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Abstract

This Bachelor’s Degree Final Project studies the integration of ethical princi-
ples into multi-objective, multi-agent reinforcement learning (MOMARL) through
the implementation and evaluation of the Independent Lexicographic Proximal
Policy Optimization (ILPPO) algorithm. In multi-agent reinforcement learning
(MARL) the dynamic interactions between agents can make ethical learning partic-
ularly complex. ILPPO addresses these challenges by prioritizing ethical decision-
making via a lexicographic ordering of multiple objectives, ensuring that the ethi-
cal objectives are met before addressing other individual objectives.
We start by presenting the necessary background on a multi-objective Markov De-
cision Process (MOMDP), the Proximal Policy Optimization (PPO) algorithm and
the lexicographic RL framework, which forms the basis for LPPO algorithm. Then,
we extrapolate the three elements of this framework (MOMDP, PPO and LPPO) in
the context of multi-agent Markov games, where each agent learns independently.
Once we develop the Independent LPPO (ILPPO), we evaluate it in the Ethical
Gathering Game, an environment where agents learn to behave in alignment with
the moral value of beneficence. Our experiments demonstrate that ILPPO can
learn optimal ethical policies aligned with ethical values, similar to the ones ob-
tained with Independent PPO (IPPO). This study concludes that ILPPO provides a
robust framework for embedding ethical considerations into MOMARL, offering
new insights and paving the way for future research in more complex environ-
ments.

Resum

Aquest Treball de Fi de Grau estudia la integració de principis étics en l’aprenen-
tatge per reforç multiobjectiu i multiagent (MOMARL) mitjançant la implementació
i avaluació de l’algoritme Independent Lexicographic Proximal Policy Optimiza-
tion (ILPPO). En l’aprenentatge per reforç multiagent (MARL), les interaccions
dinàmiques entre agents poden fer que l’aprenentatge ètic sigui particularment
complex. ILPPO aborda aquests reptes prioritzant la presa de decisions ètica mit-
jançant una ordenació lexicogràfica de múltiples objectius, assegurant que els ob-
jectius ètics es compleixin abans d’abordar altres objectius individuals.
Comencem presentant els antecedents necessaris sobre un procés de decisió de
Markov multiobjectiu (MOMDP), l’algoritme Proximal Policy Optimization (PPO)
i el marc lexicogràfic d’aprenentatge per reforç, que forma la base de l’algoritme
LPPO.
A continuació, extrapolem els tres elements d’aquest marc (MOMDP, PPO i LPPO)
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en el context dels jocs de Markov multiagent, on cada agent aprèn de manera in-
dependent.
Un cop desenvolupat l’Independent LPPO (ILPPO), l’avaluem en el "Ethical Gath-
ering Game", un entorn on els agents aprenen a comportar-se d’acord amb el valor
moral de la beneficència. Els nostres experiments demostren que ILPPO pot apren-
dre polítiques ètiques òptimes alineades amb valors ètics, similars a les obtingudes
amb Independent PPO (IPPO). Aquest estudi conclou que ILPPO proporciona un
marc sòlid per incorporar consideracions ètiques en MOMARL, oferint noves per-
spectives i obrint camí per a futures investigacions en entorns més complexos.

Resumen

Este Trabajo de Fin de Grado estudia la integración de principios éticos en
el aprendizaje por refuerzo multiobjetivo y multiagente (MOMARL) mediante la
implementación y evaluación del algoritmo Independent Lexicographic Proximal
Policy Optimization (ILPPO). En el aprendizaje por refuerzo multiagente (MARL),
las interacciones dinámicas entre agentes pueden hacer que el aprendizaje ético
sea particularmente complejo. ILPPO aborda estos retos priorizando la toma de
decisiones éticas mediante una ordenación lexicográfica de múltiples objetivos,
asegurando que los objetivos éticos se cumplan antes de abordar otros objetivos
individuales.
Comenzamos presentando los antecedentes necesarios sobre un proceso de de-
cisión de Markov multiobjetivo (MOMDP), el algoritmo Proximal Policy Opti-
mization (PPO) y el marco lexicográfico de aprendizaje por refuerzo, que forma la
base del algoritmo LPPO.
A continuación, extrapolamos los tres elementos de este marco (MOMDP, PPO y
LPPO) en el contexto de los juegos de Markov multiagente, donde cada agente
aprende de manera independiente.
Una vez desarroyado el Independent LPPO (ILPPO), lo evaluamos en el "Ethi-
cal Gathering Game", un entorno donde los agentes aprenden a comportarse de
acuerdo con el valor moral de la beneficencia. Nuestros experimentos demuestran
que ILPPO puede aprender políticas éticas óptimas alineadas con valores éticos,
similares a las obtenidas con Independent PPO (IPPO). Este estudio concluye que
ILPPO proporciona un marco sólido para incorporar consideraciones éticas en
MOMARL, ofreciendo nuevas perspectivas y abriendo camino para futuras inves-
tigaciones en entornos más complejos.

2020 Mathematics Subject Classification. 68T01, 68T05, 68T07, 68T20, 68T37, 68T42
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Nomenclature

The following table describes the meaning of various abbreviations and acronyms
used throughout the document. Time-steps will be denoted as sub-indexes, while
agents will be denoted as super-indexes in a variable. E.g., πi

t, policy at time-step
t for agent i.

Symbol Description

RL Reinforcement Learning
MDP Markov Decision Process
MOMDP Multi-Objective Markov Decision Process
MARL Multi-Agent Reinforcement Learning
S Set of states
S Subset of terminal states
A Set of actions
A(s) Set of actions that can be taken from state s
R : S ×A× S → R Reward function for single agent MDP
T : S ×A× S → [0, 1] Transition function for single agent MDP
µ : S → [0, 1] Initial state distribution
π : A× S → [0, 1] Policy
Maxt Maximum number of time-steps in a trajectory
τ Trajectory
E Expectation operator
Vπ(s) Value function of state s under policy π

Qπ(s, a) Action-value function of the pair state-action
under policy π

V∗(s) Optimal value function
Q∗(s, a) Optimal action-value function
Π∗ Set of all the optimal policies
Ω Finite set of observations in a POMDP
O : A× S ×Ω→ [0, 1] Observation transition probability function in

a POMDP
Γ := (I, {Ai}i∈I , {Ri}i∈I) Normal-form game
⟨·⟩ Concatenation operator

Table 1: Nomenclature (Part 1)
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Symbol Description

PGM Policy Gradient Methods
SGA Stochastic Gradient Ascent
MSE Mean Squared Error
LPPO Lexicographic Proximal Policy Optimization
PPO Proximal Policy Optimization
TRPO Trust Region Policy Optimization
IQL Independent Q-Learners
IPPO Independent Proximal Policy Optimization
ILPPO Independent Lexicographic Proximal Policy

Optimization
ϵ Tolerance value in lexicographic optimization
βi Learning rate for ith objective in lexicographic

optimization
ηi Weight assigned to difference between the

most recent loss and the average loss in lexi-
cographic optimization

ci
t Coefficient for ith objective at time-step t

At Advantage estimate at time-step t
LCLIP Clipped objective function in PPO
H Entropy bonus
LV Loss function for the value function network
LCLIP+H+V Combined objective function for policy and

value function networks with entropy bonus
ut Discounted expected return
Vtarget

t Target value function at time-step t
gPGR Policy gradient estimator in REINFORCE algo-

rithm
gVR Variance reduced policy gradient estimator
gA Policy gradient estimator in Actor-Critic meth-

ods
Li(θ, λ) Lagrangian function for ith objective
Γθ Projection operator for policy parameters θ

Γλ Projection operator for Lagrange multipliers λ

Table 2: Nomenclature (Part 2)



Chapter 1

Introduction

In recent years, as Artificial Intelligence systems become increasingly inte-
grated in our everyday activities, their ethical behaviour has never been more
critical. One of the most promising branches of AI are reinforcement learning
(RL) algorithms. Within RL, multi-agent reinforcement learning (MARL) studies
how multiple agents can learn to make decisions by interacting with each other
and their environment to maximize cumulative rewards. This field stands out for
its potential to address complex scenarios involving multiple agents. However,
the dynamics generated between agents in a MARL introduce additional layers of
complexity, making ethical learning particularly challenging.
One common approach to integrating multiple objectives in RL is through scalar-
ized reward functions, where various objectives are combined into a single scalar
value. This method simplifies the optimization process, but often fails to ade-
quately represent the hierarchical nature of ethical decision-making. Scalarized
reward functions may lead to misrepresentations that do not align with ethical
priorities, as they blend multiple goals into a single objective value, without con-
sidering the relative importance of each goal.
This Bachelor’s Degree Final Project focuses on addressing this challenge by in-
troducing the Independent Lexicographic Proximal Policy Optimization (ILPPO)
algorithm. ILPPO is designed to incorporate ethical decision-making into multi-
objective MARL (MOMARL) by leveraging lexicographic ordering of multiple ob-
jectives. This approach ensures that higher-priority ethical objectives are satisfied
before addressing other goals, thereby promoting ethical behavior in multi-agent
environments.
The project is structured as follows:

• Theoretical Foundations: We begin by establishing the theoretical ground-
work necessary for understanding ILPPO. This includes defining the Multi-
Objective Markov Decision Process (MOMDP), which extends the traditional

1



2 Introduction

Markov Decision Process to handle multiple objectives. We also provide an
explanation of the Proximal Policy Optimization (PPO) algorithm. This al-
gorithm will serve as the basis for ILPPO. Additionally, we introduce the
lexicographic RL framework, which prioritizes objectives lexicographically
for a single agent, and we extend this definition to multi-agent systems,
where each agent learns independently.

• Algorithm Development: Using the principles of Lagrangian relaxation, we
study a policy-based approach to solve MOMARL environments. This ap-
proach ensures that the optimization process respects the lexicographic or-
dering of objectives, focusing on higher-priority goals first. We document
the modifications made to the standard IPPO algorithm to create ILPPO,
emphasizing how it integrates multiple objectives in a multi-agent environ-
ment.

• Implementation and Experiments: To validate the effectiveness of ILPPO,
we implement it in an environment called Ethical Gathering Game. This
environment models a multi-agent scenario where multiple agents learn to
behave in alignment with the ethical principle of beneficence. We conduct
a series of experiments to compare ILPPO with the standard IPPO algo-
rithm, evaluating its performance in terms of ethical behaviour and overall
efficiency.

• Results and Analysis: Our experimental results demonstrate that with ILPPO
agents learn an ethical optimal policy, where the efficient agent learns to
display beneficence and helps the inefficient agent to survive. We present
detailed analyses of the agents’ behaviours, convergence metrics and ethical
compliance, highlighting the advantages of ILPPO algorithm.

• Conclusions and Future Work: The project concludes summarizing the
main findings and contributions. We outline possible directions for future
research, including scaling ILPPO to more complex environments.

Through this project, we aim to provide an algorithm that guarantees that all
agents in the system learn to behave ethically in a multi-agent setting. By ad-
dressing the limitations of scalarized reward functions and employing a lexico-
graphic approach, ILPPO represents a significant advancement in aligning agent
behaviour with ethical principles.



Chapter 2

Background

This chapter will provide the necessary preliminary knowledge to understand
how the Proximal Policy Optimization algorithm works and how to apply a lexi-
cographic order to the policies generated by each reward. Section 2.1 will provide
a brief definition of Reinforcement Learning and introduce its main pillars: what
is an agent, a policy and a reward. We will begin by presenting the model we
will work with, the Markov Decision Process, and how to optimize policies with
expected discounted rewards and value functions. With this knowledge, we will
define Q-learning, an algorithm that learns optimal policies by computing value
functions.
Section 2.8 will delve into Proximal Policy Optimization (PPO), a key algorithm
in reinforcement learning. We will explain the motivation behind PPO, its under-
lying principles, and its advantages over previous policy gradient methods. The
section will cover the mathematical formulation of PPO, including the objective
functions and clipping strategies that stabilize training. We will also discuss the
practical aspects of implementing PPO, such as the choice of neural network ar-
chitectures and hyper-parameter settings.
Following the introduction to PPO, Section 2.9 will introduce the concept of lex-
icographic optimization in reinforcement learning. This section will explain how
multiple objectives can be prioritized and how the lexicographic Proximal Pol-
icy Optimization (LPPO) algorithm integrates this prioritization into the training
process. We will describe the formulation of LPPO, the role of the Lagrangian
relaxation technique in handling constraints, and how LPPO ensures that higher-
priority objectives are optimized before considering lower-priority ones.
Once the foundation has been established for single agent environments, we will
proceed to define the model for multi-agent environments in Sections 2.10 and
2.11, with a particular emphasis on game theory. We will furnish definitions for
various types of games, based on the number of agents, possible actions, and the

3



4 Background

number of iterations. The necessary information for writing sections 2.1 to 2.7 has
been obtained from the book on Multi-Agent Reinforcement Learning by Albrecht
et al. [1].

