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A B S T R A C T   

After fifteen years of genome-wide association studies (GWAS) in Parkinson’s disease (PD), what have we 
learned? Addressing this question will help catalogue the progress made towards elucidating disease mecha-
nisms, improving the clinical utility of the identified loci, and envisioning how we can harness the strides to 
develop translational GWAS strategies. Here we review the advances of PD GWAS made to date while critically 
addressing the challenges and opportunities for next-generation GWAS. Thus, deciphering the missing herita-
bility in underrepresented populations is currently at the reach of hand for a truly comprehensive understanding 
of the genetics of PD across the different ethnicities. Moreover, state-of-the-art GWAS designs hold a true po-
tential for enhancing the clinical applicability of genetic findings, for instance, by improving disease prediction 
(PD risk and progression). Lastly, advanced PD GWAS findings, alone or in combination with clinical and 
environmental parameters, are expected to have the capacity for defining patient enriched cohorts stratified by 
genetic risk profiles and readily available for neuroprotective clinical trials. Overall, envisioning future strategies 
for advanced GWAS is currently timely and can be instrumental in providing novel genetic readouts essential for 
a true clinical translatability of PD genetic findings.   

1. Introduction 

An estimated 6 million people worldwide affected by PD are likely to 
double by 2040, (Dorsey et al., 2018) along with derived medical ex-
penses due to increases in life expectancy. The annual economic burden 

of PD was estimated at $14.4 billion in the U.S.A (Kowal et al., 2013). 
and €14 billion in Europe (Gustavsson et al., 2011). Such a public health 
liabilities on the societies urgently requires strategies that can provide a 
roadmap to develop therapeutic interventions at an early stage to stem 
the disease’s progression. Overall, in the last two decades, classic genetic 
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discoveries have greatly helped to broaden the arc of our understanding 
of PD etiopathogenesis. With the advent of high-throughput technolo-
gies, after the first genome-wide association study (GWAS) in 
age-related macular degeneration (AMD) in 2005, (Klein et al., 2005) 
GWAS’s initial wave in different complex diseases, including PD, took 
off and started revealing novel loci associated with these maladies. Like 
other multifactorial diseases, (Tam et al., 2019) the genomic research of 
PD by array-based approaches has offered great opportunities and 
challenges, e.g., given that most of the studies have been performed in 
the European population (Xue et al., 2018). The inclusion of ethnic di-
versity in PD genomic research is essential to enhance our understanding 
of biological PD mechanisms. The various initiatives such as the “All of 
US” program launched by NIH, the ethnic diversity program by the 
Michael J. Fox Foundation for Parkinson’s Research (MJFF), and the 
recently launched Global Parkinson’s Genetics Program “GP2” have 
provided the impetus to include ethnic diversity not only for PD but also 
to map various multifactorial disorders. These initiatives will help pro-
mote awareness in the underrepresented populations and play an 
essential role in democratising genomic research (Tam et al., 2019). 
Rather than reviewing all genetic work done in PD, we specifically focus 
on novel perspectives for future PD GWAS. Briefly, we envision that 
following PD genetic efforts pursuing GWAS approaches should be 
aimed at (i) further enhancing our understanding in deciphering the 
missing heritability of disease in underrepresented populations as to 
gain a truly comprehensive understanding of the disease across 

ethnicities; (Keller et al., 2012) (ii) using state-of-the-art novel ap-
proaches helpful in clinical practice for predicting disease risk and 
progression, and for anticipating specific clinical outcomes until the 
limit of the possible; and (iii) defining patient enriched cohorts stratified 
by genetic risk profiles, alone or in combination with other parameters, 
that should be available for future clinical trials. Following the PRISMA 
criteria as a reference, we used the Pubmed searching engine and the 
terms “Parkinson’s”, “GWAS”, and “meta-analysis” to select the litera-
ture reviewed in this study. From the retrieved total of 168 results from 
2006 until 2022, the strict inclusion criteria included, but were not 
restricted to, GWAS meta-analysis and related genome-wide studies 
performed in PD until date. 

2. Discussion 

2.1. Advances 

2.1.1. Genetics beyond monogenic PD 
Identifying disease-causing mutations in the α-synuclein (SNCA) 

gene altered the PD landscape and firmly established the genetic 
component in PD pathogenesis (Polymeropoulos et al., 1997). The list of 
PD causative genes has grown steadily since, with more than 20 caus-
ative genes of PD or atypical parkinsonism identified to date (Del Rey 
et al., 2018). Of these, the autosomal-dominant genes SNCA, (Poly-
meropoulos et al., 1997) leucine-rich repeat kinase 2 (LRRK2), 

Fig. 1. : Timeline of the 25 years of genetic research in PD. The first genome-wide association study (GWAS) in age-related macular degeneration (AMD) in 2005 was 
a stepping stone for the genomic research of complex multifactorial diseases such as PD. Since then, PD GWAS took off in the so-called GWAS era, revealing novel loci 
associated with the disease (red). This timeline also shows genes with reported mutations causative of Mendelian forms of PD (black) or atypical parkinsonism (blue), 
either validated (white rectangles) or pending validation (grey-shadowed rectangles); genes nominated by GWAS (red asterisks); and well-established PD risk genes 
without Mendelian segregation of disease such as MAPT, and GBA (green). 
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(Zimprich et al., 2004; Paisán-Ruíz et al., 2004) and VPS35, (Vilar-
iño-Güell et al., 2011; Zimprich et al., 2011) and the 
autosomal-recessive parkin (PRKN), (Kitada et al., 1998) PINK1, (Val-
ente et al., 2004), DJ-1 (Bonifati et al., 2003), DNAJC6, (Edvardson 
et al., 2012) and VPS13C (Lesage et al., 2016) have been convincingly 
associated with PD (Fig. 1). However, PRKN mutations cause early-onset 
PD - age-at-onset (AAO) below 50 years – without Lewy body (LB) pa-
thology, (Doherty et al., 2013) whereas other recessive genes such as 
PINK1 or DJ-1 are often linked, but not always, to juvenile PD. More-
over, genetic variants in other genes, including the glucocerebrosidase 
(GBA) (Sidransky et al., 2009) and the microtubule-associated protein 
Tau (MAPT) (Pastor et al., 2000) genes, are well-established risk factors 
for PD, the former only in Europeans but not in Asians. Other genes have 
been associated with atypical parkinsonism-related syndromes, 
including POLG, (Luoma et al., 2004) ATP13A2, (Ramirez et al., 2006) 
FBXO7, (Fonzo et al., 2009) PLA2G6, (Paisan-Ruiz et al., 2008) and 
SYNJ1 (Krebs et al., 2013). Lastly, other genes have been linked to 
typical PD (UCHL1, HTRA2, GIGYF2, EIF4G1, SMPD1, DNAJC13, 
CHCHD2, (Funayama et al., 2015) TMEM230, RIC3, LRP10, NUS1, and 
ARSA) (Bandres-Ciga et al., 2020a) yet some require further validation 
given that they lack reports in multiple independent families or func-
tional validation, or that negative reports have been published (Blau-
wendraat et al., 2020). Overall, the genetic discoveries in familial forms 
have proven instrumental in uncovering most of our current knowledge 
on pathogenic molecular processes in PD (Przedborski, 2017). Though 
there has been a relative success, the overall genetic burden explained 
by monogenic forms of the disease remains marginal, with unequivocal 
Mendelian causation in only 5–10% of the patients (Singleton and 
Hardy, 2019). 

