UNIVERSITATo:

i+ BARCELONA
Treball final de grau

DOBLE GRAU DE MATEMATIQUES I
ENGINYERIA INFORMATICA

Facultat de Matematiques i Informatica
Universitat de Barcelona

Comparative Analysis of
State-of-the-Art Deep-Learning
Based Face Editing Algorithms

Autor: Maria Ruiz Avila

Directores: Dra. Petia Radeva i Dra. Maya Aghaei

Realitzat a: Departament de Matematiques i Informatica

Barcelona, June 10, 2024

Abstract

Facial attribute transformation, which involves manipulating specific facial fea-
tures in images and videos, has become a focal point in computer vision and image
processing.

This project conducts a comprehensive comparative analysis of cutting-edge
methodologies, utilizing diverse models to modify latent imagery representations.
We assess various state-of-the-art techniques in facial attribute editing through
quantitative, qualitative, and efficiency metrics. Our study demonstrates the su-
perior efficacy of an innovative approach using the Multi-Attribute Latent Trans-
former Model, which adeptly learns and modifies multiple facial attributes simul-
taneously. This model not only enhances operational efficiency but also maintains
the authenticity and integrity of facial identities. Additionally, we investigate how
the correlation of attributes in the training images introduces bias in the results.

As part of the project, we have developed a user interface that allows for the
visual comparison of four models. This application enables users to observe and
compare the distinctions and effectiveness of each model side-by-side.

In summary;, this research advances the field of facial attribute modification by
presenting an in-depth comparative study that highlights the strengths and limi-
tations of leading methodologies in face editing, thereby laying the groundwork
for future innovations in refined and scalable facial image transformation.

Keywords: Facial attribute transformation, InterFaceGAN, TediGAN, Style-
CLIP, Single Latent Transformer, Latent multi-attribute transformer, Disentangled
face editing, StyleGAN, Metric comparison, Attribute Correlation

Resum

La transformaci6¢ d’atributs facials, que implica la manipulacié de caracteris-
tiques facials especifiques en imatges i videos, s’ha convertit en un punt focal en
la visi6 per computador i el processament d’imatges.

Aquest projecte realitza una analisi comparativa exhaustiva de metodologies
avangades, utilitzant diversos models per modificar representacions latents d'imatges.
Avaluem diverses tecniques d'tltima generaci6 en 1’edicié d’atributs facials a través
de metriques quantitatives, qualitatives i d’eficiéncia. El nostre estudi demostra
l’alta eficacia de ’enfocament innovador que utilitza el model Multi-Attribute La-
tent Transformer, que apren i modifica habilment mdultiples atributs facials si-
multaniament. Aquest model no només millora 1'eficiencia operativa, siné que
també manté l'autenticitat i la integritat de les identitats facials. A més, inves-
tiguem com la correlacié d’atributs en les imatges d’entrenament introdueix bi-
aixos en els resultats.

Com a part del projecte, hem desenvolupat una interficie d"usuari que permet
la comparaci6 visual de quatre models. Aquesta aplicacié permet als usuaris ob-
servar i comparar les diferencies i l'efectivitat de cada model.

En resum, aquesta investigaci6 fa avancar el camp de la modificacié d’atributs
facials presentant un estudi comparatiu en profunditat que destaca els punts forts
i les limitacions de les metodologies liders en 'edicié de rostres, establint aixi les
bases per a futures innovacions en la transformacié d’imatges facials de manera
refinada i escalable.

Resumen

La transformacion de atributos faciales, que implica la manipulacién de carac-
teristicas faciales especificas en imagenes y videos, se ha convertido en un punto
focal en la visién artificial y el procesamiento de imdgenes.

Este proyecto lleva a cabo un analisis comparativo exhaustivo de metodologias
de vanguardia, utilizando diversos modelos para modificar representaciones la-
tentes de imdgenes. Evaluamos varias técnicas para editar atributos faciales a
través de métricas cuantitativas, cualitativas y de eficiencia. Nuestro estudio de-
muestra la superior eficacia del enfoque innovador que utiliza el modelo Multi-
Attribute Latent Transformer, el cual aprende y modifica hdbilmente multiples
atributos faciales simultdneamente. Este modelo no solo mejora la eficiencia oper-
ativa, sino que también mantiene la autenticidad e integridad de las identidades
faciales. Ademds, investigamos como la correlacién de atributos en las imagenes
de entrenamiento introduce sesgos en los resultados.

Como parte del proyecto, hemos desarrollado una interfaz de usuario que per-
mite comparar visualmente cuatro modelos. Esta aplicaciéon permite a los usuar-
ios observar y comparar las diferencias y la efectividad de cada modelo en tiempo
real.

En resumen, esta investigacion contribuye al campo de la modificacion de
atributos faciales presentando un estudio comparativo que destaca las fortalezas
y limitaciones de las metodologias lideres en la edicién de rostros, sentando asi
las bases para futuras innovaciones en la transformacién de imégenes faciales de
manera refinada y escalable.

Acknowledgements

I would like to express my gratitude to all the people who contributed, directly
or indirectly, to the realization of this project.

First of all, I would like to express my gratitude to Dr. Petia Radeva for intro-
ducing me to this project and for always encouraging me to take it one step further.

I would also like to extend my gratitude to my supervisor, Dr. Maya Aghaei,
for all the support and guidance she has provided. Although she is not directly
affiliated with my university, Maya has dedicated her personal time to assist me
and share her expertise.

Finally, I want to thank Adria Carrasquilla for his collaboration and support.
This project builds on his Master’s Thesis, Multi-Attribute Latent Transformer; with-
out it, this work would not exist. He contributed significantly with his knowledge
on the topic, always offering his help and assisting in analyzing the results.

On a different note, even though they did not have a direct impact on the
project, I also want to thank my family and friends who showed emotional support
not only during the realization of this project but also throughout the completion
of both degrees. I would like to especially thank Oscar, who has always been there
during my lowest moments, and Javier, who is always even more proud than I am
of my achievements.

Contents

(I__Introduction|
1.1 wationl
1.2 Contextl e
(L3 Objectives of the project|
(1.4 Project Planning{.
(L5 Organization of the memory|

2 Scientific background|
2.1 Foundations of Artificial Neural Networks|
2.2 Training and Convergence|
2.2.1 Datasets for training|
[2.2.2 Training Properties|

nerative A rsarial rksl.
3.1 StyleGAN| oo

2 AN Inversion| e

{4 Methodology|
4.1 State-of-the-Art Facial Attribute Editing Approaches|
1.1 InterF ANl .

8 CONTENTS

[5 Experiments and Results| 45
BI Dafasefs ooo 45
p.1.1 Trammingset 45

p.12 Testingset|, 52

0.2 Metric Evaluationl o000 oo 53
2.1 istical LiCSl . .. 53

2.2 Performan ricsl . .. 55

.3 Evaluation Pipeline|0 00 56
©.3.1 Statistical Metrics| oo 56

532 Performance Metrics| 57

B4 Results 58
B.4.1 Statistical Comparison|0 58

.4.2 Performance Comparison| 59

.4.3 Attribute Correlation Analysis| 60

6 Conclusions| 71
[6.1 Answer to Research Objectives| 71
6.2 Future Workl 72
6.3 Personal Conclusionl 73
APP a1X 75
User Interfacel 75

Bibliography 85

Chapter 1

Introduction

The objective of this chapter is to outline the context and motivations behind
this project, detail our methodological approach, and provide an overarching sum-
mary of the dissertation.

1.1 Motivation

The field of computer vision has seen remarkable advancements over the past
few years, particularly with the introduction of generative adversarial networks
(GANSs). Among these, StyleGAN has stood out as a groundbreaking model that
has significantly influenced face editing technologies. Since its inception, Style-
GAN has demonstrated an unprecedented ability to generate highly realistic hu-
man faces, revolutionizing both academic research and practical applications in
image synthesis, editing, and enhancement.

However, despite the impressive capabilities of StyleGAN, there are still some
limitations in the area of facial edition that warrant further exploration. One key
motivation for this project is to delve into these limitations and investigate how
subsequent models have addressed or failed to address them.

Moreover, the rapid evolution of face editing models post-StyleGAN provides
a rich landscape for comparison and analysis. Each new model introduces novel
techniques and optimizations aimed at overcoming specific shortcomings of its
predecessors. By conducting a comprehensive comparison of these models, this
project aims to provide deeper insights into the current state of face editing tech-
nologies and highlight areas where further improvements are necessary.

Another motivating factor is the increasing relevance of these technologies in

1

2 Introduction

real-world applications. From digital entertainment to security and forensic anal-
ysis, the ability to edit and generate realistic human faces has far-reaching impli-
cations.

In summary, this project is driven by a desire to contribute to the ongoing
dialogue in the computer vision community about the capabilities and limitations
of face editing models. By examining the evolution of face editing models, this
research aims to shed light on the progress made thus far and identify potential
directions for future development.

1.2 Context

The foundations of this project were laid in September 2023, while the au-
thor was doing an internship in Madrid. In this period, virtual discussions took
place between the author and their mentor in Barcelona, Petia Ivanova Radeva.
After a couple of meetings, Radeva suggested a collaboration with Maya Aghaei
Gavari from the Netherlands, who had recently supervised a master’s thesis on
Face Editing. Authored by Adria Carrasquilla, this thesis introduced an innova-
tive approach to facial attribute manipulation through a Latent Multi-Attribute
Transformer. From this point, the author embarked on a journey to conduct a
comparative analysis of this model against others in the field, evaluating their
advantages and disadvantages.

1.3 Objectives of the project

In this project, we want to analyze in depth the performance of different face
editing models and compare their capabilities. We also want to understand how
initial attribute correlation in the training dataset affect non targeted attributes in
the resulting modified images.

Therefore, the objectives of this project are:

* To achieve the necessary knowledge on which the Face Attribute Editing
models are based.

e To understand and train several models to be able to evaluate them under
the same basis and compare them.

¢ To study the introduced bias due to attribute correlation in the training
dataset.

1.4 Project Planning 3

* To implement a user interface that allows for the visual comparison of the
models.

1.4 Project Planning

This project was carried out during 2024. The work had already been agreed
before but, as some time was necessary to acquire the foundational knowledge of
neural networks while working on a full-time internship, the first official meeting
between the involved parties to commence the project in earnest was held in mid-
January.

From September 2023 to December 2023, we used mainly the Dive into Deep
Learning book [1] and Andrew Ng’s CS231 course [2] to acquire general knowl-
edge in the field of computer vision and neural networks.

The month of January was committed to understanding different evaluation
metrics and deciding which ones we were going to use for our study.

It was in February when we started training the different models under the
same basis and getting the first results. By March, we had already got some in-
sightful results on the performance of the desired models and this memory was
started.

In April and May, a study on how the correlation of attributes introduced a bias
on the results when training the models was made. Additionally, an application
for visually comparing the studied models was implemented. Finally, the memory
was finished.

1.5 Organization of the memory
This report is organized as follows:

1. Introduction. A presentation of the thesis motivation and the work organi-
zation.

2. Scientific background. Basic information needed in order to understand the
difference between the models we have worked with.

3. State of the Art. Comprehensive overview of the current advancements and
leading models in the field of facial editing.

Introduction

. Methodology. In depth explanation about the five models we have worked
with and approach to attribute correlation analysis.

. Experiments and Results. Conducted experiments to compare state-of-the-
art facial attribute editing models.

. Conclusions. Evaluation of the objectives achieved and the work done.
. Bibliography. Compilation of the articles and materials used.

. Appendix. Screenshots of the developed UL

Chapter 2

Scientific background

This chapter offers an introduction to the essential ideas in machine learn-
ing. Our goal is to establish a solid understanding of the fundamental principles
and foundational components that are crucial to the models explored later in this
document. Beginning with the most elementary concepts, we will methodically
advance towards tackling the present challenge.

2.1 Foundations of Artificial Neural Networks

Artificial Intelligence (AlI), Machine Learning (ML), and Deep Learning (DL)
are interdisciplinary fields that merge concepts from computer science, mathemat-
ics, and cognitive science to develop algorithms capable of learning from data and
making predictions or decisions.

These terms are often mistakenly used interchangeably, but they are distinct.
Al is a broad academic discipline encompassing any technique that enables com-
puter systems to perform tasks that typically require human intelligence. ML, a
subset of Al, involves methods that allow systems to learn from training data and
improve through experience, rather than being explicitly programmed. DL, a fur-
ther subset of ML, utilizes artificial neural networks (ANNSs) with three or more
layers to mimic the human brain’s learning process.

Definition 2.1. An artificial neural network is a computational model inspired
by the neural networks in the human brain, designed to mimic how the brain
processes information and learns from experiences.

Definition 2.2. At the heart of an ANN are artificial neurons, which are sim-
plified, abstract versions of biological neurons. These neurons receive, process,
and pass on information to other neurons, facilitating a complex network of data

5

6 Scientific background

transmission similar to neural activity in the brain. A neuron is a function f made
of the composition of a linear function ¢ : R” — R and an activation function &
(non-linear function) (see Equation (2.1)).

n

f(x)=h(g(x))=h (Z w;x; + b) (2.1)
i=1

The activation function ‘decides” whether a neuron should be activated or not,

i.e. it evaluates whether the information of the neuron is relevant to the network

or not.

There are several types of activation functions. The first version proposed in
what is considered the first ANN, created by Warren S. McCulloch and Walter
Pitts [26], was a simple threshold.

0, ifx<t
x) = (2.2)
f) {1, ifx>t
Later, functions such as the Sigmoid [42] were considered:
. . 1
Sigmoid(x) = e (2.3)

This function "potentiates’ the value and projects it between 0 and 1. High
values tend asymptotically to 1, but low values tend asymptotically to 0, becom-
ing negligible. However, this function has some problems that do not allow the
system to shine completely. Without going into too much detail, it is said that
this function saturates and kills the gradient, causing it to converge very slowly or
even not at all.

There are other famous activation functions such as tanh(x), but the one that
really revolutionized the world of machine learning was the Rectified Linear Unit
[41], also known as ReLU.

Relu(x) = max(0, x) (2.4)

The properties of this very simple function allowed the training of much more
complex models and led to a great development in the field of neural networks.

Going back to speaking about neurons, they are arranged in layers that se-
quentially handle information: the first layer (input layer) receives the initial data,
while the final layer (output layer) produces the result of the computation. Be-
tween these, none, one or more hidden layers exist, contributing to the network’s
ability to perform complex processing through intermediate computations.

2.1 Foundations of Artificial Neural Networks 7

Input Layer Hidden Layers Output Layer
1

@ | ‘
\
N\ -
X)
O < \ ;
\ \ . v4
X O _ "\
X >,
VARS8 r ¢ < VA
N g / AN
\ /¢ : ’ /
X /P -
N/ ’
/7Y x
A £ £ £ y
W/ .
// v
/‘/
/4
‘ Z | 1

v

\V

e

vV

Figure 2.1: Artificial Neural Network Basic Structure

The learning process in an ANN, where the network learns to predict outputs
from given inputs, involves adjusting weights.

Definition 2.3. In Equation (2.1), w; € R, i € {1,...,n}, are called weights of the
neuron while b € R is called bias.

Definition 2.4. We call parameter to all those values of the neural network that
can vary and can be trained, like the weights and the bias.

Initially set to random values, weights and biases are iteratively adjusted through
a training process automatically, not manually. The adjustment of weights is
guided by the difference between the actual output of the network and the ex-
pected output (the error), aiming to minimize this error across all training exam-
ples. This method of learning, emphasizing the critical role of weights in shaping
the network’s knowledge and predictive capabilities, is fundamental to the opera-
tion and effectiveness of artificial neural networks.

Definition 2.5. We call hyperparameters the parameters that we manually modify
in a neural network. They are very important to achieve good performance, since
they shape the neural network and define its training. Some examples are: the
number of layers, the number of neurons per layer, the learning rate and the batch
size.

8 Scientific background

2.2 Training and Convergence

There are three primary approaches to training neural networks, each distinct
in how they learn from data:

1. Supervised Learning. This is the most straightforward method, utilizing
a dataset with explicit labels to guide the learning process. In supervised
learning, the model adjusts its parameters based on input-output pairs, striv-
ing to deduce the underlying rules that can generalize beyond the training
data to make accurate predictions. It’s typically used for regression and
classification tasks.

