N

-G
A

Q
G

A
A

N
FI

S-
Q

G
A

D
RC

N
N

C
N

N
-L

ST
M

G
RU

-C
N

N
Q

R
N

N

G
er

m
an

y
0.

00
91

0.
01

06
0.

01
32

0.
01

39
0.

01
52

0.
01

18
0.

00
86

0.
00

97
0.

01
28

0.
01

70
U

ni
te

d 
St

at
es

0.
00

91
0.

01
21

0.
01

34
0.

01
53

0.
01

57
0.

01
33

0.
01

02
0.

01
00

0.
01

45
0.

01
87

Ita
ly

0.
00

99
0.

01
23

0.
01

52
0.

01
62

0.
01

64
0.

01
49

0.
01

16
0.

01
16

0.
01

59
0.

01
96

Sp
ai

n
0.

01
09

0.
01

29
0.

01
59

0.
01

64
0.

01
84

0.
01

66
0.

01
36

0.
01

32
0.

01
68

0.
02

07
Ja

pa
n

0.
01

16
0.

01
44

0.
01

65
0.

01
66

0.
01

86
0.

01
63

0.
01

43
0.

01
33

0.
01

66
0.

02
13

Tu
rk

ey
0.

01
33

0.
01

51
0.

01
85

0.
01

78
0.

02
08

0.
01

75
0.

01
50

0.
01

46
0.

01
89

0.
02

20
M

ex
ic

o
0.

01
29

0.
01

37
0.

01
83

0.
01

76
0.

02
01

0.
01

63
0.

01
41

0.
01

41
0.

01
74

0.
02

02
In

do
ne

si
a

0.
01

29
0.

01
26

0.
01

76
0.

01
76

0.
01

91
0.

01
55

0.
01

32
0.

01
39

0.
01

58
0.

01
90

N
ig

er
ia

0.
01

15
0.

01
18

0.
01

75
0.

01
56

0.
01

74
0.

01
53

0.
01

20
0.

01
34

0.
01

57
0.

01
82

Po
la

nd
0.

01
09

0.
01

13
0.

01
69

0.
01

49
0.

01
56

0.
01

35
0.

01
18

0.
01

28
0.

01
49

0.
01

72
W

al
m

ar
t

0.
00

98
0.

00
93

0.
01

52
0.

01
34

0.
01

50
0.

01
22

0.
00

94
0.

01
21

0.
01

35
0.

01
57

Jo
hn

so
n 

&
 Jo

hn
so

n
0.

00
88

0.
00

78
0.

01
45

0.
01

15
0.

01
41

0.
01

17
0.

00
86

0.
01

02
0.

01
26

0.
01

53
Ve

riz
on

0.
00

82
0.

00
60

0.
01

34
0.

01
00

0.
01

30
0.

01
10

0.
00

75
0.

00
86

0.
01

10
0.

01
47

U
ni

le
ve

r P
LC

0.
00

80
0.

00
56

0.
01

30
0.

00
84

0.
01

12
0.

01
00

0.
00

53
0.

00
83

0.
01

08
0.

01
46

R
io

 T
in

to
 P

LC
0.

00
80

0.
00

43
0.

01
29

0.
00

78
0.

00
96

0.
00

91
0.

00
40

0.
00

81
0.

01
00

0.
01

37
A

ir 
Li

qu
id

e
0.

01
00

0.
00

45
0.

01
47

0.
00

97
0.

01
01

0.
00

99
0.

00
48

0.
00

96
0.

01
07

0.
01

41
A

m
be

v
0.

01
19

0.
00

63
0.

01
62

0.
01

07
0.

01
12

0.
01

11
0.

00
50

0.
01

12
0.

01
14

0.
01

47
C

em
ex

0.
01

31
0.

00
66

0.
01

74
0.

01
16

0.
01

22
0.

01
19

0.
00

53
0.

01
27

0.
01

30
0.

01
57

Tu
rk

is
h 

A
irl

in
es

0.
01

36
0.

00
81

0.
01

82
0.

01
34

0.
01

26
0.

01
25

0.
00

77
0.

01
41

0.
01

42
0.

01
75

K
C

E 
El

ec
tro

ni
cs

0.
01

53
0.

00
84

0.
01

99
0.

01
47

0.
01

46
0.

01
40

0.
00

82
0.

01
48

0.
01

45
0.

01
82

Te
le

ko
m

un
ik

ac
ja

 P
ol

sk
a

0.
01

64
0.

00
97

0.
02

01
0.

01
58

0.
01

53
0.

01
60

0.
01

01
0.

01
62

0.
01

54
0.

02
01

C
ae

sa
rs

 R
es

or
t C

ol
le

ct
io

n 
LL

C
0.

01
69

0.
00

98
0.

02
04

0.
01

61
0.

01
54

0.
01

63
0.

01
24

0.
01

66
0.

01
69

0.
02

16
A

su
rio

n 
LL

C
0.

01
63

0.
00

80
0.

02
03

0.
01

60
0.

01
51

0.
01

61
0.

01
10

0.
01

58
0.

01
62

0.
02

10
In

te
ls

at
 Ja

ck
so

n 
H

ol
di

ng
s

0.
01

82
0.

00
75

0.
01

96
0.

01
60

0.
01

34
0.

01
52

0.
01

10
0.

01
50

0.
01

55
0.

01
94



2329High‑Frequency Trading in Bond Returns: A Comparison Across…

Ta
bl

e 
11

  (
co

nt
in

ue
d)

Q
fu

zz
y

A
da

B
oo

st-
G

A
SV

M
-G

A
D

LN
N

-G
A

Q
G

A
A

N
FI

S-
Q

G
A

D
RC

N
N

C
N

N
-L

ST
M

G
RU

-C
N

N
Q

R
N

N

A
th

en
ah

ea
lth

 G
ro

up
0.

01
72

0.
00

70
0.

01
83

0.
01

47
0.

01
33

0.
01

35
0.

01
06

0.
01

40
0.

01
48

0.
01

76
G

re
at

 O
ut

do
or

s G
ro

up
 ll

c
0.

01
57

0.
00

56
0.

01
75

0.
01

36
0.

01
32

0.
01

27
0.

01
05

0.
01

25
0.

01
39

0.
01

65
Pe

tró
le

os
 M

ex
ic

an
os

0.
01

45
0.

00
37

0.
01

59
0.

01
33

0.
01

26
0.

01
19

0.
00

91
0.

01
12

0.
01

37
0.

01
49

Pe
tro

br
as

0.
01

27
0.

00
31

0.
01

48
0.

01
22

0.
01

10
0.

01
03

0.
00

91
0.

01
01

0.
01

34
0.

01
45

Sa
nd

s C
hi

na
 L

td
0.

01
08

0.
00

26
0.

01
45

0.
01

14
0.

01
04

0.
01

01
0.

00
75

0.
00

85
0.

01
32

0.
01

43
In

do
ne

si
a 

A
sa

ha
n 

A
lu

m
in

i
0.

01
02

0.
00

13
0.

01
40

0.
00

94
0.

00
96

0.
00

87
0.

00
52

0.
00

78
0.

01
23

0.
01

31
Lo

ng
fo

r P
ro

pe
rti

es
0.

00
94

0.
00

10
0.

01
38

0.
00

81
0.

00
79

0.
00

77
0.

00
50

0.
00

59
0.

01
13

0.
01

18



2330 D. Alaminos et al.

Ta
bl

e 
12

  
Si

gn
 p

re
di

ct
io

n 
ra

tio
 (3

0 
m

in
) f

or
 a

ll 
tra

de
s

Q
fu

zz
y

A
da

B
oo

st-
G

A
SV

M
-G

A
D

LN
N

-G
A

Q
G

A
A

N
FI

S-
Q

G
A

D
RC

N
N

C
N

N
-L

ST
M

G
RU

-C
N

N
Q

R
N

N

G
er

m
an

y
0.