Variant gene-mapping through association studies was proposed to 
further explain the disease variance in complex diseases. The first- 
generation approaches were hampered due to the lack of technologies 
to process a large number of samples. The development of polymerase 
chain reaction (PCR)-based approaches made it feasible to perform ge-
netic association studies cost-effectively. However, as these studies grew 
exponentially, so did the non-replicability of the findings. Many of the 
early association studies were eventually flawed by the design issues, 
including a lack of statistical power, incorrect handling of multiple 
testing, insufficient appreciation of population structuring, inadequate 
genetic coverage, or non-robust genotyping methods (Ioannidis, 2018). 
It became clear later that the effect size associated with risk variants is 
small and that large samples are needed to observe a given effect. 
Moreover, beyond technical and statistical issues, the lack of consistency 
in the clinical-based and primarily symptomatic diagnosis of PD and the 
potential ’contamination’ with other misdiagnosed movement disor-
ders, especially at the initial stages, contributed to the lack of repro-
ducibility (Ioannidis, 2018). Therefore, it was not surprising to render a 
lack of replication for most early genetic association studies (Ioannidis, 
2018). 

In this context, the human genome mapping project resulted in the 
extensive cataloguing of millions of single nucleotide polymorphisms 
(SNPs) to overcome such limitations (Collins and McKusick, 2001). This 
deluge of data enabled researchers to define the haplotypic structure of 
the human genome (Gabriel et al., 2002). The haplotypic structure 
revealed that SNPs are not randomly distributed, a process defined as 
linkage disequilibrium (LD) and that SNPs allocated nearby on a chro-
mosome often segregate together. This progress led to defining the 
haplotypic structure in the genome, and because of the extent of linkage 
disequilibrium, few SNPs could be used to capture the genetic infor-
mation (Slatkin, 2008). Such SNPs were later on defined as tag SNPs 
(Johnson et al., 2001). This seminal observation that the genome is 

organised in haplotypic blocks and that few SNPs within each block can 
capture the neighbouring genetic information made a considerable 
impact in designing and developing arrays, which eventually led to 
starting the first wave of GWAS. 

2.1.2. GWAS and heritability 
One of the earlier GWAS in PD provided unequivocal evidence 

regarding the role of SNCA and MAPT in PD (Table 1) (Simon-Sanchez 
et al., 2009). Subsequent GWAS with larger sample sizes confirmed 
these loci and suggested population-specific effects (IPDGC and 
WTCCC2, 2011; Nalls et al., 2014, 2019; Chang et al., 2017). These 
studies highlighted three main aspects: (i) associated common variants 
in at-risk loci have only a modest effect, often with an odds ratio below 
1.4; (ii) large samples are required to discover common variants with 
smaller effects; and (iii) the identified loci also include genes found by 
linkage studies (SNCA, LRRK2) but also reveal new loci suggesting that 
pathways involved in monogenic and idiopathic forms of PD are not 
mutually exclusive; (IPDGC and WTCCC2, 2011) GWAS-meta analyses 
with ever-increasing sample size have increased the number of genetic 
loci implicated in sporadic PD to 78, explaining an overall heritability 
estimated at 16–36% (Nalls et al., 2019). Interestingly, this estimate is in 
line with the first genetic studies reporting that 10–30% of patients with 
PD report a first-degree relative with parkinsonism (Rocca et al., 2004; 
Sveinbjörnsdóttir et al., 2000). Although cross-sectional twin studies 
have mainly argued against heritability in PD, (Przedborski, 2017) 
concordance rates in longitudinal twin studies between monozygotic 
and dizygotic disease have also reported modest inheritability rates for 
PD similar to PD GWAS e.g., 34% in Sweden (Wirdefeldt et al., 2011), or 
27% in the U.S.A (Goldman et al., 2019). Another derivative from PD 
GWAS meta-analyses, which are based on the common-disease com-
mon-variant (CDCV) hypothesis, is the alternative that additional mul-
tiple rare DNA variants, each with relative high penetrance, i.e., 
common-disease rare-variant (CDRV), (Schork et al., 2009) might also 
contribute to genetic susceptibility and missing heritability of the 
disease. 

Despite the success, little progress has been made to infer the role of 
genetic variability in influencing disease progression, for instance: AAO 
(early vs late-onset), predominant phenotype (tremor vs non-tremor), 
adverse response to L-DOPA (dyskinesias), cognitive decline, or non- 
motor symptoms. One study using the first wave of PD GWAS risk loci 
generated the cumulative genetic risk score (GRS) to predict a disease 
progression (Pihlstrøm et al., 2016). Subsequently, it has been shown 
that the cumulative burden of common risk loci, albeit small, is strongly 
associated with the AAO in PD, and when compared with patients with a 
late-onset, PD patients with an early AAO have a significantly higher 
polygenic risk score (PRS) (Nalls et al., 2015a). Recently published 
GWASs have shown a heritability attributed to a disease progression of 
11%, revealing that not all PD GWAS SNPs at risk loci differentially 
influence the AAO, thus indicating that there can be underlying mech-
anistic divergences between risk and disease progression in PD (Blau-
wendraat et al., 2019). Indeed, another recent study used principal 
component analysis (PCA) and PD GWAS data to identify genetic vari-
ants associated with PD progression, i.e., motor and cognitive decline 
(Tan et al., 2021). Interestingly, they reported no significant overlap 
between variants associated with PD risk and PD progression and 
identified the apolipoprotein E (APOE) ε4 allele as the main driver for 
progressive cognitive impairment. Nevertheless, additional studies are 
needed to validate and expand these findings. Taken together, the evi-
dence generated so far established the polygenic architecture of PD. 

In addition, attempts to use cerebrospinal fluid (CSF) proteins as 
biomarkers combined with GWAS data to establish disease onset have 
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Table 1 
Summary list of top-10 hits from all PD GWAS meta-analyses, all performed in cohorts of European ancestry, ranked by most significant P-values, with highlighted gene functions. Only shown the top-10 hits per study.  