2.1 Reinforcement Learning

In Reinforcement Learning (RL), an agent learns to behave by interacting with
the environment. Each action has its corresponding reward or punishment. The
objective of the agent is to learn a behaviour that maximizes its gain of rewards.

A helpful way to grasp these abstract concepts is through an example:
Consider the scenario of training a dog to get a stick. Since the dog does not
understand our language, it is impossible to communicate what we want it to do
verbally. Instead, we adopt a different strategy. We create a situation (throwing the
stick), and the dog attempts various responses. If the dog’s response aligns with
our desired behavior (get it as soon as possible), we reward it with snacks. Conse-
quently, the next time the dog encounters a similar situation, it tends to repeat the
action faster and more efficiently, anticipating more food. This exemplifies learn-
ing how to behave, striving to maximize the reward of snacks. Similarly, dogs
learn what actions to avoid when faced with negative experiences.

That’s how Reinforcement Learning works in a broader sense:

• The dog is the agent, that is interacting with the environment. This environ-
ment could be a physical space, such as a room or a yard, where the dog
performs actions and receives feedback.

• The situation the dog encounters is analogous to a state. An example of a
state could be the dog standing and staring at you impatiently as you keep
the stick in your hands. Or the state in which the stick is no longer in your
hands, and the dog has to pick it up.

• Our agent reacts to a state by performing an action, causing the environment
to transition from one state to another. In our example, when the dog catches
the stick and brings it back to you, it is performing an action to change
between states. The environment, once the dog action is applied, changes to
a new "stick-retrieved" state.

• After the transition, they may receive a reward or penalty in return. You can
give them a treat or a "No" as a penalty.

• The policy is the strategy of choosing an action given a state in expectation
of better outcomes, or snacks.
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In the following section, we will formally define these concepts within a frame-
work called the Markov decision process.

2.2 Markov Decision Processes

The standard model used in single agent RL to define a sequential decision
process is called the Markov decision process:

Definition 2.1 (Markov decision process). A finite Markov decision process (MDP)
consists of:

• A finite set of states S , with a subset of terminal states S ⊂ S ,

• a finite set of actions A,

• a reward function R : S× A× S→ R,

• a state transition probability function T : S ×A× S → [0, 1] such that

∀s ∈ S , ∀a ∈ A : ∑
s′∈S

T(s, a, s′) = 1, (2.1)

• and an initial state distribution µ : S → [0, 1] such that

∑
s∈S

µ(s) = 1 and ∀s ∈ S : µ(s) = 0. (2.2)

An MDP starts at an initial state s0 which is stochastically drawn from the so-
called initial state distribution, denoted mathematically as s0 ∼ µ(s). This function
µ assigns probability values to the elements in S , indicating how probable it is for
any given state to be chosen as an initial state. At time t, the agent observes the
current state st ∈ S and chooses an action at ∈ A with probability given by its
decision-making strategy, called policy.
A policy is map

π : A× S → [0, 1]

π(a, s) = Pr(At = a | St = s)
(2.3)

that gives the probability of taking action a when in state s. It is often written
as a conditioned probability to highlight the fact that the action depends on the
specific state. Different states may have different allowed actions to take.
Given the state st and the action at sampled with the policy, the MDP transitions
into the next state st+1 with probability given by the state transition probability
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function T(st, at, st+1). Once transitioned to the new state, the agent receives a
reward rt+1 = R(st+1 | st, at), a scalar feedback that indicates how well the agent
is doing at time-step t. The agent’s objective is to maximize the total reward it
receives over the long run.
These steps are repeated until the process reaches a terminal state st ∈ S or after
completing a maximum number of time-steps Maxt, in which the process termi-
nates. Each independent run of the above sequence of interactions between the
agent and the environment is called an episode. The set of states, actions and
rewards carried out in an episode is called a trajectory

τ = {s0, a0, r1, s1, a1, r2, . . . , sMaxt−1, aMaxt−1, rMaxt}. (2.4)

Dealing with an MDP has the following implication: an agent only needs infor-
mation about the current state to choose optimal actions. This comes from the
Markov property of all MDP, which states that the future states and rewards are
conditionally independent of past states and actions, given the current state and
action

Pr(st+1, rt+1 | st, at, st−1, at−1, . . . , s0, a0) = Pr(st+1, rt+1 | st, at). (2.5)

2.3 Expected Discounted Returns

To measure the overall performance of a policy π, we can compute the (ex-
pected) discounted sum of rewards that the agent obtains by following it

ut = Eπ[
∞

∑
k=0

γkrt+k+1]. (2.6)

The expectation operator allows us to compute the average reward that we expect
to receive when following a certain policy over a sequence of actions. And the
discount factor γ ∈ [0, 1) makes it possible to compare the performance of policies
in MDPs without terminal states.
The discount factor determines the "weight" the agent gives to the reward: a re-
ward received k + 1 time-steps in the future is only worth γk times what it would
be worth if it were received now. For γ < 1 and {rt+k+1}∞

k=0 bounded, the infinite
sum in Equation 2.6 has a finite value.
For γ ≈ 0, the agent is only concerned with maximizing immediate rewards; its
objective is to learn how to choose at in order to maximize rt+1. As γ ≈ 1, the
return objective takes future rewards into account more strongly.
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2.4 Value Functions

Almost all reinforcement learning algorithms involve estimating value func-
tions, which estimate "how good" it is for the agent to be in a given state. The
term "how good" here refers to the future rewards the agent expects to receive
if it follows the policy from the current state s onwards. Or, more precisely, the
expected return it expects to receive.
From the Markov property defined in Equation 2.5, we can deduce that future
rewards are independent of past rewards. Thus, the expected discounted returns
no longer must be defined for the entire trajectory, but can be defined for each in-
dividual state s ∈ S. This operation is formalised by the so-called value function,
defined as:

Vπ(s) = Eπ[
∞

∑
k=0

γkrt+k+1 | St = s]. (2.7)

Denoted by Vπ(s), is the expected return when starting in s and following the
current policy π. Note that the value of any terminal state is always zero. Being
tightly connected to the concept of value functions are the so-called action-value
functions Qπ(s, a), which give the expected return once selected action a in state s
and then following policy π to navigate to future states

Qπ(s, a) = Eπ[
∞

∑
k=0

γkrt+k+1 | St = s,At = a]. (2.8)

The value and action-value functions can be estimated from experience. If an
agent that follows a policy π maintains an average of the expected returns for
each encountered state, then the average will converge to the state’s value Vπ(s)
as the number of times that state is explored approaches infinity.
Similarly, if separate averages are kept for each action taken in each state, then
these averages will similarly converge to the action-values Qπ(s, a). Nevertheless,
when dealing with numerous states, it is impractical to maintain averages for
each state individually. Instead, the agent can store Qπ and Vπ as parameterized
functions and adjust the parameters to more accurately align with the encountered
rewards.
Value functions are used, one way or another, in almost every RL algorithm. An
important property of value functions is that they satisfy a recursive relationship.
Given any policy π and any state s, the following condition holds between the
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value of s and the value of its successor states

Vπ(s) = Eπ[
∞

∑
k=0

γkrt+k+1 | St = s]

= Eπ[rt+1 +
∞

∑
k=1

γkrt+k+1 | St = s]

= ∑
a∈A

π(a | s) ∑
s′∈S

P(s′ | s, a)[r(s, a, s′) + γEπ[
∞

∑
k=0

γkrt+k+2 | St+1 = s′]]

= ∑
a∈A

π(a | s) ∑
s′∈S

P(s′ | s, a)[r(s, a, s′) + γVπ(s′)].

(2.9)

The recursive formula given in Equation 2.9 is called the Bellman equation. It ex-
presses a relationship between the value of the current state s and the value of its
successor states.
Analogous of recursive value functions, we can define recursive action-value func-
tions Qπ(s, a)

Qπ(s, a) = Eπ[
∞

∑
k=0

γkrt+k+1 | St = s,At = a]

= Eπ[rt+1 +
∞

∑
k=1

γkrt+k+1 | St = s,At = a]

= ∑
s′∈S

P(s′ | s, a)[r(s, a, s′) + γVπ(s′)]

= ∑
s′∈S

P(s′ | s, a)[r(s, a, s′) + γ ∑
a′∈A

π(a′ | s)Qπ(s′, a′)].

(2.10)

2.5 Optimal Policy

In a MDP environment, there are different value functions according to dif-
ferent policies. The optimal value function is one that yields maximum value
compared to all other value functions. Solving a MDP means finding the optimal
value function. Mathematically, optimal value functions can be expressed as:

V∗(s) = max
π

Vπ(s). (2.11)

Where V∗ tell us the maximum reward we can get from the system. Thus, maxi-
mizing the expected return in a MDP is equal to maximizing the expected return
in each possible state s ∈ S.
Likewise, the optimal action-value function indicates the maximum reward attain-
able in state s upon selecting action a and subsequently continuing from that point
onward.

Q∗(s, a) = max
π

Qπ(s, a). (2.12)
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Now that we have defined the basic components for optimality, we can define
what is meant by optimal policy. Observe that value functions define a partial
ordering over policies. A policy π is better than other policies π′ if its expected
return is greater or equal to that of π′ for all states.

π ≥ π′ if Vπ(s) ≥ Vπ′(s), ∀s. (2.13)

There is always at least one deterministic optimal policy for every finite MDP. Note
that there can be more than one optimal policy in a MDP. But all optimal policies
achieve the same optimal value functions and optimal action-value functions. We
denote all the optimal policies Π∗.
We find an optimal policy maximizing over our action-value function Q∗(s, a). The
idea is to solve Q∗(s, a) for each possible action and then pick the one that gives
us the greatest reward.

π∗(a | s) =

{
1, if a = arg maxa∈A Q∗(s, a)

0, otherwise
(2.14)

For state s, we select an action with probability 1 if it returns the largest value of
Q∗(s, a). So, in order to identify an optimal policy, we simply have to focus on
finding Q∗(s, a). How can we find these Q∗(s, a)? This is where Bellman equation
(2.9) will be handy.
The Bellman Optimallity equation is identical to the Bellman equation, with the
exception that instead of choosing the average of the actions our agent can per-
form, we select the action with the highest value. Specifically, the best action taken
in that state.

V∗(s) = max
a∈A(s)

Q∗(s, a)

= max
a ∑

s′∈S
P(s′ | s, a)[r(s, a, s′) + γV∗(s′)].

(2.15)

Similarly, the Bellman optimality equation for Q∗(s, a) is

Q∗(s, a) = Eπ[rt+1 + γ max
a′

Q∗(s′, a′) | St+1 = s′,At = a′]

= ∑
s′∈S

P(s′ | s, a)[r(s, a, s′) + γ max
a′

Q∗(s′, a′)].
(2.16)

The Bellman Optimallity equations define a system of non-linear equations, one
for each state. So, if there are N states, then there are N equations with N un-
knowns. The non-linearity is due to the max-operator used in the equations.
If the dynamics of the environment are known (P(s′ | s, a), R(s, a, s′)) one can solve
this system of equations for V∗ using a convenient method for solving non-linear
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equations. One can solve a related set of equations for Qπ∗ .
Once we know an optimal action-value function Q∗, an optimal policy π∗ can be
derived by choosing actions with maximum value, as described in Equation 2.14.
Written as a a shorthand,

π∗(s) = arg max
a∈A

Q∗(s, a). (2.17)

Which assigns a probability 1 to the action that maximizes the action-value func-
tion at state s.

