
SimpliPyTEM: An open-source Python library and 
app to simplify Transmission Electron Microscopy 

and in situ-TEM image analysis.  

Gabriel Ing1*, Andrew Stewart2, Guiseppe Battaglia3,4, and Lorena Ruiz-Perez3* 

1 Institute of Structural and Molecular Biology, Department of Chemistry, University College 
London, London WC1H 0AJ, United Kingdom.

2 Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom. 

3 Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, 
08028 Barcelona, Spain.

4 Catalan Institution of Research and Advanced Studies, 08010, Barcelona, Spain

 

*Correspondence to: Gabriel Ing gabriel.ing19@ucl.ac.uk and Dr Lorena Ruiz-Perez 
lruiz@ibecbarcelona.eu


Abstract 
Introducing SimpliPyTEM, a Python library and accompanying GUI that simplifies the post-
acquisition evaluation of transmission electron microscopy (TEM) images, helping streamline the 
workflow. After an imaging session, a folder of image and/or video files, typically containing low 
contrast and large file size 32-bit images, can be quickly processed via SimpliPyTEM into high-
quality, high-contrast .jpg images with suitably sized scale-bars. The app can also generate  
HTML or PDF files containing the processed images for easy viewing and sharing. Additionally, 
SimpliPyTEM has a specific focus on in situ TEM videos, an emerging field of EM, allowing for fast 
data processing into preview movies, averages, image series, or motion corrected averages using 
MotionCor2. The accompanying Python library offers many standard image processing methods, 
all simplified to a single command, plus a module to analyse particle morphology and population. 
This latter application is particularly useful for life sciences investigations. User-friendly tutorials 
and clear documentation are included to help guide users through the processing and analysis. 
We invite the EM community to contribute to and further develop this open-source package.


Introduction  
Electron microscopy (EM) is a powerful technique for observing samples at the nanoscale, and it 
is unrivalled for ease and popularity of use [1].  As with most modern-day microscopy methods, 
EM imaging nowadays yields data in the form of digital images or videos, or arrays of numbers, 
with high and low values representing bright and dark regions of the image respectively. In 
conventional, bright-field EM, the intensity of the signal corresponds to the density of the sample 
at each point, with more dense regions transmitting fewer electrons and thus yielding dark regions 
in the images. There is considerably more data available in the average EM image than can be 
seen with the naked eye, for example, the images are often 16-bit or 32-bit allowing for far more 
contrast than is displayed. Combined with this, there is often a considerable amount of noise in 
EM images, arising from various sources including from inelastically scattered electrons and 
electrons scattered due to multiple collision events [2], alongside undesired detector and readout 
signals. Noise can substantially obscure the underneath image. However, noise can often be 
reduced or removed using techniques ranging from simple linear filters [3] to complex methods, 
including deep learning-based methods [4-7]. Effective data processing of EM images is thus vital 
to maximising the information yielded by electron microscopy experiments. This requirement is 
even more significant in the world of in situ EM, where the ability to observe the behaviour of 
materials and nanoparticles under real-time, and controlled conditions can provide novel insights 
into advanced materials and novel nano-structures. In situ TEM typically generates a significant 

 of 1 10

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 30, 2023. ; https://doi.org/10.1101/2023.04.28.538777doi: bioRxiv preprint 

mailto:gabriel.ing19@ucl.ac.uk
https://doi.org/10.1101/2023.04.28.538777
http://creativecommons.org/licenses/by/4.0/


amount of data in the form of videos thus effective data processing and post-acquisition workflow 
optimisation become essential tasks. 


With these requirements considered, a lot of specialised and manual image processing work is 
often required for post-experimental analysis. However, much of the post-experimental process 
cannot be easily automated, as the files produced are commonly incompatible with standard 
image viewing programs, they often have poor contrast and lack scale bars. As a result, many 
users spend significant time painstakingly performing basic post-imaging tasks including contrast 
enhancement, basic filtering and adding scale bars. These tasks can be automated. It can also be 
time-consuming to examine the acquired images as a whole or simply to produce a presentation 
to view and share these.  Therefore, EM users are in constant need of methods to automate the 
basic data processing steps and allow the production of experimental contact sheets. Combined 
with this, the possibility to access the metadata from the images collected is also important, so 
users can quickly access details about images. However, metadata is often hidden within files and 
not easily accessible, making image curation a time-consuming task.