Nalls et al. Lancet Neurol. 2019 // European ancestry, 37.688 PD, 18.618 relatives, and 1,4 million controls // Reference: GRCh38 / hg38 * Novel hits 
Chr. SNP Proxy Gene symbol Gene name Gene function Function expanded 
3 rs6808178 LINC00693 LINC00693 Long Intergenic Non-Protein Coding RNA 693 lncRNA long non-coding RNA 
3 rs55961674 KPNA1 KPNA1 Karyopherin Subunit Alpha 1 nuclear transport belongs to importin alpha family, and is involved in nuclear protein import 
6 rs75859381 RPS12 RPS12 Ribosomal Protein S12 protein homeostasis ribosomal protein that is a component of the 40S subunit 
6 rs12528068 RIMS1 RIMS1 Regulating Synaptic Membrane Exocytosis 1, Rab-3-Interacting Prot. 2 synapsis regulates synaptic vesicle exocytosis 
4 rs34025766 LCORL LCORL Ligand Dependent Nuclear Receptor Corepressor Like transcription transcription factor that appears to function in spermatogenesis 
17 rs2269906 UBTF UBTF Upstream Binding Transcription Factor transcription HMG-box DNA-binding protein family. Chromatin remodeling and pre-rRNA processing 
16 rs2904880 CD19 CD19 CD19 B-Lymphocyte Surface Antigen B4 immunity activation of downstream signaling pathways and for triggering B-cell responses to antigens 
10 rs10748818 GBF1 GBF1 Golgi Brefeldin A Resistant Guanine Nucleotide Exchange Factor 1 vesicle-mediated transport Golgi guanine nucleotide exchange factor, GTP-dependent recruitment of proteins to membranes 
13 rs4771268 MBNL2 MBNL2 Muscleblind Like Splicing Regulator 2 transcription zinc finger protein that modulates alternative splicing of pre-mRNAs 
16 rs6500328 NOD2 NOD2 Nucleotide Binding Oligomerization Domain Containing 2 immunity leukocyte protein involve in immune response to intracellular bacterial lipopolysaccharides 
Chang et al. Nat Genet. 2017 // European ancestry, 26.035 PD and 403.190 controls // Reference: GRCh37 / hg19 Feb 2009 
Chr. SNP Proxy Gene symbol Gene name Gene function Function expanded 
4 rs356182 SNCA SNCA a-Synuclein synapsis neurotransmitter release 
17 rs17649553 MAPT MAPT Microtubule Associated Protein Tau cytoskeleton microtubule assembly / manteinance of neural polarity 
4 rs34311866 TMEM175 / DGKQ TMEM175 Transmembrane Protein 175 endosome / lysosome endosomal / lysosomal potassium channel 
4 rs34311866 TMEM175 / DGKQ DGKQ Diacylglycerol Kinase Theta metabolism mediates the regeneration of phosphatidylinositol (PI) from diacylglycerol during cell signal transduction 
1 rs35749011 GBA GBA Glucosylceramidase Beta endosome / lysosome degradation of complex lipids and the turnover of cellular membranes 
3 rs12637471 MCCC1 MCCC1 Methylcrotonoyl-CoA Carboxylase 1 metabolism valine, leucine and isoleucine degradation and metabolism of water-soluble vitamins and cofactors 
2 rs1474055 STK39 STK39 Serine/Threonine Kinase 39 stress-activated cell response mediator of stress-activated signals 
2 rs6430538 TMEM163 / CCNT2 TMEM163 Transmembrane Protein 163 metabolism may bind zinc and other divalent cations and recruit them to vesicular organelles 
2 s6430538 TMEM163 / CCNT2 CCNT2 Cyclin T2 cell cycle mitosis, regulates CDK kinases 
12 rs11060180 OGFOD2 OGFOD2 2-Oxoglutarate & Iron Dependent Oxygenase Domain Containing 2 metabolism iron ion binding and oxidoreductase activity 
12 rs76904798 LRRK2 LRRK2 Leucine-rich repeat kinase 2 autophagy control? PD gene 
4 rs11724635 FAM200B / CD38 FAM200B Family With Sequence Similarity 200 Member B unknown nucleic acid binding? 
4 rs11724635 FAM200B / CD38 CD38 ADP-Ribosyl Cyclase 1 metabolism transmembrane glycoprotein that synthesizes and hydrolyzes cADP-Ribose 
Nalls et al. Nat Genet. 2014 // European ancestry, 13.708 PD and 95.282 controls // Reference: GRCh37 / hg19 Feb 2009 
Chr. SNP Proxy Gene symbol Gene name Gene function Function expanded 
4 rs356182 SNCA SNCA a-Synuclein synapsis neurotransmitter release 
17 rs17649553 MAPT MAPT Microtubule Associated Protein Tau cytoskeleton microtubule assembly / manteinance of neural polarity 
4 rs34311866 TMEM175 / GAK / DGKQ TMEM175 Transmembrane Protein 175 endosome / lysosome endosomal / lysosomal potassium channel 
4 rs34311866 TMEM175 / GAK / DGKQ GAK Cyclin G Associated Kinase vesicle-mediated transport regulates cell cycle, Clathrin derived vesicle budding and vesicle-mediated transport 
4 rs34311866 TMEM175 / GAK / DGKQ DGKQ Diacylglycerol Kinase Theta metabolism mediates the regeneration of phosphatidylinositol (PI) from diacylglycerol during cell signal transduction 
1 rs35749011 / rs71628662 GBA-SYT11 GBA Glucosylceramidase Beta endosome / lysosome degradation of complex lipids and the turnover of cellular membranes 
1 rs35749011 / rs71628662 GBA-SYT11 SYT11 Synaptotagmin 11 vesicle-mediated transport calcium-dependent regulation of membrane trafficking in synaptic transmission 
3 rs12637471 MCCC1 MCCC1 Methylcrotonoyl-CoA Carboxylase 1 metabolism valine, leucine and isoleucine degradation and Metabolism of water-soluble vitamins and cofactors 
2 rs1474055 / rs1955337 STK39 STK39 Serine/Threonine Kinase 39 stress-activated cell response mediator of stress-activated signals 
2 rs6430538 ACMSD / TMEM163 ACMSD Aminocarboxymuconate Semialdehyde Decarboxylase metabolism de novo synthesis pathway of NAD from tryptophan 
2 rs6430538 ACMSD / MEM163 TMEM163 Transmembrane Protein 163 metabolism may bind zinc and other divalent cations and recruit them to vesicular organelles 
4 rs11724635 BST1 BST1 Bone Marrow Stromal Cell Antigen 1 immunity innate immnune system 
1 rs823118 RAB7L1 / NUCKS1 RAB7L1 RAB29, Member RAS Oncogene Family vesicle-mediated transport ligand of RAB7A, key regulator in endo-lysosomal trafficking. Fusion of phagosomes with lysosomes 
1 rs823118 RAB7L1 / NUCKS1 NUCKS1 Nuclear Casein Kinase & Cyclin Dependent Kinase Substrate 1 transcription two putative nuclear localization signals, and a basic DNA-binding domain 
12 rs76904798 LRRK2 LRRK2 Leucine-rich repeat kinase 2 autophagy control? PD gene 
IPDGC et al. PLoS Genet. 2011 // European ancestry, 13.708 PD and 95.282 controls // Reference: NCBI36 / hg18 
Chr. SNP Proxy Gene symbol Gene name Gene function Function expanded 
4 rs356219 SNCA SNCA a-Synuclein synapsis neurotransmitter release 
17 rs2942168 MAPT MAPT Microtubule Associated Protein Tau cytoskeleton microtubule assembly / manteinance of neural polarity 
4 chr4:911311 GAK GAK Cyclin G Associated Kinase vesicle-mediated transport cell cycle, cyclin-dependent protein kinases (CDKs) 
2 rs2102808 STK39 STK39 Serine/Threonine Kinase 39 stress-activated cell response mediator of stress-activated signals 
2 rs6710823 ACMSD ACMSD Aminocarboxymuconate Semialdehyde Decarboxylase metabolism de novo synthesis pathway of NAD from tryptophan 
12 rs12817488 CCDC62/HIP1R CCDC62 Coiled-Coil Domain Containing 62 transcription enhances estrogen receptors ESR1 and ESR2 transactivation, and also glucocorticoid receptor NR3C1 
12 rs12817488 CCDC62/HIP1R HIP1R Huntingtin Interacting Protein 1 Related vesicle-mediated transport Clathrin derived vesicle budding 
1 chr1:154105678 SYT11 SYT11 Synaptotagmin 11 vesicle-mediated transport calcium-dependent regulation of membrane trafficking in synaptic transmission 
4 rs11724635 BST1 BST1 Bone Marrow Stromal Cell Antigen 1 immunity innate immnune system 
3 rs11711441 MCCC1/LAMP3 MCCC1 Methylcrotonoyl-CoA Carboxylase 1 metabolism critical step for leucine and isovaleric acid catabolism 
3 rs11711441 MCCC1/LAMP3 LAMP3 Lysosomal Associated Membrane Protein 3 immunity antigen-presenting in dendritic cell function for adaptive immunity. 
6 chr6:32588205 HLA-DRB5 HLA-DRB5 Major Histocompatibility Complex, Class II, DR Beta 5 immunity presents antigens in antigen presenting cells (APC) (B lymphocytes, dendritic cells, macrophages) 
12 rs1491942 LRRK2 LRRK2 Leucine-rich repeat kinase 2 autophagy control? PD gene  
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been unsuccessful to date (Ibanez et al., 2020). Interestingly, a recent 
study performed a GWAS in REM sleep behaviour disorder (RBD), and 
found RBD-specific polygenic risk score (PRS) has different effects in 
individuals with idiopathic RBD (iRBD) or PD plus probable RBD (pRBD) 
compared to PD without pRBD. This study suggested RBD as a unique 
subpopulation that will allow future early intervention for synucleino-
pathies.(Krohn L et al. medRxiv 2021.09.08.21254232). 