2.6 Value Based Methods

Value-based methods are a class of algorithms in reinforcement learning (RL)
that focus on estimating the value functions to derive optimal policies. These
methods are based on the Bellman equations, which provide a recursive decom-
position of value functions, facilitating their computation. Among the value-based
methods, Temporal-Difference (TD) learning is particularly important for its abil-
ity to learn directly from raw experience without a model of the environment.

2.6.1 Temporal-Difference Learning

Temporal-Difference (TD) learning is a family of RL algorithms that learn value
functions and optimal policies from past interactions with the environment. TD
learning does not require complete knowledge of the Markov Decision Process
(MDP). Instead, the information needed is collected solely by interacting with the
environment.
TD algorithms update action-value functions using the following rule:

Q(st, at)← Q(st, at) + α[χ−Q(st, at)]. (2.18)

where χ is the target, and α ∈ (0, 1] is the learning rate. The target χ is constructed
from interactions with the environment (st, at, rt+1, st+1)

1 . Depending on how
we construct the target value, we can implement different TD algorithms, which
impact how they learn.

Q-learning

Q-learning is a TD algorithm that uses the information tuple (st, at, rt+1, st+1)

gathered from the environment to compute the following χ:

χ = rt+1 + γ max
a′∈A

Q(st+1, a′). (2.19)

1Note that the reward function when transitioning from state st and applying the action at returns
the reward rt+1.
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This leads to the complete Q-learning update rule:

Q(st, at)← Q(st, at) + α[rt + γ max
a′∈A

Q(st+1, a′)−Q(st, at)]. (2.20)

Q-learning is guaranteed to converge to the optimal policy π∗ provided that all
state-action pairs (s, a) ∈ S are visited infinitely often and the learning rate α is
decayed to zero over time. Unlike other TD methods, Q-learning does not require
the policy used to interact with the environment to be adjusted gradually toward
the optimal policy. Instead, it directly uses the maximum possible reward of the
next state, disregarding the current policy.

2.7 Policy Based Learning

Suppose you are in a new town and you want to reach downtown. The only
problem is that you have neither a map nor a GPS. You can try to assess your
current position relative to your destination, as well as the effectiveness (value) of
each direction you take. Or you can ask a local, who will tell you to go straight, and
when you see a fountain, turn to the left and continue until you reach downtown.
This is a policy to follow. Clearly, in this case, following a policy is much easier
than computing the value function on your own.
So the main idea is to be able to determine in each state s which action to take
in order to maximize the expected return. The way to achieve this objective is
to fine-tune a vector of parameters θ in order to select the best action to take
for policy π. The policy is noted as π(a | s, θ) = Pr(a | s, θ), which means
that the policy π is the probability of taking the action a when at state s and
the parameters are θ. These policy-based learning algorithms have the important
advantage that they can directly learn the action probabilities of policies based on
gradient-ascent techniques. As we will see, these algorithms achieve interesting
convergence properties when varying the action probabilities.

2.8 Proximal Policy Optimization

The perception and representation of the environment are one of the key prob-
lems that must be solved before the agent can decide to select an optimal action
to take. In RL tasks, a human expert provides features of the environment based
on his knowledge of the task. However, this causes issues with the environment
scalability and is limited to low-dimensional problems[10].
This is where Neural Networks fit in. Neural Networks are function approxi-
mates, which are particularly useful when the state space or action space are too
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large or unknown. A NN can be used to approximate a value function, or a policy
function. That is, NN can learn to map states to values, or state-action pairs to
state-action values. Instead of using a lookup table to store all possible states and
their values, we can train a NN on samples of the state or action space to learn to
predict how valuable those are in relation with our objective.
NNs use coefficients (θ) to approximate the function relating inputs and outputs.
Their learning process involves iteratively adjusting these coefficients (weights)
along gradients to minimize error. Given a set of pixels that represents a state in
a Super Mario game, a NN can rank the possible actions to perform in that state.
For example, it might predict that running will have a return of 5 points, jumping
of 7 and staying in place none.
At the beginning of the training, the NN coefficients are initialized stochastically.
Feedback from the environment is then used to adjust these weights, improving
the NN’s ability to interpret state-action pairs and optimize actions accordingly
[4].
In Deep Reinforcement Learning (DRL), NNs are employed to approximate either
the value function or the policy function, or sometimes both. By approximating
these functions, DRL enables agents to learn intricate strategies in environments
with vast state-action spaces, such as Super Mario games.
However, these algorithms are highly sensitive to hyper-parameter settings and
initialization. For example, if the learning rate is too high, it can push the policy
network into a parameter space region where the collected data is inadequate for
the current policy, making it difficult or impossible for the system to recover or
converge [8].
To tackle these challenges, Schulman et al. (2017) developed a new algorithm
called Proximal Policy Optimization (PPO) [8]. The primary aim of PPO is to
achieve a balance between simplicity of implementation, efficiency in using batches
of data, and ease of tuning.

2.8.1 Policy Gradient Methods

PPO is based on the principles of policy gradient methods (PGMs). In the last
sections, we saw two methods to find an optimal policy π∗:

• In value-based methods, we want to learn a value function. By minimizing
the loss between predicted and target value functions, we can approximate
the true action-value functions. And from this approximation, we can obtain
an optimal value function, which leads to an optimal policy π∗ if we choose
actions that maximize the action-values at each state. We have a policy, but
it’s implicit since it is generated directly from the value function.
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• In policy-based methods, we directly learn to approximate π∗ without hav-
ing to learn a value function. The idea is to parameterize the policy using
the weights and biases of a neural network θ. This policy πθ will output a
probability distribution over actions (stochastic policy).

πθ(at | st) = P(at | st; θ). (2.21)

Our objective is to maximize the expected cumulative reward following a
parameterized policy using gradient ascent. To do that, we control the pa-
rameter θ that will affect the distribution of actions over a state.

J(θ) = Eτ∼πθ
[R(τ)]. (2.22)

where τ is a sampled trajectory2 of the policy and R(τ) is the cumulative
reward following the trajectory.

R(τ) =
Maxt−1

∑
t=0

R(st, at). (2.23)

Consequently, thanks to policy-based methods, we can directly optimize our pol-
icy πθ to output a distribution over actions πθ(a | s) that leads to the best cu-
mulative reward. To do that, we define an objective function J(θ), the expected
cumulative reward, and find the value θ that maximizes this objective function.

Policy-gradient methods are a subclass of policy-based methods. The differ-
ence between these two methods lies on how we optimize the parameter θ.

Figure 2.1: Classification of methods to find optimal policies

• In policy-based methods we search directly for the optimal policy. But we
do it optimizing indirectly the parameter θ by maximizing the local approxi-
mation of the objective function with techniques like Hill Climbing or Cross
Entropy Minimization.

2State-action sequence with horizon Maxt, s0, a0, s1, a1, ..., sMaxt−1, aMaxt−1.



14 Background

• In policy-gradient methods we also search directly for the optimal policy.
But we optimize the parameter θ directly by performing the gradient ascent
on the performance objective function J(θ).

θt+1 = θt + α∇θ J(θt). (2.24)

The idea behind policy-gradient is to control the probability distribution of actions.
Actions that maximize the cumulative reward must be sampled more frequently in
the future. So, each time the agent interacts with the environment, we can tweak
the parameters such that "good actions" will be sampled more likely.
We are going to let the agent interact with the environment during an episode.
If the agent accumulates a high reward in the episode, we want to increase the
probability of each state-action pair leading to this success. Conversely, we want
to decrease the probability of state-action pairs that led to lower rewards.
To measure the performance of our policy, we use the objective function defined
above, J(θ), which outputs the expected cumulative reward.

J(θ) = Eτ∼πθ
[R(τ)]

= ∑
τ

P(τ; θ)R(τ)

= ∑
τ

[
Maxt−1

∏
t=0

P(st+1 | st, at)πθ(at | st)]R(τ).

(2.25)

Our objective is to maximize the expected cumulative reward by finding the θ that
outputs the action probability distribution that leads to higher rewards.

max
θ

J(θ) = max
θ

Eτ∼πθ
[R(τ)]. (2.26)

As it is a maximization problem, we need to use the gradient-ascent, seeking the
direction of the steepest increase of J(θ). The update step for gradient ascent is

θ ← θ + α∇θ J(θ). (2.27)

The derivative of J(θ) can be computed applying the Policy Gradient Theorem,
that helps to reformulate the objective function into a differentiable function.

Theorem 2.2 (Policy Gradient Theorem). The derivative of the expected reward is the
expectation of the product of the reward and gradient of the log of the policy πθ

∇θ J(θ) = ∇θEτ∼πθ
[R(τ)] = Eτ∼πθ

[∇θlog πθ(τ)R(τ)]. (2.28)



2.8 Proximal Policy Optimization 15

Now, expanding the definition of πθ

πθ(τ) = µ(s0)
Maxt−1

∏
t=0

πθ(at | st)P(st+1, rt+1 | st, at). (2.29)

Equivalently, taking the log probabilities, we have

log πθ(τ) = log µ(s0) +
Maxt−1

∑
t=0

log πθ(at | st) +
Maxt−1

∑
t=0

log P(st+1, rt+1 | st, at).

∇θ log πθ(τ) =
Maxt−1

∑
t=0

∇θ log πθ(at | st).

(2.30)

So, substituting the equivalence of the derivatives of the log probabilities obtained
in Equation 2.30 into the derivative of the objective function 2.28 we obtain

∇θ J(θ) = ∇θEτ∼πθ
[R(τ)] = Eτ∼πθ

[R(τ)(
Maxt−1

∑
t=0

∇θ log πθ(at | st)))]. (2.31)

This is a very useful result, as it tells us that we do not need to know the transition
probability distribution (and the reward function) associated with the Markov
decision process (MDP) in order to find the parameter θ that converges to a value
that maximizes J(θ). These types of algorithms are called model-free, because
they do not model the transition nor the reward function of the environment [10].
An immediate implication of the fact that the gradient is reduced to an expectation
is that we can approximate the gradient with the empirical estimate for m sample
trajectories under policy πθ as follows:

gPG =
1
m

m

∑
i=1

R(τ(i))
Maxt−1

∑
t=0

∇θ log πθ(a(i)t | s(i)t ), (2.32)

where i iterates over m sample trajectories, R(τ(i)) is the cumulative reward fol-
lowing the trajectory τ(i) and a(i)t , s(i)t are the action and state obtained at time-step
t under trajectory τ(i). This approximation of the gradient gPG is the computed
gradient for policy-based methods.

The REINFORCE algorithm

Given the stochasticity of the environment and the policy, the same initial state
can lead to very different cumulative rewards R(τ), which can lead to high vari-
ance in the estimator gPG. Because of this, the cumulative reward starting at the
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same state can vary significantly across episodes [10]. Instead, we can use the re-
turn ut defined in Equation 2.6 recalling the Markov property that future rewards
are independent of past rewards. Hence, if we replace R(τ) by the discounted
expected return ut, we arrive at the REINFORCE Policy Gradient algorithm with
the following policy gradient estimator (PGR) [11]:

gPGR = ∇θ J(θ) = ∇θEτ∼πθ
[R(τ)] = Eτ∼πθ

[(
Maxt−1

∑
t=0

ut∇θ log πθ(at | st)))]. (2.33)

However, we have not yet solved the problem of variance in the sampled trajec-
tories. In order to reduce the variance of the policy gradient estimator gPGR we
can opt for subtracting a baseline estimate bt from the expected return ut from
Equation 2.33 leading to the following variance reduced estimator (gVR) of ∇θ J(θ)

gVR = Eτ∼πθ
[(

Maxt−1

∑
t=0

(ut − bt)∇θ log πθ(at | st)))]. (2.34)

Using a baseline, in both theory and practice reduces the variance while keeping
the gradient unbiased. As we will see in the following section, a good baseline
would be to use the value function.