Many programs are available to process EM images, with one of the most common approaches 
being the use of ImageJ [8], an open-source package for scientific image analysis. ImageJ is 
effective for manually editing images and has a scripting-based macro language to automate 
repetitive tasks. However, this macro language has a steep learning curve, is poorly documented 
and not transferable to other systems. Gatan’s Digital Micrograph program [9] is also effective at 
various image analysis tasks, however is only available on Windows operating systems. Coded 
approaches can be very effective, the most popular language is Python. Many image analysis 
methods and modules are available with Python, including openCV [10], pillow [11] and scikit-
image [12], making it possible to perform an enormous variety of tasks. One advantage of using 
Python for this analysis is the prevalence of Python-based machine learning and deep learning-
based image analysis tools [13, 14], which commonly use images in a similar format.  At the same 
time, the range of available options and locations can make it difficult for newcomers to locate the 
required methods. Many of the functions in these libraries also come with a large number of 
parameters which can make the function much more complicated to use than is necessary for 
most cases. The upside of using Python is huge however, Python is much faster for many tasks 
than ImageJ, and scripting can automate image analysis processes to reduce the amount of 
manual effort. While scripting tends to be more powerful than user-interface based approaches, 
many potential users find coding intimidating and challenging to learn, leading to users 
performing time-consuming manual methods. 


Herein, we introduce a new app for basic image and video processing, and visualisation. In 
addition, we also introduce a Python library for work of added complexity. The app aims to allow 
effective image processing from large file-size images or video files in various formats, to reduced 
size, high-contrast JPEG files with scale bars. HTML or PDF documents containing these images 
and videos can also be created for easy visualisation. The Python library aims to build on 
available methods by lowering the barriers of users new to Python for analysing EM images and 
videos. An extensive range of functions, including image and video visualisation, filtering, contrast 
enhancement and scale-bar addition are available in a user-friendly, consistent and well-
documented manner, with few required parameters. This package is accompanied by detailed 
documentation and iPython notebook-based tutorials to make it easy to access and follow for 
users with only basic knowledge of Python. 


Methods 
Image manipulation  

The main aim of this package is to simplify the use of Python-based programming for processing 
and analysing electron microscopy images. Python already has many publicly available libraries 
for image analysis [10-12], some of which have been used to varying degrees in this package. 
Image processing with Python is commonly performed by holding images in a numpy array [15], 
these are n-dimensional matrices of values which store data and allow many efficient data-editing 
functions. These numpy arrays are the backbone of image handling and manipulation in 
SimpliPyTEM. OpenCV [10] is another key library used in this package, a popular image 
manipulation library containing many useful functions like image filtering with median and 

 of 2 10

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 30, 2023. ; https://doi.org/10.1101/2023.04.28.538777doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.28.538777
http://creativecommons.org/licenses/by/4.0/


gaussian filters. These filters use 2D convolution to reduce the noise levels within the image and 
are commonly used when viewing noisy images. Other 2D image filters included that aim to 
reduce noise within the images, such as a Wiener filter, here implemented using SciPy [16]. 


SimpliPyTEM supports the opening and saving of various image and video format files. Digital 
micrograph (DM) [9] files, a common EM file format from Ametek (formally Gatan) detectors,  are 
opened using openNCEM [17]. Metadata from DM files are extracted and easily accessible.  
Another popular EM image format,  MRC files, are opened using the Python package mrcfile [18]. 
Both of these file types can include both images and movie files.


In-situ TEM experiments are often recorded with screen recording software due to insufficiencies  
in direct and charge-coupled detectors for capturing videos. However the data produced often 
require similar processing to detector-captured videos. Here, we support the opening of most 
major video formats, including MP4, MOV and AVI, these file types are opened using openCV’s 
VideoCapture module.


Several choices are available for outputting image and video files from the software. For images, 
there is a choice between TIF files and JPEG files. TIFs allow image data to be saved in the 
current conditions, thus producing uncompressed images or images with higher bitrates. The 
Python package tifffile is used for this task. JPEG files are also supported, in this case files are 
compressed, producing a much smaller file size. The generated images are high quality 
nonetheless and ideal for display purposes. 


Movie files have many export options, allowing for various downstream applications. Movie 
frames can be saved as sequences of TIF Files or as a TIF format image stack. Image sequencing 
can be particularly useful when investigating a dynamic process via in situ EM. MP4 and AVI 
movie files are saved using moviePy; MP4 files are effective for viewing and displaying movies, in 
particular, the MP4 format was chosen for its suitability to be displayed on webpages. The AVI 
files produced are uncompressed or raw, this format was chosen to be compatible with ImageJ.  