79
3

0.
82

4
0.

84
8

0.
88

8
0.

87
4

0.
85

3
0.

88
4

0.
84

2
0.

87
7

0.
89

2
U

ni
te

d 
St

at
es

0.
78

7
0.

82
2

0.
84

2
0.

88
4

0.
86

8
0.

84
7

0.
87

7
0.

84
1

0.
86

9
0.

88
7

Ita
ly

0.
78

3
0.

82
1

0.
83

6
0.

87
8

0.
86

0
0.

84
3

0.
87

1
0.

83
6

0.
86

5
0.

88
7

Sp
ai

n
0.

77
7

0.
82

0
0.

83
3

0.
87

1
0.

85
4

0.
84

0
0.

86
9

0.
83

1
0.

86
1

0.
88

3
Ja

pa
n

0.
77

4
0.

81
8

0.
82

8
0.

86
7

0.
84

9
0.

83
2

0.
86

4
0.

82
3

0.
86

1
0.

87
6

Tu
rk

ey
0.

76
9

0.
81

4
0.

82
2

0.
86

1
0.

84
5

0.
82

6
0.

86
1

0.
82

1
0.

85
9

0.
87

1
M

ex
ic

o
0.

76
7

0.
81

2
0.

82
1

0.
85

6
0.

84
1

0.
82

1
0.

85
5

0.
81

9
0.

85
2

0.
86

7
In

do
ne

si
a

0.
75

9
0.

80
9

0.
81

7
0.

85
2

0.
83

3
0.

82
0

0.
85

0
0.

81
8

0.
84

5
0.

86
2

N
ig

er
ia

0.
75

5
0.

80
8

0.
81

2
0.

85
1

0.
83

1
0.

82
0

0.
84

7
0.

81
4

0.
84

3
0.

85
6

Po
la

nd
0.

75
0

0.
80

1
0.

80
6

0.
84

5
0.

82
8

0.
81

3
0.

84
5

0.
81

0
0.

83
5

0.
85

4
W

al
m

ar
t

0.
74

8
0.

80
1

0.
79

9
0.

84
4

0.
82

0
0.

80
9

0.
84

4
0.

80
9

0.
82

8
0.

84
8

Jo
hn

so
n 

&
 Jo

hn
so

n
0.

74
7

0.
78

6
0.

79
1

0.
84

3
0.

80
5

0.
80

6
0.

82
8

0.
80

3
0.

82
7

0.
83

6
Ve

riz
on

0.
75

5
0.

79
1

0.
79

8
0.

84
5

0.
81

5
0.

80
7

0.
83

3
0.

81
4

0.
83

9
0.

85
2

U
ni

le
ve

r P
LC

0.
77

0
0.

80
7

0.
81

3
0.

84
5

0.
82

8
0.

82
3

0.
84

8
0.

82
7

0.
85

4
0.

85
6

R
io

 T
in

to
 P

LC
0.

77
6

0.
81

8
0.

82
3

0.
85

3
0.

83
4

0.
83

5
0.

84
8

0.
82

8
0.

86
9

0.
85

8
A

ir 
Li

qu
id

e
0.

77
9

0.
82

4
0.

83
0

0.
85

8
0.

83
9

0.
84

8
0.

86
5

0.
82

9
0.

87
9

0.
86

7
A

m
be

v
0.

78
7

0.
84

1
0.

83
8

0.
86

7
0.

84
7

0.
85

5
0.

87
1

0.
84

2
0.

88
2

0.
85

3
C

em
ex

0.
78

5
0.

83
0

0.
81

5
0.

84
4

0.
83

2
0.

83
5

0.
86

0
0.

83
4

0.
87

1
0.

85
1

Tu
rk

is
h 

A
irl

in
es

0.
76

7
0.

82
1

0.
80

8
0.

83
4

0.
81

3
0.

82
1

0.
83

7
0.

83
1

0.
85

7
0.

84
6

K
C

E 
El

ec
tro

ni
cs

0.
75

2
0.

80
2

0.
78

9
0.

83
3

0.
78

9
0.

81
1

0.
82

2
0.

82
4

0.
84

9
0.

82
9

Te
le

ko
m

un
ik

ac
ja

 P
ol

sk
a

0.
74

5
0.

77
7

0.
78

5
0.

82
1

0.
76

4
0.

80
0

0.
81

8
0.

80
6

0.
83

2
0.

81
5

C
ae

sa
rs

 R
es

or
t C

ol
le

ct
io

n 
LL

C
0.

74
4

0.
77

3
0.

77
9

0.
81

7
0.

73
9

0.
79

5
0.

80
9

0.
80

5
0.

80
4

0.
81

0
A

su
rio

n 
LL

C
0.

74
4

0.
76

8
0.

75
5

0.
79

2
0.

71
9

0.
77

2
0.

79
6

0.
80

0
0.

79
5

0.
79

9
In

te
ls

at
 Ja

ck
so

n 
H

ol
di

ng
s

0.
73

0
0.

74
8

0.
75

3
0.

78
4

0.
70

3
0.

75
3

0.
78

3
0.

78
4

0.
78

8
0.

77
9



2331High‑Frequency Trading in Bond Returns: A Comparison Across…

Ta
bl

e 
12

  (
co

nt
in

ue
d)

Q
fu

zz
y

A
da

B
oo

st-
G

A
SV

M
-G

A
D

LN
N

-G
A

Q
G

A
A

N
FI

S-
Q

G
A

D
RC

N
N

C
N

N
-L

ST
M

G
RU

-C
N

N
Q

R
N

N

A
th

en
ah

ea
lth

 G
ro

up
0.

71
5

0.
74

0
0.

73
0

0.
77

7
0.

68
1

0.
75

1
0.

76
4

0.
76

6
0.

77
1

0.
77

9
G

re
at

 O
ut

do
or

s G
ro

up
 ll

c
0.

68
9

0.
72

8
0.

72
1

0.
75

7
0.

66
7

0.
73

6
0.

73
7

0.
74

6
0.

76
8

0.
77

7
Pe

tró
le

os
 M

ex
ic

an
os

0.
67

2
0.

71
9

0.
71

4
0.

74
9

0.
64

5
0.

71
6

0.
72

5
0.

71
8

0.
76

0
0.

76
2

Pe
tro

br
as

0.
66

6
0.

71
3

0.
70

2
0.

74
3

0.
62

2
0.

71
4

0.
71

9
0.

71
2

0.
74

2
0.

75
8

Sa
nd

s C
hi

na
 L

td
0.

66
0

0.
70

0
0.

68
0

0.
72

2
0.

60
1

0.
70

6
0.

69
7

0.
68

5
0.

72
0

0.
75

6
In

do
ne

si
a 

A
sa

ha
n 

A
lu

m
in

i
0.

64
2

0.
67

8
0.

67
9

0.
69

8
0.

58
4

0.
70

3
0.

67
5

0.
66

4
0.

71
1

0.
73

3
Lo

ng
fo

r P
ro

pe
rti

es
0.

62
2

0.
66

8
0.

67
8

0.
69

4
0.

57
8

0.
69

4
0.

66
5

0.
64

9
0.

70
5

0.
72

9



2332 D. Alaminos et al.

Ta
bl

e 
13

  
Id

ea
l p

ro
fit

 ra
tio

 (3
0 

m
in

) f
or

 a
ll 

tra
de

s

Q
fu

zz
y

A
da

B
oo

st-
G

A
SV

M
-G

A
D

LN
N

-G
A

Q
G

A
A

N
FI

S-
Q

G
A

D
RC

N
N

C
N

N
-S

V
M

G
RU

-C
N

N
Q

R
N

N

G
er

m
an

y
0.