Actor-Critic Methods

Actor-Critic methods lie at the intersection of value-based and policy-gradient
methods, as shown in Figure 2.1. These methods leverage the strengths of both
approaches to stabilize and improve learning. In Actor-Critic methods, finding a
good baseline is essential but challenging. We approximate this baseline using the
parameters ω3 (weights and biases) of a Neural Network (NN), which generates
the value functions Vω(st). This means that the baseline bt is approximated by
Vω(st) [10].
It is important to note that Actor-Critic methods involve two neural networks: one
for the actor and one for the critic. The actor’s neural network is parameterized
by θ and is responsible for selecting actions, while the critic’s neural network is
parameterized by ω and evaluates those actions by estimating value functions.
This dual-network setup allows the actor and the critic to work in opposition: the
actor seeks to improve its actions, while the critic assesses the quality of those
actions [2].
The term ut represents an estimate of the action-value function Q(st, at), which
is associated with taking action at in state st. This relation can be expressed as

3As we will specify later, we will use ω for the parametrization of the critic’s neural network,
and θ for the actor’s neural network.



2.8 Proximal Policy Optimization 17

ut ≈ Q(st, at), and consequently, ut− bt ≈ Q(st, at)−Vω(st). The difference ut− bt

is known as the advantage estimate, defined as:

At = Q(st, at)−Vω(st). (2.35)

Intuitively, At indicates how much better or worse it was to perform action at in
state st. This is measured by comparing ut ≈ Q(st, at) to the expected value Vω(st)

for being in state st under the policy πθ [2].
This leads to the following gradient estimator:

gA = E[∇θ log πθ(at | st)At]. (2.36)

In Actor-Critic methods, we bootstrap the gradient using the learnable Vω(s).
Bootstrapping involves updating estimates based on other estimates, allowing the
critic to provide a more stable training signal to the actor. Here, the actor rep-
resents the policy πθ , deciding which actions to take, while the critic is the state
value network Vω(s), assessing the quality of those actions. The critic’s role is
to predict the value of the current state, providing a baseline against which the
advantage is calculated. The actor’s role is to improve its policy based on the
feedback from the critic. This creates a dynamic where the actor and critic are in
opposition, with the actor seeking to improve its actions and the critic evaluating
those actions [10]. One potential issue with policy-gradient methods is that too
large updates to the policy’s parameters θ can move the parameter vector away
from a local maximum of the objective function J(θ). This risk is heightened when
performing multiple epochs4 of parameter updates on the same set of freshly col-
lected training data. To mitigate this, Proximal Policy Optimization (PPO) uses a
clipped objective function. The clipped objective function prevents large changes
to the policy by limiting the update size, ensuring that the new policy does not
deviate excessively from the old one. This helps maintain stability and improves
convergence during training [8].

2.8.2 Overview of the algorithm

Proximal Policy Optimization (PPO) is a Deep Reinforcement Learning (DRL)
algorithm from the class of policy gradient methods (PGMs). PPO aims for im-
proving upon PGMs sample efficiency by employing an objective function that
allows multiple epoch of updates of its trainable parameters θ based on the same
training data (batch). Moreover, PPO is an on-policy algorithm, meaning it eval-
uates and improves the same policy that is used to select actions. Since it is a

4In the context of Deep Learning (DL), an epoch refers to a complete pass through the entire
batch of training data, both forward and backward through the neural network.
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PGM, PPO is also a model-free algorithm. A model-free algorithm does not re-
quire a model of the environment, such as the transition probabilities and reward
functions, to make decisions. Instead, it learns directly from interactions with the
environment, making it more flexible and easier to apply to a wide range of prob-
lems where the environment’s dynamics are unknown or complex [8].
Consider a PPO agent whose task is to map for each observed state st ∈ S a single
action at ∈ A to be performed in st. Actions are selected by means of a policy
πθ where θ denotes the policy’s trainable parameters, the weights and biases of a
Neural Network. The NN inside PPO’s policy is used to generate the parametriza-
tion for some probability distribution that is used to sample the action. Action at

is selected with probability πθ(at | st) given the current set of parameters θ. Upon
executing action at, the agent transitions into state st+1 and receives a reward rt+1.
During training, the set of parameters θ is repeatedly updated in incremental steps
using SGA in a way such that an approximation of the expected return J(θ) gets
maximized.
In more detail, generating action at through the policy πθ requires three steps,
dividing the policy into two separate portions: the stochastic portion of the policy
πs

θ and the deterministic portion of the policy πd
θ .

1. State Representation: A PPO agent receives a state representation st. This
state representation is passed through the policy network (the NN param-
eterized by θ), constituting the deterministic portion of the agent’s policy
πd

θ .

2. Parameter Computation: This results in a set of parameters ϕt being com-
puted in the policy network’s output layer. This set of parameters ϕt is then
used to parameterize a probability distribution5 δt which is defined over the
agent’s action space A.

3. Action Selection: Finally, an action at is sampled from the action space A in
accordance with δt in the stochastic portion of πs

θ .

While PPO main objective is to train the agent’s deterministic policy network πd
θ ,

training the agent actually involves training two networks concurrently as de-
scribed in the context of REINFORCE. The first network is the policy network πd

θ ,
while the second is the value function network Vω. The value function is used
to reduce the variance in the numeric estimates in which the policy network is
trained [8].
Training the agent means repeatedly alternating between two steps:

5Such as the multinomial distribution, where k is the number of actions that can be taken from
state s and each one has its corresponding probability parameterized by ϕt = (p1, . . . , pk).
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• Data collection step, or rollout: In which the PPO agent is made to interact
with the environment during m episodes, each of Maxt time-steps. In all
this episodes the agent uses its most up-to-date state of the policy network,
which is held fixed during the data collection step. For each experienced
state transition, the corresponding state st, next state st+1, action at, proba-
bility of selecting action at in st given πθ denoted as πθold(at | st), and the cor-
responding reward rt+1 get stored in a buffer of the form ot = (st, at, πθold(at |
st), st+1, rt+1) in order to be used in the update step. For each observed state
transition, two additional target values are computed and appended to the
buffer. The first one is the expected return Vtarget

t . The second is the advan-
tage At as described in the Actor-Critic methods 2.8.1. The computations of
Vtarget

t and At will be described in detail in sections 2.8.3 and 2.8.4.

• Data generation step, or update: After all the freshly training data has been
collected and stored in the buffer, the trainable parameters of the policy
network πθ and the value function network Vω get updated using multiple
epochs for the same batch in the buffer.

The objective function used by PPO has been designed to avoid destructive large
weight updates of the policy network and perform multiple epoch of weight up-
dates over the same batch of training data. As explained in REINFORCE section
2.8.1, this is meant to increase data efficiency compared to vanilla PGMs. The data
used to update the weights is exclusively the one stored in the buffer from the
rollout step. The clipped objective function is defined as follows:

J(θ) = LCLIP(θ) = Et[min(rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At]. (2.37)

where Et performs an average over the finite set of training data in the batch.
Note that the subscript t has two meanings, depending on which training step we
are. Subscript t denotes the index of a randomly sampled training observation
taken from the batch during the update step. While, during the rollout step, t
denotes the time-step inside the environment when the information contained in
an observation ot has been observed.
The term rt(θ) in Equation 2.37 refers to the probability ratio:

rt(θ) =
πθ(at | st)

πθold(at | st)
. (2.38)

where πθold(at | st) is the probability of action at in state st with the policy used
during the rollout step. And πθ(at | st) refers to the probability of at in st given
the most up-to-date state of the policy, the one we want to refine. The min(·, ·)
operator is used to return the minimum of its two input values. Whereas the
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clip operator clips its input value rt(θ) between the range [1 − ϵ, 1 + ϵ]. If the
probability ratio falls outside the range [1− ϵ, 1 + ϵ] the clip function will output
the value in the border of the interval. Finally, ϵ is a hyper-parameter that helps
us define this clip range. For reference, in the paper [8], the ϵ of the clip range is
assigned a value of ϵ = 0.2. We will explain further its individual terms and why
this definition of the objective function let us perform multiple epoch based on the
same batch in section 2.8.5.
In theory, once we have defined our policy network’s objective function LCLIP

we can optimize it (i.e. maximize it) using stochastic gradient ascent. However,
standard deep learning libraries used to train DRL only support SGD, not SGA.
Therefore, it is a widespread practice use SGD to minimize −LCLIP, treating the
objective function as a loss function to be minimized.
In order to encourage exploratory behaviour of the policy network πθ during
training, we can add an entropy bonus H to the policy network’s objective function
LCLIP and its weighted factor h. This factor allow us to control the contribution of
the entropy bonus to the overall function. Adding this weighted entropy bonus to
our clipped objective function results in:

LH = LCLIP + hH. (2.39)

Which is then maximized using SGA, or can converted into −LH in order to min-
imize it using SGD.
The value function network Vω is trained minimizing the mean square error (MSE)
over the multiple observations in the batch. The predicted value that we want to
approximate is Vω(st), the output of the critic’s network. The target value used to
approximate it is denoted Vtarget

t and will be further explained in section 2.8.3. The
corresponding loss function of the MSE for training the value function network Vω

is defined as:
LV = Et[(Vω(st)−Vtarget

t )2]. (2.40)

where Vtarget
t refers to the expected return collected during the rollout with the

critic’s NN old parameters ωold. And Vω(st) refers to the predicted expected re-
turn from the critic’s NN updated parameters ω. Finally, we can define the overall
objective function taking into account all the factors involved:

LCLIP+H+V = LCLIP + hH − vLV . (2.41)

where, just as the scalar h described for the entropy, the value v is a weighting
factor for the value function loss.
The goal is to optimize LCLIP+H+V using stochastic gradient ascent. Or, equiva-
lently, minimize −LCLIP+H+V using stochastic gradient descent. Commonly, the
Adam optimizer algorithm is used to perform SGD to minimize −LCLIP+H+V.
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2.8.3 Return

The return is essential for evaluating the performance of actions taken by the
agent, providing a measure of the cumulative reward that can be expected from
any given state. This information is crucial for updating both the value function
and the policy [10].
One method to compute this returns is through a target value function Vtarget

t ,
which represents the discounted cumulative reward of taking action at in state st.
First an agent is made to interact with the environment for a given maximal tra-
jectory length Maxt. When the trajectory ends, the expected returns are computed
for every state st experienced during the trajectory following the equation:

Vtarget
t =

Maxt−1

∑
k=0

γkrt+k+1. (2.42)

where Vtarget
t is the target value function associated with a given state st, rt+1 is the

reward received after executing action at in state st and λ ∈ (0, 1] is the discount
factor. This recursive formula is applied backwards on multiple episodes, and its
values are stored in the observations batch during the rollout step [10].
In the context of training a PPO agent, target value functions are used in two
different parts: they are used to train the value function network Vω. As well as
to compute advantage estimates At for training the policy network.

2.8.4 Advantage Estimates

Advantage estimates are crucial for improving the efficiency and stability of
policy gradient methods. They help the agent understand the relative value of
actions taken, allowing it to focus on actions that yield better outcomes compared
to others[10].
As described in the REINFORCE subsection of Policy Gradient Methods 2.8.1,
the advantage estimate At determines how much better or worse the observed
outcome of choosing certain action at a given state was compared to the state’s
estimated value predicted by the value function network. Intuitively, it expresses
how much better is the action chosen than the other possible actions on average.
In order to compute the advantage At, we need two things:

• Discounted sum of rewards, or return: measured by the target value function
Vtarget, computed as described in the above subsection 2.8.3.

• A baseline estimate: evaluation of the value function in state st predicted
by the value function network during the rollout step (with old weights and
biases θold).
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The equation for calculating an advantage estimate At, associated with having
taken action at in state st as experienced during some trajectory of maximal length
Maxt is given by:

At = Vtarget
t −Vωold(st). (2.43)

2.8.5 Policy Network’s Objective Function LCLIP

The objective function employed by PPO LCLIP, is designed to allow multiple
epoch of weight updates under the same set of training data (batch) [8].