2.1.3. Curated GWAS unravelling novel genetic pathways 
GWAS meta-analyses with a larger sample size were well-powered to 

identify variants that could not have been identified in individual GWAS 
alone (Table 1) (IPDGC and WTCCC2, 2011; Nalls et al., 2014, 2019; 
Chang et al., 2017). Though this approach proved successful, a majority 
of loci, which may be genuinely associated with PD, could not pass the 
statistical threshold as required in GWAS. Pathway-based strategies 
were considered to address this issue. Such approaches examine whether 
test statistics for a group of related genes have a consistent yet moderate 
deviation from chance (Wang et al., 2010). The underlying rationale is 
that genetic variants are unlikely to act randomly, but multiple genes 
work together in functional gene sets based on prior biological knowl-
edge. The significance of each pathway can be summarised based on 
markers in or near genes from that pathway (Wang et al., 2010). Illus-
tratively, functional studies in monogenic PD genes showed that the 
autosomal-recessive genes PRKN, PINK-1, and DJ-1 regulate the 
mitophagy processes, recycling damaged mitochondria and oxidative 
stress responses (Cookson, 2012). Moreover, FBXO7 acts together with 
PRKN and PINK1, regulating mitochondrial maintenance, (Burchell 
et al., 2013) and CHCHD2 mutations cause mitochondrial dysfunction 
(Zhou et al., 2019). Autosomal-dominant genes such as LRRK2 partici-
pate in the endolysosomal pathway, involving endocytosis, vesicle 
trafficking, and lysosomal degradation, and LRRK2 is regulated by 
VPS35 (Erb and Moore, 2020). Moreover, it is well-defined that SNCA 
accumulation impacts the autophagy lysosomal pathway (Xilouri et al., 
2016) and that reduced activity of the risk factor GBA impairs auto-
phagy increasing SNCA levels in PD (Murphy et al., 2014). 

One early success of pathway-based GWAS was Crohn’s disease (CD), 
which highlighted the role of the immunity component in CD (Wang 
et al., 2009). This intuitive approach provided novel insight for other 
complex diseases including PD (Holmans et al., 2013). Thus, a PD GWAS 
leveraged pathways implicated in PD and provided evidence of addi-
tional PD susceptibility loci that failed to meet the stringent thresholds 
of previous GWAS (Holmans et al., 2013). identified pathways involved 
leukocyte/lymphocyte regulation and cytokine-mediated signalling 
(Holmans et al., 2013). Interestingly, these immune pathways showed 
significant enrichment even after removing the top loci, including a 
human leukocyte antigen (HLA) locus nominated in GWAS, thus 
providing unequivocal evidence of an immune component in PD related 
to innate or adaptative immunity and inflammation (Holmans et al., 
2013; Hamza et al., 2010). Other studies highlighted the role of the 
endolysosomal pathway (vesicle trafficking, lysosomes, and autophagy) 
(Robak et al., 2017; Bandres-Ciga et al., 2019a, 2020b). One study 
analysed if a genetic burden of variants from lysosomal storage disorders 
(LSD) genes was associated with PD risk (Robak et al., 2017). Beyond 
GBA, a genetic burden of rare lysosomal storage disorder genes was 
associated with PD susceptibility (SMPD1, CTSD, SLC17A5, and ASAH1). 
By Mendelian randomisation (MR), another study performed a 
pathway-based analysis of 252 genes involved in endocytic trafficking 
using GWAS data (Bandres-Ciga et al., 2019a). They found 19 significant 
genes associated with PD (9 genes involved in cargo degradation and 8 
in cargo uptake), among which only the cyclin G associated kinase 
(GAK) gene was previously linked to PD. 

A systematic study applied a high-throughput hypothesis-free 

approach to detect PD genetic risk linked to any particular biological 
pathway using PRS and MR (Bandres-Ciga et al., 2020b). They identified 
multiple biological pathways associated with PD through common ge-
netic variation, including protein aggregation and post-translational 
modifications, immune response, lipid metabolism, synaptic trans-
mission, endosomal-lysosomal dysfunction, and apoptosis. Interestingly, 
many of these reflect the nominal biological functions of individual 
GWAS hits alone (Table 1 shows gene functions of top-10 hits from PD 
GWAS). Overall, the main lesson learned is that the convergence of 
monogenic and sporadic PD pathways indicates that both disease forms 
are not mutually exclusive. An illustrative example is the physical 
interaction at the protein level between LRRK2 and the GWAS hits 
RAB7L1 and GAK, showing coordinated disease networks in which rare 
mutations and common risk alleles can act in the same pathway 
(Singleton, 2015). In summary, further pathway-based research holds 
the potential for a comprehensive understanding of disease mechanisms 
and advanced target discovery. 

2.1.4. Oligogenic inheritance and missing heritability 
Assessing the contribution of additional rare alleles in Mendelian PD 

genes can provide evidence of the overall “pathogenic burden” in PD 
pathogenesis and contribute to explaining the missing heritability in PD 
(Lubbe et al., 2016). Conceptually, in-depth resequencing of 391 
amyotrophic lateral sclerosis (ALS) cases revealed that 64% familial and 
27% sporadic cases carry additional pathogenic variants (Cady et al., 
2015). Likewise, another study in PD performed a comprehensive 
screening in 7900 patients comprising cases with and without a known 
primary pathogenic genetic cause and/ or GBA and 6166 controls and 
estimated the additional burden of rare loci in known Mendelian genes 
responsible for PD familial forms (Lubbe et al., 2016). They found that at 
least 30% of cases with known pathogenic PD mutation had at least one 
additional rare variant in Mendelian PD genes, compared with 17% in 
not known mutation PD cases or 16% controls. They also observed that 
known mutation PD samples with additional variants had 6-year 
younger AAO using the NeuroX array or 4-years earlier AAO 
compared to cases with not known PD mutations using exome data 
(Lubbe et al., 2016). These findings indicate that oligogenic inheritance 
of rare Mendelian variants can be relevant in cases with a known pri-
mary pathogenic cause of disease. 