00
70

0.
00

90
0.

00
92

0.
01

08
0.

01
10

0.
00

98
0.

00
86

0.
00

55
0.

00
99

0.
01

18
U

ni
te

d 
St

at
es

0.
00

88
0.

00
98

0.
01

01
0.

01
16

0.
01

14
0.

01
10

0.
00

94
0.

00
69

0.
01

10
0.

01
37

Ita
ly

0.
00

98
0.

01
14

0.
01

21
0.

01
22

0.
01

26
0.

01
14

0.
01

10
0.

00
73

0.
01

17
0.

01
57

Sp
ai

n
0.

01
00

0.
01

19
0.

01
27

0.
01

34
0.

01
39

0.
01

17
0.

01
15

0.
00

92
0.

01
25

0.
01

74
Ja

pa
n

0.
00

98
0.

01
28

0.
01

32
0.

01
38

0.
01

49
0.

01
22

0.
01

32
0.

01
09

0.
01

41
0.

01
74

Tu
rk

ey
0.

01
15

0.
01

41
0.

01
52

0.
01

60
0.

01
60

0.
01

35
0.

01
43

0.
01

30
0.

01
55

0.
01

89
M

ex
ic

o
0.

01
04

0.
01

25
0.

01
37

0.
01

53
0.

01
51

0.
01

21
0.

01
37

0.
01

18
0.

01
39

0.
01

86
In

do
ne

si
a

0.
00

92
0.

01
09

0.
01

36
0.

01
46

0.
01

51
0.

01
04

0.
01

20
0.

00
98

0.
01

38
0.

01
72

N
ig

er
ia

0.
00

81
0.

00
97

0.
01

29
0.

01
37

0.
01

48
0.

00
86

0.
01

20
0.

00
84

0.
01

30
0.

01
69

Po
la

nd
0.

00
74

0.
00

94
0.

01
23

0.
01

22
0.

01
44

0.
00

69
0.

01
11

0.
00

67
0.

01
24

0.
01

54
W

al
m

ar
t

0.
00

69
0.

00
84

0.
01

08
0.

01
14

0.
01

30
0.

00
61

0.
00

96
0.

00
59

0.
01

20
0.

01
36

Jo
hn

so
n 

&
 Jo

hn
so

n
0.

00
51

0.
00

71
0.

01
06

0.
01

01
0.

01
24

0.
00

53
0.

00
78

0.
00

56
0.

01
11

0.
01

33
Ve

riz
on

0.
00

71
0.

00
86

0.
01

11
0.

01
18

0.
01

34
0.

00
63

0.
00

99
0.

00
61

0.
01

24
0.

01
40

U
ni

le
ve

r P
LC

0.
00

53
0.

00
74

0.
01

09
0.

01
04

0.
01

27
0.

00
54

0.
00

80
0.

00
57

0.
01

14
0.

01
37

R
io

 T
in

to
 P

LC
0.

00
52

0.
00

71
0.

00
98

0.
00

98
0.

01
22

0.
00

42
0.

00
61

0.
00

37
0.

00
99

0.
01

19
A

ir 
Li

qu
id

e
0.

00
52

0.
00

52
0.

00
79

0.
00

81
0.

01
16

0.
00

25
0.

00
57

0.
00

20
0.

00
89

0.
01

00
A

m
be

v
0.

00
48

0.
00

42
0.

00
76

0.
00

60
0.

01
01

0.
00

23
0.

00
41

0.
00

10
0.

00
69

0.
00

83
C

em
ex

0.
00

52
0.

00
46

0.
00

89
0.

00
79

0.
01

05
0.

00
31

0.
00

55
0.

00
18

0.
00

71
0.

00
97

Tu
rk

is
h 

A
irl

in
es

0.
00

56
0.

00
50

0.
01

03
0.

00
86

0.
01

09
0.

00
50

0.
00

70
0.

00
35

0.
00

90
0.

01
16

K
C

E 
El

ec
tro

ni
cs

0.
00

61
0.

00
55

0.
01

04
0.

00
98

0.
01

10
0.

00
56

0.
00

83
0.

00
37

0.
00

90
0.

01
36

Te
le

ko
m

un
ik

ac
ja

 P
ol

sk
a

0.
00

64
0.

00
61

0.
01

14
0.

01
05

0.
01

23
0.

00
67

0.
01

06
0.

00
52

0.
00

97
0.

01
43

C
ae

sa
rs

 R
es

or
t C

ol
le

ct
io

n 
LL

C
0.

00
69

0.
00

70
0.

01
22

0.
01

21
0.

01
30

0.
00

68
0.

01
26

0.
00

72
0.

01
06

0.
01

58
A

su
rio

n 
LL

C
0.

00
88

0.
00

71
0.

01
32

0.
01

25
0.

01
34

0.
00

79
0.

01
30

0.
00

81
0.

01
12

0.
01

71
In

te
ls

at
 Ja

ck
so

n 
H

ol
di

ng
s

0.
00

92
0.

00
84

0.
01

38
0.

01
35

0.
01

50
0.

00
90

0.
01

48
0.

00
94

0.
01

27
0.

01
78



2333High‑Frequency Trading in Bond Returns: A Comparison Across…

Ta
bl

e 
13

  (
co

nt
in

ue
d)

Q
fu

zz
y

A
da

B
oo

st-
G

A
SV

M
-G

A
D

LN
N

-G
A

Q
G

A
A

N
FI

S-
Q

G
A

D
RC

N
N

C
N

N
-S

V
M

G
RU

-C
N

N
Q

R
N

N

A
th

en
ah

ea
lth

 G
ro

up
0.

00
76

0.
00

63
0.

01
38

0.
01

32
0.

01
36

0.
00

84
0.

01
47

0.
00

91
0.

01
10

0.
01

64
G

re
at

 O
ut

do
or

s G
ro

up
 ll

c
0.

00
83

0.
00

54
0.

01
20

0.
01

30
0.

01
35

0.
00

67
0.

01
28

0.
00

86
0.

00
94

0.
01

47
Pe

tró
le

os
 M

ex
ic

an
os

0.
00

69
0.

00
44

0.
01

19
0.

01
17

0.
01

26
0.

00
59

0.
01

18
0.

00
69

0.
00

88
0.

01
42

Pe
tro

br
as

0.
00

50
0.

00
40

0.
01

08
0.

01
11

0.
01

08
0.

00
40

0.
01

10
0.

00
55

0.
00

73
0.

01
39

Sa
nd

s C
hi

na
 L

td
0.

00
40

0.
00

22
0.

01
00

0.
01

01
0.

00
92

0.
00

29
0.

01
04

0.
00

43
0.

00
72

0.
01

23
In

do
ne

si
a 

A
sa

ha
n 

A
lu

m
in

i
0.

00
21

0.
00

28
0.

00
87

0.
00

82
0.

00
80

0.
00

17
0.

00
97

0.
00

38
0.

00
70

0.
01

18
Lo

ng
fo

r P
ro

pe
rti

es
0.

00
16

0.
00

10
0.

00
71

0.
00

69
0.

00
61

0.
00

16
0.

00
77

0.
00

19
0.

00
69

0.
00

98



2334 D. Alaminos et al.

Ta
bl

e 
14

  
Si

gn
 p

re
di

ct
io

n 
ra

tio
 (6

0 
m

in
) f

or
 a

ll 
tra

de
s

Q
fu

zz
y

A
da

B
oo

st-
G

A
SV

M
-G

A
D

LN
N

-G
A

Q
G

A
A

N
FI

S-
Q

G
A

D
RC

N
N

C
N

N
-L

ST
M

G
RU

-C
N

N
Q

R
N

N

G
er

m
an

y
0.

77
3

0.
80

4
0.

82
7

0.
86

6
0.