2. Unsupervised Learning. Unlike supervised learning, unsupervised learning
algorithms work with unlabeled data. They aim to uncover hidden patterns
or structures within the data without any explicit guidance on the output.
Common applications include clustering and association rule mining, where
the goal is to group similar items or find relationships between different
elements in the dataset.

3. Reinforcement Learning. This approach involves learning to make decisions
by interacting with an environment. Through a process of trial and error,
the model learns from the consequences of its actions, receiving rewards for
beneficial actions and penalties for detrimental ones. The objective is to learn
a strategy that maximizes the cumulative reward over time.

For all these training paradigms, a loss function is crucial. It quantifies the
model’s performance, measuring how well or poorly it is achieving its task, thereby
guiding the adjustment of its parameters to optimize performance.

Definition 2.6. A loss function L(y,) quantifies the difference between the true
values y and the predicted values # produced by the model. It is a crucial compo-
nent in the training of machine learning models, guiding the optimization process.
The objective during training is to minimize the loss function, which in turn im-
proves the model’s predictions. Mathematically, it can be represented as:

L(y,9) =Y (vi — 9:)* (2.5)
i=1

for a simple mean squared error loss function, where 7 is the number of observa-
tions in the dataset.

Equation (2.5) measures the average squared difference between the estimated
values and the true values. Since it is derived from the square of the Euclidean

2.2 Training and Convergence 9

distance, it is always positive and decreases as the error approaches zero.

An example of a fairly simple loss function would be the Mean Squared Error
(MSE).

Let x be the target value and y the value predicted by the system, both n-
element vectors, then the MSE formula is:

n

L Z(xi —yi)z. (26)

MSE(x,y) = -
i=1

This function measures the mean squared error, i.e. the average squared differ-
ence between the estimated values and the true values. Since it is derived from the
square of the Euclidean distance, it is always positive and decreases as the error
approaches zero. It is usually applied to regression models.

The most used loss function in classification problems and the one that we will
use during practically all the project is the Cross-Entropy function, also known as
Log Loss:

L:[0,1]" x {0,1}" - R 2.7)
L(p,y) = =) yclog(pe), (2.8)
c=1

where 7 is the number of classes, log is the natural logarithm, y. is the binary
indicator (0 or 1) that indicates if class label c is the correct classification for this
observation, and p. is the probability predicted by the system of this observation
being of class c.

This function satisfies the following properties:

1. L(p,y) > 0,Vp € [0,1]",y € {0,1}" because of the fact that log(x) < 0 Vx €
(0,1]

2. limy,,, L(p,y) = 0.

Now that we have a function to evaluate the results, the logical question would
be how to optimize this function to improve the model performance.

Definition 2.7. We call forward propagation to the process in which neural net-
works create predictions from inputs. Initially, the weight values W and the bias
b are initialized to random values in each neuron. The training data goes through
various layers until it reaches the output layer, where we give it its desired shape.
Then, the loss function evaluates these predictions and gives a score. From this

10 Scientific background

score, we will apply the back-propagation algorithm, which will update the pa-
rameters. This cycle is repeated as many times as we indicate.

The Back-propagation algorithm is very important, because it is in charge of
understanding how the parameters aspect the result and optimizing the loss func-
tion to improve the neural network’s predictions. To run this algorithm we need
an Optimizer.

Definition 2.8. An optimizer is an algorithm that modifies the parameters of the
neural network so that the loss function is minimized.

One of the most famous optimizers is the Stochastic Gradient Descend (SGD)
method. This iterative algorithm is based on finding the value of each parameter
that minimizes the loss function. To find this value, we use the gradient of the loss

function:)
Bk VL(x")
[VL(xF)|l

where k indicates the iteration, V is the gradient of the loss function, 7 is a pa-

x (2.9)

rameter that dictates how much we “move” in that direction, it is usually called
learning rate and can be fixed or variable during iterations, L is the loss function
and x = (xq,...,xy) are the parameters.

Definition 2.9. The gradient of a function f : R” — R is a vector formed by its
partial derivatives:

J
%(Jq,xz,...,xn)

d
5-(X1,X2,...,X
Vi (xy,x2. .., x) = o1 (11 ')) (2.10)

9
%(xl,xz, cees Xy)
Calculating the derivative can be a very difficult or even an impossible task to

do computationally, however, it can be easily approximated.

The formula for an analytical derivative of f is

lim J 1)~ f(x). 2.11)

h—0 h

But we can approximate it fairly accurately with a very small & value. Usually,
h = le — 6 is used, lower values are considered noise.

flet h})l —fx) (2.12)

2.2 Training and Convergence 11

With the SGD optimizer, we can modify the parameters until we reach the
combination that minimizes the loss function. However, there is a problem: dur-
ing training we will probably have millions of parameters and millions of target
outputs, comparing them all at once can be extremely expensive computationally.

Hence the stochastic” part of the name. In each iteration, instead of taking all
the data points, we want to learn on, we will sort them randomly and apply the
algorithm on one or a few at a time. This way we may not go straight to the min-
imum, we may go back and forth a bit, but we will end up getting there anyway
and with a much lower computational cost.

Each time we evaluate on an example and update parameters, it is called a
step and each time we have iterated through all the examples we call it an epoch.

2.21 Datasets for training

Before finishing this section, we have to define some basic concepts that will
be discussed during the work.

Definition 2.10. The batch size is the number of data units that each epoch will
work with.

When working with large amounts of data, as in this case, it is important to
divide the information into smaller batches in order not to saturate the computa-
tion. It may be the case that the machine does not have enough memory space for
so much information at once or that it is not able to process it.

Definition 2.11. Over-fitting refers to when a neural network is trained so much
on the same training data that it fits them too much, causing it to give good results
on this set, but losing generality and giving bad results on any other data.

Definition 2.12. Under-fitting is the opposite of over-fitting. It happens when
the neural network did not learn enough on the training data and, in general,
performs very poorly in all predictions.

Once we have a dataset to train our model on, we have to divide it into two or
three disjoint parts:

¢ Training set: this is the data set used for the training of the neural network.

* Validation set: data set on which we will evaluate the training results and
evaluate how the hyper-parameters performed in order to find the best
hyper-parameters for the network.

12 Scientific background

* Testing set: this set is not used during training, it is used for the final per-
formance evaluation once the training is finished and we have found the
optimal hyper-parameters.

It is important that these sets do not overlap. We want the validation and test
sets not to contain data from the training set in order to be able to assess whether
over-fitting is occurring.

2.2.2 Training Properties

Many times, training a big model from scratch with random weights can be a
very demanding task, as it can take a lot of time and resources. This is why this
property is very interesting.

Theorem 2.13. It is more efficient to take an already trained neural network model,
even if it was trained on a completely different dataset and adapt it to our problem
than to train one from scratch.

There are many steps in the execution of a neural network, such as extracting
features from the information or establishing relationships between them. Most
of these steps are shared among all models, and, no matter how different the
problems are, the structure of the neural network will be similar. Therefore, we
can take a network already trained on another problem, change the input and
output layer to match our situation, and even change more layers if we want, and
we will save a lot of time and resources. When we adapt a neural network like
this, we have to do some extra training to make it consolidate to the new problem.

Definition 2.14. We call fine-tuning to finish tuning an already trained neural
network to a new problem and environment by further training it a bit more and
adjusting the hyper-parameters.

2.3 Generative Adversarial Networks

Definition 2.15. A Generative Artificial Neural Network is a type of Al model
that has the ability to create data such as text, images, video, or audio, that is, or
aims to be, indistinguishable from real-world examples.

The field of generative artificial intelligence has experienced remarkable growth
in the past decade. Image generative models have been around since the late
2000s when auto-encoders were utilized to compress and expand information,
enabling the inference of new data. In 2013, Variation Auto-encoders [15] were

2.3 Generative Adversarial Networks 13

introduced, incorporating stochastic mechanisms into these models. A significant
milestone occurred in 2014 with the introduction of Generative Adversarial Net-
works (GANSs) [27], pioneering the generation of realistic images, style transfer,
and accommodating diverse inputs for this purpose. More recently, starting from
2019, there has been an influx of research papers on diffusion models which begin
with a noisy image and progressively remove noise until reaching a real looking
sample. In the field of text generation, Recurrent Neural Networks (RNNs) [35]
gained prominence around 2010, followed by the adoption of VAEs [15] and GANs
adapted to text generation, and finally the utilization of transformers structures,
that leaded to the widely-known GPT [38] models.

The focus of this project will be on the field of GANs, which represented a
paradigm shift in unsupervised learning and generative models. A GAN consists
of two competing neural network models:

1. Generator. It learns to generate plausible data. The generated instances
become negative training examples for the discriminator.

2. Discriminator. It learns to distinguish the generator’s fake data (instances
created by the generator) from real data (such as real pictures of people).
The discriminator penalizes the generator for producing implausible results
by updating its weights through back-propagation from its loss through the
discriminator network.

As we have mentioned before, usually, to train a neural net, we alter the net’s
weights to reduce the error or loss of its output. In our GAN, however, the gener-
ator is not directly connected to the loss that we're trying to affect. The generator
feeds into the discriminator net, and the discriminator produces the output we are
trying to affect. The generator loss penalizes the generator for producing a sample
that the discriminator network classifies as fake.

This extra chunk of network must be included in back-propagation. Back-
propagation adjusts each weight in the right direction by calculating the weight’s
impact on the output. But the impact of a generator weight depends on the impact
of the discriminator weights it feeds into. So back-propagation starts at the output
and flows back through the discriminator into the generator. But, at the same
time, we don’t want the discriminator to change during generator training. For
avoiding that, we train the generator as follows:

1. Sample random noise.

2. Produce generator output from sampled random noise.

14 Scientific background

3. Get discriminator "Real" or "Fake" classification for generator output.
4. Calculate loss from discriminator classification.

5. Back-propagate through both the discriminator and generator to obtain gra-
dients.

6. Use gradients to change only the generator weights.

But, since we have two different networks, the discriminator and the generator,
to train, how do we train the GAN as a whole? The training proceeds in alternating
periods:

1. The discriminator trains for one or more epochs.
2. The generator trains for one or more epochs.

3. Repeat steps 1 and 2 to continue to train the generator and discriminator
networks.

We keep the generator constant during the discriminator training phase. As
discriminator training tries to figure out how to distinguish real data from fake,
it has to learn how to recognize the generator’s flaws. Similarly, we keep the dis-
criminator constant during the generator training phase. Otherwise the generator
would be trying to hit a moving target and might never converge.

It is this back and forth that allows GANSs to tackle otherwise intractable gen-
erative problems. We get a toehold in the difficult generative problem by starting
with a much simpler classification problem.

As the generator improves with training, the discriminator performance gets
worse because the discriminator can’t easily tell the difference between real and
fake. If the generator succeeds perfectly, then the discriminator has a 50% accuracy.

2.3.1 StyleGAN

Many variants of GANs have been proposed to improve the quality of gener-
ated images or allow conditional synthesis. However, they had yet to offer intu-
itive, scale-specific control of the synthesis procedure until StyleGAN [4].

The first version of StyleGAN might be the biggest game changer in GAN
works. As prior works just focused on improving stability, convergence, image
diversification and resolution, StyleGAN emphasized on how to make attributes

2.3 Generative Adversarial Networks 15

of generated images could be further edited independently. It was thus mainly
designed to disentangle the latent codes and enable the separate controls over style
generation. The introduction of StyleGAN sparked the findings of techniques to
utilize the ability to perform realistic manipulation on real images, which later
became GAN inversion.

Latent Spaces of StyleGAN

Let us begin by thoroughly discussing the StyleGAN dataflow pipeline and its
latent spaces. In the original GAN architectures, the latent code was found to be
highly entangled and difficult to use for controlling the output image features.

One of the key ideas of StyleGAN architectures is to introduces more than one
innate latent space (Z, W, S), thereby allowing to learn intermediate latent rep-
resentations with properties better tailored to the semantic structure of the image
space. Moreover, to increase the expressive power of StyleGAN, it is common to

Synthesis
Network

work with extensions of these spaces (Z+, W+).

Mapping
Network

Figure 2.2: Latent Spaces of StyleGAN, extracted from [29].

In the StyleGAN architectures, 512-dimensional samples from an isotropic nor-
mal distribution with unit variance and zero mean provide the random inputs
z € Z at the root of the entire generation pipeline. Z+ space implies sequential
mapping of 18 z € Z vectors into 18 corresponding w € W vectors.

Latent codes from Z are transformed to latent codes in the 512-dimensional
W space of StyleGAN through the mapping network (see Figure 2.5). This trans-
formation, which must be learned during training, allows to distort the simple
Z-distribution into a distribution W of the same dimension of style parameters.
In this W space meaningful editing operations on images can become realizable
by simple axis-parallel movements of a point [4]. The eight fully connected map-

16 Scientific background

ping layers of the StyleGAN’s mapping network can provide the adaptability to
unfold the disc-shaped Z space into a space W whose shape is much closer to the
required feature distribution (Figure 2.6C). Figure 2.6 illustrates a situation where
the feature distribution of to-be-generated images excludes a combination of two
features, leading to a distribution where one quadrant of all possible combinations
is absent (Figure 2.6A). To create such a distribution from the disc-shaped input
distribution Z (Figure 2.6B) requires a very non-linear mapping.

(a) Distribution of (b) Mapping from (c) Mapping from
features in training set Z to features W to features

Figure 2.3: Mapping from Z and W latent spaces to features, extracted from [4].

Usually, a 512-dimensional vector w € W is used 18 times as the style input to
18 layers of the StyleGAN2 [5] generator. This suggests that each of these 18 can
be individually modified for fine-tuning of a generated image. This extends latent
space into 18 copies of W (d = 18 x 512) and is denoted by W+-. This larger space
is able to provide a different latent code for each layer of the StyleGAN generator
(e.g., 18 for a StyleGAN2 generator with a 1024 x 1024 output resolution).

Since the StyleGAN architecture is trained using W space, images sampled
from W+ do not necessarily have realistic perceptual quality. This can allow
to generate entirely novel patterns that are still face-like. However, it may also
lead to patterns with useless structure or level of quality. As the distribution of
W cannot be explicitly modeled, keeping the latent code in within a range that
corresponds to semantically and quality-wise useful patterns is a challenging task.

In a further step of StyleGAN processing, the latent code w € W of an image
is further transformed to s € S vectors for each layer of the StyleGAN genera-
tors. The details of these transformations differ slightly between the versions, but
a shared commonality is a mapping to a parameter vector of style parameters S
that parametrizes a set of affine transformations (one for each layer) that either
normalize the activity pattern in a layer (in the case of StyleGAN), or that directly

2.3 Generative Adversarial Networks 17

define a two-step scaling of the weights of a layer (mod/demod operations of
StyleGAN2 [5] and StyleGANS3 [6]). While the activity normalization in StyleGAN
requires a specification of two parameters (bias and scaling) for each feature map,
StyleGAN2/3 get by with a mere scaling (single parameter) for the feature map
scalings in the mapping layers. For the sake of brevity, we focus on the case of
StyleGAN2 in the following discussion, which is very representative of the major
ideas behind the style mapping.

At the style input of every layer of the StyleGAN2 generator is an independent
single-layer perceptron denoted by A (affine transformation). This network maps
w € W vector into a new vector s € S that provides for each of the layer’s weight
kernel a separate scalar scaling parameter. The size of the vector s € S equals
the number of channels in all layers of the StyleGAN2 generator. For example, in
StyleGAN2 dim(W) = 512 and dim(S) = 9088. This modulated kernel is then
applied to the layer L — 1 of the StyleGAN2 generator to produce the activation
of the channel in the layer L of StyleGAN2. In [7] Wu et al. proposed to name
this latent space of coefficients s StyleSpace S. Analysis from Wu et al. indicates,
that the S space is more semantically disentangled than previous latent spaces of
StyleGAN2.