Alternative strategies were applied to determine the burden of rare 
variants in top PD loci nominated in GWAS. Using exome sequencing 
data and restricting rare variants analysis to 56 PD GWAS nominated 
loci, (Chang et al., 2017; Nalls et al., 2019) a study identified additional 
rare coding variants within these genes in STAB1, NOD2, and SH3GL2. 
This study showed that the effect of additional rare variants could 
further modulate some associations detected in PD risk loci (Germer 
et al., 2019). Yet, other studies reported no rare variant enrichment in 
PD risk loci (Gaare et al., 2020). Another study restricting rare variants 
analysis only to newly defined PD GWAS loci provided further evidence 
of other associations of rare variants signals in putative causal genes 
underneath previously identified PD GWAS peaks, including LRRK2, 
STBD1, and SPATA19 (Jansen et al., 2017). In the most recent PD GWAS 
meta-analysis, seven genes under GWAS peaks contained two or more 
rare coding variants after Bonferroni’s correction (LRRK2, GBA, CATS-
PER3, LAMB2, LOC442028, NFKB2, and SCARB2) (Nalls et al., 2019). 
These results align with other reports showing that several rare and 
common genetic variants in LRRK2 can affect disease risk independently 
(Ross et al., 2011). Altogether, these studies also support that some of 
the risk associated with these loci may be due to additional rare coding 
variants. Moreover, it has been shown that some typically monogenic PD 
loci such as SNCA, LRRK2, GBA and VPS13C can harbour both rare 
large-effect mutations and, simultaneously, common smaller effect 
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variants such as those typically identified by GWAS. These loci are 
considered as pleomorphic risk loci (Singleton and Hardy, 2011) and can 
also contribute to the oligogenic inheritance of PD. 

In multi-ethnic cohorts, in-depth sequencing analysis of coding var-
iants in LRRK2 identified novel putative variants for PD (Ross et al., 
2011; Kishore et al., 2019) showing that using these approaches in 
ethnically diverse cohorts can reveal hitherto novel variants that help 
understand the pathogenetic mechanisms underlying the PD pathogen-
esis (Ross et al., 2011; Kishore et al., 2019). In addition, another study 
determined the burden of additional unknown variants in genes from the 
lysosomal pathway such as GBA and the newly identified candidate 
genes such as CTSD, SLC17A5, and ASAH1 (Robak et al., 2017). 

Interestingly, they observed that most PD cases in their cohort have 
at least one putative damaging variant in a lysosomal storage disorder 
gene, and 21% carry multiple alleles, thus providing compelling evi-
dence of the oligogenic inheritance affecting specific pathways involved 
in PD pathogenesis such as the lysosomal pathway (Robak et al., 2017). 
Lastly, additional loss-of-function (Bobbili et al., 2020) or extreme rare 
variants (Bustos et al., 2020 BioRxiv doi. 
org/10.1101/2020.06.06.137299) identified by exome sequencing have 
also been recently suggested to contribute to the genetic burden of PD. In 
summary, data from available studies support a potential oligogenic 
inheritance in some PD cases encompassing additional rare variants 
related to PD pathogenic causes and/ or to PD GWAS peaks, but further 
large-scale unbiased studies are warranted to address this question fully. 

2.1.5. From risk association to causality 
As the number of risk loci implicated in PD increases, the critical 

challenge will be to understand how these variants mechanistically 
contribute to the disease risk, given that the majority of variants are 
located in non-coding regions and have small effect estimates. Thus, 
GWAS have proven to have a limited scope to identify the "causal" gene 
in multi-gene loci because neither the variant with the strongest asso-
ciation (lead SNP) nor the nearest gene are necessarily causal. For that 
reason, it is becoming common practice to avoid naming a genomic 
locus for the “candidate” gene assigned in the original research article. 
Here, the GWAS-associated candidate loci need to be mapped to variants 
and genes through functional genomics studies that combine annotation 
of variants, gene expression, and gene-based or pathway-based analyses. 
For instance, the loci containing the GWAS signals around MAPT of GAK 
are examples of variants requiring functional validation. In such cases, 
the functional modelling of candidate loci is instrumental in assessing 
true causality. 

Several approaches are being used to prioritise putative causal var-
iants and genes pinpointed by GWAS, and PD OMICs open resources are 
already available (Schilder et al., 2022). One strategy to prioritise 
functional variants is to filter GWAS hits by overlapping with additional 
quantitative trait loci (QTL) thus providing further functional evidence. 
QTLs can typically include gene expression (transcriptomics and 
RNA-seq) or alternative splicing data, epigenomic data (DNA methyl-
ation or histone marks), protein levels, and virtually post-translational 
modifications (e.g., protein phosphorylation). Using QTLs at proxy 
genes (DNA methylation or RNA expression), the 305 genes under 
GWAS peaks from the latest PD GWAS could be narrowed down to 78 
loci (Nalls et al., 2019). This inference of functional variants was made 
by MR comparing the local polygenic risk of the exposure (methylation 
or expression) to the polygenic risk in an outcome (PD), assuming no 
additional confounders and that the association is not due to LD. Yet, 
alternative methods such as Bayesian colocalisation allow the overlap of 
GWAS hits and QTL while mitigating the confounding effects of LD 
(Schilder and Raj, 2022). 

Moreover, along with the simultaneous spur in GWAS, genome-wide 

functional studies have shown that the risk loci identified from GWAS 
are primarily enriched in disease-relevant cell types. Thus, identifying 
disease-specific cell types will expectably provide a better understand-
ing of the disease’s pathophysiology (Hannon et al., 2019; Eichler et al., 
2010). For instance, a study integrating gene expression data and pub-
licly available GWAS summary statistics from several traits found sig-
nificant tissue-specific enrichment for 34 diseases (Finucane et al., 
2015). Such approaches are expected to enhance the biological inter-
pretability of GWAS signals (Finucane et al., 2015; Fernando et al., 
2020). More specifically, one single-nuclei RNA-seq study of 
post-mortem substantia nigra (SN) reported distinct sets of 
neuron-specific genes for different neuropsychiatric disorders yet 
converged onto shared loci within oligodendrocytes (Agarwal et al., 
2020). Similarly, a mouse single-cell transcriptomic study overlapping 
with PD GWAS data revealed enrichment of not only cholinergic and 
monoaminergic neurons but also enteric neurons and oligodendrocytes 
(Bryois et al., 2020). 

A single-cell multi-omic study in post-mortem midbrain also identi-
fied biological pathways relevant to PD SN (neuroinflammation, im-
mune response activation, mitochondrial and synaptic dysfunction) 
(Caldi Gomes et al., 2022). Such differential patterns are also likely to 
reveal cell-type-specific deregulation at different levels. Here, 3D 
models of the chromatin, including DNA methylation and key functional 
histone marks, e.g. H3K27ac (active enhancer), H3K4me1 (poised 
enhancer), and H3K4me3 (promoter), can also be instrumental in 
identifying functional GWAS variants (Schilder et al., 2022). Thus, a 
study showed that one non-coding distal enhancer element regulates the 
expression levels of SNCA and is related to the activity of brain-specific 
transcription factors (TF) such as EMX2 and NKX6–1 (Soldner et al., 
2016). Lastly, in-vitro and in-vivo functional modelling of the identified 
putative causal variants, also by CRISPR-Cas9, shall ultimately reveal 
true causality of variants identified by GWAS. In addition, various 
ongoing efforts such as AMP-PD, FOUNDIN PD, and GP2 have been 
ongoing to develop a comprehensive multi-omics profile that aims to 
address the role of common/rare and the impact of structural variants on 
PD pathogenesis. 