90
8

0.
83

2
0.

89
2

0.
86

5
0.

88
4

0.
90

9
U

ni
te

d 
St

at
es

0.
76

8
0.

80
2

0.
82

1
0.

86
2

0.
90

2
0.

82
6

0.
88

5
0.

86
4

0.
87

7
0.

90
3

Ita
ly

0.
76

4
0.

80
1

0.
81

6
0.

85
6

0.
89

4
0.

82
3

0.
87

8
0.

85
9

0.
87

2
0.

90
3

Sp
ai

n
0.

75
8

0.
79

9
0.

81
2

0.
84

9
0.

88
8

0.
81

9
0.

87
6

0.
85

3
0.

86
9

0.
89

9
Ja

pa
n

0.
75

5
0.

79
8

0.
80

8
0.

84
6

0.
88

3
0.

81
1

0.
87

2
0.

84
5

0.
86

8
0.

89
1

Tu
rk

ey
0.

75
0

0.
79

4
0.

80
1

0.
84

0
0.

87
8

0.
80

6
0.

86
9

0.
84

3
0.

86
7

0.
88

6
M

ex
ic

o
0.

74
8

0.
79

2
0.

80
1

0.
83

5
0.

87
4

0.
80

1
0.

86
3

0.
84

1
0.

85
9

0.
88

2
In

do
ne

si
a

0.
74

0
0.

78
9

0.
79

7
0.

83
1

0.
86

6
0.

80
0

0.
85

8
0.

84
0

0.
85

3
0.

87
8

N
ig

er
ia

0.
73

6
0.

78
8

0.
79

2
0.

83
0

0.
86

4
0.

80
0

0.
85

5
0.

83
6

0.
85

1
0.

87
2

Po
la

nd
0.

73
2

0.
78

1
0.

78
6

0.
82

4
0.

86
0

0.
79

2
0.

85
3

0.
83

2
0.

84
2

0.
87

0
W

al
m

ar
t

0.
72

9
0.

78
1

0.
78

0
0.

82
3

0.
85

2
0.

78
9

0.
85

2
0.

83
1

0.
83

5
0.

86
3

Jo
hn

so
n 

&
 Jo

hn
so

n
0.

72
8

0.
76

7
0.

77
2

0.
82

2
0.

83
7

0.
78

6
0.

83
6

0.
82

5
0.

83
4

0.
85

1
Ve

riz
on

0.
73

6
0.

77
2

0.
77

8
0.

82
4

0.
84

7
0.

78
7

0.
84

0
0.

83
6

0.
84

6
0.

86
8

U
ni

le
ve

r P
LC

0.
75

1
0.

78
7

0.
79

3
0.

82
4

0.
86

1
0.

80
3

0.
85

5
0.

84
9

0.
86

2
0.

87
2

R
io

 T
in

to
 P

LC
0.

75
7

0.
79

8
0.

80
3

0.
83

2
0.

86
7

0.
81

5
0.

85
6

0.
85

0
0.

87
7

0.
87

3
A

ir 
Li

qu
id

e
0.

75
9

0.
80

4
0.

81
0

0.
83

7
0.

87
2

0.
82

7
0.

87
3

0.
85

1
0.

88
6

0.
88

2
A

m
be

v
0.

76
8

0.
82

0
0.

81
7

0.
84

5
0.

88
0

0.
83

3
0.

87
9

0.
86

5
0.

89
0

0.
86

9
C

em
ex

0.
76

6
0.

81
0

0.
79

5
0.

82
4

0.
86

5
0.

81
4

0.
86

8
0.

85
6

0.
87

8
0.

86
6

Tu
rk

is
h 

A
irl

in
es

0.
74

8
0.

80
0

0.
78

8
0.

81
4

0.
84

5
0.

80
1

0.
84

5
0.

85
4

0.
86

4
0.

86
2

K
C

E 
El

ec
tro

ni
cs

0.
73

4
0.

78
3

0.
77

0
0.

81
2

0.
82

0
0.

79
1

0.
83

0
0.

84
6

0.
85

7
0.

84
4

Te
le

ko
m

un
ik

ac
ja

 P
ol

sk
a

0.
72

7
0.

75
7

0.
76

6
0.

80
1

0.
79

4
0.

78
0

0.
82

5
0.

82
8

0.
83

9
0.

82
9

C
ae

sa
rs

 R
es

or
t C

ol
le

ct
io

n 
LL

C
0.

72
6

0.
75

4
0.

75
9

0.
79

7
0.

76
8

0.
77

5
0.

81
6

0.
82

6
0.

81
1

0.
82

5
A

su
rio

n 
LL

C
0.

72
5

0.
74

9
0.

73
6

0.
77

3
0.

79
7

0.
75

3
0.

80
3

0.
82

2
0.

80
1

0.
81

4
In

te
ls

at
 Ja

ck
so

n 
H

ol
di

ng
s

0.
71

2
0.

73
0

0.
73

4
0.

76
4

0.
77

8
0.

73
5

0.
79

0
0.

80
6

0.
79

4
0.

79
3



2335High‑Frequency Trading in Bond Returns: A Comparison Across…

Ta
bl

e 
14

  (
co

nt
in

ue
d)

Q
fu

zz
y

A
da

B
oo

st-
G

A
SV

M
-G

A
D

LN
N

-G
A

Q
G

A
A

N
FI

S-
Q

G
A

D
RC

N
N

C
N

N
-L

ST
M

G
RU

-C
N

N
Q

R
N

N

A
th

en
ah

ea
lth

 G
ro

up
0.

69
7

0.
72

1
0.

71
2

0.
75

8
0.

75
4

0.
73

3
0.

77
1

0.
78

6
0.

77
8

0.
76

8
G

re
at

 O
ut

do
or

s G
ro

up
 ll

c
0.

67
2

0.
71

0
0.

70
3

0.
73

9
0.

73
8

0.
71

8
0.

74
3

0.
76

6
0.

77
5

0.
76

6
Pe

tró
le

os
 M

ex
ic

an
os

0.
65

5
0.

70
1

0.
69

6
0.

73
0

0.
71

4
0.

69
8

0.
73

1
0.

73
8

0.
76

6
0.

75
2

Pe
tro

br
as

0.
65

0
0.

69
5

0.
68

5
0.

72
5

0.
73

4
0.

69
6

0.
72

6
0.

73
2

0.
74

8
0.

74
7

Sa
nd

s C
hi

na
 L

td
0.

64
4

0.
68

3
0.

66
3

0.
70

4
0.

70
9

0.
68

9
0.

70
4

0.
70

4
0.

72
6

0.
74

5
In

do
ne

si
a 

A
sa

ha
n 

A
lu

m
in

i
0.

62
6

0.
66

1
0.

66
2

0.
68

1
0.

68
9

0.
68

5
0.

68
1

0.
68

2
0.

71
7

0.
72

3
Lo

ng
fo

r P
ro

pe
rti

es
0.

60
6

0.
65

2
0.

66
1

0.
67

7
0.

68
1

0.
67

6
0.

67
1

0.
66

6
0.

71
1

0.
71

9



2336 D. Alaminos et al.

Ta
bl

e 
15

  
Id

ea
l p

ro
fit

 ra
tio

 (6
0 

m
in

) f
or

 a
ll 

tra
de

s

Q
fu

zz
y

A
da

B
oo

st-
G

A
SV

M
-G

A
D

LN
N

-G
A

Q
G

A
A

N
FI

S-
Q

G
A

D
RC

N
N

C
N

N
-L

ST
M

G
RU

-C
N

N
Q

R
N

N

G
er

m
an

y
0.

01
14

0.
00

66
0.

00
64

0.
00

85
0.

00
93

0.
00

50
0.

00
51

0.
00

37
0.