Evolution

While vanilla GANs are able to generate images of reasonable quality, they
suffer from limited controllability and unstable training. To overcome these prob-
lems, Karras et al. introduced a training strategy in which the neural network
progressively grows more layers during training (see Figure 2.7), PGGAN[3]. Be-
cause StyleGAN is built on progressive growing GANs, we will first have a quick
look through PGGAN architecture.

Like a general GAN, PGGAN [3] consists of a generator and a discriminator.
However, unlike a general GAN, the PGGAN discriminator classifies images at
different scales. During training, the discriminator receives inputs at varying res-
olutions and combines them to determine if an image is real or fake. Real data
images undergo a progressive downsampling process to produce lower resolution
images. Conversely, the generator produces images at these resolutions and feeds
them into the discriminator.

As layers are added at increasing depths, the image resolution increases as
well. Starting with low resolution images of 4 x 4 pixels and progressing up to
a resolution of 1024 x 1024 pixels, the model first learns coarse structures and

18 Scientific background

Latent Latent Latent
v
* T —
i []
G i [] ;
L |
: ; L '
§ ; 1024x1024 |
n': ' Reals E ! Reals & | Reals
I] v
| P 1024x1024 |
b ; I]
D : : [] I
b i i]
- Ly []
P ———
L 8x8 —
izt e

v

Training progresses

Figure 2.4: Progressive growing GANSs, extracted from [3].

later fine details. This approach stabilizes training by splitting the task into sim-
pler sub-tasks. Additionally, training time benefits from this approach, as most
iterations are performed at lower resolutions within a smaller network, reducing
computational demands.

StyleGAN adapts the progressive training strategy from the PGGAN. As a re-
sult, it offers a high degree of flexibility to mix image styles at different levels of
its generator architecture.

StyleGAN no longer passes the random sample z directly into the generator’s
input layer. Instead, StyleGAN starts generating images from a learned constant
(4 x 4 x 512), and the latent code z € Z is fed into the network along a different
route. First, z € Z is mapped through a deep network of fully connected layers
into an intermediate latent space w € W. The benefit of this Z to W transfor-
mation is that the intermediate space W does not need to follow the Gaussian
distribution of the training data (however, Z does). Thus, latent space W can be
disentangled which is a desirable property because it means that features in the
generated images can be controlled independently of each other, and this is one of
the most important features of StyleGAN, as it opens up great scope for working
with images in latent space.

2.3 Generative Adversarial Networks 19

Subsequently, for each generator layer separately, w € W is converted using
affine transformation (fully connected layer without activation function) into a
vector of style parameters that are used to shift and scale the activity pattern in
the feature maps of the respective convolutional layer. This affine transformation
of feature maps is called an adaptive instance normalization (AdalIN) [8].

Latent z € Z Latent z € Z . Noise
Synthesis network g
Normalize | Const 4x4x512|
Mapping
| Fully-connected | network f
. 4
e
| Conv3x3 | b D B |
|PixelNorm| AdalIN 4x4
4x4
Y | U Y 1 |
sampie
| Upsample | E I :
G 133 | | Conv3x3 |
X
= style 2 E
:
| Conv3x3 | | Conv3x3 |
8x8
(a) Traditional (b) Style-based generator

Figure 2.5: Style Learning Network, extracted from [4].

The affine transformation is implemented using two linear layers to create a
style with scale = ys and bias = y;,. The AdalN operation formula:

AdaIN(x;,y) = ys, <XZ;(Z()XZ)> + Yu,is
1

Where x; is the output feature map of the previous layer. The AdalN first nor-
malizes each channel x; to zero mean and unit variance and then applies the scale
ys and y;,. This means the style y will control the statistic of the feature map for the

20 Scientific background

next convolutional layer. Where y; is the standard deviation, and y; is mean. The
style decides which channels will have more contribution in the next convolution.

This layer-wise feeding of style parameters w € W allows style-mixing by
feeding code parameters w, and wp of two sources A and B respectively into
different layer subsets of the StyleGAN generator. If a code is injected into early
layers it affects rough features (e.g., shape of a face) while injection into later layers
correspond to finer details (e.g., skin color), so latent codes enable modifications
at different granularities.

Finally, to provide stochastic detail that would have to be learned otherwise,
pixel-wise noise is injected after each convolution. The noise added to the feature
map has zero mean and a small scale of variance (compared to the feature map).
Therefore, the overall context of the image is preserved as the statistics of the fea-
ture map stay the same. This allows the network locally stochastic placing of fine
structures, such as pores, hairs, or freckles. All these architectural innovations
allow it to outperform the previous PGGAN.

Although the StyleGAN reaches state-of-the-art performance in generative tasks,
it introduces a problem with artifacts in the generated images, such as blobs or
droplets. In the StyleGAN2 paper, they spotted two causes for the artifacts intro-
duced in StyleGAN1 and describe changes in architecture and training methods
that eliminate them.

StyleGAN2'’s key change was a simplification and reorganization of the layer
normalization, which in the original StyleGAN was recognized as destroying in-
formation in the relative activation strengths of the different feature maps within
a layer. This was avoided by replacing the former AdaIN operations by a direct
rescaling of the convolutional weights, again based on the style parameter output
associated with w € W, followed by a normalization by the standard deviation
over the scaled weights. Additionally, the noise and bias now became added out-
side the style block and removed from the initially learned constant input.

Another problem was that in the images created by StyleGAN some details
like eye or teeth orientation seemed to be either stuck in place or jumping be-
tween positions instead of moving smoothly. This was attributed to the generator
needing to produce output images at each resolution, which forces it to gener-
ate maximal frequency details. To overcome this problem, StyleGAN2 no longer
trains models using progressive growing, but sums the output from different res-

2.3 Generative Adversarial Networks 21

olutions together and utilizes skip connections. The size of the model itself was
also increased through the number of feature maps in the layers responsible for
the highest resolutions.

2.3.2 GAN inversion

In response to the growing demand for interpretability and controllability in
GAN:S, the need for GAN inversion has emerged as a pivotal technique. By map-
ping a given image back into the latent space of a pre-trained GAN model, GAN
inversion facilitates a deeper understanding of the underlying features and struc-
tures in the latent space, enabling researchers to manipulate and interpret gen-
erated images with greater precision and insight. Since all the models we have
worked with for this research project use a pre-trained StyleGAN, we will focus
particularly on studying the inversion to latent space of StyleGAN.

There are three main approaches to accomplish GAN inversion:

1. Optimization based methods. Gradient based optimization methods di-
rectly optimize the latent vector using gradients from the loss between the
real image and the generated one. Such methods can find a latent represen-
tation of the original image with a reasonable similarity. However, there still
exist three main drawbacks:

¢ Optimizing the procedure is a time consuming task that usually takes
several minutes on a modern GPU.

* The random initialization choice can significantly impact the final re-
construction image.

e The found latent point in W or W spaces through inversion opti-
mization steps is less stable while editing of the generated image than
latent points obtained by sampling from Z space and generating latent
points in W or W spaces through the mapping network (from Z to
W space). The mapping network generates points in the distribution
of the training dataset, while inversion optimization steps can move the
latent point away from the distribution of the training dataset.

2. Encoder based mapping methods. Encoder based methods for finding the
latent code train an encoder network over a large number of samples to
directly map from the RGB image space into a latent space of StyleGAN.
Once trained, the encoding can be done in the fraction of a second needed to

22

Scientific background

process through the CNN encoder. Latent points obtained from the encoder
network are more suitable for editing by moving the point in the latent space,
as the encoder network is trained to generate points inside the distribution
of the training dataset of StyleGAN. However, training such an encoder is
not trivial and the image generated from the obtained latent code may lose
the identity of the original face.

Conventional image- and feature-level losses between the input image and
the reconstructed image, may not be enough to guide the training of the
encoder network. Wei et al. proposed the method of training the encoder
in cooperation with an optimization based iterator. One more possibility
for getting a better inversion quality is to compute the loss based on SSIM
[33], Identity loss and LPIPS [28] to train an encoder that maps RGB into
W space. An additional option is encoding into the W™ latent space that
provides finer control over the generator, utilizing regularization methods
while training of such RGB to W+ encoder.

. Fine tuning methods. When an image of a face includes something outside

the training distribution e.g., a tattoo, it is difficult to find a good inversion,
as there is no such a point in the latent space of StyleGAN that allows for
reconstruction of such details. In this case, a possible solution is to fine-tune
the StyleGAN generator weights themselves, using the target image or a set
of target images. This motivates a set of methods that operate directly on
the generator weights to improve the inversion quality of a given image.

Before starting such fine-tuning of the StyleGAN generator, the target im-
age must be first inverted into StyleGAN’s latent space to the best possible
reconstruction match using the previously discussed approaches. Then the
StyleGAN generator model can be fine-tuned using loss-functions applied
to the reconstructed and target images.

Fine-tuning the StyleGAN generator by gradient-based optimization for each
new image requires a couple of minutes of computation. This makes such
methods difficult to apply in practice. By analogy with encoder-based meth-
ods for predicting the inversion latent vector, we can, here too, seek an
encoder whose output is used to modulate the weights of the StyleGAN
generator. An example of such an approach is Hypernetworks [32]. The
created Hypernetwork is trained to scale channel-weights of kernels of se-
lected layers of the StyleGAN generator to match the target image and image
generated by StyleGAN from the latent code.

In addition to preserving similarity to the original image, the central motiva-

2.4 Transformers 23

Gradient-based optimisation | Encoder-based mapping

/ \ § [Tosses]

/ \ s X . :.L
Latent h |/ \ - / \
code | (] \ l #)/
funing | | | StyleGAN | = StyleGAN |
c'/ . \ | L . \

*

vy
StyleGAN | [~
weights € @
tunlng _/\wj - y

—
LA

ﬁ Losses | X

Figure 2.6: Inversion methods, extracted from [30].

tion of the inversion step is to facilitate further latent editing operations. There
exist a variety of points in the latent space that result in similar images to the
original one, some of these points are more suitable for latent editing than others.
A successful encoding of a real image into a latent space should enable decent
editability via the latent code.

2.4 Transformers

Another type of model we have to address to understand this work is Trans-
formers, which have also revolutionized the field of ML. Their story begins with
the quest to build models that could effectively handle sequential data. Before
their introduction, recurrent neural networks (RNNs) [35] and their variant, long
short-term memory (LSTM) [36] networks, were the standard for dealing with se-
quences in tasks like language translation, text summarization, and speech recog-
nition.

RNNs and LSTMs process data sequentially, which makes them inherently
slow due to their inability to parallelize the operations. They also struggle with

long-range dependencies because the gradient signals have to backpropagate through

all the previous steps in the sequence, leading to problems like gradient vanishing
and exploding.

The Transformer model, introduced by Vaswani et al. in their landmark 2017

24 Scientific background

paper "Attention Is All You Need’ [34], addressed these issues with a novel archi-
tecture that was based entirely on attention mechanisms, dispensing with recur-
rence entirely. The key innovation of the Transformer is the self-attention mecha-
nism, which allows the model to weigh the influence of different parts of the input
data independently of their position in the sequence. This architecture enables the
parallel processing of sequences and effectively captures long-range dependen-
cies, making it significantly more efficient and powerful than its predecessors.

Transformers quickly became the go-to architecture for a wide range of NLP
tasks, giving rise to models like BERT [37], GPT [38]], and RoBERTa [39], which
have set new benchmarks in the field. BERT (Bidirectional Encoder Represen-
tations from Transformers) leverages the Transformer’s ability to process words
in relation to all the other words in a sentence, rather than one-by-one in order.
GPT (Generative Pretrained Transformer), on the other hand, uses Transformers to
generate human-like text, enabling the creation of Al that can compose everything
from poetry to prose.

Transformers are divided into two main parts: the Encoder and the Decoder.
Both the Encoder and the Decoder are composed of blocks that are repeated a
specific number of times, usually the same number for both. They both start with
the same initial step: embedding the input and adding positional encoding, which
provides information about the position of each token in the sequence to retain the
order of the sequence. From this point on, their operations differ.

* Encoder. The goal of the encoder is to process the input sequence and iden-
tify relationships that enhance our understanding of it.

The first layer of each encoder block is a self-attention layer, where the data
is analyzed to find relationships or dependencies between the tokens of the
sequence. The output of this layer is then added to the original input of the
layer through a residual connection and normalized using layer normaliza-
tion.

The next step is a Feed-Forward Network (FFN) [40], which consists of two
linear transformations with a ReLU activation in between. The result is then
added to the input of the FEN layer through another residual connection and
normalized again.

* Decoder. The goal of the decoder is to generate the output sequence, adding
meaningful tokens one by one using the information gathered by the En-
coder. Each pass of the Decoder adds one more token to the sequence. Thus,
its input is the output of the previous pass, which is the sequence with one

2.4 Transformers 25

additional token. It operates by checking what has been generated so far
and predicting the next token.

The first layer of the Decoder is a self-attention layer, but with the restriction
that it can only attend to previous positions in the output sequence. This is
achieved by masking future positions, setting their attention values to zero.

The next layer is called the "Encoder-Decoder Attention” layer. It computes
attention using the outputs of the previous layer as queries and the encoder
outputs as keys and values. Finally, we have an FFN block as before.

The output of the entire Decoder is a list with a score for each word in the
vocabulary. These scores are passed through a softmax function to convert
them into probabilities, and the most probable word is selected as the next
token in the sequence.

The success in NLP led researchers to explore the application of Transformers
in computer vision. In fact, it was the recently mentioned BERT model the one
that inspired the application of the Transformer to this field.

The obvious question now is: an image is a single piece of information, how
do we extract the different data tokens to analyze the attention? The answer is
patch embedding. The image is split into different patches. These patches can
be obtained using a convolution with a kernel and stride equal to the patch size.
Then, they are flattened to a vector. This way the image patches have the same
structure as tokens of a sequence.

2.4.1 Latent Transformers

Building upon the transformer architecture, researchers sought ways to en-
hance its efficiency and scalability, which gave rise to the concept of latent trans-
formers.

Latent transformers are a variation of the original transformer models that in-
corporate latent variables to capture deeper and more abstract representations of
the data. These latent variables act as an intermediary compressed representation
of the input data, allowing the transformer to operate on a simplified version of
the data, which can significantly reduce computational complexity. This is partic-
ularly useful in handling long sequences where the computation of self-attention
can become prohibitively expensive.

The key innovation in latent transformers is the use of a latent space, which
is a lower-dimensional space that the model’s attention mechanism can efficiently

26 Scientific background

work with. Instead of calculating the attention over the entire input sequence, the
model learns to map the input data to a latent space and then computes attention
within this smaller, more manageable space. This not only speeds up the process-
ing but also can lead to more generalizable representations, as the model is forced
to capture the most salient features in the data.

Chapter 3

State of the Art

Facial attribute editing is a rapidly evolving field within computer vision and
artificial intelligence, primarily driven by advancements in deep learning and gen-
erative models. Several methodologies have been developed to alter facial at-
tributes while preserving the individual’s identity and other essential features.
This chapter provides a comprehensive overview of the latest advancements in
facial attribute transformation techniques.

The journey of facial attribute editing began with the introduction of Gener-
ative Adversarial Networks in 2014 [27]. This adversarial process resulted in the
generation of highly realistic images. Early GAN models laid the groundwork for
subsequent advancements in facial attribute editing by demonstrating the poten-
tial of deep learning in generating synthetic images.

The first major leap in this field was marked by the development of ProGAN
in 2018 [3]. ProGAN introduced a progressive training approach where the gen-
erator starts with low-resolution images and gradually increases the resolution by
adding more layers. This method improved the stability and quality of the gen-
erated images, making it possible to create high-resolution faces with remarkable
detail. ProGAN'’s success set the stage for more sophisticated GAN architectures
focused on facial attribute manipulation.

Building on the foundation of ProGAN, NVIDIA introduced StyleGAN in 2019
[4], which brought significant improvements in the control over generated images.
StyleGAN’s innovative architecture enabled the unsupervised separation of high-
level attributes, allowing for fine-grained edits of specific features like age, hair
color, and expression. This was achieved by manipulating the latent space, where
different attributes are disentangled. The introduction of StyleGAN and its subse-

27

28 State of the Art

quent versions (StyleGAN2 [5] and StyleGAN3 [6]) marked a significant milestone,
offering unprecedented levels of realism and control in facial attribute editing.