While the studies integrating GWAS findings and functional data 
offer mechanistic clues, other approaches such as MR are being applied 
in GWAS settings to understand how one phenotype (exposure) is 
causally related to the other (outcome) (Pingault et al., 2018). In this 
context, MR strengthens causal inference by using genetic variants to 
mimic a randomised controlled trial (RCT) (Pingault et al., 2018). The 
availability of GWAS datasets across a broad spectrum of phenotypes 
"unlocks" the potential to understand the relationship between the 
exposure and the outcome (Bandres-Ciga et al., 2019b). For example, 
one of the earlier studies using PD GWAS showed a causal relationship 
between increased iron levels in serum and reduced PD risk (Pichler 
et al., 2013). Since then, there has been an increase in MR studies in PD, 
thus enhancing our understanding of various exposures that may or may 
not be causally associated with PD (Nalls et al., 2019; Bandres-Ciga 
et al., 2019a; Bandres-Ciga et al., 2019; Noyce et al., 2017a). It is 
anticipated that the availability of deeply phenotyped clinical cohorts 
will help determine novel relationships between exposures and out-
comes and help to prioritise targets for clinical trials (Noyce et al., 
2019). 

In summary, integration of multi-omic data, including epigenetics, i. 
e., methylation and chromatin immunoprecipitation ChIP-seq data, 
bulk/single-cell gene expression data, and QTLs, among other ap-
proaches aimed at uncovering and elucidating the mechanisms under-
lying any associated variant(s) are expected to expand our 
understanding of PD GWAS hits. 
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2.2. Challenges & opportunities 

2.2.1. From risk association to risk prediction 
While the number of loci found by GWAS grows exponentially, there 

remains a need for inferring clinically relevant genetic readouts (Fig. 2). 
Two approaches are being applied for risk prediction models, i.e., PRS 
and machine learning (van Rheenen et al., 2019; Guyon and Elisseeff, 
2003). Based on a fixed model approach, PRS are modelled by consid-
ering the contribution of risk alleles, either weighted or unweighted. In 
weighted PRS, the contribution of each risk allele is computed by their 
effect estimates, whereas unweighted PRS assumes that each risk allele 
is contributing to the same effect size (van Rheenen et al., 2019). The 
latter limits the efficacy for modelling risk prediction based on GWAS 
data since most of the genetic loci identified in complex diseases such as 
PD often show the different magnitude of effect estimates (Jakobsdottir 
et al., 2009). In these diseases, PRS have shown limited portability 
across groups of different genetic ancestries, but also of socio-economic 
status, age, or gender, (Mostafavi et al., 2020) yet it is unclear whether 
this applies explicitly to PD. First PRS-based studies in Asia (Foo et al., 
2020) and Latin America (Loesch et al., 2021) have successfully started 
to elucidate the genetic heterogeneity of PD genetic risk factors across 
different populations. Further studies aimed at detecting 
population-specific variation and minimising potential predictive dis-
parities by PRS are promising. 

Alternatively, machine learning approaches such as support vector 
machine (SVM) or random forest (RF) can be applied to develop more 

robust predictive models, either using supervised or unsupervised 
methods for risk prediction modelling (Guyon and Elisseeff, 2003). 
Unlike number-of-risk-allele-based approaches, SVMs discriminate be-
tween “case” and “control” by finding a separating hyperplane for the 
data points by transforming input data, i.e., SNP genotypes, into a higher 
dimensional feature space. However, it should be noted that the data 
feature selection is the main factor influencing the predictive behaviour 
of the models. For instance, machine learning models using GWAS top 
hits are considered the most informative approach for developing risk 
models. By taking into account the weight of top loci, the initial disease 
prediction models were predicated on the assumption that top GWAS 
loci can also be effective classifiers and valuable for clinical decision 
making (Mihaescu et al., 2010). Yet, these studies have shown only a 
marginal increase in area under the area under the receiver operating 
characteristic (ROC) curve (AUC) of performance, thus hampering the 
translation of findings to the clinical practice to date. 

To develop accurate disease prediction models, either by PRS or 
machine learning, the common denominator determining the predictive 
power of a model in an independent cohort is the sample size of the 
training data set, based on which different predictive models can be 
built. As the number of PD risk loci will scale up with the ever-increasing 
sample size in future GWAS, it would be anticipated that prediction 
models based on training data sets will progressively yield more accu-
rate predictive models, as shown in the most recently published meta- 
GWAS (Nalls et al., 2019). Nevertheless, it has to be acknowledged 
that the application of such approaches in developing prediction models 

Fig. 2. : The iceberg analogy of PD genetic research. The visible part of the iceberg represents the current PD genetic discoveries status, with familial PD genetics, 
sporadic PD loci discovered by GWAS, or Mendelian Randomization (MR) as a promising approach to decipher risk. However, the central part of the missing 
heritability in PD is still submerged. For instance, diversifying PD genomic research by GWAS and uncovering genetic risk in the different ancestries is within reach. 
Regarding personalised risk prediction (PRP) models, it is aimed that the combination of comprehensive genomic characterisation with detailed clinical data, 
especially longitudinal progression data, shall eventually improve the predictive capacity. Lastly, gene-gene (epistasis) and gene-environmental (G x E) interactions 
are still challenging and underexplored. The advent of new methods and approaches shall help broaden the overall genetic understanding of PD. 
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based on genetic risk variants alone may not be able to estimate the 
actual risk entirely in complex diseases, as most the complex diseases, 
including PD, are an interplay between genetic and environmental risk 
factors. However, the clinical utility of disease prediction models in PD 
might progressively be improved as long as future approaches use pa-
tient enriched cohorts with detailed clinical and environmental expo-
sure data. Lastly, including age as one of the most consistent predicting 
factors in PD prediction models seems to be highly advisable (Dorsey 
et al., 2018). 