LCLIP(θ) = Et[min(rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At]. (2.44)

Roughly speaking, it limits the extend to which the current state of the policy (πθ)

can be changed compared to the old state (πθold) used in the rollout step. Let’s
study each part to understand how it works:

• Ratio function:

rt(θ) =
πθ(at | st)

πθold

(at | st). (2.45)

The probability ratio acts as an approximation of divergence between πθ and
πθold . If an action at at state st becomes more unlikely under the current pol-
icy πθ than it used to be under the old policy πθold , the probability ratio will
decrease towards positive 0 since πθ shrinks compared to πθold . When ac-
tions become more likely, the probability ratio will increase towards positive
infinity. In cases where the probability is comparatively similar under both
policies, the ratio will tend to 1. Note that this divergence measure does
not give us enough information to assess how different the two policies are
across all possible actions in all possible states. It only evaluates how much
the behaviour of the policy has changed with respect to the old policy for
each training observation in a given batch.

• Unclipped objective:
rt(θ)At. (2.46)

This ratio can replace the log probability we use in the Actor-Critic objective
function 2.36.

• Clipped objective:
clip(rt(θ), 1− ϵ, 1 + ϵ)At. (2.47)

Which restricts the range of values that the ratio can take to the interval
[1− ϵ, 1 + ϵ].
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The minimum operator takes the minimum of the unclipped and clipped objective.
This design has two effects:

• It yields a pessimistic estimate of the policy’s performance.

• It avoids destructively large updates in the direction of the probability of
re-selecting some action at in a given state st.

Let’s look case-wise how PPO’s objective function LCLIP behaves when varying its
input arguments’ values. In cases 1 and 2 the clipping does not apply since the

Figure 2.2: Table with separate cases for the function LCLIP

ratio is between the range [1− ϵ, 1+ ϵ]. In case 1, we have a positive advantage: the
action taken is better than the average of all the actions in that state. We should
encourage the current policy to increase the probability of taking that action in
that state. In case 2, we have a negative advantage. The action taken is worse than
the average action. Therefore, we should discourage the policy from taking that
action in that state. Since the ratio in both cases is between the interval, we can
increase/decrease the probability that our policy takes that action at that state.
In cases 3 and 4, the ratio is below the range 1− ϵ. This means that the probability
of taking that action at that state is much lower than with the old policy. If we
are in case 3, the advantage estimate At is positive. Thus, we seek to increase the
probability of taking that action at that state. However, if the advantage estimate
is negative (case 4), we do not want to decrease further the probability of taking
that action at that state. Therefore, the gradient is set to 0 (looking at figure 2.2,
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we are in a flat line). We do not update our weights.
In cases 5 and 6, the ratio is above the range 1 + ϵ. The probability of taking that
action at that state in the current policy is much higher than with the old policy. If
the advantage is positive (case 5), we do not want to act greedy. We already have
a higher chance of taking that action at that state. Therefore, the gradient is set to
0 (looking at figure 2.2, we are in a flat line). We do not update our weights. If the
advantage is negative (case 6) we want to decrease the probability of taking that
action at that state.
In brief, we update our policy only if one of the following conditions is met:

• Ratio is in the range [1− ϵ, 1 + ϵ]

• Ratio is outside the range, but the advantage makes it come closer to the
range

– Below the range, but the advantage is positive

– Above the range, but the advantage is negative

2.9 Lexicographic Proximal Policy Optimization

Typically, the reward function is what indirectly dictates how the agent will
end up behaving. If we want the agent to learn to pick up sticks (remember the
example of the dog from section 2.1), the environment will provide a reward each
time the agent completes the task successfully. However, the objective is not always
so straightforward. What if the agent has to take into account two objectives
simultaneously? Even worse, what if they are in conflict with one another at some
points?

Example 2.3. Consider an agent in an environment where it has two objectives:
gathering apples and donating apples to a charity box. The agent receives a reward
for each apple it gathers, which satisfies its primary objective of maximizing its
own apple collection. However, the agent also receives a reward for each apple it
donates to the charity box, which fulfills a secondary objective of benefiting others.
Here’s the conflict: if the agent focuses solely on gathering apples, it neglects the
beneficence objective. Conversely, if it donates too many apples, it compromises
its own collection goal. To manage this, we need to prioritize the objectives.

Let’s suppose that we at least have clarity on which objective we want to prior-
itize, in other words, a lexicographic order. In a lexicographic order, we rank the
objectives based on their priority. This means that the agent first seeks to fulfill
the highest-priority objective before addressing lower-priority ones, even if they
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occasionally conflict. If we have a lexicographic order, there has been a body of
literature in RL working on this problem. One notable approach is outlined in
the paper "Lexicographic Multi-Objective Reinforcement Learning" by Skalse et al.
(2022) [9]. In their work, Skalse et al. introduce several techniques for handling
multiple objectives in a lexicographic manner within the RL framework. In partic-
ular, we will use the lexicographic version of PPO presented in the paper, which
is considered the state-of-the-art in this field.
Their approach involves two key steps:

• First, they define two reward functions, each corresponding to a different
objective. For example, one reward function might measure the agent’s suc-
cess in donating apples to a charity box, while the other measures its success
in gathering apples.

• Then, they ensure that the agent’s policy focuses on maximizing the primary
reward function first. Once the agent has optimized its behavior to achieve
this primary goal, it then shifts focus to maximizing the secondary reward
function. This means that the agent first ensures it donates enough apples
to fulfill its ethical obligation. After meeting this primary objective, it then
gathers any additional apples for itself.

Example 2.4. To better understand lexicographic optimization, consider the fol-
lowing example with vectors in R2. Suppose we have four vectors representing
different outcomes based on two objectives: R1 (donating apples) and R2 (gather-
ing apples):

v1 = (8, 2), v2 = (5, 5), v3 = (10, 1), v4 = (8, 4)

We want to determine which vector is the best lexicographically. We start by
comparing the first objective, R1:

v3 = (10, 1) (highest value for R1)

Since v3 has the highest value for the primary objective R1, it is prioritized. There-
fore, v3 is considered the best lexicographically because it maximizes the primary
objective, regardless of the values for the secondary objective R2. If two or more
vectors had the same value for R1, we would then compare their values for R2 to
determine the best vector. For instance, both v1 and v4 have the same value for
R1. We would then compare their values for R2:

v4 = (8, 4) (higher value for R2)

Thus, v4 would be chosen over v1 because it has a higher value for the secondary
objective.
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In the following sections, we will delve deeper into the implementation details
of Lexicographic PPO, exploring how it integrates multiple reward functions and
manages the learning process to ensure optimal performance across all prioritized
objectives.

2.9.1 Multi-Objective Markov Decision Process

In a standard Markov Decision Process (MDP), the return of the reward func-
tion is typically a scalar value. However, in many real-world scenarios, an agent
must consider multiple objectives simultaneously. This leads to the concept of a
Multi-Objective Markov Decision Process (MOMDP).
In an MOMDP, the reward function is modified to return a vector of rewards, each
component corresponding to a different objective. Formally, the reward function
is defined as:

R : S ×A× S → Rm (2.48)

Here, the reward function returns an m-dimensional vector R(st, at, st+1) at each
time step, where each dimension represents a different objective. The value func-
tion of a policy π in this context is defined as:

Vπ = Eπ

[
Maxt

∑
t=0

R(st, at, st+1) | St = s,At = a

]
(2.49)

This value function represents the expected sum of vector-valued rewards ob-
tained by following policy π. It encapsulates the performance of the policy across
all objectives, considering the trade-offs between them. In the context of MOMDPs,
different solutions can be obtained depending on how we prioritize the various
objectives. One possible approach is to search for a policy that maximizes the lex-
icographic order among objectives. This means that we first optimize the highest-
priority objective, and only after achieving the best possible outcome for this ob-
jective do we move on to optimize the next priority, and so on. In the following
section, we will explain how to implement this approach.

2.9.2 Lexicographic RL

To address the challenge of prioritizing multiple objectives in a MOMDP, we
employ Lexicographic Reinforcement Learning (RL), which ensures that higher-
priority objectives are optimized before considering lower-priority ones. We use
the following steps:

• Start with all policies: We begin with the set Πϵ
0, which includes all possible

policies.
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• Evaluate primary objective: For each policy in Πϵ
0, we evaluate the objective

function J1, corresponding to the highest-priority reward R1.

• Select top policies: We retain only those policies that perform within a mar-
gin of ϵ1 of the best-performing policy for R1. This new set of policies is
denoted as Πϵ

1.

• Iterate for next objectives: We repeat this process iteratively for the remain-
ing objectives. For the ith objective:

– Evaluate the objective function Ji for all policies in the current set Πϵ
i−1.

– Retain the policies that perform within a margin of ϵi of the best-
performing policy for Ri.

– The resulting set of policies is Πϵ
i .

• Final set of policies: The final set Πϵ
m includes policies that are nearly opti-

mal for all objectives within the specified tolerances ϵ.

Here, Πϵ
i represents the set of policies that are approximately optimal for the first i

objectives. Each iteration refines this set by ensuring that only the policies meeting
the ϵi criteria for the current objective are retained, progressively narrowing down
to policies that consider all objectives effectively.
We can formalize this idea with the following definition:

Definition 2.5 (Lexicograpically ϵ-optima). Given a MOMDP M with m rewards,
we say that a policy π is (globally) lexicographically ϵ-optima if π ∈ Πϵ

m, where Πϵ
0 = Π

is the set of all policies in M, Πϵ
i+1 := {π ∈ Πϵ

i | maxπ′∈Πϵ
i

Ji(π
′)− Ji(π) ≤ ϵi} and

Rm ∋ ϵ≫ 0.

2.9.3 Policy-based algorithm

Once we have defined the lexicographic solution for a multi-objective prob-
lem, we need to understand how to find such a solution using a policy-based
approach. In this section, we introduce the Lexicographic Proximal Policy Opti-
mization (LPPO) algorithm, which optimizes multiple objectives in a prioritized
manner. We will define for each reward Ri its corresponding objective function Ji.
Our goal is to update the parameters θ of πθ using a multi-timescale approach,
following the lexicographically ϵ-optima definition. The process involves the fol-
lowing steps:

• Initial Optimization: First, we optimize θ using J1.



28 Background

• Subsequent Optimizations: Then, at a lower timescale, we optimize θ while
ensuring that the loss with respect to the first reward remains bounded by
some tolerance value. This procedure is repeated for the following objectives.

To solve these problems, we apply the Lagrangian relaxation technique [3]. This
technique is used to solve constrained optimization problems by transforming
them into unconstrained problems. It introduces Lagrange multipliers to incor-
porate the constraints into the objective function, allowing us to find the optimal
solution by solving for a saddle point where the gradients of the Lagrangian func-
tion with respect to the variables and the multipliers are zero.

• Suppose that θ′ is optimized lexicographically with respect to J1, . . . , Ji−1,
and now we wish to lexicographically optimize θ with respect to Ji.

• We define jk := J(θ′) for each k ∈ {1, . . . , i− 1} as the value of the objective
function of the kth reward in the updated policy parameters θ′ by Ji.

• We aim to solve the constrained optimization problem given by:

maximize Ji(θ),

subject to Jk(θ) ≥ jk − τ, ∀k ∈ {1, . . . , i− 1}
(2.50)

where τ > 0 is the tolerance parameter ϵi that appears in the lexicographi-
cally ϵ-optima definition. While learning, this parameter is set to decay such
that τt → 0 as t→ ∞.

• This constrained optimization problem can be translated into finding a sad-
dle point of the following function:

Li(θ, λ) = Ji(θ) +
i−1

∑
k=1

λk(Jk(θ)− jk + τ) (2.51)

where the critical point (θ∗, λ∗) is a relative maximum along the θ-dimension
and a relative minimum along the λ-dimension.