Following the success of StyleGAN, researchers began to explore the latent
space more systematically. In 2020, InterFaceGAN [9] was introduced, which fo-
cused on identifying linear directions in the latent space corresponding to specific
facial attributes. This approach allowed for precise and continuous modifications
of attributes by moving along these directions. InterFaceGAN’s method of disen-
tangling attributes provided a clearer understanding of how different features are
represented in the latent space, leading to more controlled and accurate edit.

In 2021, the combination of GANs with language models brought a new di-
mension to facial attribute editing. StyleCLIP [11] integrated StyleGAN with CLIP
(Contrastive Language-Image Pretraining) [12], enabling users to control facial
edits through textual descriptions. This method allowed for intuitive and user-
friendly interactions, where users could simply describe the desired changes, and
the model would adjust the image accordingly. StyleCLIP demonstrated the po-
tential of combining visual and textual data, opening up new possibilities for
personalized and detailed facial edits.

The challenge of precisely manipulating attributes without unintended changes
to other features led to the development of Semantic Disentangled GAN (SDGAN)
in 2023 [24]. SDGAN introduced a semantic disentanglement generator that as-
signed facial representations to distinct attribute-specific modules. This approach
ensured that edits were confined to relevant regions, avoiding undesired modifica-
tions in other parts of the image. SDGAN'’s ability to decouple different attributes
and achieve high-quality style manipulation represented a significant advance-
ment in the field.

Late 2023 saw the introduction of ChatEdit [19], which enabled interactive fa-
cial editing through multi-turn dialogues. This model featured a dialogue module
for tracking user requests and generating responses, along with an image edit-
ing module for making the modifications. ChatEdit highlighted the potential for
dynamic, user-centric facial editing applications, allowing real-time feedback and
adjustments.

A Latent Transformer for Disentangled Face Editing in Images and Videos [13]]
built on the strengths of previous models. This method leverages transformer net-
works to achieve disentangled face editing in both images and videos. It integrates

29

seamlessly with prior advancements, enhancing the capability to manipulate at-
tributes precisely and consistently across different media types. This approach
signifies a leap towards more versatile and robust facial editing techniques. How-
ever, due to its sequential nature, this technique introduced potential issues related
to the order of operations, thereby limiting both flexibility and efficiency.

Overall, most recent works have focused on incorporating the improvements
achieved into different, more specific tasks such as video editing techniques or
text-to-image techniques and few focused on solving the latent multi-attribute
manipulation task. One of the latest innovations, a Multi-Attribute Latent Trans-
former [14], overcomes this issue by forcing the original image to go through
different models, each one transforming one attribute at a time. In this process,
the input of a given model is the output of the previous one.

30

State of the Art

Chapter 4

Methodology

With the introduction of StyleGANs, great progress has been made in face
attribute edition, but how can we edit the semantical attributes of images using
GANSs? For example, change the age or gender of a person while preserving the
general face shape and other attributes?

The main idea about editing an image using StyleGAN is that editing is achieved
through some manipulation of its latent code, thereby moving the point that rep-
resents this latent code within one of the latent spaces of StyleGAN. At first we do
not know how movement in the latent space will affect the generated image but
there are methods to learn how to navigate the latent space to edit an image in a
more controlled and semantically meaningful manner. Movement of the point in
a wrong or a random direction will in the worst case lead away from the face dis-
tribution (thereby destroying the "faceness’ of the image), or lead to an undesired,
simultaneous change of different attributes, most likely accompanied by a loss of
identity of a person on the image.

In this chapter, we fist explain in more depth the four methods we have chosen
to compare: InterFaceGAN [9], TediGAN [10], StyleCLIP [11] and Multi-Attribute
Latent Transformer [14]. We also explain our proposal to determine whether the
correlation between attributes in initial dataset can lead to changes of non targeted
attributes in the final results.

31

32 Methodology

4.1 State-of-the-Art Facial Attribute Editing Approaches

4.1.1 InterFaceGAN

Although GANs have made significant progress in face synthesis, until the
publication of this paper [9], there lacked enough understanding of what GANs
have learned in the latent representation to map a random code to a photo-realistic
image. In 2020, Yujun Shen, Ceyuan Yang, Xiaoou Tang and Bolei Zhou proposed
a framework called InterFaceGAN [9] to interpret the disentangled face represen-
tation learned by the state-of-the-art GAN models and study the properties of the
facial semantics encoded in the latent space.

InterFaceGAN deeply explores the knowledge GANSs learn in the latent repre-
sentation and how we can reuse such knowledge to control the generation process.
For example, given a latent code, how does GAN determine the attributes of the
output face, e.g., an elder man or a young woman? How are different attributes or-
ganized in the latent space? Can we manipulate the attributes of the synthesized
face as we want? How does the attribute manipulation affect the face identity?
Can we apply a well-trained GAN model for real image editing?

A typical warping between the latent vector of two images demonstrates a
smooth transition in facial features, but multiple features are entangled together,
and precise control over a specific attribute is almost impossible. Despite the
amazing quality of images GANs can generate, not much had been done on un-
derstanding and manipulating the latent space until this work. Previous work on
semantic image editing using GANs involved retraining using carefully designed
loss functions, additional attribute labels, or special architectures. Can’t we use
existing high-quality image generators to edit given images? This project suggests
we must understand how individual facial features are encoded in the latent space
both theoretically and empirically.

In order to understand how the model InterFaceGAN works, we must first
consider two properties.

Definition 4.1. An hyperplane of a n-dimensional space is an (n-1)-dimensional
subspace that can separate the original space. That is, a 2D plane can separate a
3D space and a 1D line can separate a 2D plane.

Property 1 Given n € RY with n # 0, the set {z € R? : nTz = 0} defines a hy-
perplane in IRY, and n is called the normal vector. All vectors z € R? satisfying
n'z > 0 locate from the same side of the hyperplane.

4.1 State-of-the-Art Facial Attribute Editing Approaches 33

This property suggests that when we define the hyperplane with normal vec-
tor n'z = 0, vectors points with n'z > 0areona specific side of the hyperplane.

Figure 4.1: Visual representation of Property 1 in 2-dimension space

Property 2 Given n € R? with nT = 1, which defines a hyperplane, and a multi-
variate random variable z ~ A (0,1;), we have

P2 2 20y 700 > (1= 30 (1~ 2072

for any « > 1 and d > 4. Here, P(-) stands for probability and c is a fixed positive
constant.

According to this second property, any latent z ~ N(0,1;) is likely to be close
to a given hyperplane. Therefore, we can model a semantic into the linear sub-
space n.

With this in mind, we will try to understand the GAN latent space. As we
mentioned in a previous chapter, the generator in GAN can be viewed as a func-
tion ¢ : Z — X where Z is typically a Gaussian distribution and X is the image
space. Consider a semantic space S C IR with m semantics (attributes) and a
semantic scoring function fs : X — S. Intuitively, the semantic score of a latent is
measured as fs(g(z)).

34 Methodology

The InterFaceGAN paper suggests that we observe linear changes in the se-
mantics contained in images when we linearly interpolate between two latent
codes. Suppose there is only one semantic (m = 1) and consider a hyperplane
with a normal vector n that separates the semantic.

T

Definition 4.2. We call the distance to a sample z as d(n,z) = n'z.

We expect the distance to be proportional to the semantic score, f(g(z)) =
Ad(n,z).

We now consider the general case with m > 1 attributes. Consider s =
[$1,-..,5m] as the true semantic score of a generated image, s ~ fs(g(z)) = ANz
where A is a constant vector and N is a matrix containing m separation bound-
aries. Using basic statistical rules, we can compute the mean and covariance statis-
tics as

#s = E(AN'z) = ANTE(z) =0,
s =E(ANTzz'NA) = ANTE(zz")NA = ANTNA.

We can then conclude that s is actually sampled from a normal distribution
s ~ N(0,%;). Intuitively, for each vector in s to be completely disentangled, X
must be a diagonal matrix. (1;)T(n;) can also be used to measure the entangle-
ment between the i-th and j-th attribute.

Suppose we found the decision boundary 7 of a certain attribute. We edit the
original latent code z with zqgit = z + an. When multiple semantics are entangled,
editing one attribute can affect other attributes. For example, moving a point in
the ny direction will not only affect attribute 1 but will also change the distance
of attribute 2. To counteract this, the paper applies projection to make N'N a
diagonal matrix where semantics are independent of each other.

With more than two attributes, we subtract the projection from the primal di-
rection 77 onto the plane constructed by all conditioned directions. This way, we
can avoid modifying unwanted attributes.

But, how do we now apply the learned semantics to a given image for editing
applications? The InterFaceGAN work describes two different approaches: GAN
inversion and further training.

The first approach, GAN inversion, can be challenging because GANs do not
capture the complete image distribution and there is often a loss of information.

4.1 State-of-the-Art Facial Attribute Editing Approaches 35

Figure 4.2: Visual representation of the conditional manipulation via subspace projection,
extracted from [9].

Among the two approaches to GAN inversion discussed in the previous chapter,
this proposal chooses LIA as a baseline for encoder-based inversion and searches
the W+ space for optimization-based inversion, as suggested by, for instance, Im-
age2StyleGAN paper. Optimization-based methods perform better but are much
slower compared to encoder-based approaches.

Another approach is to train additional models on a synthetically generated
paired dataset using a learned InterFaceGAN. The InterFaceGAN model can gen-
erate unlimited high-quality paired data. The idea is to train an image-to-image
translation model such as pix2pixHD on the generated data. To implement the
continuous manipulation, the translation model first learns an identical mapping
network and a network fine-tuned to attribute translation. At inference, we in-
terpolate between the model weights from the identical model to the fine-tuned
model.

This last approach has a much faster inference speed, and the capability to
fully preserve additional information since it removes the need for reconstruction.
However, due to the inherent limitations of pix2pixHD, the model cannot learn
large movements such as pose and smile. Thus, the applications are limited.

To sum up, InterFaceGAN understands the GAN latent space by assuming
linear changes in the semantics. The observations conclude that each semantic is
represented as a normal distribution based on the normal vector of the hyperplane.
By considering a hyperplane that can linearly separate the latent space according
to semantic attributes, we can model this hyperplane using a linear classifier. A
linear SVM from latent to semantic labels can define the direction of semantic

36 Methodology

attributes in the latent space. This is disentangled using subspace projection.

412 TediGAN

Concurrent to the growing interest in utilizing semantic editing directions in
the latent space for editing real images, we are also witnessing exciting break-
throughs in multimodal learning. Given an image and a target description in
natural language, the aim of text-guided image manipulation is to generate im-
ages that reflect the desired semantic changes while also preserving the details or
attributes not mentioned in the text. Text-guided image editing is one of the most
natural and intuitive ways of manipulating images, and, hence, it comes with no
surprise that several recent works have focused on mapping target textual descrip-
tions to editing directions in the latent space of StyleGAN [4].

TediGAN [10] enforces the text and image matching by mapping the images
and the text to the same latent space and performs further optimization to pre-
serve the identity of the subjects in the original image. For doing this, this paper
proposes a GAN inversion technique that can map multi-modal information into
a common latent space of a pretrained StyleGAN where the instance-level image-
text alignment can be learned.

The inversion module aims at training an image encoder that can map a real
face image to the latent space of a fixed pretrained StyleGAN model. The reason
behind taking a trained StyleGAN instead of training one from scratch is that, in
this way, TediGAN goes beyond the limitations of a paired text-image dataset. The
StyleGAN is trained in an unsupervised setting and covers much higher quality
and wider diversity, producing in this way satisfactory edited results with images
in the wild. In order to facilitate subsequent alignment with text attributes, the
goal for inversion is not only to reconstruct the input image by pixel values but
also to acquire the inverted code that is semantically meaningful and interpretable.

In order to train an encoder for GAN inversion, TediGAN acts different from
conventional methods in two main things: (a) the encoder is trained with real
images rather than with synthesized images, making it more applicable to real
applications; (b) the reconstruction is at the image space instead of latent space,
which provides semantic knowledge and accurate supervision and allows integra-
tion of powerful image generation losses such as perceptual loss and LPIPS [28].
Hence, the training process can be formulated as

min £z, =[x = G(Es(x) | + A1 |F(x) = F(G(E(x))) > = A2E [Du(G(Eo(x)))],

4.1 State-of-the-Art Facial Attribute Editing Approaches 37

. A
min Lp, = E [Du(G(Eu(x)))] — E[Do(x)] + S [[VDo ()],
where ©, and ©, are learnable parameters, A1, A2, and A3 are the hyper-parameters,
and F(-) denotes the VGG feature extraction model.

Once the inversion module is trained, given a real image, TediGAN maps it
into the W space of StyleGAN. This paper proposes a visual-linguistic similarity
module to project the image and text into a common embedding space. Given a
real image and its descriptions, we encode them into the W space by using the
previously trained image encoder and a text encoder. The obtained latent code is
the concatenation of L different C-dimensional w vectors, one for each input layer
of StyleGAN. The multimodal alignment can be trained with

L 2

Y piw] — w))

i=1

min £; =
Sl

2

where ©; represents the parameters of the text encoder, subscript | means lin-
guistic; w?, w! € WL*C are the obtained image embedding and text embedding;
w’ = f(E,(x)) is the projected code of the image embedding z in the input latent
space Z using a non-linear mapping network f : Z — W; w' shares a similar
definition; w’ and w' are with the same shape L x C, meaning to have L layers
and each with a C-dimensional latent code; and p; is the weight of i-th layer in the
latent code.

To face the challenge of identity preservation, this method implements an in-
stance level optimization module to precisely manipulate the desired attributes
consistent with the descriptions while faithfully reconstructing the unconcerned
ones. It uses the inverted latent code z as the initialization, and the image encoder
is included as a regularization to preserve the latent code within the semantic
domain of the generator. To summarize, the objective function for optimization is

2" = argmin||x — G(2)[[; + A1 |F(x) = F(G(2)) 2 + Az ||z — Eo(G(2)) Iz,

where x is the original image to manipulate, A1 and A; are the loss weights corre-
sponding to the perceptual loss and the encoder regularization term, respectively.

413 Style CLIP

Recently, more advanced techniques that integrate the power of natural lan-
guage models with image generation have emerged. Contrastive Language-Image

38 Methodology

Pretraining (CLIP) [12], created in 2020, provides an effective common embedding
for images and text captions.

CLIP is a model trained to pair images with text. To do so, there are two in-
dependent encoders: one for the images and one for the text, that are trained to
produce a vector in the same dimensional space. For every batch of images with
their captions, a list of image vectors Iy,..., I, and a list of text vectors Ty,..., T,
are produced. Then, a scalar product is made among all the image and text vectors
in a batch, obtaining a matrix of size n x n. This matrix contains on the diagonal
the product corresponding to correct match of image and text vectors and outside
- the wrong ones. Consequently, the objective of the model, a contrastive loss, is
to maximize the values in the diagonal and minimize the ones outside.

StyleCLIP [11] uses the recent CLIP model in a loss function to train a mapping
network that takes text descriptions of image edits and an image encoded in the
latent space of a pre-trained StyleGAN generator and predicts an offset vector that
transforms the input image according to the text description of the edit.

There are three StyleCLIP approaches. The first approach for leveraging CLIP
is a simple latent optimization technique. This method regresses the input latent
code in the StyleGAN’s W+ space to the desired latent code by minimizing a loss
computed in the CLIP space. This approach performs a dedicated optimization
for each input pair, making it versatile, but also slowing it down as each manipu-
lation requires several minutes.

The second approach uses an auxiliary mapping network to manipulate the
image’s desired attributes as described by the text prompt. The mapper consists
of three fully connected networks that correspond to three different levels of de-
tails: coarse, medium, and fine. These networks have the same architecture as the
StyleGAN mapper but with fewer layers, 4 instead of 8. Although the mapper
infers manipulation steps based on the input image for a given text prompt, these
steps have high cosine similarities over vastly different input images. This means
that the direction of manipulation steps in the latent space for a text prompt is
generally the same irrespective of the input latent code.