2.2.2. PD GWAS in underrepresented populations 
The decentralisation and democratisation of genomic research are 

expected to provide further impetus for identifying novel genetic dis-
coveries hitherto not captured by current approaches (International 
Parkinson Disease Genomics Consortium (IPDGC), 2020). Akin to other 
diseases, PD GWAS has been centred mainly on European ancestry 
(Fig. 3) (Boeve, 2010). However, cancer GWAS in non-European eth-
nicities has identified ancestry-specific variation relevant to disease, 
describing genetic risk factors relevant to specific populations (Park 
et al., 2018). As an example, compared to Europeans, PD GWAS from the 
East Asian population have shown SNCA and LRRK2, PARK16, and BST1 
as commonly shared risk loci but identified population-specific hits such 
as MAPT or GBA in Europeans but not in Asians (Nalls et al., 2014; Foo 
et al., 2017; Satake et al., 2009). In addition, for GBA, 
population-specific variants have been identified in non-Europeans 
(Velez-Pardo et al., 2019; Zhang et al., 2018). Thus, uncovering and 
characterising PD risk loci in diverse populations is essential for un-
derstanding the underlying biological mechanisms of disease and 
developing effective genetic risk prediction models in non-Europeans 
(Singleton and Hardy, 2019). Recognising this unmet need to diversify 
genomic research in PD, large multi-national consortia have recently 
initiated an effort to catalogue genomic diversity (International Par-
kinson Disease Genomics Consortium (IPDGC), 2020). These include the 
LARGE-PD consortium (Latin American Research Consortium on the 
Genetics of Parkinson’s Disease), (Zabetian and Mata, 2017) the 
Luxembourg-German-Indian Alliance on Neurodegenerative diseases 
(Lux-GIANT)106, or recent efforts in Southeast Asia, (Foo et al., 2017) 
China, and Africa spearheaded by the International Parkinson Disease 

Genomics Consortium98 (IPDGC) and the Genetic Epidemiology of 
Parkinson disease (GEoPD) consortium (Wang et al., 2017). Such ini-
tiatives are making significant progress in integrating ethnic diversity in 
PD GWAS. Applying the transversal strategies proposed here to these 
populations, along with the novel opportunities they offer for advanced 
GWAS, is expected to comprehensively characterise genetic suscepti-
bility for PD in underrepresented populations and maximise the poten-
tial clinical correlation (Zabetian and Mata, 2017; Rajan et al., 2020). 
Moreover, deciphering the genetic architecture of PD across diverse 
populations hold direct implications for the reproducibility and vali-
dation of the European-descendent loci in admixture populations. 
Lastly, recent studies have also suggested an essential role of genetic 
ancestry in population pharmacogenetics (Yang et al., 2021). 

2.2.3. Epistasis 
Epistasis is non-linear complex gene-gene interactions among two or 

more genetic variants in determining specific traits of the phenotypic 
variation, (Gros et al., 2009), e.g., disease susceptibility (Moore, 2003). 
In complex diseases, epistasis can likely explain part of the missing 
heritability (Fig. 2). PD GWAS have addressed the missing heritability7 

but not yet by unbiased, comprehensive multi-locus assessment of 
epistasis. Challenges lay in the vast number of statistical tests, the 
limiting computational capacity, and the biological interpretation. 
Methods reducing such complexity are being developed, e.g., by 
screening two-locus interactions filtered by genotype independence test 
and calculating pairs with non-equilibrium frequencies by logistic 
regression (Pecanka et al., 2017; Cordell, 2009). Such approaches have 
successfully identified the interaction of two calcium channel subunits 
in bipolar disorder (Prabhu and Pe’er, 2012). Alternatively, 
hypothesis-based approaches based on functional interaction have been 
proposed (Bochdanovits et al., 2008). At the multi-locus level, the 
multi-dimension reduction analysis (MDR) method has been developed 
to uncover higher-order gene-gene interactions underlying complex 
disorders (Ritchie et al., 2001). This method assesses the relation of 
multi-locus “haplotypic” combinations of SNPs with disease risk or 
specific clinical outcomes. Using MDR and hypothesis-based centred on 
the Akt/mTOR pathway, two epistasis studies in PD identified up to 
4-loci interactions modulating the PD risk and AAO determined by SNCA 

Fig. 3. : The worldwide diversity of GWAS. The genetic discoveries in PD are driven by European ancestry. (A) Graphical representation of GWAS by time and 
ancestry where the X-axis represents the years and the Y-axis represents the number of samples for a GWAS study. (B) doughnut plot that describes the ancestry of 
GWAS participants as adapted from http://gwasdiversitymonitor.com. 
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variants (Fernández-Santiago et al., 2019). Also, they increased sus-
ceptibility to dyskinesia’s in L-DOPA treated PD patients (Martín-Flores 
et al., 2019). Advanced PD GWAS should also explore such strategies 
reducing epistasis complexity. They could maximise significant previous 
economic investments by re-analysing the available PD GWAS large 
datasets to provide knowledge of the missing heritability in PD and 
identify multi-locus epistatic effects modulating, e.g., penetrance or 
AAO of LRRK2 mutations, or explaining differential susceptibility in 
GBA. 

2.2.4. Environmental cues 
Beyond genetic susceptibility factors, environmental cues influ-

encing the risk of PD are to be considered in advanced GWAS for a 
comprehensive overview of disease risks (Fig. 2). However, the un-
availability of exposome data has been a limiting issue for most cohorts. 
Thus, pesticide exposure, rural living, and agriculture occupation have 
been linked to increased PD risk in populational studies, (Przedborski, 
2017) and smoking and coffee drinking correlated inversely (Hernán 
et al., 2002). Regarding industry chemicals related to urbanisation, a 
recent study in South Korea assessing the effect of particulate matters 
(ozone, nitrogen dioxide, sulfur dioxide, and carbon monoxide) reported 
increased PD risk for nitrogen dioxide (Jo et al., 2021). If validated, 
these findings highlight the role of air pollution impacting the quality of 
life and its adverse impact specifically on PD. Another aspect that has 
been often overlooked in complex diseases is the gene-by-environment 
(G x E) interactions (Hunter, 2005) reflecting the combined synergistic 
effects of loci and environment in modulating disease outcomes. How-
ever, G x E interactions need to be considered to minimise over-or un-
der-estimates of the overall heritability (Gage et al., 2016). As a 
successful example, a study showed that PD risk variants identified by 
GWAS such as rs660895 (A/G) at the HLA locus are further modulated 
by smoking, possibly through common inflammatory pathways (Chuang 
et al., 2017). This study showed that anti-inflammatory protective ef-
fects of the G allele were specifically restricted to never smokers. 
Nevertheless, conceptually, what will be the possible way to decipher 
the G x E in PD? GWAS will continue to reveal new loci in the foreseeable 
future, and it might well be that some environmental cues will exert an 
indirect effect on the disease risk rather than direct, mediated by 
exposure. However, G x E approaches are a nascent approach to complex 
diseases, and their effects, although biologically relevant, may remain 
hidden (Dahl et al., 2020). Thus, despite the collection of environmental 
data being sparse so far, a recent study provided a framework that can be 
applied in future GWAS to discern the role of G x E in prediction models 
(Li et al., 2019). The availability of large-scale cohorts with systematic 
environmental data in PD, such as the UK biobank, are expected to 
provide novel opportunities to directly assess the role of G x E, as shown 
in recent studies using PRS (Jacobs et al., 2020). In summary, combined 
analyses of GWAS and exposome data, when available, including G x E 
interactions, may result in a holistic biological understanding of the 
overall PD risk, but for the moment, we are somehow far from this 
scenario. 