∇θ Li(θ∗, λ∗) = ∇θ Ji(θ∗) = 0

∇λLi(θ∗, λ∗) =
i−1

∑
k=1

(Jk(θ∗)− jk + τ) = 0
(2.52)

• A valid solution would be to solve each optimization problem Li separately.
This would lead to a correct solution, but the process would be slow and
sample-inefficient. Instead, we solve this problem synchronously, guarantee-
ing convergence to a lexicographically optimal solution.
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Using learning rates βi and ηi with respect to the i-th objective, we can compute a
saddle point solution to each Li via the following gradient updates:

θ ← Γθ [θ + βi
t(∇θ Ĵi(θ) +

i−1

∑
k=1

λk∇θ Ĵk(θ))],

λk ← Γλ[λk + ηt( ĵk − τt − Ĵk(θ))] ∀k ∈ {1, . . . , i− 1}
(2.53)

where Γλ(.) = max(., 0) and Γθ projects θ to the nearest point in the space of
permitted values Θ ∈ Rx. The symbol ˆ denotes the estimated value obtained
from experience. The terms involved in the updates of θ can be simplified by the
following update:

θ ← Γθ [θ +∇ Ĵ(θ)]

where

Ĵ(θ) =
m

∑
i=1

ci
t Ĵi(θ) and ci

t = βi
t + λi

m

∑
k=i+1

βk
t

assuming ∑m
k=m+1 βk

t = 0. Thus, to compute a solution to a lexicographic optimiza-
tion problem from a collection of objective functions, we just need to update the
coefficients ci

t at each time-step and linearly combine them with the objective func-
tions. Recall that policy-based algorithms not only need an optimization function,
but also a critic Vi to estimate each Ĵi. Its parameters ωi can be updated following
the update rule for Vi given by ωi ← ωi + αt(δi

t∇ωi Vi). Where αt is the learning
rate and δi

t is the MSE for Vi.

2.10 Models of Multi-Agent Interaction

The classical definition of a MDP (def. 2.1) typically revolves around a single
agent who controls all the actions. However, in a multi-agent setting, additional
complexities arise. Here, the consequences of actions and the rewards obtained
depend not only on the individual agent’s decision but also on the actions taken
by other agents. Moreover, these agents might even act as adversaries, striving to
minimize our rewards.

2.10.1 Normal Form Games

To delve deeper into multi-agent environments, we first examine normal-form
games. These games are single-shot (non-sequential and stateless) games where
a group of agents each has to execute an action simultaneously. However, the
rewards received by each agent depend on the collective actions chosen by all the
participants.
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Definition 2.6 (Normal-form game). A normal-form game consists of:

• A finite set of agents I = 1, ..., n.

• For each agent i ∈ I:

– a finite set of actions Ai,

– a reward function Ri : A → R, where A = A1 × ...×An.

Each agent i ∈ I selects a policy πi : Ai → [0, 1]. This policy function assigns
probabilities to the available actions Ai for the agent i, ensuring that the sum of
probabilities for all the actions equals 1. Each agent then samples an action ai ∈ Ai

according to the probabilities specified by its policy function. The collective actions
chosen by all the agents then constitute a joint action, denoted as a = (a1, ..., an).
Finally, each agent i receives a reward denoted as ri, determined by its specific
reward function and the resulting joint action a, expressed as ri = Ri(a).

2.10.2 Stochastic Games

Normal-form games, while valuable for analyzing agent interactions, lack the
concept of an environment state influenced by agents’ actions. In contrast, stochas-
tic games bridge this gap by introducing a state-based environment wherein the
state evolves dynamically over time due to agents’ actions and probabilistic state
transitions.

Definition 2.7 (Stochastic game). A stochastic game consists of:

• A finite set of agents I = 1, ..., n,

• a finite set of states S , with subset of terminal states S̄ ⊂ S .

• For each agent i ∈ I:

– a finite set of actions Ai,

– a reward function Ri : S×A× S→ R where A = A1 × ...×An.

• A state transition probability function: T : S ×A× S → [0, 1] such that

∀s ∈ S , a ∈ A : ∑
r′∈S

T(s, a, s′) = 1, (2.54)

• an initial state distribution: µ : S → [0, 1] such that

∑
s∈S

µ(s) = 1 and ∀s ∈ S̄ : µ(s) = 0. (2.55)
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A stochastic game proceeds as follows: the game starts in an initial state s0

drawn from a distribution µ. At each time-step t, every agent i ∈ I observes the
current state st and selects an action ai

t ∈ Ai according to its policy πi(ai
t | ht).

This leads to the joint action at = (a1
t , ..., an

t ). The policy is conditioned on the
state-action history ht = (s0, a0, s1, a1, ..., st), containing the current state, previous
states, and previous joint actions. The history is observable by all agents, denoted
as full observability. Subsequently, given the state st and joint action at, the game
transitions to the next state st+1 with probability determined by P(st, at, st+1), and
each agent i receives reward ri

t = Ri(st, at, st+1). These steps iterate until reaching a
terminal state st in S̄ or after completing a maximum number of Maxt time-steps,
after which the game concludes. Alternatively, the game may continue indefinitely
if it is non-terminating.

2.11 Solution Concepts for Games

Section 2.10 laid the groundwork by introducing basic game models to formal-
ize multi-agent environments and interactions. In this section, we will introduce a
series of solution concepts. This involves determining what constitutes a solution
to a game, which specifies when a collection of agent policies constitutes a stable
or desirable outcome. Together, a game model and its associated solution con-
cept form the basis of a learning problem in Multi-Agent Reinforcement Learning
(MARL).
In general, a solution to a game comprises a joint policy consisting of one policy

Figure 2.3: Parts of a MARL problem

for each agent, satisfying certain properties related to expected returns for each
agent and their interactions. Our definition of solution concepts will assume finite
game models. In particular, we will assume finite state, action, and observation
spaces, as well as a finite number of agents.

2.11.1 Joint Policy

A solution to a game is a joint policy π = (π1, ..., πn) satisfying certain criteria
outlined by the chosen solution concept. These criteria typically revolve around
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the expected discounted return, Vi
π, garnered by each agent i under the joint policy.

2.11.2 Best Response

Suppose that π is a joint policy. A best response policy for agent i is a policy
that maximizes player i’s expected return against the other players’ policies π−i.
There may be many best responses, and we denote the set of such best responses
as

BRi(π−i) = arg max
πi

Vi
⟨πi ,π−i⟩. (2.56)

2.11.3 Nash Equilibrium

Following the definition of best response, in a multi-agent learning environ-
ment each agent aims to find a policy that maximizes their own expected return.
Together, the overall goal is to find a joint policy that gathers the most reward
for each agent. This goal applies to both competitive and collaborative situations.
Agents can find policies that best counter or complement others.
We call this optimal policy the Nash equilibrium.

Definition 2.8 (Nash equilibrium). A joint policy π = (π1, ..., πn) is a Nash equilib-
rium if

∀i, π̂i : Vi
⟨π̂i ,π−i⟩ ≤ Vi

π. (2.57)

Each agent’s policy in Nash equilibrium is the best response to the other
agents’ optimal policies. No agent is incentivized to change their policy because
doing so gives them less reward. In other words, all the agents are at standstill,
i.e., πi ∈ BRi(π−i) ∀i ∈ I.
To give an example, imagine a competitive game between two robots. During each
round, they have to choose a number between one and ten, and whoever selects
the higher number wins. As expected, both pick the ten every time because they
do not want to risk losing. If robot A were to choose any other number, he would
risk losing against robot B’s optimal policy of always choosing ten and vice versa.
They are both in equilibrium.

2.12 Independent Learning

In the context of MARL, independent learning refers to a strategy where each
agent independently learns and optimizes its policy without explicitly consider-
ing the learning processes of other agents. This approach decomposes a n-agent
MARL problem into n single-agent problems, each handled separately by indi-
vidual agents. Each agent’s objective is to optimize its policy based on its own
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experiences, observations and rewards. This decomposition allows agents to learn
simultaneously without needing to coordinate their learning processes explicitly.
Moreover, each agent constructs its value function independently.
In independent learning, the observations available to each agent can vary. Some
agents may have observations that include explicit information about the actions
of other agents, while others may not have this information. The effects of the
agents’ actions are treated as part of the environment, which can introduce non-
stationarity into the learning process. Since each agent is continually learning and
updating its policy, the environment from any agent’s perspective is changing.
This non-stationarity can make it difficult for agents to identify the consequences
of their actions, and can lead to instability during training. That also imply that
the Markov property is lost.
Independent Proximal Policy Optimization (IPPO) is an independent learning ap-
proach where each agent optimizes its policy using PPO independently. IPPO
has been shown to achieve results comparable or better than state-of-the-art cen-
tralized learning approaches in the popular multi-agent benchmark SMAC [12],
thanks to the robustness of PPO to non-stationarity.
Independent Lexicographic Proximal Policy Optimization (ILPPO), extends the
principles of IPPO to handle multiple objectives in a lexicographic manner. This
approach maintains the independent learning framework.
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State of the art

Rodriguez-Soto et al. (2023) introduced in their research an innovative ethi-
cal embedding process designed to integrate ethical considerations into reinforce-
ment learning environments [7]. This process combines traditional reward func-
tions with an ethical reward function, resulting in a single-objective environment.
The primary advantage of this approach is that it guarantees convergence to an
ethical-optimal policy, which maximizes rewards while respecting the ethical val-
ues encoded in the reward function.
In multi-agent environments, the ethical embedding process is implemented us-
ing independent Q-learners (IQL). Each agent independently learns its Q-function
without considering the actions and strategies of other agents. Despite this isola-
tion, agents using IQL can successfully learn an ethical-optimal policy.
The same research also studied the implementation of lexicographic IQL (LIQL)
without the need of using the ethical embedding process, just placing the agents
directly into the Ethical MOMG. This was performed ensuring that the ethical ob-
jective was met before optimizing the individual objective.
However, initial implementations faced significant challenges. The experiments
conducted on a tiny map with only two agents under conditions of full observ-
ability revealed several issues. These included slow convergence, resulting in a
prolonged training time of up to 24 hours, and problems with scalability when
expanding the system to larger and more complex environments.
To address these challenges, Mayoral Macau’s (2023) [6] research explored the
implementation of the Independent Proximal Policy Optimization (IPPO) algo-
rithm, where each agent operates its own instance of Proximal Policy Optimiza-
tion (PPO). Mayoral Macau also applied the ethical embedding process, similar to
Rodriguez-Soto et al. (2023), but with IPPO as the base algorithm instead of IQL.
The IPPO implementation has been tested in larger environments and has effec-
tively resolved scalability issues, demonstrating that it can handle the complexity
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of multi-agent systems without the prohibitive training times and dimensionality
problems previously encountered.
Through these advancements, the combination of the ethical embedding algorithm
and IPPO offers a robust solution for developing ethical AI in multi-agent settings.
This approach not only facilitates the convergence to ethical-optimal policies but
also ensures that such solutions are scalable and efficient.
Building on this foundation, a new implementation using the Independent Lexi-
cographical Proximal Policy Optimization (ILPPO) algorithm has been proposed.
ILPPO leverages the principles of the lexicographic decision rule, which prioritizes
objectives based on their importance. In ILPPO, agents are designed to prioritize
ethical considerations above other objectives. This ensures that ethical compli-
ance is non-negotiable, effectively eliminating any trade-offs between ethicality
and other objectives.
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Description of the environment

The Ethical Gathering Game (Rodriguez-Soto et al. 2023 [7]) is an ethical vari-
ation of the Gathering Game introduced in Leibo et al. (2017) article [5], where
agents manage to compensate social inequalities by learning to behave in align-
ment with the moral value of beneficence. Beneficence, in this context, refers to
the principle of acting with the intent to benefit others, promoting their well-being,
and preventing or removing harm. In the Ethical Gathering Game, agents should
make decisions that not only guarantee their survival but also consider the welfare
of other agents in the environment. We expect agents to learn to behave ethically,
compensating the forced inequalities using the donation box.
The agents live together in a grid world, with apples spawning in various loca-
tions. Each agent needs k apples to survive, but they have different gathering
capabilities. This means that when two agents try to pick the same apple, only the
most efficient one will get it. The donation box allows agents to contribute their
surplus apples to a communal resource that can be accessed by other agents who
struggle to gather enough apples. To ensure a realistic setup, the donation box
has a limited capacity, storing up to c apples. Once the donation box reaches its
capacity, any additional apples donated will not be accepted.
Agents in the Ethical Gathering Game deal with two reward functions: the in-
dividual and the ethical one. The ethical reward function aligns agent behaviors
with ethical principles based on the value of beneficence. Actions are classified as
ethical (praiseworthy) or unethical (blameworthy) according to this value. When
an agent has enough apples to survive and decides to take an apple from the do-
nation box, it receives a penalty. This penalty discourages selfish behavior and
reinforces the importance of using the donation box solely for supporting agents
in need. Alternatively, agents that act in accordance with beneficence, such as do-
nating surplus apples when their own needs are met, receive a positive reward.
The individual reward function, on the other hand, focuses on the agent’s personal
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survival and resource accumulation. Agents receive positive rewards for gather-
ing apples or taking them from the donation box, and receive negative rewards
for donating them.
During training, agents learn to recognize when their own needs are met and
when they have excess apples that could benefit others.
Figure 4.1 shows a graphical representation of our environment. It is a grid con-
sisting of 3x4 cells. Agents are represented as red (inefficient) or yellow (efficient)
squares, while the apples are depicted in green. The empty cells are shown in
black. The counter at the top of the image indicates the number of apples col-
lected by each agent and the number of apples stored in the donation box.