The third approach described in the StyleCLIP paper maps the text prompts
into a global direction in StyleGAN'’s style space S. This approach enables fine-
grained disentangled manipulations because style space is more disentangled than
other latent spaces.

4.1 State-of-the-Art Facial Attribute Editing Approaches 39

4.1.4 Single Latent Transformer

Another advanced model for face editing is the proposed in [13]. This method,
similar to InterfaceGAN, consists of using a StyleGAN encoder-decoder mecha-
nism to project the images into the StyleGAN latent space, transform such latent
representation of the image, and decode it back into an actual image.

In this work, they train 40 different Latent Transformers (one for each target
attribute) that modify the latent representation w of the image given a target value
k and an intensity coefficient a. These Latent Transformers consist of 18 indepen-
dent fully connected layers of 512 neurons. This corresponds to the projection of
the latent space of StyleGAN. As we explained in the previous chapter, the regular
latent space W consists of 512 encoding values, while its projection W is formed
by 18 layers of 512 elements each. Each Latent Transformer independent layer
maps to one of the projected latent space layers and they do not share any connec-
tion with the other independent layers. Given this, each layer has a 512 encoding
vector chunk from the latent representation and its output is another 512 vector.

All individual 18 vectors of 512 elements each are concatenated to form the
transformed latent representation f(w). This output provides the direction of the
attribute learned by the Latent Transformer. In order to control its intensity and
direction (positive or negative transformation), it is necessary to multiply it by a
coefficient value a. The result of such multiplication is added to the original latent
space representation to achieve the final transformed latent encoding of the image

Tk(ZU).

Tk
18 independent fully
w (1 x 9216) connected layers (18 x 512) £(w) (1 x 9216)) x @
--------- > B e N
--------- > [EEEETEEE 3 ¢
>X | o E S emeesaseres
output
attrib !
(attribute v
coefficient)
————————— > B
Te(w) (1 x 9216)

Figure 4.3: Architecture of an individual Latent Transformer in charge of learning attribute
k, extracted from [14].

40 Methodology

The question now is how to calculate the coefficient value a. During training,
each sample’s latent representation w is inputted into a Latent Classifier, which
predicts the probabilities for all 40 attributes. The architecture of the Latent Clas-
sifier consists of 3 fully connected layers that use the ReLU as the activation func-
tion. The classifier C is fixed during the training of the Latent Transformer and is
a key component of the architecture since it is in charge of predicting the presence
of an attribute, and this has a direct impact on the training losses and evaluation
metrics.

During training, only the attribute currently being learned is of interest. The
objective is to invert the presence of the attribute in the image. If the predicted
probability for the attribute exceeds 0.5, the target value, which is considered as
the attribute coefficient «, is set to -1; otherwise, it is set to 1. By doing so, it is
easier for the model to better learn which elements from the latent representation
of the image are directly related to the attribute to be transformed. This procedure
is repeated for all training samples and each individual attribute.

4.1.5 Latent Multi-Attribute Transformer

One of the latest contributions to facial attribute manipulation is an unified
transformer capable of learning multi-attribute transformations. This approach
builds on the previous method we have explained, the Single Latent Transformer.
This proposal consists of unifying all the individual transformers into a single one
capable of learning multi-attribute transformations.

The Latent Multi-Attribute Transformer [14] uses the same latent encoding and
decoding approach by using Image2StyleGAN [31]] and the same Latent Classifier
to predict the probability of each attribute in a given image.

In this proposal, however, StyleGAN projects the image in an extended latent
space W+ that consists of 18 layers of 512 encoding values each, compared to the
single layer of 512 values from the original StyleGAN in the latent space W.

As all the attributes are being learning with just one transformer, the attribute
coefficients encoding vector « is a 1 X n sized vector of floating values, where 7 is
the total number of attributes the transformer has learned. The encoding value of
a given attribute can be any real number:

* A value of 0 would mean no change at all; the attribute remains as it origi-
nally is in the base image.

4.1 State-of-the-Art Facial Attribute Editing Approaches 41

f(w) x coeffs (n x 512)
f(w) (1 x 9216)

flw) (1 x512) attribute coefficients T(w) (1 x9216)

1xn)

Figure 4.4: Architecture of the Multi-Attribute Latent Transformer, extracted from [14].

* When the value is > 0 it means positive transformation and it aims to in-
crease the presence of the given attribute in the image. The higher the value,
the higher the intensity of its presence.

¢ If the value is < 0, the transformation is negative and it aims to reduce or
invert the presence of the attribute. Smaller, more negative values mean
higher intensity of the inversion.

The Latent Transformer network consists of 18 independent fully connected
layers, each of them is in charge of one of the 18 blocks from the projected latent
representation in W+, w, that can be depicted as either a 18 x 512 or a 1 x 9216
vector. The intermediate result of the Transformer, f(w) is the concatenation of
the individual layers from the transformer back into a single vector of 1 x 9216
latent values.

To minimize the memory usage, this approach introduces a Dimension Reduc-
tion Block, that consists of a single fully connected layer that compresses the 18
dimensions of the extended latent space representation of the image (f (w)1x9216),
into one single layer of 512 values (f(w)1xs512). This block ensures that the main
information required for transforming the facial attributes is preserved, without
introducing artifacts or undesired side effects.

At this point, with the aim of applying the transformation in a positive or neg-
ative direction with different degrees of intensity, a multiplication is needed, that
is, the Attribute Coefficient Multiplication Block. This block multiplies the output
of the previous block, f(w)j«512, with the attribute coefficients encoding vector «
transposed.

42 Methodology

The next step is to take the resulting matrix and generate the final output with
dimension 1 x 9216. The Dimension Upscaling and Merging Block is in charge of
unifying all the individual attribute transformations into a single latent vector and
upsampling it back to match the original projected latent space representation.
This block learns to differentiate between attributes and how to combine all the
transformations into a single output.

Then, this approach combines the original latent representation of the image
w with the final transformation output T(w) using a simple addition:

T (w) = w+ T(w)

Finally, just like in the previous method, the results can be visualized by de-
coding T'(w) using the Image2StyleGAN decoder. It generates the resulting image
with all the attribute transformations applied.

4.2 Attribute Correlation

To evaluate the attribute correlation in face editing models, we selected two
models for comparison: the best-performing model based on various performance
metrics (detailed in the next chapter), and its simplified version, which serves as
the baseline. Both models were trained using the same dataset to ensure consis-
tency in comparison. Specific training parameters and configurations were kept
identical across both models to ensure a fair comparison.

After training, the focus shifts to analyzing the relationships between facial
attributes manipulated by the models. This analysis aims to understand how the
presence or alteration of one attribute affects the probability of other attributes in
the edited images.

For each attribute (e.g., smiling, male, eyeglasses), we first calculate the base-
line probability of a given image having this attribute. This probability represents
how likely the attribute is present in the images generated or edited by the model
without any intentional attribute manipulation.

To analyze the correlation, we systematically modify each non-target attribute
one by one while keeping the target attribute constant. For example, if evalu-
ating the "smiling" attribute, we would alter other attributes such as "male" and
"eyeglasses" individually, observing the changes in the probability of the image

4.2 Attribute Correlation 43

exhibiting a smile.

After manipulating each non-target attribute, we recalculate the probability of
the target attribute in the modified images. This process allows us to measure any
changes in the probability of the target attribute resulting from modifications to
other attributes. For instance, if changing the "eyeglasses" attribute significantly
affects the probability of the image having a smile, this correlation is noted and
quantified.

The observed correlations between attributes in the modified images are then
compared with the initial correlations present in the training dataset. This compar-
ison helps to determine if the models learned or altered the attribute relationships
in a way that deviates from the original dataset patterns.

Finally, we compare the results of the two evaluated models to identify dif-
ferences in how attribute correlations are handled. This analysis provides insight
into the best performing models” behavior and effectiveness in isolating or unin-
tentionally linking facial features.

44

Methodology

Chapter 5

Experiments and Results

In this chapter, we present the results of the experiments that we conducted to
compare different state-of-the-art approaches. For doing so, we first analyze the
used datasets. We then describe the statistical and performance metrics that are
employed to quantitatively evaluate the quality of the models. We also describe the
evaluation pipeline and general settings. The chapter concludes with the results
of all the performed experiments.

5.1 Datasets

First of all, we describe the datasets we use for training and testing the models
explained in the previous chapter.

51.1 Training set

The training dataset plays a crucial role in the development and learning pro-
cess of the models. It provides the necessary samples to train the model on a
diverse range of facial attributes. For this work, we use the CelebA-HQ [3] dataset.

CelebA-HQ is a high-quality version of CelebA that consists of 30.000 images
at 10242 resolution, each annotated by 40 facial attributes. A notable property
of the dataset is the distribution of binary attributes. Attributes have a value of
either 1 or -1, denoting the presence or absence of said attribute. As we can see in
Figure 4.1, this distribution in the CelebA-HQ dataset is not always equal. Most
of the time, the absence of an attribute is more common than its presence. In
fact, only "No Beard’, "Young’, ’Attractive’ and 'Wearing Lipstick” have positive
majority classes, that is, at least 50% of the samples are positive. This imbalance

45

46 Experiments and Results

is most likely intrinsic, thus a result of the nature of the data space, as the 40
attributes are most likely not distributed evenly in the human population.

25000 A

20000 A

15000 4

10000 +

Number of images with attribute k

5000

DU (= - w = R] = o W oLy L ow > n = e
BS540 3Lz b5 0 sb50 882 SR ELEYRsRED
555385EEEE'J,I‘SEEJ-EzzrlﬁEéigﬂu?%fﬂﬁﬁgugmgﬁz\ﬁ:
(I | @ w a | | © I
[5) a2 E=aTs 8 @ o> T c x e e] = o £ - o o @
2 o s b=l <]] W
S £S5293: 28ZdrsgiiLi etEifsEi820genEE
g EJdE §u o0 EeEglssgfea S=lfda o SEELGGE
(=] = ! s £ @ mE | m‘“hm [= "1}
£ o > o £ S gad 5 =) o U 3 c £ E g
s = U © o = n = £ 6283 s
T 2 2 w G S| 2 ©
g_:\ o T 0 mg 5 @ = u g
5 £ x & 220 &
o
=

40 attributes labeled in CelebA-HQ

Figure 5.1: Distribution of each attribute on the CelebA-HQ dataset.

However, some of the imbalance may stem from the sampling of the data set,
also known as extrinsic imbalance [17]. A possible example is the attribute "At-
tractive’. There may be a sample bias for this attribute, as the subjects in the
CelebA-HQ dataset are celebrities, and, therefore, represent a sample of individu-
als that are commonly more attractive than the general population.

For our research, we have followed [14] and decided to work only with 20 of
the 40 attributes due to GPU constraints, Table 5.1. As we can see in Figure 5.2,
the most extreme case of imbalance of an attribute in the CelebA-HQ dataset out
of the 20 attributes we have selected is the attribute ‘Bald’, where only 2.37% of all
samples are positive.

5.1 Datasets 47

Bald Male Smiling
Big Lips Young No_Beard
Big_Nose Pale_Skin Narrow_Eyes
Bangs Attractive Wearing_Lipstick
Eyeglasses High_Cheekbones Gray_Hair
Blond_Hair Bushy_Eyebrows Chubby

Wavy_Hair Arched_Eyebrows

Table 5.1: Selected 20 attributes

107
Positive

EEE Negative

0.8 4

e
o

Positive-Negative Ratio

o
IS

0.2

0.0

Bald
Male {

Chubby |

Smiling
Big_Lips

Young
No_Beard
Big_Nose 1
Pale_skin
Narrow_Eyes 1
Bangs
Attractive
Wearing_Lipstick
Eyeglasses |
High_Cheekbones |

Gray_Hair
Blond_Hair 4
Bushy_Eyebrows
Wavy_Hair 4
Arched_Eyebrows

Attributes

Figure 5.2: Presence and absence of the 20 selected attributes in the CelebA-HQ dataset.

Attribute Correlation

The amount of annotated attributes and the total number of samples makes
CelebA-HQ an ideal dataset to analyze how the correlation between attributes in
the training dataset can introduce a bias in face editing models.

Previous works, such as [21] and [20], analyze the correlation between at-
tributes by dividing attributes into location-based groups. For this work, we want
to take it a step further and study statistically the CelebA-HQ dataset.

In Figure 5.3, we can see that, for example, male faces do not correlate well with
the "Wearing Lipstick” attribute. This feature correlates almost exclusively with fe-
male faces. Moreover, a large fraction of the male faces have a beard, while this
is not the case for women. Faces labelled as ’Attractive” mostly belong to young

48

Experiments and Results

Bald 002 -0.02 -0.22 -0.15
Male - 0.20 0.19 -0.33 RVGEY 0.45 -
Smiling - 0.02 -0. 0.06 0.11
Big_Lips - -0.02 -0.19 0.08 -0.01
Young - -0.22 0.33 -0.06 -0.32
No_Beard - -0.15 EKEN 0.11 0.08
Big_Nose - 0.18 045 014 -0.01 -0.32
Pale_Skin - -0.03 -0.08 -0.10 001 0.06 008
Narrow_Eyes - 0.01 004 011 011 -0.02 -0.01 0.09
Bangs - -0.07 -0.16 006 002 0.03 016 -0.09
Attractive - -0.17 -0.41 0.09 0.07 043 023 035
Wearing_Lipstick - -0.18 [RiX:CH 0.16 0.20 030 055 -0.40
Eyeglasses - 0.14 022 -0.03 -0.04 -0.24 -0.13 0.17
High_Cheekbones - -0.00 -0.25 009 -003 022 007
Gray_Hair- 020 019 001 -0.10 -0.37 -0.04 019
Blond_Hair - -0.07 0.31 0.09 0.02 007 021 -0.21
Bushy Eyebrows - -0.02 0.28 -0.03 -0.01 0.09 -0.23 015
Chubby - 027 028 0.05 -0.01 -0.33 023 032
‘Wavy Hair--0.12 031 006 012 010 019 -0.14

Arched_Eyebrows - -0.09

o
b
ES
e
=
@
o
i
@
o
o
©
&
i
7}

Male -

8

smiling - &
Big_Lips - &
Young -
No_Beard - &
Big_Nose -

Figure 5.3:

0.18 0.

014 -0.

0.03 001 -0.07 -0.17 -0.18 0.14 -0.00
0.08 0.04 -0.16 -0.41 022 025 019
0.10 011 0.06 003 016 -0.03 RUFAS 0.01
001 011 0.02 007 020 -0.04 009 -0.10
0.06 -0.02 003 043 030 -0.24 -0.03 -037
008 -0.01 016 023 055 -0.13 022 -0.04
009 -0.09 -0.35 -0.40 017 007 019
0.04 0.09 005 -0.04 011 -0.02

-0.04 -0.

0.04
0.09
0.05 0.
0.04 0.
011
-0.02
0.05 0.
0.03
0.05 0.05 -0.10 0.25 0.21
0.00 002 003 019 033 -010 011 -0.09
0.02 000 -0.04 025 049 -0.16 022 -0.12
! ! : ! : . ! !
s g 8 ¢ ¥ 3 8§ 3
% & § € ©§ @ g5 £
o \] 2 8 = 3 >
¥z £ 3 v £ 37
& g z o £ @ &
8 £ o il
2 = [
5 S
H)
S

0.20 0.

1.00
0.07 -0.02 027 -0.12 -0.09
031 028 028 031
009 -0.03 005 006 014 075
002 001 001 012 018
0.07 009 -0.33 010 0.18
021 023 023 019 029 - 050
021 015 032 0.14 -0.15
0.05 -0.03 -0.05 000 0.02
-025
0.02 -0.00
0.03 -0.04
0.19 025
- 0.00
033 049
010 -0.16
011 0.22 --0.25
-0.09 -0.12
011 0.14
-—0.50
0.07 -0.05
0.11 -0.13
0.11 -0.07 -
—=0.75

o
-
&
S
o
I+
S
i
w
)
-
©

Blond_Hair -
Bushy_Eyebrows - ¢
Wavy_Hair -}

"
=
e
a5
[
5
&

o
il

2
g

Correlation between the selected 20 attributes of the CelebA-HQ dataset.

and female faces wearing accessories and makeup. Let us delve more deeply into

these correlations.