Document generation 

The project herein presented aimed to create an automated method to view, share and present 
data collected by electron microscopy. To achieve this aim, we opted to create PDF files 
containing all the images collected in an imaging session, this is a common format and easy to 
share as a standalone document. The Python package PyFPDF (https://pyfpdf.readthedocs.io/en/
latest/) was used to generate the PDF documents. Furthermore, to allow the user a more 
interactive experience, an HTML file containing all the images and movie files from an experiment 
can be generated. An accompanying CSS stylesheet is also produced to add to the interactive 
viewing experience. The HTML is generated with the Python package Airium (https://pypi.org/
project/airium/). These options generate documents which can act like photography contact 
sheets, allowing users to rapidly view images and identify the images suitable for further 
processing or presentation.


Image and video plotting  

The recommended usage method for SimpliPyTEM’s Python library is to use an iPython 
notebook, for example, a Jupyter notebook [19]. These notebooks allow an interactive coding 
interface where images and plots can be displayed, and the underlying code can be easily edited 
and rerun. This method also allows new code to be run independently of the code which came 
before it, with variables still saved. To display images and plots within iPython notebooks, 
Matplotlib is used, while MoviePy is used to display videos. 


Specifically written algorithms 

The clip_contrast method is used to improve the contrast of an image or video by scaling the 
image to new white and black values. The advantage of this method, rather than other examples 
like openCV’s enhanced contrast or histogram equalisation, is that clip_contrast can provide 

 of 3 10

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 30, 2023. ; https://doi.org/10.1101/2023.04.28.538777doi: bioRxiv preprint 

https://pyfpdf.readthedocs.io/en/latest/
https://pyfpdf.readthedocs.io/en/latest/
https://pypi.org/project/airium/'
https://pypi.org/project/airium/'
https://doi.org/10.1101/2023.04.28.538777
http://creativecommons.org/licenses/by/4.0/


reliable improvements without any user decisions, and thus can be used in automated pipelines. 
Image contrast is selected by entering maximum and minimum pixel values or a saturation value. 
The saturation here is the percentage of pixels above a maximum or below a minimum value. 
Hence the minimum and maximum values are selected using the saturation. The pixel values in 
the image are then scaled to the new minimum and maximum values, such that these values are 
between 0 and 255. 


We have also implemented local_normalisation, this aims to even the contrast out across an 
image, as often TEM images are bright in the centre and dark in the corners. This effect can be 
visually displeasing, but more significantly it can make image segmentation using thresholding 
challenging. This algorithm separates the image into n x n patches, and then scales these patches 
to the global median, such that each pixel in the patch is multiplied by the global-median / local-
median. To reduce edge artefacts from the patches, padding can be used. Padding in this context 
is an overlap between adjacent patches, and the mean of shared pixels in overlapping patches is 
used in the final image. An example of this method being used can be found within the 
d o c u m e n t a t i o n ( h t t p s : / / s i m p l i p y t e m . r e a d t h e d o c s . i o / e n / l a t e s t / Tu t o r i a l s /
MicrographAnalysisTutorial.html#Fixing-uneven-contrast).


Addition of Scale-bar 

The scale bar is chosen as a suitable size for the image by considering the size of the image. The  
colour is chosen to be either black or white based on whether the scale bar area has a 
significantly lower mean pixel value than the rest of the image. The pixel values in the specified 
position are changed using numpy. The scale-bar text is added using pillow [11], as this allows 
special characters, including ‘µ’, which is commonly used in scale-bars (for micron units: µm). The 
user can convert the scale between nanometers and microns with a single command, while other 
conversions can also be performed but do require a scaling factor or measurements to be 
included. 


Particle analysis  

A basic particle analysis module is included within the package, this is designed to collect 
statistics on the particle morphology, including area, circularity, and maximum, mean and 
minimum diameters. The module includes methods to threshold particles, using tools available 
with openCV, and extract data from the particles into dictionaries or pandas databases. Such 
databases can then be used to plot figures in Python or export the data to CSV files.