00
68

0.
00

82
U

ni
te

d 
St

at
es

0.
01

29
0.

00
70

0.
00

68
0.

01
03

0.
01

11
0.

00
53

0.
00

51
0.

00
42

0.
00

61
0.

00
74

Ita
ly

0.
01

35
0.

00
79

0.
00

72
0.

01
04

0.
01

11
0.

00
57

0.
00

55
0.

00
58

0.
00

65
0.

00
79

Sp
ai

n
0.

01
43

0.
00

72
0.

00
75

0.
01

07
0.

01
23

0.
00

76
0.

00
67

0.
00

61
0.

00
74

0.
00

90
Ja

pa
n

0.
01

57
0.

00
72

0.
00

80
0.

01
12

0.
01

28
0.

00
93

0.
00

83
0.

00
75

0.
00

83
0.

01
00

Tu
rk

ey
0.

01
60

0.
00

82
0.

00
87

0.
01

17
0.

01
44

0.
01

11
0.

00
99

0.
00

76
0.

00
99

0.
01

20
M

ex
ic

o
0.

01
50

0.
00

78
0.

00
84

0.
01

14
0.

01
25

0.
01

04
0.

00
97

0.
00

74
0.

00
77

0.
00

93
In

do
ne

si
a

0.
01

30
0.

00
71

0.
00

80
0.

01
07

0.
01

23
0.

01
00

0.
00

86
0.

00
65

0.
00

74
0.

00
90

N
ig

er
ia

0.
01

27
0.

00
62

0.
00

73
0.

00
91

0.
01

23
0.

00
96

0.
00

72
0.

00
51

0.
00

71
0.

00
87

Po
la

nd
0.

01
09

0.
00

58
0.

00
70

0.
00

90
0.

01
21

0.
00

75
0.

00
52

0.
00

43
0.

00
66

0.
00

80
W

al
m

ar
t

0.
01

05
0.

00
51

0.
00

61
0.

00
73

0.
01

11
0.

00
61

0.
00

51
0.

00
42

0.
00

60
0.

00
73

Jo
hn

so
n 

&
 Jo

hn
so

n
0.

00
99

0.
00

47
0.

00
56

0.
00

55
0.

00
96

0.
00

58
0.

00
28

0.
00

34
0.

00
47

0.
00

57
Ve

riz
on

0.
00

91
0.

00
49

0.
00

56
0.

00
57

0.
00

90
0.

00
50

0.
00

22
0.

00
19

0.
00

41
0.

00
50

U
ni

le
ve

r P
LC

0.
00

69
0.

00
40

0.
00

46
0.

00
48

0.
00

83
0.

00
47

0.
00

17
0.

00
02

0.
00

28
0.

00
35

R
io

 T
in

to
 P

LC
0.

00
49

0.
00

36
0.

00
40

0.
00

48
0.

00
68

0.
00

45
0.

00
11

0.
00

08
0.

00
27

0.
00

33
A

ir 
Li

qu
id

e
0.

00
50

0.
00

47
0.

00
36

0.
00

67
0.

00
90

0.
00

48
0.

00
36

0.
00

05
0.

00
34

0.
00

42
A

m
be

v
0.

00
52

0.
00

50
0.

00
35

0.
00

70
0.

01
05

0.
00

58
0.

00
54

0.
00

09
0.

00
49

0.
00

59
C

em
ex

0.
00

57
0.

00
56

0.
00

24
0.

00
78

0.
01

09
0.

00
76

0.
00

69
0.

00
16

0.
00

70
0.

00
85

Tu
rk

is
h 

A
irl

in
es

0.
00

67
0.

00
60

0.
00

15
0.

00
86

0.
01

17
0.

00
93

0.
00

75
0.

00
29

0.
00

79
0.

00
96

K
C

E 
El

ec
tro

ni
cs

0.
00

73
0.

00
71

0.
00

08
0.

00
89

0.
01

29
0.

01
06

0.
01

00
0.

00
33

0.
00

79
0.

00
96

Te
le

ko
m

un
ik

ac
ja

 P
ol

sk
a

0.
00

92
0.

00
79

0.
00

07
0.

01
00

0.
01

44
0.

01
10

0.
01

12
0.

00
49

0.
00

84
0.

01
02

C
ae

sa
rs

 R
es

or
t C

ol
le

ct
io

n 
LL

C
0.

01
12

0.
00

90
0.

00
11

0.
01

16
0.

01
54

0.
01

14
0.

00
96

0.
00

33
0.

01
08

0.
01

31
A

su
rio

n 
LL

C
0.

01
03

0.
00

84
0.

00
07

0.
01

16
0.

01
54

0.
01

04
0.

00
95

0.
00

33
0.

00
85

0.
01

04
In

te
ls

at
 Ja

ck
so

n 
H

ol
di

ng
s

0.
01

19
0.

00
76

0.
00

14
0.

01
15

0.
01

34
0.

00
90

0.
00

75
0.

00
32

0.
00

77
0.

00
94



2337High‑Frequency Trading in Bond Returns: A Comparison Across…

Ta
bl

e 
15

  (
co

nt
in

ue
d)

Q
fu

zz
y

A
da

B
oo

st-
G

A
SV

M
-G

A
D

LN
N

-G
A

Q
G

A
A

N
FI

S-
Q

G
A

D
RC

N
N

C
N

N
-L

ST
M

G
RU

-C
N

N
Q

R
N

N

A
th

en
ah

ea
lth

 G
ro

up
0.

01
03

0.
00

65
0.

00
22

0.
01

07
0.

01
16

0.
00

82
0.

00
50

0.
00

18
0.

00
56

0.
00

68
G

re
at

 O
ut

do
or

s G
ro

up
 ll

c
0.

00
82

0.
00

64
0.

00
26

0.
01

04
0.

01
09

0.
00

80
0.

00
25

0.
00

15
0.

00
39

0.
00

47
Pe

tró
le

os
 M

ex
ic

an
os

0.
00

63
0.

00
58

0.
00

26
0.

00
98

0.
00

94
0.

00
68

0.
00

17
0.

00
54

0.
00

80
0.

00
86

Pe
tro

br
as

0.
00

46
0.

00
56

0.
00

32
0.

00
77

0.
00

74
0.

00
65

0.
00

17
0.

00
61

0.
00

57
0.

00
60

Sa
nd

s C
hi

na
 L

td
0.

00
43

0.
00

48
0.

00
35

0.
00

75
0.

00
52

0.
00

52
0.

00
03

0.
00

66
0.

00
57

0.
00

58
In

do
ne

si
a 

A
sa

ha
n 

A
lu

m
in

i
0.

00
31

0.
00

42
0.

00
37

0.
00

57
0.

00
49

0.
00

38
0.

00
19

0.
00

77
0.

00
56

0.
00

57
Lo

ng
fo

r P
ro

pe
rti

es
0.

00
26

0.
00

32
0.

00
39

0.
00

49
0.

00
37

0.
00

35
0.

00
20

0.
00

85
0.