A key challenge for analyzing the CelebA-HQ dataset is the multidimensional
nature of the data; the large number of samples combined with the fact that each
sample has multiple attributes, makes visualizing and consequently analyzing
how attributes correlate challenging.

To explore this correlation, we employ principal component analysis (PCA),
which helps us reduce the dimensionality of the data while preserving its es-
sential characteristics. PCA is a dimension reduction technique that utilizes the
eigenvectors of the correlation matrix to calculate the principal components [22].

To accurately comprehend the utility of PCA in this scenario, it is essential to

5.1 Datasets 49

first elucidate the mathematical principles underlying this statistical concept. First
of all, it is important to standardize the data, which involves centering the data by
subtracting the mean and scaling it by dividing by the standard deviation. Stan-
dardization ensures that all features have equal importance in the analysis.

After the standardization of the data, we have to compute the covariance ma-
trix. The covariance between two variables measures how they change together.
The covariance matrix for a dataset with n features is an n X n matrix that sum-
marizes the relationships between all pairs of features. In our context, we have a
30.000 x 20 matrix.

The next step is to compute the eigenvalues and eigenvectors of the covariance
matrix. These eigenvalues represent the amount of variance explained by each
eigenvector (principal component). Eigenvalues and eigenvectors are mathemati-
cal concepts related to linear transformations and matrices. In the context of PCA,
they play a central role in identifying the principal components.

¢ Eigenvalue.An eigenvalue represents a scalar that indicates how much vari-
ance is explained by the corresponding eigenvector. In PCA, eigenvalues
quantify the importance of each principal component. They are always
non-negative, and the eigenvalue corresponding to a principal component
measures the proportion of the total variance in the data explained by that
component.

¢ Eigenvector. An eigenvector is a vector associated with an eigenvalue. In
PCA, eigenvectors represent the directions along which the data varies the
most. Each eigenvector points in a specific direction in the feature space and
corresponds to a principal component. Eigenvectors are typically normal-
ized, meaning their length is 1.

We now choose a subset of the top eigenvectors to form a transformation ma-
trix. After computing the eigenvalues and eigenvectors of the covariance matrix,
they are sorted in descending order based on the magnitude of their eigenvalues.
The principal components are then selected from the top eigenvectors. The first
principal component corresponds to the eigenvector with the largest eigenvalue
(highest variance), the second principal component corresponds to the eigenvec-
tor with the second-largest eigenvalue (second highest variance), and so on. These
principal components are orthogonal, meaning they are uncorrelated. This matrix
is used to project the original data into a lower-dimensional space, resulting in the

50 Experiments and Results

reduced dataset.

For the concrete implementation of this PCA we have used the scikit-learn
module.

Male smiling Big_Lips Young

pc2

= Pc1
No_Beard Big_Nose

pc2
pc2

w1
High_Cheekbones

pc2

=
Blond_Hair

pc1
Wavy_Hair

pe2

Figure 5.4: PCA of the 20 selected attributes.

The main conclusions we extract from Figure 5.4 are the following:

¢ In the 'Bald’, ‘Male’, 'No Beard” and "Wearing Lipstick’ plots there is a strong
horizontal separation between the two groups (red and blue), suggesting that
the principal attributes used in these plots capture a significant difference
between the bald and no bald, male and female, no beard and beard and
wearing lipstick and not wearing lipstick groups, respectively.

¢ For the 'Smiling” and "High Cheekbones’ plot, although there is a tendency
for the red points to be above the blue points, the overlap in the plots individ-
ually only indicate that the features used are not as effective in distinguishing

5.1 Datasets 51

Contribution

0.8

0.6

0.4

0.2 1

0.0-

between smiling and non-smiling and high cheekbones and non-high cheek-
bones categories. However, the similarity between both plots indicate that
both attributes are highly correlated. We can confirm this by checking their
correlation in the Figure 5.3.

We can see a similar dynamic between "Attractive’ and "Young’. These two
attributes are also highly correlated attributes in the dataset.

An opposite effect can be observed between ‘Big Nose” and 'Pale Skin’. The
plots showcase a tendency in the samples of the smaller the nose the palest
the skin.

The concentration of blue points in the 'Chubby” plot may indicate a ho-
mogeneous group with similar characteristics for chubby faces, while the
dispersion of red points may suggest greater variability within thin faces.

N pPCl

. pCc2

m PC3

o 0 [a2 0 0) = w = v

= 2 2 = c B 3 £] & = =]] = H E z = =
8 © = 5 S © =} I > c E= p=] jd c o]
= = - o = [l i) 1v] 7]) =) T T [=] I 2

£ | 2 a | ‘ 8 & a =& 8 > | 8 2 - &

gl 2 { =4 x H 5] e] [U [

3] o = el - g [i g > F >

& &) g | @ S o

Z E g o £ ° & 9 !

<] £ > =

z 5 Y, Z]

= W =

E g a g

£ z

Figure 5.5: Attribute Contributions to Principal Components.

At this point, it is obvious that there is a strong correlation between some of
the attributes. But, what is the root cause of this correlation? Is this correlation
just a representation of society? It might be one of the reasons, but definitely not
the only one.

52 Experiments and Results

An analysis made in [23] about the incorrectness of the labelling in the CelebA
dataset estimate that 6.78% of images have at least one contradictory label. This
means that, for instance, there are images labeled as "Straight Hair” and "Wavy
Hair” at the same time. We have avoided introducing this incorrectness in our
models by avoiding contradictory features in the selection of the 20 attributes.

On the other hand, most attributes are subjective and have been manually la-
belled. As discussed by previous work, on average attributes have a gender skew
of 80.0% [25]. For example, 27.9% of images labeled with "Male” are also labeled
with “Attractive’, whereas 67.9% of images not labeled with "Male” are not. It is
difficult to tell to what extent this is a result of bias in labeling rather than bias in
data selection, but there are some cases were correlation is clearly indicative of bad
labeling. The clearest example is high cheekbones, which has a correlation of 0.68
with smiling. 85.6% of images labeled high cheekbones are also labeled smiling.
This is likely because cheekbones appear higher while smiling, particularly when
the smile is wide. Therefore, it is highly unlikely that high cheekbones provides an
accurate label of cheekbone height irrespective of expression. Additionally, some
gender correlations are too strong to be explained by data selection. We find that
women are 3.1 times more likely to be labeled with 'Pointy nose’, whereas men
are 2.9 times more likely to be labeled with 'Big nose’. This is despite the fact that
the probability of a random male nose being larger than a random female nose in
terms of segment size is just 54.3%, indicating gender bias substantially influences
labeling.

We have analyzed the correlation in human labeled attributes in the CelebA-
HQ dataset. Later, we will apply the gained insights to address the effects of this
attribute correlation when training the face editing models with it. Moreover, we
will conclude in which cases the bias generated by this correlations is positive and
in which is not.

5.1.2 Testing set

The test dataset is used to evaluate the performance and generalization capa-
bilities of the trained models in different scenarios. It consists of a subset of 1k
images without labels from the FFHQ [4] dataset.

FFHQ is a dataset of 70.000 high-quality PNG images at 1024 x 1024 resolution,
featuring diverse human faces with variation in age, ethnicity, and accessories such
as eyeglasses and hats. Originally designed for GAN benchmarking, the images
were obtained from Flickr and were automatically aligned and cropped using dlib

5.2 Metric Evaluation 53

[16], inheriting the website’s biases.

5.2 Metric Evaluation

Metric evaluation plays a pivotal role in the development and enhancement of
facial editing systems. These metrics serve as quantitative and qualitative mea-
sures that allow us to understand the performance of different approaches.

5.2.1 Statistical Metrics

Key points for evaluating facial editing models include:

* Target attribute modification is the model’s ability to accurately and ef-
fectively alter the specified attribute while achieving a natural and realistic
appearance. This metric is essential for assessing the functionality and prac-
ticality of the face editing model. The target modification should be notice-
able but not exaggerated, and it should blend seamlessly with the rest of the
face. For measuring this, we compute:

— Attribute Change Ratio (CR). It calculates the proportion of target at-
tributes that are effectively altered. An attribute is deemed modified if
its classification probability exceeds 0.5 when the intention is to enhance
it, or falls below 0.5 when the intention is to reduce it. The final score is
the average of all successfully altered attributes when there are multi-
ple attributes involved. A score nearer to 1 signifies better performance.
The CR value is computed using the following formula:

Yt (IC(w); — ti] < 0.5)
#t

CR =

where:

+ C(x);: Classification probability for attribute i.

+ t;: Target value of attribute i, either 1 or 0.

+ #t: Total number of target attributes.
For example, consider a scenario where there are 5 target attributes with
the following classification probabilities and target values:
To calculate the CR value, we first determine whether each attribute is
successfully modified:

+ Big Nose: |0.7 — 1| = 0.3 (successfully modified, < 0.5)

+ Smiling: |0.2 — 1| = 0.8 (not successfully modified, > 0.5)

Experiments and Results

Attribute (i) Classification Probability (C(w);) | Target Value (t;)
Big Nose 0.7 1
Smiling 0.2 1
Wearing Lipstick 0.8 1
Male 0.4 0
Wavy Hair 0.9 1

Table 5.2: Example of Classification Probabilities and Target Values

+ Wearing Lipstick: |0.8 — 1| = 0.2 (successfully modified, < 0.5)
+ Male: [0.4 — 0] = 0.4 (successfully modified, < 0.5)
+ Wavy Hair: |0.9 — 1| = 0.1 (successfully modified, < 0.5)

Therefore, the CR value is:

4
CR=_-=038
5

In this example, the CR value is 0.8, indicating that 80% of the attributes
were effectively altered according to their respective target values but
that 20% weren’t.

* Non-target attribute preservation refers to the model’s ability to retain all
facial features that are not intended to be altered. This is vital for maintain-
ing the identity and overall integrity of the face. For instance, if we choose to
change the hair color of a person with a model, it should ensure that other at-
tributes such as facial structure, eye color, and skin tone remain unchanged.
Crucial factors of non-target attribute preservation include:

— Identity Preservation (IP). The edited image should still be recogniz-
able as the same individual. To measure this, IP calculates the Mean
Squared Error (MSE) between the original latent representation w of
the image and its transformed version T(w). In this context, a lower
value indicates better performance.

IP = MSE(w, T(w))

— Attribute Preservation (AP). Attributes not related to the intended edit
should remain consistent. To measure this, AP calculates the proportion
of non-target attributes that remain unchanged. Unlike the Attribute
Change Ratio, which focuses on modified attributes, this metric specif-
ically evaluates the stability of non-target attributes. It calculates the

5.2 Metric Evaluation 55

ratio of attributes that remain unaltered, with the following formula:

Lito (IC(w)i = C(T(w));| < 0.25)
#nt

AP =

where nt is the list of non-target attributes.

For example, consider a scenario where there are 5 non-target attributes
with the following classification probabilities before and after transfor-

mation:
Attribute (/) | Original Probability (C(w);) | Transformed Probability (C(T(w));)
No Beard 0.7 0.65
Bald 0.2 0.3
Attractive 0.8 0.75

Table 5.3: Example of Classification Probabilities Before and After Transformation

To calculate the AP value, we first determine whether each non-target
attribute remains unchanged (i.e., if the absolute difference is less than
0.25):

+ No Beard: |0.7 — 0.65| = 0.05 (unchanged, < 0.25)

+ Bald: [0.2 — 0.3 = 0.1 (unchanged, < 0.25)

+ Attractive: |0.8 — 0.75| = 0.05 (unchanged, < 0.25)

All 3 attributes are considered unchanged, so the AP value is:

5
AP=-=1
5

In this example, the AP value is 1, indicating perfect stability as all
non-target attributes remained effectively unchanged.

The ideal goal is to reach the right balance between CR, IP and AP.

5.2.2 Performance Metrics

For evaluating and comparing the performance of the selected models, we take
into account three different metrics:

¢ Training Time. Training time measures how long a model takes to learn
from a dataset. It varies based on dataset size, model architecture, hyper-
parameters, and computational power. Efficient training time is crucial for
quick experimentation and model refinement. Long training times can delay
projects and reduce productivity.

56 Experiments and Results

* Inference Time. Speed is a critical metric that measures how quickly a model
can process inputs and generate outputs. Factors affecting speed include
model complexity, the efficiency of the underlying algorithms, and the hard-
ware used for inference.

* GPU Memory. GPU memory usage indicates the amount of GPU memory
required by the model during inference. High GPU memory usage can be
a bottleneck, especially in environments where GPU resources are shared or
limited.

5.3 Evaluation Pipeline

In all of our experiments, we use the public implementations provided by the
authors, adapting them to be able to fairly compare them.

5.3.1 Statistical Metrics

We compare InterFaceGAN, TediGAN, StyleCLIP and the Multi-Attribute La-
tent Transformer. A comparison between the latter and the Single Latent Trans-
former has already been made in [14].

The evaluation pipeline consists of iterating over the test set and for each indi-
vidual sample applying the corresponding transformation. For each sample, we
randomly define a fixed transformation that consists of a subset of attributes to
be modified. Each transformation can modify a different number of attributes.
Finally, we use the result to compute the three main metrics: Attribute Change
Ratio, Identity Preservation Score, and Attribute Preservation Score.

The evaluation metrics were implemented in a global manner so that they
could be used by all the models, yet some modification had to be made in order
to have an unified approach and be able to perform a fair comparison.

TediGAN and StyleCLIP need a text input in order to transform an image and
give the desired output. In order to the calculate the desired metrics, we have
established such text input to be ‘add” + attribute. As for the InterfaceGAN and
the Multi-Attribute Latent Transformer models, the intensity with which the facial
transformations are made in the evaluation is +1.

5.3 Evaluation Pipeline 57

5.3.2 Performance Metrics

We analyze and compare the performance of InterFaceGAN, TediGAN, Style-
CLIP and the Multi-Attribute Latent Transformer. A performance comparison
between the Single and Multi-Attribute Latent Transformers have already been
made in [14].

To perform a fair comparison of all the approaches, we trained all the models
with the same setting configuration.

Computer characteristics

We have done all the experiments with a computer with the characteristics in
Table 4.4.

Component Specification

Processor Intel Core i9 12900KF

RAM 64 GB DDR4 3200MHz

GPU NVIDIA RTX 4060 8 GB
Storage 2 TB SSD (NVME) + 2 TB HDD
Operating System | Windows 11 Home

Table 5.4: Specifications of the Computer Used for Model Training

Training details

For comparing the performance of all the five face editing models, we do not
train the text encoders needed for TediGAN and StyleCLIP and take pre-trained
encoders instead. Additionally, the used classifiers are also pre-trained prior to
the training of the Latent Transformers for the Single Latent Transformer and the
Latent Multi-Attribute Transformer. Finally, we take a pre-trained StyleGAN for
all the models.

On the other hand, it is important to note that, when training the models, we
use a batch size of 1.

58 Experiments and Results

5.4 Results

5.4.1 Statistical Comparison

In this section, we present and discuss the results of the experiments that we
conducted to compare the different face editing approaches. We evaluated each
model based on three criteria: Identity Preservation (IP), Attribute Preservation
(AP), and Change Ratio (CR). Lower values for IP indicate better performance
while high values are better for AP and CR. Both AP and CR values range between
0 and 1. However, IP can be any non-negative number.

Model IP AP CR
InterfaceGAN 049 0.68 0.70
TediGAN 054 056 0.59
Multi-Attribute Latent Transformer 0.38 0.66 0.76
StyleCLIP 047 0.72 0.72

Table 5.5: Statistical Comparison of Facial Attribute Editing Models

The results in Table 5.5 indicate the performance of each model across the three
metrics.

* InterfaceGAN shows a balanced performance with moderate IP, AP, and
CR values, indicating a good overall ability to edit faces while maintaining
identity and attribute accuracy.

e TediGAN has the highest IP value, indicating it does not perform well in pre-
serving the original identity. It also has lower AP and CR scores, suggesting
it might struggle with maintaining and changing attributes as effectively.