Particles can be located by finding edges in the binary thresholded image, internal parts of the 
particle are filled in, and particles larger or smaller than set values are filtered out, particles on the 
edge of the image are also filtered out. Again these functions mainly use openCV and the Python 
package imutils. A labelled image can also be inputted to find morphology data, allowing users to 
locate particles using other available methods, for example object detection programs like 
StarDist [14]. Morphology data from particles are collected and returned as a Python dictionary. 
An additional option to measure each particle across many positions is also included. In order to 
perform this measurement, every pair of coordinates is considered, and when these coordinates 
make an angle of 180°±1° with the centre point, the measurement of diameter is counted. This 
procedure was used in an image of polymer nanoparticles and shown in Figure 3  and can be 
found in more detail in a tutorial within the l ibrary's documentation (https://
simplipytem.readthedocs.io/en/latest/Tutorials/Particle_analysis_tutorial.html). 


Metadata 

Image metadata can be useful but difficult to access with TEM files. As such, we have tried to 
make it more accessible by saving the image or video metadata from DM files into a comma 
separated value (CSV) file, showing many of the key values saved within the file. By doing so, a 
user could easily check which images were collected at a certain magnification, or when the 
images were acquired by looking at an automatically generated table. Unfortunately, at present, 
this task only works with DM files.


 of 4 10

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 30, 2023. ; https://doi.org/10.1101/2023.04.28.538777doi: bioRxiv preprint 

https://simplipytem.readthedocs.io/en/latest/Tutorials/MicrographAnalysisTutorial.html#Fixing-uneven-contrast
https://simplipytem.readthedocs.io/en/latest/Tutorials/MicrographAnalysisTutorial.html#Fixing-uneven-contrast
https://simplipytem.readthedocs.io/en/latest/Tutorials/MicrographAnalysisTutorial.html#Fixing-uneven-contrast
https://simplipytem.readthedocs.io/en/latest/Tutorials/Particle_analysis_tutorial.html
https://simplipytem.readthedocs.io/en/latest/Tutorials/Particle_analysis_tutorial.html
https://doi.org/10.1101/2023.04.28.538777
http://creativecommons.org/licenses/by/4.0/


Sample images 

The sample images included in the manuscript were collected on a JEOL 2200 microscope with a 
Gatan K2 camera. These images include a range of stained polymer nanoparticles, amyloid fibres 
and gold nanoparticles. 


Results  

SimpliPyTEM-GUI 

The GUI-based image processing app is designed as a simple tool for EM users to use during or 
post-experiment (Figure 1). Images and videos in a number of common formats, including digital 
micrograph and .TIF can be loaded, enhanced, and saved into .JPG images. Basic processing 
tasks can be performed on the images, including gaussian and median filters, the addition of a 
scale bar and contrast enhancement. Different options are also available for videos, including DM 
image stacks, .mp4 and .avi files to be saved as an average image, a video (.mp4 or .avi), a 
motion-corrected average (using motioncor2), a tif sequence (i.e. saved as individual tif files) or a 
tif stack. This app provides many options for in situ users to create effective previews of their 
videos. 




 of 5 10

Figure 1: SimpliPyTEM-GUI for post-acquisition image processing. A) Appearance of SimpliPyTEM-
GUI. B) Effect of SimpliPyTEM-GUI, showing the simple conversion of digital micrograph files with poor 
contrast and limited compatibility, to high contrast JPGs which can be used for observation and display.  
This process is quicker than many comparable methods, including using imageJ, taking seconds per file. 
There is also a document creation section which allows a PDF or responsive HTML document to be 
produced showing the images and videos collected during the experiment. 

A) B) Microscope output 

SimpliPyTEM output

DM3 or DM4 
files

JPG files

•  Large file size

•  Limited compatibility

•  Low contrast

•  No scale bar 

•  Small file size

•  Universally compatible


•  Improved contrast

•  Scale bar added

Simple GUI <10s per file

Document creation

Save images into document 
Static PDFResponsive HTML

Images zoom in response to cursor hovering

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 30, 2023. ; https://doi.org/10.1101/2023.04.28.538777doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.28.538777
http://creativecommons.org/licenses/by/4.0/


Image files from microscope detectors tend to be 16 or 32-bit and are unsuitable for regular uses, 
including adding them to a presentation or report. Due to the wide range of available pixel values 
present in the images, these also tend to have inadequate contrast as a default. This issue can 
lead to time being spent manually performing basic image analysis tasks. SimpliPyTEM-GUI can 
automate this process, by producing high-quality output jpeg files in only seconds.