2.2.5. Clinically enriched, harmonised, multi-centre cohorts for advanced 
PD GWAS 

Genetic discoveries are expected to provide individual risk profiles to 
the clinic (Fig. 4) (Kim and Ober, 2019). In turn, as shown in cardio-
vascular disease and rheumatoid arthritis (RA), better availability of 
clinical data improves disease prediction (Weng et al., 2017). Yet, the 
limited accessibility of detailed clinic-demographic data in PD GWAS 
(often disease status, age, gender, ethnicity, AAO, and disease duration) 
has partially limited potential clinical correlation of risk profiles (Tam 

et al., 2019). Earlier prediction studies integrating in-depth clinical in-
formation have increased disease prediction (Liu et al., 2017). Accord-
ingly, it is conceivable that integration of, for instance, non-motor 
symptoms and genetic risk profiles may help increase the predictive 
utility of GWAS and provide stratified cohorts based on trials. Thus, the 
Movement Disorders Society (MDS) has established research criteria for 
prodromal stages of PD (Berg et al., 2015; Heinzel et al., 2019). 
Although RBD patients show up to 75% pheno-conversion rates 10 years 
after the RBD onset, (Iranzo et al., 2013) pheno-conversion can vary up 
to 20 years (Ponsen et al., 2004). An strategy to minimise the uncer-
tainty of motor pheno-conversion would be to combine clinical markers 
indicative of prodromal disease (RBD, hyposmia, altered DaT-SPECT 
imaging) with genetic risk profiles from advanced GWAS to provide 
informative multimodal individual risk predictors (Singleton and Hardy, 
2019). 

Despite constraints of patient recruitment, a recent study performed 
a longitudinal genome-wide survival study, identified RIMS2 as a pro-
gression locus, and provided suggestive evidence for TMEM108 and 
WWOX as progression loci (Liu et al., 2021). Although further validation 
studies are warranted, this study underscores a comprehensive spectrum 
of PD genetic architecture that entails the underlying divergent genetic 
makeup for progression and susceptibility, respectively. 

Another emerging theme is whether integrating in-depth clinical 
information will help predict AAO. For example, can the simultaneous 
use of enriched clinical cohort and the GWAS data provide a novel 
clinical-genetic readout to predict AAO in non-affected carriers of 
pathogenic mutations in the LRRK2 gene? LRRK2 mutation carriers are 
at-risk of PD, but given that penetrance is reduced, it is difficult to 
predict if and when they will develop the disease. After initial reports, 
(Healy et al., 2008) subsequent studies established penetrance estimates 

Fig. 4. : Advanced PD GWAS and clinical translatability: challenges and op-
portunities. Moving from genetic risk association to individual risk prediction is 
a natural derivate of current PD genetic research aiming at translational clinical 
applicability. Expectably, meta-analysing GWAS data will eventually provide 
novel hits for PD. The integration of genomic findings with enriched clinical 
exposure can be used to construct high-dimensional genomic matrixes for 
machine learning. If successful, predictive algorithms shall be able to profile 
individual genetic risk burdens. Beyond the excitement of advancing our 
knowledge of PD at the genome level, it is how we will design advanced GWAS 
in the coming years that will maximise its genuine potential for a higher clinical 
translatability. 
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at 26–42.5% at 80 years in Ashkenazi (Marder et al., 2015) and 
non-Ashkenazi cohorts (Lee et al., 2017), up to 47% in Cantabria (Sierra 
et al., 2011) or 83.4% in the Basque Country, (Ruiz-Martínez et al., 
2010) in Northern Spain. The LRRK2 risk factors are different in the 
Chinese population, thus adding more complexity (Wang et al., 2012). 

Illustratively, the penetrance of LRRK2 mutations can vary as much, 
for example, 60% at 60 years in Tunisia vs 20% in Norway (Hentati 
et al., 2014) and their expressivity can be modulated by additional 
factors. Indeed, risk variants in dynamin 3 (DNM3) have been shown to 
modulate the AAO in Arab Berbers (12⋅5 years younger AAO for 
rs2421947 G/G), (Trinh et al., 2016) or in SNCA in Europeans (11 years 
earlier AAO for rs356219 G/G) (Fernández-Santiago et al., 2018), yet 
with apparent ethnic or population-specific effects (Brown et al., 2021). 
Accordingly, a comprehensive PD GWAS screening in diverse ethnic-
ities, (International Parkinson Disease Genomics Consortium (IPDGC) 
(IPDGC), 2020) using detailed clinical records from longitudinal cohorts 
described earlier, (Nalls et al., 2015b) can hopefully contribute to 
identifying genetic modifiers at the genome-wide level and explain 
reduced penetrance of LRRK2 mutations missing heritability in sporadic 
PD7. A recent study addressed the impact of reduced penetrance in 
LRRK2 carriers (Lai et al., 2021). They performed GWAS of penetrance 
and AAO of PD in LRRK2 mutation carriers and assessed whether a PRS 
derived from the previously published PD GWAS helped to explain the 
variance in LRRK2 carriers. At a genome-wide level, they found a genetic 
locus, CORO1C, that modifies the penetrance of LRRK2 mutations, and 
further, it was reported that the common variants identified so far in 
GWAS increase the penetrance of LRRK2 carriers. Although this is the 
first study that aims to understand the penetrance of LRRK2, findings 
from this kind of study will expectably provide genetic readouts to un-
derstand mechanistically why some carriers of LRRK2 pathogenic mu-
tation develop PD and others do not. 

Similar to LRRK2, heterozygous mutations at GBA predispose to PD 
with highly variable penetrance. Thus, at an advanced age of around 80 
years, GBA mutations’ penetrance was 11% in the U.S.A., (Rosenbloom 
et al., 2011) 15% in the U.K., (McNeill et al., 2012) 30% in French, 
(Anheim et al., 2012) 7.7% in Ashkenazi Jews (Alcalay et al., 2014) or 
19% in Italians (Balestrino et al., 2020). In summary, gathering and 
harmonising clinical-genetic information across sites from different 
countries will require close multidisciplinary collaboration between 
clinicians and researchers. In this regard, various efforts to collect 
non-motor symptoms data such as hyposmia and RBD, among others, 
are ongoing (Nalls et al., 2015b; Noyce et al., 2017b). Hopefully, in the 
not-so-distant future, the derived potential outcomes based on genomics 
data should benefit all stakeholders fostering the advance of their 
research approaches, therapeutic strategies, and drug screenings (Weng 
et al., 2017). 

3. Conclusions 

It is remarkable that a disease such as PD, once considered a non- 
genetic entity continues providing mechanistic insight primarily 
driven by genetic discoveries. Translating these approaches into 
improved clinical care in the post-GWAS era is essential to developing 
novel strategies for longitudinal cohort studies. Such strategies should 
integrate electronic medical records, wearable sensors recording real- 
time information, technological advances in the collection, and ana-
lyses of biological specimens. Big data management platforms and 
analytical methods such as HAIL could also be implemented (https:// 
hail.is/). Measures described above can be taken transversally, com-
bined in such a way that PRS or machine learning strategies, including 
SVM or RF, could be newly undertaken in enriched clinical populations 
with detailed clinical data accompanying DNA samples from genetically 
diverse populations, not only from European ancestry, or with clinical 

markers (RBD, hyposmia, or LRRK2 mutations). Advanced PD GWAS 
will provide better clinical-genomics readouts for developing disease 
prediction models with these integrative approaches. Indeed, the 
ongoing push to streamline longitudinal cohorts for PD will help develop 
personalised medicine therapeutics in the future (Lerche et al., 2015). 
Lastly, clinical trials currently undertaken in LRRK2 or GBA patients 
(https://clinicaltrials.gov/) will hopefully provide the first targeted 
therapeutic interventions for PD. Such integrative approaches are also 
expected to lead to cost-effective therapeutic strategies for PD patients. 
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