* Multi-Attribute Latent Transformer achieves the best CR score, indicating
it is very effective at making desired changes, and has the lowest IP value,
suggesting it preserves the original identity well. Its AP score is also high,
showing good attribute preservation capabilities.

¢ StyleCLIP exhibits the highest AP score, making it the most reliable model
for maintaining the desired attributes during editing. It also has a high CR
score, making it effective in applying changes, while maintaining a moderate
IP value.

These results highlight the strengths and weaknesses of each model in different
aspects of face editing.

5.4 Results 59

5.4.2 Performance Comparison

As we have explained before, we evaluate the performance of the face editing
models based on three criteria: Training Time, Inference Time and GPU Memory
usage. These metrics are crucial for understanding the computational efficiency
and resource requirements of each model. We calculate the inference time by
measuring the amount of time an approach takes to change one specific attribute
in one specific image. For measuring and comparing the training time in a fair
way, we have used a batch size of 1 to train the four models.

Model Training Time Inference Time GPU
InterfaceGAN 5h 19min 0.8s 0.7GB
TediGAN 13h 36min 99s 1.2GB
Multi-Attribute Latent Transformer 58min 0.2s 0.8GB
StyleCLIP 9h 22min 98s 1.2GB

Table 5.6: Performance Comparison of Facial Attribute Editing Models

The results in Table 5.6 highlight the following observations:

¢ InterfaceGAN has a moderate training time of 5 hours and 19 minutes, with
an inference time of 0.8 seconds and GPU memory usage of 0.7 GB. This
suggests that while the model is relatively quick to train and efficient in GPU
memory usage, its inference time is slower compared to the Multi-Attribute
Latent Transformer.

¢ TediGAN has the longest training time of 13 hours and 36 minutes, and
the highest inference time of 99 seconds. It also consumes the most GPU
memory at 1.2 GB, along with StyleCLIP. This indicates that TediGAN is
the most resource-intensive model in terms of both training and inference.
Given the necessity of a text encoder, it is understandable that this model
requires additional processing time.

¢ Multi-Attribute Latent Transformer stands out with the shortest training
time of 58 minutes and the fastest inference time of 0.2 seconds. It uses 0.8
GB of GPU memory, making it the most efficient model in terms of both
training and inference speed. This model is particularly suitable for scenar-
ios where rapid processing and lower resource usage are critical.

¢ StyleCLIP has a relatively long training time of 9 hours and 22 minutes
and an inference time of 98 seconds. It also uses 1.2 GB of GPU memory,
similar to TediGAN. While StyleCLIP is resource-intensive, its high AP and

60 Experiments and Results

CR scores from the previous comparison suggest that its performance might
justify the higher computational cost in some applications.

In summary, the performance comparison reveals significant differences in the
computational demands of each model. The choice of model should therefore con-
sider not only the accuracy and effectiveness of face editing but also the available
computational resources and the required processing speed. The Multi-Attribute
Latent Transformer offers the best efficiency, while StyleCLIP, although providing
a stronger performance in attribute preservation, is more resource-intensive.

5.4.3 Attribute Correlation Analysis

In this section, we will analyze how altering one attribute influences the prob-
ability of another attribute being present. Previously, we observed that the Multi-
Attribute Latent Transformer exhibited the best overall performance among the
four models. Consequently, we have chosen to focus this analysis on this model,
comparing it to its original version, the Single Latent Transformer.

0.03

Single
Multi

o
=)

0.002

o
=)
S}

-0.002

-0.007

Difference in Probability of BALD
I
>

=
o
=
o
o
S
s
o
s
=
o
o
=
o
S
s
o
o
o
o
o
o
S
o
o
o
I~
o
o
S
o
o

-0.02

40.023

§ & & S o & B f N S & & S
© N @ F & & & A > $ ©§ o
o O & o e N & oF g §¢ <) @
< <Q © w & & 5° e
& & L S
® & &
Attributes

Figure 5.6: P(Bald) before and after changing another attribute.

5.4 Results 61

Single
Multi

07143

0102

0013
0.006
0

Difference in Probability of MALE
o
&

0.0%%004
Q017

-0.05

-0.10
&

— o @ N o) & & o Ky o
& §\<‘Q Q\Q e Q)Qp < Qa}‘ \‘\({;\ ‘bm& ﬁm@ Q_,}\“ &a'z' VC,("Z' \\Q\'b\ be@\ & \“@) &\‘2@ G§
S & S = S @ oF © G A
N < v <& o® L & NG
S & &
& A

Attributes

Figure 5.7: P(Male) before and after changing another attribute.

The correlations between the attributes in the CelebA-HQ dataset are mani-
fested in the final results. While both models are affected by this correlations, it
is the Multi-Attribute Latent Transformer the one that exhibits a higher sensitivity
to the biases in the dataset.

The higher sensitivity observed in the Multi-Attribute Latent Transformer model
can be directly linked to its superior performance in the Change Ratio metric.
As previously discussed, this metric evaluates how effectively the model adjusts
the desired attributes. Consequently, it stands to reason that this model exhibits
stronger changes in correlated attributes due to its enhanced ability to capture and
respond to attribute interactions. Conversely, for non-correlated attributes, neither
the Single nor the Multi-Attribute models significantly alter undesired attributes,
thereby maintaining their intended behavior and stability. In particular, the at-
tributes 'Pale Skin,” "Narrow Eyes,” and ‘Bangs’ remain unaffected by changes in
any other attribute in both models, and thus, their graphs are not included. The
correlation matrix in Figure 5.3 confirms that these attributes have low correlation
with the others.

62

Experiments and Results

Difference in Probability of SMILING
o
&

0.20

0.15

0.10

Difference in Probability of BIG LIPS
o
&

@,‘}b

%#b

0173

Attributes

Figure 5.9: P(BigLips) before and after changing another attribute.

0.065
0 00 0.0 0.0 0.0 0:0 0.0 0.0 0.0 0,0 0:0 0.0 0.0 0:0 0.0 0.0 00 o0
Q?\q, ‘ « o\)@ z’b‘b & g&-‘Q o & (‘\s@ o e"@% & & Q?(@g: ﬁ;x Q@\k ‘0“\9
® 0 & R R & @
& < &° B %s\@ &
& o &
<
Attributes
Figure 5.8: P(Smiling) before and after changing another attribute.
0 00 00 o0 00 oo oo o0 0% oo o0 00 00 00 00 00 00 0
-0.0aR002
¢-§’ %@*\& B && q)@,b@ \\ch' ;}.@ @ef’ %9(9* e(‘\\@ qr}\c‘)‘" Q(?a."f & \\‘z\"b\‘ 82:2}‘ @;\" “Sao* :\Q@\ ~o"°§
K & F \@«‘ & FF F @ & & & f
L <@ ® P &
S Q:"a &
& ¥

Single
Multi

Single
Multi

5.4 Results

63

025

0.05

Difference in Probability of YOUNG

010

Difference in Probability of NO BEARD

0282 === Single

s Multi

e
Attributes

Figure 5.10: P(Young) before and after changing another attribute.

o Single
. Multi

1071

001 2

012 001

-0.04

Q@q{g
@O
&
<

&
@"(\
%\0

o
e"'?\

% Q\Q .. \&' e‘:l &fﬂ
& & ®$§°

o 2
& 8
< [
<

&
Attributes.

Figure 5.11: P(NoBeard) before and after changing another attribute.

64

Experiments and Results

0.04

0.00

Difference in Probability of BIG NOSE

-0.04

015

0.10

0.05

Difference in Probability of ATTRACTIVE

P(Big_Nose) before and after changing another attribute

— Single
e Multi
1013
001
ucl 0 00 00 010 00 00 o0 o0 o0i0 00 0000 o0 o0
77777777 o o o N o o V:EJE 77-% B o o o B [B I
: I‘”)Q 3
Q014
5 $ & &
a4 @e‘“@ S S S A A A &
& o & & F P S & @
& < ‘\o“ éa é\ob
® & ¥

Attributes

Figure 5.12: P(BigNose) before and after changing another attribute.

e Single
s Multi
047
006
________ 0 00 0 00 00 00 0 00 00 00 00 O 00
.I 0,003 .
0.01 1016
0023 0026
Py
-0.08f]
0132 '
N 3 & # & & & & $ & & & &£ o & &P
< ¥ & 5@ & & F I R mﬁ‘z‘ &
< < & & & € °) R o*
& RS & 5@
®© Q” vs
Attributes

Figure 5.13: P(Attractive) before and after changing another attribute.

5.4 Results

65

020

0.05

Difference in Probability of LIPSTICK

0.04

Difference in Probability of EYEGLASSES

-0.04

P(Lipstick) before and after changing another attribute

. Single
— Multi
084
0.07§ 075
046
i i i i i i i i : i i 0012 oot i
77777777 00 00 00 OO 00 0 00 00 00 00 0002y oio o o0 o0j0 0 ol
0.004
[7771),15
0.169
° PP R B N o & & S, & "' & & 5 » & &
¥ & o &6 & & & F »@éﬁ & Qb'a © SR
S A L & @ & T S & &S
* @« o &
<© @ W
Attributes

Figure 5.14: P(WearingLipstick) before and after changing another attribute.

Single

s Multi

00 00 00 00 00 00 00 00 00 0 00 0i0 00 00 00 00 00
0.001
00UI 0.00
.01
O d & & 2 & S N
& ¥ gé;\\& o 4<>°°Q o & & f‘a & F T8 @cﬂ @‘2@ v‘dﬁ
SR SR A A S
R & o &
‘z\,g Q,o ‘(fj
Attributes.

Figure 5.15: P(Eyeglasses) before and after changing another attribute.

66 Experiments and Results

Single

0.166 Multi

0.15
0123

0.10

0.0 0.0 0.0 0.0 0.0 00 0.0 0.0 0:0 0.0 00001 00 0.0 0.0 0.0 0.0 00 0.0

Difference in Probability of HHGH CHEEKBONES

Attributes

Figure 5.16: P(HighCheekbones) before and after changing another attribute.

0.100

Single
Multi
0.075

0.050
0.025

0.000

0012

-0.036

0.042
-0.050 0.046

Difference in Probability of GRAY HAIR

-0.075

-0.100
)] <O &
AN P @‘Q\Q

BN
Attributes

Figure 5.17: P(GrayHair) before and after changing another attribute.

5.4 Results

67

0100

0075

0050

0025

0

0.000

-0.025

-0.050

Difference in Probability of BLOND HAIR

-0.075

-0.100

@,‘}b

Figure 5.18: P(BlondHair) before and after changing another attribute.

0100

0075

0050

0.025

0.000

-0.025

-0.050

Difference in Probability of BUSHY EYEBROWS

-0.075

-0.100
O
of

0

00%01

¥ rg&\\

001011

g

«

&
&

BN

&

0

Q‘)\Q

&
Q’\Q

00 0 0 0000 0i0 0:0 00 0

-0.0@1001

Attributes

00 00 00 00 0:0 00 0
Prey

Attributes.

0

0

-0.001

0 0

0 0

Figure 5.19: P(BushyEyebrows) before and after changing another attribute.

Single
Multi

0

0

Single
Multi

68

Experiments and Results

0.100

0.075

0.050

0.025

0.000

-0.025

Difference in Probability of CHUBBY

-0.050

-0.075

-0.100

0.100

0.075

0.050

0.025

0.000

Difference in Probability of WAVY HAIR
4
o
b

4
°
g
3

-0.075

-0.100

0.004
0

0.0 0.0 0.0 0.0 00 010 0.0 0.0 0.0 0.0

-0.007
0.011

-0.032
-0.036

N] &

P
M

Attributes

Single
Multi

Figure 5.20: P(Chubby) before and after changing another attribute.

Single
Multi

0.041
0012
0o o 000 00 00 00 00 00 00 00 000 00 00 00 00 00 00 00
0.001

NS N & & & & & & 3 2 & 2 & & & & o &

S & 2 S >3 & S £ o 5 o
& Ny é& O o c@@ o q);o o{}@ & §@a & o,.@q Q\Po p ’5):2‘ OQSZ* y O o~ ‘\ego

< @ < & (o\e &) & @@ VPQ/
\)%
® @ ¥
Attributes

Figure 5.21: P(WavyHair) before and after changing another attribute.

5.4 Results

69

0.100
0,075
%)
=
2
X oos0
w
>
]
=)
W 0025 : ; 0023
I
4] 0013
14 007
< ood) 0002
3 0000 00 0o 000 00 00 00 00 00 0 000 00 00 00 00 00 0
> 0 0B001
Z
©
Qa
S -0.025
o
£
(]
3
£ -0.050
o
o
=
a8
-0.075
-0.100
& 3 3 S & & &
& & @ ¢ L S E S E
P O I & & & F ?‘(\0 K ¥ S 0(6\ & & & 0
& & A
& & o° & F &
o e
® <
Attributes

Figure 5.22: P(ArchedEyebrows) before and after changing another attribute.

Single
Multi

70

Experiments and Results

Chapter 6

Conclusions

In this chapter, we will summarize the key findings and outcomes of our re-
search, reflect on the extent to which we have met our initial objectives, and ex-
plore potential directions for future work. Additionally, personal reflections and
insights gained throughout the project will be shared.

6.1 Answer to Research Objectives

Let us review the objectives of this work and assess whether they have been
achieved.

Definitely, we have gained a lot of knowledge on generative adversarial net-
works and the latent space. Furthermore, we have studied and trained differ-
ent models: InterFaceGAN, TediGAN, StyleCLIP, Single Latent Transformer and
Multi-Attribute Latent Transformer.

In evaluating these models, we ensured a consistent basis for comparison. This
involved using the same datasets, metrics, and evaluation criteria to objectively as-
sess each model’s performance. Through this evaluation process, we identified the
strengths and weaknesses of each model. Our findings highlighted the overall su-
perior performance of the Multi-Attribute Latent Transformer model, while also
pinpointing its areas for improvement.

Additionally, we conducted a thorough investigation into the biases introduced
by attribute correlations within the training datasets. This analysis provided sig-
nificant insights into how these correlations can affect the models’ outputs, leading
to biased results. The insights gained from this investigation reinforced our previ-
ous conclusions, confirming the validity of our model evaluations.

71

72 Conclusions

One significant achievement of this project was the successful implementation
of a user interface. This Ul allows users to visually compare the performance of
the different models, providing an interactive and intuitive platform for exploring
the nuances of face attribute editing. Users can manipulate various attributes and
see real-time results, facilitating a deeper understanding of each model’s capabili-
ties and limitations.

In conclusion, all the initial objectives of this project have been met. We have
acquired the necessary knowledge on face attribute editing models, trained and
evaluated multiple models, studied dataset biases, and developed a user-friendly
web application for model comparison. This comprehensive approach has not
only advanced our understanding of the field but also contributed practical tools
and insights that can benefit future research and applications in facial attribute
editing.

6.2 Future Work

The insights gained during this project have laid a solid foundation for several
promising avenues of future research. One of the primary directions will be to
incorporate these findings into a forthcoming paper on the Multi-Attribute Latent
Transformer, authored by Adria Carrasquilla [14].

Building on our current work, future research can focus on the following areas:

¢ Enhance Multi-Attribute Latent Transformer. Despite its superior overall
performance compared to other models, there is room for improvement in
attribute preservation. Future efforts will involve experimenting with larger
and more diverse datasets and implementing novel loss functions that more
accurately capture the nuances of attribute manipulation.

* Mitigate Undesired Biases. Strategies need to be developed to address the
unwanted biases identified during this work, such as the tendency to in-
crease the ‘Smile” attribute when changing "High Cheekbones’. This could
involve creating or sourcing more balanced datasets and implementing bias
correction algorithms during the training process.

* Deploy Face Editing Application. While the code is available on GitHub,
many users are unable to utilize it due to a lack of coding knowledge. The
next steps should include deploying the application in a user-friendly for-
mat, making it accessible for everyone to use without requiring coding skills.

https://github.com/mariaruizavila/faceEditing

6.3 Personal Conclusion 73

6.3 Personal Conclusion

The world of Artificial Intelligence has always fascinated me, but it was dur-
ing my Erasmus semester in Rome, while taking a "‘Computer Vision” course, that
my interest in the this field truly ignited. At that time, I felt there were countless
aspects of Al I wanted to explore and understand. This curiosity drove me to
choose computer vision as the focus of my final project and I am happy for that. I
am truly grateful for the opportunity that I have had to explore these face editing
technologies and to conduct these experiments.