00
75

0.
00

79



2338 D. Alaminos et al.

Appendix 3: Features About Every Bonds Used in the Sample

Bond 
Issuer

ISIN code Issue Date Maturity Coupon 
(%)

Volume Issued (in 
USD)

Volume Exe-
cuted (in USD)

Germany DE0001141836 07/04/2010 07/04/2042 3.250 27,458,500,000 2,532,011,575
DE0001102317 05/15/2013 05/15/2023 1.500 19,770,120,000 1,695,369,335
DE0001102325 09/11/2013 08/15/2023 2.000 19,770,120,000 1,647,715,293
DE0001102333 01/29/2014 02/15/2024 1.750 19,770,120,000 1,813,871,000
DE0001104875 08/15/2017 08/15/2048 1.250 21,417,630,000 2,111,752,498
DE0001141794 01/23/2019 04/05/2024 0.000 23,065,140,000 2,131,391,960
DE0001102358 05/21/2014 05/15/2024 1.500 24,712,650,000 2,064,163,436
DE0001104883 05/17/2022 06/14/2024 0.200 18,671,780,000 1,520,070,072
DE0001102366 09/10/2014 08/15/2024 1.000 19,648,260,000 1,509,855,113
DE0001135366 07/23/2008 07/04/2040 4.750 17,573,440,000 1,447,789,640

United 
States

US9128283W81 2/15/2018 2/15/2028 2.750 70,572,104,500 5,499,761,156
US912828P469 02/15/2016 02/15/2026 1.625 64,940,659,900 4,700,899,049
US9128285W63 01/15/2019 01/15/2029 1.032 13,000,026,300 1,100,035,194
US912810SG40 02/15/2019 02/15/2049 1.181 15,385,015,600 1,449,539,188
US91282CDD02 10/31/2021 10/31/2023 0.375 66,099,908,400 4,592,193,508
US9128285C00 09/30/2018 09/30/2025 3.000 31,000,000,000 2,243,332,249
US912810QP66 02/15/2011 02/15/2041 2.884 23,984,657,100 1,704,139,189
US912810QF84 02/15/2010 02/15/2040 2.922 15,171,280,100 1,148,366,429
US912810RY64 08/15/2017 08/15/2047 2.750 43,512,330,700 3,776,592,369
US912810QX90 08/15/2012 08/15/2042 2.750 41,995,432,300 3,414,186,998
US912810QW18 05/15/2012 05/15/2042 3.000 43,918,685,600 3,472,679,035
US912810PX00 05/15/2008 05/15/2038 4.500 25,500,122,800 1,873,596,980

Italy IT0005436693 02/01/2021 08/01/2031 0.600 21,300,000,000 1,545,041,693
IT0005240350 09/01/2016 09/01/2033 2.450 16,808,228,000 1,379,642,560
IT0005210650 08/01/2016 12/01/2026 1.250 18,891,843,000 1,374,124,929
IT0005127086 08/01/2015 12/01/2025 2.000 19,427,596,000 1,262,818,368
IT0004953417 08/01/2013 03/01/2024 4.500 23,264,571,000 1,450,240,610
IT0005321325 09/01/2017 09/01/2038 2.950 14,963,750,000 1,141,990,363
IT0004644735 09/01/2010 03/01/2026 4.500 21,999,898,000 1,321,215,545
IT0005327306 03/15/2018 05/15/2025 1.450 15,419,125,000 965,491,378
IT0005090318 03/02/2015 06/01/2025 1.500 19,786,723,000 1,195,137,809
IT0005386245 10/01/2019 02/01/2025 0.350 19,468,306,000 1,233,633,129
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Bond 
Issuer

ISIN code Issue Date Maturity Coupon 
(%)

Volume Issued (in 
USD)

Volume Exe-
cuted (in USD)

Spain ES00000128H5 07/26/2016 10/31/2026 1.300 26,346,638,000 1,555,103,387
ES00000127G9 06/09/2015 10/31/2025 2.150 25,740,540,000 1,421,847,795
ES0000012B88 07/03/2018 07/30/2028 1.400 23,365,049,000 1,483,202,516
ES0000012B70 11/30/2017 11/30/2023 0.175 5,456,261,000 285,222,503
ES00000127Z9 01/19/2016 04/30/2026 1.950 22,952,139,000 1,252,560,660
ES00000124C5 07/16/2013 10/31/2028 5.150 18,769,067,000 1,126,497,346
ES00000126A4 11/30/2013 11/30/2024 2.140 13,170,578,000 630,704,030
ES00000120N0 06/20/2007 07/30/2040 4.900 20,669,793,000 1,448,690,669
ES00000127C8 11/30/2014 11/30/2030 1.186 16,836,799,000 1,106,295,472

Japan JP1103351E98 9/22/2014 9/20/2024 0.500 58,407,605,995 3,114,395,372
JP1103291D68 6/20/2013 6/20/2023 0.800 56,783,915,871 2,760,761,340
JP1103551K72 6/20/2019 6/20/2029 0.100 51,040,754,700.003,341,038,531.12
JP1201551FC0 12/20/2015 12/20/2035 1.000 33,483,028,176 2,594,309,168
JP1200881660 6/20/2006 6/20/2026 2.300 18,164,193,301 1,080,066,060
JP1200871653 3/20/2006 3/20/2026 2.200 8,161,464,243 450,517,545
JP1103451GC0 12/20/2016 12/20/2026 0.100 65,843,010,168 3,791,204,304
JP1103341E67 6/20/2014 6/20/2024 0.600 53,826,367,974 2,567,397,676
JP1103301D90 9/20/2013 9/20/2023 0.800 54,398,599,836 1,770,760,994
JP1200631388 6/20/2003 6/20/2023 1.800 6,943,752,926 183,727,606
JP1103391F65 6/20/2015 6/20/2025 0.400 58,932,408,728 2,240,969,006

Turkey XS1843443356 01/31/2019 03/31/2025 4.625 1,372,925,000 49,902,475
XS1909184753 11/14/2018 02/16/2026 5.200 1,649,992,500 63,873,111
US900123CF53 01/29/2014 03/22/2024 5.750 2,500,000,000 80,067,646
XS1629918415 06/17/2017 06/14/2025 3.250 1,101,885,000 36,815,007
US900123CP36 01/17/2018 02/17/2028 5.125 2,000,000,000 87,130,939
US900123CW86 11/14/2019 11/14/2024 5.600 2,500,000,000 56,788,080
US900123AW05 01/24/2005 05/02/2025 7.325 3,250,000,000 86,709,767
US900123AY60 01/17/2006 03/17/2036 6.875 2,750,000,000 130,954,080
US900123CB40 04/16/2013 04/16/2043 4.875 3,000,000,000 174,902,998
US900123CM05 05/11/2017 05/11/2047 5.750 3,500,000,000 206,898,779

Mexico US91087BAG59 7/31/2019 1/31/2050 4.500 2,903,527,000 201,705,721
US91087BAK61 4/27/2020 4/27/2032 4.750 2,500,000,000 133,551,452
MX0MGO000102 2/23/2017 11/07/2047 8.000 258,121,595 16,530,175
MX0MGO000078 12/30/2004 12/05/2024 10.000 240,194,562 10,264,518
MX0MGO0000P2 6/23/2011 5/29/2031 7.750 437,969,452 19,781,815
US91086QBE70 01/21/2014 01/21/2045 5.550 3,000,000,000 193,969,256
XS2135361686 09/18/2020 09/18/2027 1.350 750,000,000 41,896,431
US91087BAJ98 04/27/2020 04/27/2025 3.900 1,000,000,000 47,779,374
US91087BAD29 10/10/2017 02/10/2048 4.600 2,525,274,000 159,228,149
US91086QAS75 09/27/2004 09/27/2034 6.750 4,266,566,000 254,190,320
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Bond 
Issuer

ISIN code Issue Date Maturity Coupon 
(%)

Volume Issued (in 
USD)

Volume Exe-
cuted (in USD)

Indone-
sia

US455780CT15 04/15/2020 10/15/2050 4.200 1,650,000,000 123,440,663
USY20721BE87 04/15/2013 04/15/2043 4.625 1,500,000,000 90,206,635
US455780CR58 01/14/2020 02/14/2050 3.500 800,000,000 63,291,522
XS2012546714 06/13/2019 09/18/2026 1.450 817,590,000 40,398,068
USY20721BU20 07/18/2017 07/14/2047 4.750 1,000,000,000 77,217,563
US455780CD62 12/11/2017 01/11/2028 3.500 1,250,000,000 77,888,231
USY20721BT56 07/18/2017 07/18/2027 3.850 1,000,000,000 56,096,003
US455780CY00 07/28/2021 07/28/2031 2.150 600,000,000 39,203,276
USY20721BQ18 12/08/2016 01/08/2027 4.350 1,250,000,000 77,979,617
US455780CQ75 01/14/2020 02/14/2030 2.850 1,200,000,000 81,257,678