Figure 4.1: Graphical representation of the tiny environment.

4.1 Environment characteristics

The Ethical Gathering Game, as an ethical MOMG, is defined as a tupleM =

⟨S ,Ai=1,...,n, (R0, RN + Re)i=1,...,n, T⟩, where S is the set of states, Ai is the action
sets of agent i, T is the transition function of the game and Ri = (Ri

0, Ri
N + Ri

e) is
the reward function of agent i. Ri

0 corresponds to its individual reward, whereas
Ri
N + Ri

e corresponds to its ethical reward, separated into the normative and eval-
uative reward 1. We will simplify the ethical reward treating the sum as a single
term, Ri

E = Ri
N + Ri

e.

We define the simplified state for each agent as s = (map, agent_apples, dona-
tion_box_apples), where:

• map: binary matrix of size MxN.

1See Rodriguez-Soto et al. 2023 [7] Section 6.4.2, for a more detailed explanation of each reward
component.



38 Description of the environment

• agent_apples: array with the abstract number of apples held by each agent
(0: no apples, 1: not enough to survive, 2: enough to survive, 3: surplus).

• donation_box_apples: number of apples in the donation box, normalized
by the donation box capacity (e.g. If the donation box has 3 apples and its
maximum capacity is 5, donation_box_apples = 3/5).

This abstraction allows us to significantly reduce the complexity of the state space.
For example, on a tiny grid map, we can compute the total number of states by
considering the limited values each component of the state can take, thus making
the learning process more efficient and scalable [6].

Agents have seven different actions available, |A| = 7: movement actions
(MOVE UP, MOVE DOWN, MOVE LEFT, and MOVE RIGHT) are possible as
long as they stay within the bounds of the grid. Interaction actions with the dona-
tion box include DONATE (if the donation box is not full) and TAKE DONATION
(if available). Additionally, the agent can choose to STAY in its current position,
not moving to any adjacent cell. These actions allow agents to navigate the grid,
gather resources, and interact with the donation box [7].

The reward system is designed to promote both individual survival and ethical
behavior among agents. The reward function Ri(s, a) for agent i is determined by
the current state s of the environment and the action a taken by the agent. It
returns a separate scalar value for each objective. The first component focuses on
the agent’s individual survival (Ri

0), while the second focuses on the agent’s ethical
behavior, such as contributing to the donation box or taking a donation when its
not needed it (Ri

E). Two constants are used to define the reward specification:

• Survival threshold: sets the minimum number of apples an agent needs to
survive. Agents must gather at least this many apples to avoid penalties
related to survival.

• Donation box capacity: indicates the maximum number of apples that the
donation box can hold. If the donation box is full, agents are not penalized
for not donating additional apples.

The complete specification of the reward function, divided into two components,
has been taken from Mayoral Macau (2023) [6]:

hunger← agent apples < survival_threshold

full_box← apples in the donation box == donation_box_capacity
(4.1)
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Ri
0(s, a) =


−1 if Hunger

+1 if agent gathered an apple from the ground by performing a

−1 if agent donated an apple

0 otherwise

Ri
E(s, a) =


−1 if agent takes or tries to take donation while not Hunger

+0.7 if agent donates while not Hunger and not full_box

0 if agent takes donation while Hunger

0 otherwise

(4.2)

In the context of the Ethical Gathering Game, efficiency refers to how likely an
agent is to successfully gather an apple when it attempts to do so. If an agent has
an efficiency of 0.7, it means that 7 out of 10 times it will successfully gather the
apple. In either case, the apple is removed from the map after the attempt [7]. If
two agents step on the same cell that has an apple, the agent with higher efficiency
will have priority over it.

4.2 Hyper-parameters

We use a comprehensive set of hyper-parameters to fine-tune the performance
of the algorithms. These hyper-parameters are classified into four groups:

• Environment setup: Defines the configuration of the environment used for
training.

• Training parameters: Specifies the general aspects of the learning process.

• IPPO parameters: Crucial for ensuring stable and efficient learning. These
parameters help in keeping the variance low and achieving convergence of
the metrics.

• ILPPO parameters: Designed to prioritize ethical considerations within the
learning process (see 4.2.1).

A detailed explanation of each hyper-parameter of Table A.1 (see Appendix A) can
be seen in Mayoral Macau’s final master project [6] (Section 4.2.2). We will only
focus on the ILPPO-specific hyper-parameters, which have not been explained yet.
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4.2.1 ILPPO hyper-parameters

The parameters used to fine-tune the ILPPO algorithm are the following ones:

• we-reward0: Determines the weight used for the individual reward.

• we-reward1: Determines the weight used for the ethical reward.

• prioritize-performance-over-safety: Lets you decide if you want to first opti-
mize lexicographically the individual reward or the ethical reward. Controls
the order in which the rewards are stored. By default, it is set to first opti-
mize the ethical reward (ILPPO safety).

• eta-value: Scalar used to weight the difference between the most recent loss
and the average loss of the actor. This weighted value is then used with the
beta-values to weight the first advantage (associated with the first objective,
the ethical one) in the next update. It corresponds to the ηk variable in the
lexicographic gradient update 2.53.

• beta-values: List of two float values. The first one, beta-value-0, is summed
with the eta-value from the previous update to weight the first advantage (A,
see subsection 2.8.4 and equation 2.43), associated with the ethical reward.
The second one, beta-value-1, is used to weight the second advantage, asso-
ciated with the individual reward. Then we compute the weighted sum of
both advantages to proceed with the PPO algorithm using a scalarized single
advantage. It corresponds to the βi

t variables in the he lexicographic gradient
update 2.53.

4.3 Desired Ethical Policies

In our reinforcement learning environment, the known and desired Nash equi-
librium represents the ethical-optimal policy we aim to achieve. The behavior for
two agents, A1 and A2, where A1 is more efficient than A2, follows these phases:

1. Initial Gathering Phase: Agent A1 gathers more apples than A2 due to
higher efficiency, reaching the survival threshold first. In Figure 4.2, this
phase is seen at the start of the timeline where A1’s apple count increases
and reaches the dotted red line (steps 0 to 120).

2. Donation Phase: A1 donates extra apples to the donation box after reaching
the survival threshold, while A2 takes apples from the donation box to reach
its own survival threshold. Figure 4.2 shows this phase as an interval from
steps 120 to 220, where A2 (orange line) starts increasing its apple count.



4.3 Desired Ethical Policies 41

3. Filling the Donation Box: Both agents donate any additional apples to the
donation box until it is full. This is illustrated in Figure 4.2 where the dona-
tion box line (green) starts increasing until stabilizing into a horizontal line
at the donation box capacity (dotted black line).

4. Continued Gathering: With the donation box full, both agents continue
gathering apples for themselves. Due to its efficiency, A1 will naturally
gather more apples than A2. In Figure 4.2 we can see that A1 and A2 con-
tinue to gather apples, with A1 accumulating apples at a faster rate.

These desired ethical policies ensure that both agents cooperate to reach a state
where their basic needs are met before accumulating surplus resources. This pro-
motes a fair distribution of resources, aligning with the ethical principles embed-
ded in the environment [7].
Figure 4.2 illustrates the evolution of the number of apples collected by (A1 and
A2) and the apples in the donation box over time in a single run, demonstrating
these four phases.

Figure 4.2: Evolution of the number of apples collected by each agent (A1 and A2)
and the apples in the donation box over time.
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Experiments

5.1 Objectives

The primary objectives of our experiments are to validate the Independent Lex-
icographic Proximal Policy Optimization (ILPPO) algorithm in a multi-agent envi-
ronment, ensuring that each agent is learning an ethical-optimal policy, and com-
pare its performance with the Independent Proximal Policy Optimization (IPPO)
algorithm 2.12, a state of the art algorithm that ensures its agents learn ethical-
optimal policies. Specifically, we aim to:

• Validation of ILPPO in a Multi-Agent Environment: Evaluate the effective-
ness of ILPPO in a setting with multiple agents, a scenario that has not been
previously studied [9].

• Ethical Objective Prioritization: Determine if agents using ILPPO learn to
prioritize the ethical objective over the individual objective [6].

• Minimize the number of sub-optimal and non-ethical actions: Ensure that
the agents are learning an ethical-optimal policy studying the actions chosen,
making sure that it only chooses those actions that have more probability to
return ethical rewards.

By addressing these objectives, we aim to highlight the strengths and weaknesses
of ILPPO in ensuring ethical decision-making in multi-agent environments and its
correct implementation by comparing it to a state of the art algorithm, IPPO.

5.2 Empirical Setup

In this section, we present our experimental setup and results for comparing
the performance of agents using ILPPO and IPPO in a controlled environment.

42
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The tiny environment serves as a test-bed to illustrate the differences in agent
behavior and objective prioritization between the two algorithms. To facilitate the
monitoring and visualization of the training process, we utilized TensorBoard1.
We monitored the most important metrics for each agent under both IPPO and
ILPPO algorithms. These metrics include:

• Actor Loss: Measures the performance of the policy network in selecting
actions.

• Critic Loss: Measures the accuracy of the value network in predicting the
expected rewards.

• Accumulated Reward: Tracks the total reward accumulated by each agent
over time.

Additionally, we logged: the step at which each agent survived; if they survived;
if they managed to fill the donation box; and a study about how many unethical,
missed ethical, and sub-optimal actions they did on average for each simulation.
For version control, we used a Git repository, ensuring that all changes and de-
velopments were systematically tracked. The implementation was carried out in
Python using PyTorch. We began with a pre-existing environment programmed
for IPPO and made the necessary modifications to ensure full functionality of
ILPPO in a multi-agent, vectorized-reward context within the same environment.
The IPPO implementation was studied using the code from Mayoral Macau (2023)
[6]. The lexicographic implementation is inspired by the Trust Region Policy
Optimization (TRPO) single-agent implementation from Skalse et al. (2022) [9],
adapted to PPO in a multi-agent environment. However, the available code did
not produce the results reported in the paper, and the agent was not obtaining
rewards. Additionally, parts of the code were based on deprecated libraries, such
as OpenAI Gym. These issues could not be resolved through communication with
the authors. The complete implementation and experimental setup can be found
in our Git repository2.
The experiments were conducted on a computing cluster comprising 11 "CPU-
only" nodes. Each node is equipped with 2 Intel Xeon CPUs at 2.2 GHz, 10 cores
per CPU and 92 GB of RAM. For each experiment, we utilized one node at a time
to ensure consistent and comparable results.

1TensorBoard allows us to track and compare key metrics in real-time, providing valuable in-
sights into the performance of each agent

2The GitHub repository can be found at https://github.com/ntorqulu/lexicographic_ppo

https://github.com/ntorqulu/lexicographic_ppo
https://github.com/ntorqulu/lexicographic_ppo
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5.2.1 Comparison with IPPO in a small environment

In this section, we provide a detailed comparison between the performance
of the Independent Lexicographical Proximal Policy Optimization (ILPPO) algo-
rithm and the Independent Proximal Policy Optimization (IPPO) algorithm in a
simplified environment. The primary objective is to evaluate the effectiveness of
ILPPO in ensuring ethical decision-making while maintaining efficient learning in
a multi-agent setting.