In addition, SimpliPyTEM includes support for denoising images and videos using the deep-
learning based denoising method Topaz [6]. Topaz can dramatically enhance images and videos, 
particularly by making low resolution features much easier to see. Although Topaz is specifically 
trained for cryo-EM, it can be highly effective for various bright-field images and videos. 
Unfortunately, this does have significant hardware requirements, needing a CUDA GPU for fast 
processing. By integrating Topaz within SimpliPyTEM-GUI, we aim to make state-of-the-art 
denoising methods more accessible and user-friendly for any researcher. 


Alongside the image or video processing, there is also an additional section for visualisation. 
Images can be easily added to PDF or HTML files with a designated title and experimental notes. 
This process allows the rapid generation of documents to summarise the results of an experiment, 
which can be conveniently viewed or shared with others with very little preparation time. 


As discussed in the introduction, image metadata can be useful for various reasons, for example 
to easily get an idea of the magnification used in an image. This value may provide information 
about what the acquired image contains without the need to view the image itself. Unfortunately, 
the metadata associated to images and videos’ is hidden within tags in DM files and thus can be 
difficult to access. However, SimpliPyTEM-GUI will automatically extract many of the features 
found within these metadata tags, including magnification, voltage, exposure time and acquisition 
date and time. These values are collected into a CSV table with the other files within the folder, 
which can then be easily examined, allowing easy identification of files by their imaging 
conditions. 


SimpliPyTEM-Library for images 

Python is among the most powerful and widely used image processing and image analysis tools. 
There are lots of modules available for image analysis, which can be very effective, however many 
of these modules involve steep learning curves and unnecessarily large numbers of parameters. 
Therefore, to make common methods more available, we have created a library drawing upon 
some commonly used methods, including openCV, scikit-image and numpy [10, 12, 15]. This 
library is built on the principle of making the methods simple to use while sacrificing little 
performance. Figure 2A displays some of the available functions within the library. In contrast, 
Figure 2B shows a code snippet, demonstrating the simplicity of using the code, and Figure 2C 
shows the effect of the code snippet on a single example image. This code ran in less than 2 
seconds on a MacBook Pro, 2018 for a 32-bit 3838x3710 pixel image, demonstrating the speed 
at which the processing can be performed.


SimpliPyTEM image processing is primarily hosted in a single Python class called ‘Micrograph’. 
The Micrograph object hosts the image data, metadata and pixel size, and the methods to 
process the image. The library currently contains many simple methods to process the images, 
including image filtering (with median, gaussian, low-pass, non-local means and Weiner filters), 
the addition of scale-bar, converting to 8-bit, contrast enhancement and extracting metadata from 
digital micrograph images. In addition, images can be opened from various file types including 
digital micrograph (DM), MRC, TIF and JPEG files, and the edited images can be saved as TIF or 
JPEG files. These functions are all designed to be performed with a single line of code and with as 
few required parameters as possible, making the functions as easy as possible. These functions  
return a copy of the object, meaning the original object is kept. 


SimpliPyTEM-Library for videos  
 of 6 10

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 30, 2023. ; https://doi.org/10.1101/2023.04.28.538777doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.28.538777
http://creativecommons.org/licenses/by/4.0/


 
In situ TEM is a growing field, allowing 
the capture of live nanoscale events, 
providing dynamic information on 
phenomena that are not easily studied 
using other methods [20]. This results in 
EM v ideos conta in ing a lo t o f 
information, particularly if captured from 
a direct electron detector, which 
commonly have high bit-rates and large 
sizes. Efficient analysis of acquired 
videos is essential, and as discussed in 
the introduction Python is ideal for this, 
however can prove d ifficul t for 
inexperienced users. As such, we have 
created a  Python library allowing for 
many basic and advanced methods to 
be employed for analysis of videos. 
Such methods include all of the 
techniques discussed for the image 
library, while also including many video-
spec ific methods, for example , 
averaging frames together, video 
normalisation, and using existing 
software, motioncor2 [21] to correct for 
global motion within the video. 


V i d e o s c a n b e l o a d e d i n t o a 
‘MicroVideo’ object from various 
sources, including DM files, movie files 
like MP4, AVI, MOV and sequences of 
TIF or DM image files. From here, the 
videos can be averaged into groups of 
n frames, averaged in a sliding window 
fashion, converted to 8-bit, contrast 
enhanced and filtered, added a scale-
bar, alongside several other functions. 
As with the image-processing library, 
these functions can be achieved in 
single lines of code, with few required 
parameters to make them as simple as 
possible. By processing videos in this 
way, the user can easily prepare the 
v i d e o f o r f u r t h e r a n a l y s i s o r 
presentations. Moreover, the video can be easily viewed in an iPython notebook (e.g., Jupyter 
notebook) and saved as an image sequence, an image stack, a single image (either single frame 
or average) or a movie file in .mp4 or .avi format, depending on its intended use. 