Initially, I planned to become a data analyst after graduating and leave further
studies behind. However, working on this project has fueled my desire to gain
more expertise in Al. As a result, I have decided to also pursue a Master’s Degree
in Data Science, Big Data, and Artificial Intelligence while continuing to work. I
believe this step will allow me to keep expanding my knowledge and skills in this
exciting field.

74

Conclusions

Appendix

This additional chapter serves to supplement the project by providing screen-
shots of the developed application for visual model comparison.

A User Interface

During the development of this work, we also developed a User Interface us-
ing the Gradio UI Framework for Machine Learning applications. The main reason
behind the creation of this interface is for it to be used for anyone external to the
project. For that reason, we have tried to make it as user-friendly as possible. Also,
it serves as a way to show the final results interactively. Source code is available
in this GitHub repository.

The UI was designed with a focus on simplicity and ease of use. Users can
easily upload their images, select the desired machine learning model, and visu-
alize the output without needing any prior technical knowledge. They can also
generate the results for all models at the same time to be able to directly visually
compare them. In the interface some basic information about each of the models,
the links to additional information and instructions on how to use the UI are also
provided. By including these features, we aim to make the interface a comprehen-
sive tool for both demonstration and practical use. Below are some screenshots
illustrating the key aspects of the interface:

75

https://github.com/mariaruizavila/faceEditing

76 Conclusions

FACE €DITOR

Figure 6.1: UL Initial page.

6.3 Personal Conclusion 77

Welcome to the Face Editor!

e FacaGAN

+

X

Coloque la imagen agui

Haga dick para cargar

Pak Skin

Gy Hair

ey Hasr

Figure 6.2: Ul InterFaceGAN.

78 Conclusions

Welcome to the Face Editor!
InbarFacaGAN
Usage

Bald

+

s
Coloque la imagen aqui

Haga dick para cargar

EgLigs

3 Abrir
A | <« TFG » maria > input

Organizar Nueva carpeta

Inicio

A Galeria H’ B ’
Maria - Persona . F A ; 1

inputTediGAN webcam

B Escritorioc #
Descargas A

F Documentos #

Nombre: [inputTediGAN

Cancelar

Arched Eyabrumes

Figure 6.3: UL Upload iamge from device.

6.3 Personal Conclusion 79

Welcome to the Face Editor!

niarFacaGAK

Wany Hair

Figure 6.4: Ul. Webcam.

80 Conclusions

Welcome to the Face Editor!
ntarFaceGAN
Usage

Bald

Paste from Clipboard

Eig Nesa

Paks Skin

MaeTow Epes

Gy Hair

arey Hadr

Figure 6.5: Ul Paste image.

6.3 Personal Conclusion 81

Welcome to the Face Editor!

nearFacaiiAN

HHigh Chockbons

Gy Hair

Sllend Hair

By Eyetirows

hubitry

Wianiy Har

Archid Eyabres

Figure 6.6: UL. Modify "Male” attribute of image with InterfaceGAN.

82 Conclusions

Welcome to the Face Editor!

Figure 6.7: UL Modify image with TediGAN using text input A sad face’.

6.3 Personal Conclusion 83

Welcome to the Face Editor!

InterFaceGAN

Information

Overview

Interface GAN is a sophisticated deep learing model created in 2020 that utilizes the capabilities of GANs to enable detailed and high-fidelity image editing. The model s designed to manipulate latent codes, which are the underlying
representations of images in the GAN's latent space. By adjusting these codes, users can make precise edits to facial features, expressions, and other attributes in a highly intuitive manner.

Instructions

1. Select 'InterFaceGAN".

2, Select 'Usage'.

3. Upload an image. There are three options: upload it directly from your device, take a photo or paste an image.

4. Choose the attributes to modify by moving the sliders, by moving them to the right you will increase the selected attribute and by moving the slider to the left you will decrease .
5. Click 'Modify Image'.

More Information

Figure 6.8: UL Information about InterFaceGAN.

84 Conclusions

‘Welcome bo the Face Editor!

Figure 6.9: Ul Visual comparison of all the models.

Bibliography

[1] Aston Zhang, Zachary C. Lipton, Mu Li, Alexander J. Smola, Dive into Deep
Learning, 2021.

[2] Andrew Ng’s Number One Fan, C5231n: Convolutional Neural Networks for
Visual Recognition, GitHub repository, 2021.

[3] Tero Karras, Samuli Laine, Timo Aila, Jaakko Lehtinen, Progressive Growing
of GANSs for Improved Quality, Stability, and Variation, ICLR, 2018.

[4] Tero Karras, Samuli Laine, Timo Aila, A Style-Based Generator Architecture for
Generative Adversarial Networks, NVIDIA, 2019.

[5] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen,
Timo Aila, Analyzing and Improving the Image Quality of StyletGAN, CVPR,
2020.

[6] Tero Karras, Miika Aittala, Samuli Laine, Erik Harkonen, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Alias-Free Generative Adversarial Networks,
arXiv preprint arXiv:2106.12423, 2021.

[7] Wu, Y., Zhang, Y., Huang, K., Zhang, B., Stylespace Analysis: Disentangled
Controls for Generative Image Synthesis, Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2021.

[8] Xun Huang, Serge Belongie, Arbitrary Style Transfer in Real-time with Adap-
tive Instance Normalization, Department of Computer Science, Cornell Tech,
Cornell University, 2017.

[9] Yujun Shen, Jinjin Gu, Xiaoou Tang, Bolei Zhou, InterFaceGAN: Interpreting
the Disentangled Face Representation Learned by GANs, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2020.

[10] Weihao Xia, Yujiu Yang, Jing-Hao Xue, Baoyuan Wu, TediGAN: Text-Guided
Diverse Face Image Generation and Manipulation, Tsinghua Shenzhen Interna-
tional Graduate School, Tsinghua University, China, 2021.

85

https://d2l.ai
https://d2l.ai
https://github.com/jariasf/CS231n
https://github.com/jariasf/CS231n
https://arxiv.org/pdf/1710.10196
https://arxiv.org/pdf/1710.10196
https://arxiv.org/pdf/1812.04948
https://arxiv.org/pdf/1812.04948
https://arxiv.org/pdf/1912.04958
https://arxiv.org/pdf/2106.12423
https://arxiv.org/abs/2011.12799
https://arxiv.org/abs/2011.12799
https://arxiv.org/pdf/1703.06868
https://arxiv.org/pdf/1703.06868
https://arxiv.org/pdf/2005.09635
https://arxiv.org/pdf/2005.09635
https://arxiv.org/pdf/2012.03308
https://arxiv.org/pdf/2012.03308

86

BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Or Patashnik, Zongze Wu, Eli Shechtman, Dani Lischinski, Daniel Cohen-
Or, StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery, ACM Transac-
tions on Graphics, 2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack
Clark, Gretchen Krueger, Ilya Sutskever, Learning Transferable Visual Models
From Natural Language Supervision, OpenAl, 2021.

Xu Yao, Alasdair Newson, Yann Gousseau, Pierre Hellier, |lA Latent Trans-

former for Disentangled Face Editing in Images and Videos, LTCI, Télécom Paris,

Institut Polytechnique de Paris, France, 2021.

Adria Carrasquilla Fortes, Latent Multi-Attribute Transformer for Face Editing
in Images, Thesis report, Universitat Rovira i Virgili (URV), Universitat de
Barcelona (UB), Universitat Politécnica de Catalunya (UPC) - BarcelonaTech,
2023.

Kingma, D. P, Welling, M., Auto-Encoding Variational Bayes, Proceedings of
the 2nd International Conference on Learning Representations (ICLR), 2014.

D. E. King, Journal of Machine Learning Research, vol. 10, pp. 1755-1758, 2009.

He, H. and Garcia, E. A., Learning from imbalanced data, IEEE Transactions on
Knowledge and Data Engineering, 2009.

Johnson, J. M. and Khoshgoftaar, Survey on deep learning with class imbal-
ance. Journal of Big Data, 2019.

Yi Wu, Amittai Axelrod, David S. Hipp, and Yasemin Altun. ChatEdit: To-
wards Personalized Text Editing Assistance via Interactive Natural Language Feed-
back, arXiv preprint arXiv:2209.12340, 2022.

Cao, J., Li, Y., and Zhang, Z., Partially shared multi-task convolutional neural
network with local constraint for face attribute learning, in 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2018.

Hand, E. and Chellappa, R., Attributes for improved attributes: A multi-task
network utilizing implicit and explicit relationships for facial attribute classification,
Proceedings of the AAAI Conference on Artificial Intelligence, 2017.

Jolliffe, 1., Principal Component Analysis, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011.

https://arxiv.org/pdf/2103.17249
https://arxiv.org/pdf/2103.00020
https://arxiv.org/pdf/2103.00020
https://arxiv.org/pdf/2106.11895
https://arxiv.org/pdf/2106.11895
https://upcommons.upc.edu/handle/2117/395345
https://upcommons.upc.edu/handle/2117/395345
https://arxiv.org/abs/1312.6114
https://jmlr.org
https://ieeexplore.ieee.org/document/5128907
https://journalofbigdata.springeropen.com
https://arxiv.org/pdf/2303.11108
https://arxiv.org/pdf/2303.11108
https://arxiv.org/pdf/2303.11108
https://ieeexplore.ieee.org/document/8578549
https://ieeexplore.ieee.org/document/8578549
https://ojs.aaai.org/index.php/AAAI/article/view/11229
https://ojs.aaai.org/index.php/AAAI/article/view/11229
https://link.springer.com/referenceworkentry/10.1007/978-3-642-04898-2_455

BIBLIOGRAPHY 87

[23] Bryson Lingenfelter, Sara R. Davis, and Emily M. Hand, A Quantitative Anal-
ysis of Labeling Issues in the CelebA Dataset, University of Nevada, Reno.

[24] Hongwei Wang, Jure Leskovec. SD-GAN: Structural and Denoising GAN
for Learning Robust and Discriminative Representations, arXiv preprint
arXiv:1905.04215, 2019.

[25] Wang,Z.,Qinami, K. Karakozis,I.C.,Genova, K. Nair, P, Hata K., Russakovsky,
O., Towards fairness in visual recognition: Effective strategies for bias mitigation,
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020

[26] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent
in nervous activity, in The bulletin of mathematical biophysics 5.4, 1943.

[27] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adver-
sarial Nets, in Advances in Neural Information Processing Systems 27 (NIPS
2014), 2014.

[28] Zhang, R., Isola, P, Efros, A. A., Shechtman, E., Wang, O., The Unreasonable
Effectiveness of Deep Features as a Perceptual Metric, Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[29] A. H. Bermano, R. Gal, Y. Alaluf, R. Mokady, Y. Nitzan, O. Tov, O. Patashnik,
and D. Cohen-Or, State-of-the-art in the architecture, methods and applications of
stylegan, Computer Graphics Forum, vol. 41, no. 2. Wiley Online Library,
2022.

[30] Tewari, A., Elgharib, M., Bharaj, G., Bernard, F., Seidel, H.-P., Pérez, P., Zollo,
P., Theobalt, C., Face Generation and Editing with StyleGAN: A Survey, 2022.

[31] Abdal, R., Qin, Y., Wonka, P, Image2StyleGAN: How to Embed Images Into the
StyleGAN Latent Space, Proceedings of the IEEE International Conference on
Computer Vision (ICCV), 2019.

[32] Ha, D., Dai, A., Le, Q. V., HyperNetworks, Proceedings of the International
Conference on Learning Representations (ICLR), 2017.

[33] Wang, Z., Bovik, A. C., Sheikh, H. R., Simoncelli, E. P, Image Quality As-
sessment: From Error Visibility to Structural Similarity, IEEE Transactions on
Image Processing, vol. 13, no. 4, pp. 600-612, 2004.

https://link.springer.com/chapter/10.1007/978-3-031-20713-6_10
https://link.springer.com/chapter/10.1007/978-3-031-20713-6_10
https://www.researchgate.net/publication/339398800_SD-GAN_Structural_and_Denoising_GAN_reveals_facial_parts_under_occlusion
https://www.researchgate.net/publication/339398800_SD-GAN_Structural_and_Denoising_GAN_reveals_facial_parts_under_occlusion
https://arxiv.org/pdf/1911.11834
https://www.cs.cmu.edu/~epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
https://www.cs.cmu.edu/~epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
https://arxiv.org/pdf/1406.2661
https://arxiv.org/pdf/1406.2661
https://arxiv.org/pdf/1801.03924
https://arxiv.org/pdf/1801.03924
https://arxiv.org/pdf/2202.14020
https://arxiv.org/pdf/2202.14020
https://arxiv.org/pdf/2212.09102
https://arxiv.org/abs/1904.03189
https://arxiv.org/abs/1904.03189
https://arxiv.org/abs/1609.09106
https://ieeexplore.ieee.org/document/1284395
https://ieeexplore.ieee.org/document/1284395

88 BIBLIOGRAPHY

[34] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.
N., Kaiser, LL Polosukhin, I., |Attention Is All You Need, Proceedings of the
Advances in Neural Information Processing Systems (NeurIPS), 2017.

[35] Elman, J. L., Finding Structure in Time, Cognitive Science, vol. 14, no. 2, pp.
179-211, 1990.

[36] Hochreiter, S., Schmidhuber, J., Long Short-Term Memory, Neural Computa-
tion, vol. 9, no. 8, pp. 1735-1780, 1997.

[37] Devlin, J., Chang, M. W., Lee, K., Toutanova, K., BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding, Proceedings of the
North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (NAACL-HLT), 2019.

[38] Radford, A., Narasimhan, K., Salimans, T., Sutskever, 1., Improving Language
Understanding by Generative Pre-Training, OpenAl, 2018.

[39] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M.,
Zettlemoyer, L., Stoyanov, V., RoBERTa: A Robustly Optimized BERT Pretrain-
ing Approach, arXiv preprint arXiv:1907.11692, 2019.

[40] Goodfellow, I., Bengio, Y., Courville, A., Deep Learning, MIT Press, 2016.

[41] Nair, V., Hinton, G. E., Rectified Linear Units [mprove Restricted Boltzmann Ma-
chines, Proceedings of the 27th International Conference on Machine Learn-
ing (ICML), 2010.

[42] Rumelhart, D. E., Hinton, G. E., Williams, R. J., Learning representations by
back-propagating errors, Nature, vol. 323, no. 6088, pp. 533-536, 1986.

https://arxiv.org/abs/1706.03762
https://doi.org/10.1016/0893-6080(90)90052-K
https://www.bioinf.jku.at/publications/older/2604.pdf
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://www.deeplearningbook.org/
https://www.cs.toronto.edu/~fritz/absps/reluICML.pdf
https://www.cs.toronto.edu/~fritz/absps/reluICML.pdf
https://dl.acm.org/doi/10.5555/104279.104293
https://dl.acm.org/doi/10.5555/104279.104293

	Introduction
	Motivation
	Context
	Objectives of the project
	Project Planning
	Organization of the memory

	Scientific background
	Foundations of Artificial Neural Networks
	Training and Convergence
	Datasets for training
	Training Properties

	Generative Adversarial Networks
	StyleGAN
	GAN inversion

	Transformers
	Latent Transformers

	State of the Art
	Methodology
	State-of-the-Art Facial Attribute Editing Approaches
	InterFaceGAN
	TediGAN
	Style CLIP
	Single Latent Transformer
	Latent Multi-Attribute Transformer

	Attribute Correlation

	Experiments and Results
	Datasets
	Training set
	Testing set

	Metric Evaluation
	Statistical Metrics
	Performance Metrics

	Evaluation Pipeline
	Statistical Metrics
	Performance Metrics

	Results
	Statistical Comparison
	Performance Comparison
	Attribute Correlation Analysis

	Conclusions
	Answer to Research Objectives
	Future Work
	Personal Conclusion

	Appendix
	User Interface

	Bibliography