Nigeria XS1717013095 11/28/2017 11/28/2047 7.625 1,500,000,000 87,347,474
XS1777972941 02/23/2018 02/23/2038 7.696 1,250,000,000 66,002,475
XS1717011982 11/28/2017 11/28/2027 6.500 1,500,000,000 44,900,152
XS0944707222 07/12/2013 07/12/2023 6.375 500,000,000 10,540,924
XS2384698994 09/28/2021 09/28/2028 6.125 1,250,000,000 42,094,445
XS1777972511 02/23/2018 02/23/2030 7.143 1,250,000,000 45,435,632
XS1566179039 02/16/2017 02/16/2032 7.875 1,000,000,000 35,545,324
XS1910826996 11/21/2018 11/21/2025 7.625 1,118,352,000 28,394,300
XS2384704800 09/28/2021 09/28/2051 8.250 1,250,000,000 75,140,475
XS2384701020 09/28/2021 09/28/2033 7.375 1,250,000,000 62,662,368

Poland XS2114767457 02/10/2020 02/10/2025 0.000 1,647,510,000 34,734,468
XS0224427160 07/20/2005 07/20/2055 4.250 519,208,000 22,189,504
XS1288467605 09/09/2015 09/09/2025 1.500 1,091,570,000 25,934,254
XS1015428821 01/15/2014 01/15/2024 3.000 2,196,680,000 44,408,386
XS1508566392 10/25/2016 10/25/2028 1.000 818,677,500 21,003,581
XS1584894650 03/23/2017 10/22/2027 1.375 1,091,570,000 25,899,231
XS1766612672 02/07/2018 08/07/2028 1.125 1,090,420,000 25,933,439
US857524AC63 01/22/2014 01/22/2024 4.000 2,000,000,000 41,690,796
XS1346201889 01/18/2016 01/18/2036 2.375 2,183,140,000 82,782,859
XS1960361720 03/07/2019 03/08/2043 2.000 545,785,000 27,703,475

Walmart US931142CH46 04/05/2007 04/05/2027 5.875 750,000,000 99,404,779
US931142BF98 2/15/2000 2/15/2030 7.550 1,000,000,000 100,362,707
US931142CB75 8/31/2005 09/01/2035 5.250 2,500,000,000 277,573,653
US931142CK74 8/24/2007 8/15/2037 6.500 2,250,000,000 268,070,264
US931142CM31 4/15/2008 4/15/2038 6.200 1,500,000,000 178,712,981
US931142AU74 10/14/1993 10/15/2023 6.750 250,000,000 7,729,944

Johnson 
& 
John-
son

US478160CM48 11/10/2017 1/15/2048 3.500 750,000,000 94,421,361
US478160AL82 5/22/2003 5/15/2033 4.950 500,000,000 31,020,881
US478160AN49 8/16/2007 8/15/2037 5.950 1,000,000,000 82,177,051
US478160AT19 6/23/2008 7/15/2038 5.850 700,000,000 58,192,503
US478160AV64 8/17/2010 09/01/2040 4.500 550,000,000 50,015,272
US478160BA19 5/20/2011 5/15/2041 4.850 300,000,000 29,396,442
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Bond 
Issuer

ISIN code Issue Date Maturity Coupon 
(%)

Volume Issued (in 
USD)

Volume Exe-
cuted (in USD)

Verizon XS1405769727 11/02/2016 11/02/2035 3.125 604,125,000 60,766,843
US92343VFE92 3/20/2020 3/22/2030 3.150 1,500,000,000 127,097,596
US92343VFU35 11/20/2020 11/20/2050 2.875 2,750,000,000 269,487,826
AU3CB0246221 8/17/2017 2/17/2025 4.050 301,603,525 24,454,081
US92343VDU52 3/16/2017 3/16/2037 5.250 3,000,000,000 420,910,769
AU3CB0268142 11/06/2019 05/06/2026 2.100 304,182,753 28,351,338

Unilever 
PLC

XS2008925344 06/11/2019 06/11/2039 1.500 709,520,500 88,993,363
XS1684780031 9/15/2017 9/15/2024 1.375 335,625,000 23,428,648
XS2008921277 06/11/2019 7/22/2026 1.500 671,250,000 42,497,268
XS1684780205 9/15/2017 9/15/2029 1.875 335,625,000 26,178,357
XS2008925344 06/11/2019 06/11/2039 1.500 697,398,000 78,171,947

Rio 
Tinto 
PLC

US767201AT32 11/02/2021 11/02/2051 2.750 1,250,000,000 155,997,716
US767201AD89 6/27/2008 7/15/2028 7.125 750,000,000 60,751,202
US767201AL06 11/02/2010 11/02/2040 5.200 500,000,000 52,837,019
XS0863127279 12/11/2012 12/11/2024 2.875 457,678,278 22,966,598
XS0863076930 12/11/2012 12/11/2029 4.000 671,250,000 42,099,681
US013716AW59 31/05/2005 01/06/2035 5.750 300,000,000 19,457,646

Air Liq-
uide

FR0011951771 06/05/2014 06/05/2024 1.875 545,785,000 37,902,233
FR0011439835 03/06/2013 09/06/2023 2.375 327,471,000 18,981,136
FR0014005HY8 9/20/2021 9/20/2033 0.375 538,457,000 48,757,525
FR0013182839 6/13/2016 6/13/2024 0.750 537,289,000 33,483,220
FR0013428067 6/20/2019 6/20/2030 0.625 654,942,000 57,805,408
FR0013182847 6/13/2016 6/13/2028 1.250 1,091,570,000 82,578,453
FR0013241346 03/08/2017 03/08/2027 1.000 661,824,000 46,333,309
FR0012766889 06/03/2015 06/03/2025 1.250 542,643,000 33,326,475
FR0013505559 04/02/2020 04/02/2025 1.000 539,271,000 24,767,777

Ambev LU0000870137 4/21/2023 3/31/2027 10.625 41,352,000 4,388,593
US20441XAB82 10/30/2002 12/15/2011 10.500 497,432,000 10,637,773
USP30580AA55 12/15/2011 12/15/2019 13.200 209,796,000 6,547,211
LU1234567890 2/15/2016 2/15/2021 9.750 59,793,000 2,661,324

Cemex US151290BZ57 01/11/2021 01/11/2031 3.875 1,107,769,000 123,496,287
US151290BX00 9/17/2020 9/17/2030 5.200 717,384,000 60,778,504
US151290BW27 06/05/2020 06/05/2027 7.375 935,879,000 65,878,868
US151290BV44 11/19/2019 11/19/2029 5.450 753,053,000 55,026,216
US766879AA85 04/01/2003 7/21/2025 7.700 149,897,000 7,485,139

Turkish 
Air-
lines

US10010YAA01 03/15/2015 03/15/2027 4.200 328,274,000 31,979,536
USU0567PAA40 03/04/2013 03/04/2025 7.500 750,000,000 57,689,650

KCE 
Elec-
tronics

US48245B1098 8/21/2017 8/21/2022 8.250 800,000,000 40,990,255
XS2180488111 06/04/2020 12/31/2041 9.683 304,556,000 34,738,793
XS1265917481 08/03/2015 12/31/2030 8.575 290,000,000 24,240,151
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Bond 
Issuer

ISIN code Issue Date Maturity Coupon 
(%)

Volume Issued (in 
USD)

Volume Exe-
cuted (in USD)