Particle analysis module  

While the basic image and video processing modules, Micrograph_class and MicroVideo_class, 
are highly effective for image processing, we also include a basic image analysis module. The 
module contains simple methods for extracting data from nanoparticle, including positions, sizes, 
morphology, shape, and other physical properties. This information is crucial for thorough sample 
characterisation and optimisation in various fields, including pharmaceutical and materials 
science, nanotechnology, and biomedicine. The process for measuring particle properties is 
simple and involves applying a threshold to separate the nanoparticles from the background 
intensity, locating the boundaries of the particles and filtering the selected particles by area. This 

 of 7 10

A) 

# Import the class
from SimpliPyTEM.Micrograph_class import Micrograph

# Initialise class and open micrograph
image = Micrograph('My_file.dm4')

# Gaussian filter
im_gaussian = image.gaussian_filter(5)

# Convert to 8-bit
im8bit = im_gaussian.convert_to_8bit()

# Enhance contrast
im_contrast = im8bit.clip_contrast()

# Add scale-bar
im_contrast_SB = im_contrast_enhanced.make_scalebar()

# Plot image
im_contrast_enhanced_SB.imshow()

# Save image
im_contrast_enhanced.write_image('output.jpg')

C) 

Runtime = 1.97s

Video processingImage processing

Access data 
in numpy 

arrays 
6 39 253 13 21

38 4 238 190 41

88 5 170 177 124

7 64 39 87 90

46 12 89 214 17

6 39 253 13 21

38 4 238 190 41

88 5 170 177 124

7 64 39 87 90

46 12 89 214 17

6 39 253 13 21

38 4 238 190 41

88 5 170 177 124

7 64 39 87 90

46 12 89 214 17

Add scale-bar

100nm 

Image filtering  
Gaussian, median, low-
pass, Weiner filters and 

more  available

Contrast 
enhancement 

Display FFT

Plotting image and histogram

Averaging frames

Drift correction with 
Motioncor2Plot images together

Example functions available with single line of 
code

B) 

Figure 2: SimpliPyTEM - Python library. A) Mind-map 
showing an example of available functions that are all 
accessible with a single line of code. B) Example code for 
basic image processing. C) Image transformation achieved 
by the code shown in B, with a running time of 1.97s, with it 
falling to 0.84s when the image is not plotted (on MacBook 
Pro, 2018).

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 30, 2023. ; https://doi.org/10.1101/2023.04.28.538777doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.28.538777
http://creativecommons.org/licenses/by/4.0/


allows the user to measure the physical characteristics of the particles. These physical properties 
include area, position, circularity, major and minor axes, and major: minor axis ratio. The module 
also includes a way to take multiple measurements of the particle diameter from a single particle, 
allowing the diameter's maximum, minimum, mean, and standard deviation to be collected. By 
considering these measurements, the user can obtain quantitative information about the 
uniformity of the investigated particles. An example of this functionality is given in Figure 3, where 
a negatively stained micrograph of polymer particles was selected for applying this module. 
Thresholding, was applied to the image, then the objects in the field of view, i.e. particles were  
located, filtered by size, and various properties could subsequently be extracted and plotted. 


Conclusion 
Herein, we present a new computational Python package to aid with the processing and analysis 
of image and video data from electron microscopy experiments. The package is fully documented 
and supported by tutorials, aiming to make one of the most powerful image analysis tools more 
accessible to beginner users. The proposed package is particularly beneficial to in situ EM  

 of 8 10

Locate 
and filter 
particles

Apply 
threshold

Pre-
process 
image

Extract 
data

Plot data

Starting image

Area Centroid_x Centroid_y Perimeter Circularity Width Height Radius Major-Minor Ratio Min diameter Max diameter Mean diameter Stddev diameter Measurements

1749.61 56.07 1365.07 161.08 0.85 45.57 49.82 25.56 1.09 43.47 50.56 47.32 2.26 72

808.36 156.20 1215.48 115.16 0.73 31.82 34.37 18.79 1.08 28.66 35.56 32.46 2.15 22

2079.97 237.77 1570.77 176.45 0.81 51.62 52.71 28.66 1.02 46.13 55.43 50.70 2.41 54

2109.49 351.60 469.88 175.79 0.83 49.56 54.62 28.46 1.10 47.57 55.43 52.13 2.28 66

3200.23 433.50 1732.97 226.48 0.62 51.62 78.79 40.69 1.53 48.93 80.46 65.81 11.15 114

Plotting code: 


fig, ax = plt.subplots(1,3,figsize=(45,15))

matplotlib.rcParams.update({'font.size': 40}, )


matplotlib.rcParams['axes.linewidth'] = 4

matplotlib.rcParams['lines.linewidth'] = 4


seaborn.violinplot([wdata, hdata,mdata] ,ax=ax[0], linewidth=4, edgecolor='black')

#ax[0].violinplot([wdata, hdata,mdata])


for a in ax:

    a.xaxis.set_tick_params(width=5, length=10)

    a.yaxis.set_tick_params(width=5, length=10)


ax[0].set_ylim(0,120)

ax[0].set_title('Diameter', fontsize=50)


ax[0].set_ylabel('Particle Diameter (nm)')

ax[0].set_xticklabels(['Minimum', 'Maximum', 'Mean'])


ax[1].hist(cdata, color='#D8BBEA',edgecolor='black',linewidth=4, bins=6)

ax[1].set_title('Circularity', fontsize=50)


ax[1].set_ylabel(‘Frequency')

ax[1].set_xticks([x/10 for x in range(4,11)])


ax[1].set_xlim(0.35,1)

ax[1].axvline(np.mean(cdata), color='red')


label='Mean = ' +str(round(np.mean(cdata),2))

ax[1].annotate(label, (0.6,10), fontsize=30)


ax[2].scatter( df['Centroid_x'], df['Centroid_y'] , color='#E5E8B5', marker='o',edgecolors='black',s=300, linewidth=3)

ax[2].invert_yaxis()


ax[2].set_title('Position', fontsize=50)

ax[2].set_ylabel('')

ax[2].set_xlabel('')


ax[2].set_xlim(0,1919)

ax[2].set_ylim(1855,0)


plt.show()

A) B) C) D) 

E) 

F) 

Figure 3: Basic Particle analysis protocol to extract particle data from a negatively stained image 
of polymer particles. The starting image is opened (A), preprocessed to enhance contrast and features 
(B), then a threshold is applied to create a binary image, with particles and background in white and 
black. respectively (C). The particles are located and filtered by size (D), particles touching the edges of 
the image are also removed. Finally, data is extracted (E) and plotted (F) with very few lines of code 
(from image to data). Here we show plots of particles’ diameter, circularity, and position, however more 
features are also accessible. The code to produce this analysis is available online as a tutorial within the 
documentation (https://simplipytem.readthedocs.io/en/latest/Tutorials/Particle_analysis_tutorial.html).

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 30, 2023. ; https://doi.org/10.1101/2023.04.28.538777doi: bioRxiv preprint 

https://simplipytem.readthedocs.io/en/latest/Tutorials/Particle_analysis_tutorial.html
https://doi.org/10.1101/2023.04.28.538777
http://creativecommons.org/licenses/by/4.0/


investigations where early data evaluation and post-processing can help users identify trends and 
correlations that may not be apparent from the raw data. In this fashion SimplyPyTEM allows 
users to make informed decisions about experiment design, sample preparation, etc by providing 
a fast and thorough evaluation of the data collected in the imaging session. Post-experimental 
image processing times can be reduced to mere seconds per file, and user-friendly documents to 
present, evaluate and share the data can be generated rapidly. By examining simple preview 
images within these documents, one can rapidly find the images or videos of particular interest for 
further analysis or display. Ultimately the aim for SimplyPyTEM is to share commonly used 
methods and unlock the potential of our data analysis. This, in turn, will help accelerate the 
science of all electron and in situ microscopy.


Code availability  
All the code is fully open-source and licensed under the GPL-3 licence. It can be downloaded and 
installed using Python’s  package manager ‘pip’ (‘pip install SimpliPyTEM’), with the pyPI page for 
the package being found at https://pypi.org/project/SimpliPyTEM/ . The code is also deposited on 
GitHub at https://github.com/gabriel-ing/SimpliPyTEM, documentation and tutorials can be found 
at https://simplipytem.readthedocs.io/en/latest/index.html. 