Teleko-
muni-
kacja 
Polska

XS1585599667 01/08/2016 01/08/2024 1.875 754,117,000 69,232,737
XS1763026934 05/19/2017 05/19/2024 1.250 532,928,000 42,621,102

Caesars 
Resort 
Col-
lection 
LLC

USU1230PAB77 02/06/2023 2/15/2030 7.000 2,000,000,000 206,375,311
USU1230PAA94 10/15/2022 10/15/2029 4.625 1,200,000,000 95,097,735
USU2829LAD74 07/01/2020 07/01/2027 8.125 1,800,000,000 119,510,985
US28470RAJ14 07/01/2018 07/01/2025 6.250 3,400,000,000 130,617,993

Asurion 
LLC

US04649VAX82 12/23/2018 12/23/2026 8.750 3,510,356 258,496
US04649VAW00 11/03/2016 11/03/2024 7.500 150,000,000 8,370,686
US04649VAQ32 07/08/2014 07/08/2020 6.975 100,000,000 3,347,416
US04649VAG59 05/04/2012 05/04/2019 7.250 120,000,000 2,795,915

Intelsat 
Jack-
son 
Hold-
ings

US45824TAR68 03/29/2016 02/15/2024 8.000 1,349,678,000 119,432,338
US45824TAM71 09/15/2018 09/15/2022 6.625 1,275,000,000 41,601,937
US45824TAS42 09/30/2014 09/30/2022 9.500 490,000,000 20,561,418
US45824TAP03 06/05/2013 08/01/2023 5.500 2,000,000,000 89,294,027
USL5137XAT65 9/19/2018 10/15/2024 8.500 2,950,000,000 170,262,952
USL5137XAJ83 3/29/2016 2/15/2024 8.000 1,250,000,000 686,303,258

Athena-
health 
Group

US60337JAA43 02/15/2022 02/15/2030 6.500 2,350,000,000 196,740,827
US04686RAB96 02/15/2021 02/15/2029 6.500 5,900,000,000 481,150,076
US04686RAC79 09/15/2021 09/15/2029 6.500 1,000,000,000 69,922,650

Great 
Out-
doors 
Group 
llc

US07014QAN16 03/06/2018 03/06/2028 8.380 200,000,000 18,961,194
US07014QAM33 03/05/2022 03/05/2028 7.250 250,000,000 20,901,121
US07014QAJ04 03/25/2014 03/25/2019 7.500 150,000,000 7,220,059
US07014QAG64 06/05/2015 06/05/2020 6.950 300,000,000 17,237,389
US07014QAK76 09/25/2019 09/25/2024 8.450 200,000,000 16,713,977

Petróleos 
Mexi-
canos

US706451BD26 9/15/2004 9/15/2027 9.500 162,425,000 11,355,157
US706451BR12 06/04/2008 6/15/2038 6.625 491,175,000 40,759,059
US706451BG56 12/15/2005 6/15/2035 6.625 2,749,000,000 202,429,964
XS0213101073 2/24/2005 2/24/2025 5.500 1,098,340,000 70,566,416
US71654QCB68 02/04/2016 08/04/2026 6.875 2,969,774,000 179,974,227
US71654QDN97 02/08/2023 02/08/2033 10.000 2,000,000,000 177,155,911
US71643VAB18 12/16/2021 2/16/2032 6.700 6,779,842,000 502,568,278
USP78625DC49 9/26/2014 09/12/2024 7.190 2,612,203,780 133,945,121
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Bond 
Issuer

ISIN code Issue Date Maturity Coupon 
(%)

Volume Issued (in 
USD)

Volume Exe-
cuted (in USD)

Petrobras XS0718502007 12/12/2011 12/14/2026 6.250 658,493,565 49,036,883
US71645WAS08 1/27/2011 1/27/2041 6.750 2,250,000,000 241,054,565
US71645WAQ42 10/30/2009 1/20/2040 6.875 1,500,000,000 139,721,044
US71647NAM11 03/17/2014 03/17/2024 6.250 559,315,000 33,895,621
XS0982711714 01/14/2014 01/14/2025 4.750 3,096,714,713 17,648,749
US71647NAT63 09/27/2017 01/27/2025 5.299 633,300,000 34,370,495
US71647NAQ25 05/23/2016 05/23/2026 8.750 386,934,000 16,232,224
US71647NAS80 01/17/2017 01/17/2027 7.375 710,066,000 47,443,714
US71645WAQ42 10/30/2009 01/20/2040 6.875 728,963,000 62,530,497

Sands 
China 
Ltd

US80007RAE53 08/09/2018 08/08/2028 5.900 1,892,760,000 136,711,791
US80007RAL96 06/04/2020 6/18/2030 4.375 697,375,000 55,222,959
USG7801RAD10 06/04/2020 6/18/2030 4.375 700,000,000 52,121,268
US80007RAK14 06/04/2020 01/08/2026 4.300 796,938,000 34,972,824
US80007RAF29 08/09/2018 08/08/2025 5.625 1,786,475,000 76,954,319
USG7801RAB53 08/09/2018 08/08/2025 5.125 1,800,000,000 35,750,190
USG7801RAE92 01/08/2019 01/08/2026 3.800 800,000,000 23,243,316
US80007RAQ83 03/08/2021 03/08/2029 2.850 649,621,000 27,246,119

Indo-
nesia 
Asahan 
Alu-
mini

USY7140WAE85 05/15/2020 05/15/2025 4.750 1,000,000,000 60,601,528
USY7140WAA63 11/15/2018 11/15/2021 5.230 498,671,000 16,447,360
USY7140WAF50 05/15/2020 05/15/2030 5.450 1,000,000,000 61,079,590.44
USY7140WAB47 11/15/2019 11/15/2023 5.710 310,939,000 13,176,920
USY7140WAC20 11/15/2018 11/15/2028 6.530 598,460,000 36,264,242

Longfor 
Proper-
ties

XS1743535491 01/16/2018 01/16/2028 4.500 500,000,000 34,963,499
XS1633950453 07/13/2017 07/13/2022 3.875 450,000,000 13,282,281
XS2033262895 9/16/2019 9/16/2029 3.950 850,000,000 44,377,944
XS2098650414 1/13/2020 1/13/2032 3.850 400,000,000 31,701,054
XS2098539815 1/13/2020 4/13/2027 3.375 250,000,000 16,287,838
XS0877742105 1/29/2013 1/29/2023 6.750 500,000,000 15,988,419
XS1743535228 1/16/2018 4/16/2023 3.900 300,000,000 9,683,816
XS0844323930 10/18/2012 10/18/2019 6.875 400,000,000 12,740,378

The column “Volume Issued (in USD)” is referred to the volume issued by the bond 
and the column “Volume Executed (in USD” is referred to the volume we have actu-
ally used through the observations extracted from the database in the sample.

Appendix 4: Cumulative Net Profits for Each Bond Market (Sovereign, 
Corporate and High‑Yield) and According to Each Price Window 
(10‑min, 30‑min, 60‑min and 1‑min, 5‑min)

See Figs. 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15.
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Fig. 5  Cumulative net profits for sovereign bonds (10-min)
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Fig. 6  Cumulative net profits for corporate bonds (10-min)
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Fig. 7  Cumulative net profits for high-yield bonds (10-min)
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Fig. 8  Cumulative net profits for sovereign bonds (30-min)
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Fig. 9  Cumulative net profits for corporate bonds (30-min)
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Fig. 10  Cumulative net profits for high-yield bonds (30-min)
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Fig. 11  Cumulative net profits for sovereign bonds (60-min)
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Fig. 12  Cumulative net profits for corporate bonds (60-min)
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Fig. 13  Cumulative net profits for high-yield bonds (60-min)
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Fig. 14  Cumulative net profits for sovereign bonds (1-min)
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