Acknowledgements  
We would like to thank Valentino Barbieri, Chiara Cursi and Barbara Yus-Ibarzo, for providing 
samples which have become example images in this manuscript. GI acknowledges the Wellcome 
Trust for funding his studentship (222908/Z/21/Z). 


 of 9 10

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 30, 2023. ; https://doi.org/10.1101/2023.04.28.538777doi: bioRxiv preprint 

https://pypi.org/project/SimpliPyTEM/
https://github.com/gabriel-ing/SimpliPyTEM
https://doi.org/10.1101/2023.04.28.538777
http://creativecommons.org/licenses/by/4.0/


References 

1.	 Friedrich, H., et al., Imaging of Self-Assembled Structures: Interpretation of TEM and Cryo-
TEM Images. Angewandte Chemie International Edition, 2010. 49(43): p. 7850-7858.

2.	 Egerton, R.F., Radiation damage to organic and inorganic specimens in the TEM. Micron, 
2019. 119: p. 72-87.

3.	 Kushwaha, H.S., et al. De-noising Filters for TEM (Transmission Electron Microscopy) 
Image of Nanomaterials. in 2012 Second International Conference on Advanced Computing & 
Communication Technologies. 2012.

4.	 Lehtinen, J., et al., Noise2Noise: Learning image restoration without clean data. arXiv 
preprint arXiv:1803.04189, 2018.

5.	 Krull, A.a.B.T.-O.a.J.F., Noise2void-learning denoising from single noisy images. 2019: p. 
2129--2137.

6.	 Bepler, T., et al., Topaz-Denoise: general deep denoising models for cryoEM and cryoET. 
Nature Communications, 2020. 11(1): p. 5208.

7.	 Marchello, G., et al., End-to-end image analysis pipeline for liquid-phase electron 
microscopy. Journal of Microscopy, 2020. 279(3): p. 242--248.

8.	 Schindelin, J., et al., Fiji: an open-source platform for biological-image analysis. Nature 
Methods, 2012. 9(7): p. 676-682.

9.	 inc, G., Digital Micrograph™ software. https://www.gatan.com/products/tem-analysis/
gatan-microscopy-suite-software.

10.	 Bradski, G., The openCV library. Dr. Dobb's Journal: Software Tools for the Professional 
Programmer, 2000. 25(11): p. 120-123.

11.	 Clark, A., Pillow (pil fork) documentation. readthedocs, 2015.

12.	 Van der Walt, S., et al., scikit-image: image processing in Python. PeerJ, 2014. 2: p. e453.

13.	 Dey, S., Hands-On Image Processing with Python: Expert techniques for advanced image 
analysis and effective interpretation of image data. 2018: Packt Publishing Ltd.

14.	 Schmidt, U., et al., Cell Detection with Star-Convex Polygons. 2018, Springer International 
Publishing. p. 265-273.

15.	 Harris, C.R., et al., Array programming with NumPy. Nature, 2020. 585(7825): p. 357-362.

16.	 Virtanen, P., et al., SciPy 1.0: fundamental algorithms for scientific computing in Python. 
Nature Methods, 2020. 17(3): p. 261-272.

17.	 Ercius P., N.F., Ophus C. , Pekin T., Gainsforth Z., OpenNCEM : http://www.github.com/
ercius/openNCEM. 
18.	 Burnley, T., C.M. Palmer, and M. Winn, Recent developments in the CCP-EM software 
suite. Acta Crystallographica Section D: Structural Biology, 2017. 73(6): p. 469-477.

19.	 Kluyver, T., et al., Jupyter Notebooks-a publishing format for reproducible computational 
workflows. Vol. 2016. 2016.

20.	 Ross, F.M. and A.M. Minor, In Situ Transmission Electron Microscopy, in Springer 
Handbook of Microscopy, P.W. Hawkes and J.C.H. Spence, Editors. 2019, Springer International 
Publishing: Cham. p. 101-187.

21.	 Zheng, S.Q., et al., MotionCor2: anisotropic correction of beam-induced motion for 
improved cryo-electron microscopy. Nature Methods, 2017. 14(4): p. 331-332.


 of 10 10

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 30, 2023. ; https://doi.org/10.1101/2023.04.28.538777doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.28.538777
http://creativecommons.org/licenses/by/4.0/

	Abstract
	Introduction
	Methods
	Results
	Conclusion
	Code availability
	Acknowledgements