Description of the Tiny Environment

The tiny environment used for our experiments is the same version of the
Ethical Gathering Game used in Rodriguez-Soto et al. (2023) [7]. This environment
features two agents learning to navigate and gather resources within a 3x4 grid.
The key characteristics of this environment include:

• Full Observability: Both agents have general information about the environ-
ment. They both know the position of other agents, the number of apples
on the ground and the state of the donation box. However, the number of
apples held by each agent is abstracted in a label (see section 4.1).

• Two Agents: The environment is populated with two agents, each with dif-
ferent gathering efficiencies. The efficiency of an agent determines the prob-
ability of successfully gathering an apple once the agent is located in the
same cell as the apple.

• Small Ethical Gathering Environment: The compact size of the grid and
the limited number of agents make this environment more manageable and
simplify the comparison of different learning algorithms.

Table 5.1 shows the parameters of the tiny environment used in our experiments.
Figure 4.1 provides a visualization of the tiny environment, illustrating the

initial setup with agents, apples, and the donation box. The expected behavior for
the agents once trained in the tiny environment and having learned their policies
can be found in section 4.3. In summary, Agent 1 (more efficient) is expected to
gather enough apples for survival and then donate its surplus apples to support
Agent 2 (less efficient).

IPPO and ILPPO Training Hyper-parameters

The training hyper-parameters for the IPPO algorithm are consistent with
those outlined in section 5.3.1 of Mayoral Macau’s final master project [6]. These
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Environment Setup
Parameter Value Explanation
n-agents 2 Number of agents in the environment

efficiency of agents
Agent 1 = 0.85 85% probability of gathering an apple
Agent 2 = 0.2 20% probability of gathering an apple

map-size tiny Size of the grid (3x4)
we (ethical weights we) [1, 10] Weights for individual (1) and ethical

(10) rewards
donation-capacity 5 Maximum capacity of the donation

box
survival-threshold 10 Minimum apples required for agent

survival
partial-observability False Agents have general observability of

the environment (apples held by each
agent are abstracted)

visual-radius ∅ No visual radius limitation
apple-regen 0.05 Probability of apple regeneration per

step
inequality-mode loss Mode to make gathering success

probabilistic and dependent on each
agent’s efficiency

Table 5.1: Environment Setup

include parameters such as actor learning rate, critic learning rate, discount factor
(γ), and entropy coefficient.
For ILPPO, we performed an exhaustive hyper-parameter optimization, focusing
on the β and η values of equations 2.53. The goal was to find the combination of
these values that maximized the expected reward and behaved similarly to IPPO
in terms of the ethical metrics in Table 5.2.

Since we are working in an environment with two agents, we need to fine tune
the η0 and (β0

t , β1
t ) variables of equation 2.53 for each time-step t. We are dealing

with two objectives: the individual objective and the ethical objective. Our goal is
to lexicographically optimize these objectives by prioritizing the ethical objective
first, and only maximizing the individual objective when the ethical objective is
stabilized.
To achieve this, we introduce a condition based on the loss function of the ethical
objective. The step-by-step process is detailed as follows:
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1. Track the ethical loss function: After each epoch in the update method of
the ILPPO algorithm, we store the loss obtained for the ethical objective in
an array, called recent_losses.

2. Evaluate loss stability: Once all epochs of the same data batch have been
processed, we compute the difference between the mean of the recent_losses
values and the most recent loss (the last element appended in the recent_losses
array).

3. Adjust λ0:

• Large difference: If the difference between the last recent loss and the
mean of recent_losses is large, it indicates that the ethical objective is not
being optimized properly, as the updates are fluctuating significantly.
In this case, λ0 will store this large difference, weighted by η0.

• Small difference or negative value: If the difference is a small number
or is negative, the ethical objective is stable. Therefore, we can focus on
optimizing the individual objective. Here, λ0 is set to zero.

By controlling λ0, we ensure that if the ethical objective is not being opti-
mized correctly, λ0 will gain more weight. Consequently, in the following
update, the ethical objective will be prioritized to ensure it is maximized.
Otherwise, if the ethical objective is stable, we can shift our focus to the
individual objective.

4. Adjust (β0
t , β1

t ): These variables are used to scalarize the advantages (A0, A1)

of the ethical and individual rewards, respectively. Rather than using a sim-
ple weighted sum of the β vector and the advantages estimates, we perform
the following calculation:

weighted_advantages = (β0
t + λ0) ∗ A0 + β1

t ∗ A1 (5.1)

This method ensures that the ethical advantage A0 receives more weight
when its loss function is not being correctly minimized due to the influence
of λ0.

In summary, the fine-tuning process involves dynamically adjusting λ0 based on
the stability of the ethical objective’s loss function. If λ0 is large, we need to focus
on optimizing the ethical objective. When λ0 is small or zero, the ethical objective
is stabilized, and we can focus on optimizing the individual objective. The combi-
nation of weights (β0

t + λ0) and β1
t ensures that the ethical objective is prioritized

lexicographically.
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We found that the combination of η0 = 2.5 (the weight used for the λ0 vari-
able) and β = [1.0, 0.5] values had the most significant impact on optimizing the
ethical and individual objectives. A high η0 value is desirable because it amplifies
the difference stored in λ0, assigning more weight to the ethical advantage when
there are fluctuations in the ethical objective’s loss function, helping correct this
fluctuations immediately in the following updates. Vector β is set to 1 for the ethi-
cal advantage A0 and 0.5 to the individual advantage A1 to ensure that the ethical
objective is given more weight even when its loss function is minimized correctly,
ensuring that the algorithm gives greater emphasis on the ethical advantage.
The training process demonstrated that when η0 was set to a high value, it ef-
fectively corrected sub-optimal policies by emphasizing immediate performance
improvements. On the other hand, when the differences in the ethical recent
losses were smaller, the learning process directed the agent towards maximizing
individual rewards. This approach ensures a balanced alignment with the ethical
objectives of the environment.

Action Selection and Hyper-parameter Adjustment

Following Mayoral Macau’s PPO implementation [6], the ILPPO algorithm
uses the following approach for action selection:

• In training mode, the SoftmaxActionSelection is used to encourage explo-
ration and learning. It performs a multinomial draw (like a weighted ran-
dom choice) over a given probability distribution over actions, and returns
the index of the selected action.

• During policy evaluation, the FilterSoftmaxActionSelection is used to filter
out actions with probabilities below a certain threshold (0.1). It then applies
softmax to the remaining probabilities, and then selects an action using the
adjusted probabilities. This approach maintains stochastic behavior while
eliminating actions deemed sub-optimal.

We also decreased the entropy coefficient and the learning rates of both the ac-
tor and critic networks. Lowering the entropy coefficient reduces exploration in
favor of more stable and ethical policies, while adjusting the learning rates helps
stabilize training by preventing drastic updates.

Experimental Results and Analysis

Our experiments are conducted across 20 seeds, each training lasting 25M
steps, corresponding to 50,000 episodes of 500 steps each. The following aspects
are evaluated:
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• Agent_x/Reward: represents the accumulated reward for agent x across the
training steps. It corresponds to the mean of all reward components (Re-
ward_0 and Reward_1) received by the agent x during the training process.
The rewards are accumulated for each episode and then averaged over the
number of episodes in the batch.

• Agent_x/Reward_0: represents the ethical accumulated reward for agent x
from the ethical reward component (Reward_0). It is the sum of all rewards
corresponding to the first reward component received by agent x during the
training process, normalized over the number of episodes in the batch.

• Agent_x/Reward_1: represents the individual accumulated reward for agent
x from the individual reward component (Reward_1). It is computed the
same as the previous metric.

• Training/Avg Reward: represents the average accumulated reward across
both agents during the training process. It is the mean of the Agent_1/Reward
and Agent_2/Reward at each step, weighted equally at 0.5 for each agent.

Figures 5.1(a) and 5.1(b) show the evolution of the accumulated reward ob-
tained by each agent during training with ILPPO. Each line represents a specific
seed, but all experiments were conducted with the same parameters to ensure
consistency. To reduce the variance in the visualizations, each step is smoothed
using an exponential moving average with ω = 0.999. The x-axis indicates the
step in the training, whereas the y-axis is the accumulated reward obtained. Both

(a) Efficient agent (Agent-1) (b) Inefficient agent (Agent-2)

Figure 5.1: Evolution of the accumulated reward for the efficient (a) and inefficient
(b) agent during ILPPO training

agents show an improvement in their accumulated rewards as training progresses.
The efficient agent (a) obtains more rewards and reaches convergence around step
20M. The inefficient agent (b) shows more instability from steps 0 to 8M. At step
8M it starts to stabilize and continue receiving rewards with a less steep slope. This
could be due to its inefficient nature. Because it gathers fewer rewards, Agent-2
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faces more significant challenges in optimizing its objectives, contributing to the
higher fluctuation in its performance metrics.

(a) Individual accumulated reward (b) Ethical accumulated reward

Figure 5.2: Evolution of the separate accumulated rewards for Agent-1 during
ILPPO training

Examining the separate accumulated rewards of the efficient agent, we see that
the ethical accumulated reward 5.2(b) converges faster than the individual reward
5.2(a), reaching a point with minimal slope at step 14M. This indicates that Agent-
1 learns to optimize the ethical objective faster and, once optimized, proceeds to
optimize the individual accumulated reward.

(a) Individual accumulated reward (b) Ethical accumulated reward

Figure 5.3: Evolution of the separate accumulated rewards for Agent-2 during
ILPPO training

For the inefficient agent, the graph of the ethical accumulated reward looks
quite different. Due to its inefficient nature, Agent-2 has fewer opportunities to
donate apples to the donation box, making it more difficult for it to learn from ex-
perience. Figure 5.3(b) still presents a increasing slope, but with many more fluc-
tuations. Looking at Agent-2’s individual accumulated reward, 5.3(a) we see that
it learns correctly to accept donations from the donation box, increasing steadily
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its individual reward.

Figure 5.4: Evolution of the average accumulated reward during ILPPO Training

The upward trend in the average accumulated rewards of Figure 5.4 reflects im-
provements in both individual and ethical rewards across different training runs.
The x-axis represents the number of steps in the training process, ranging from 0 to
24M. The y-axis represents the average accumulated reward over the accumulated
rewards of Agent_1 and Agent_2 as explained at the beginning of the subsection.
The faint lines correspond to the actual values, whereas the more vibrant lines are
the smoothed values using the exponential moving average of ω = 0.999.
Figures 5.5(a), 5.5(b) and 5.6 compare the evolution of the cumulative rewards
between seed 1 of IPPO (orange) and ILPPO (blue).

(a) Agent 1 (b) Agent 2

Figure 5.5: Comparison of the cumulative rewards between IPPO (orange) and
ILPPO (blue) for both agents

We can observe three different stages in the ILPPO training:

• From steps 0M to 8M, ILPPO agents receive lower cumulative rewards com-
pared to IPPO agents. This could be because, initially, ILPPO agents focus
on optimizing the ethical objective, giving more weight to the ethical advan-
tage. However, at the beginning of the training process, the most optimal
actions are the ones that act greedy, striving to collect apples. If the agents
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Figure 5.6: Comparison of the average cumulative reward between IPPO (orange)
and ILPPO (blue)

are more encouraged to donate but they do not have apples, it is natural that
they obtain lower rewards.

• From steps 8M to 10M the behaviour of ILPPO and IPPO are very similar.
In ILPPO the advantage weights should have shifted once the ethical loss
function is stabilized, giving priority to the individual objective.

• From steps 10M to 24M, ILPPO slightly obtains higher cumulative rewards
than IPPO, probably due to the stabilization of the ethical objective.

The Figure 5.6 displays the average cumulative reward between IPPO and ILPPO
for seed 1. It follows a similar trend to that in figure 5.6, but the gaps between the
two graphs are closer, due to the similar behaviour of the inefficient agent 5.5(b).
Looking at the average cumulative reward, it follows a similar trend to figures
5.5(a) and 5.5(b).

Numerical Analysis of Ethical Policies

In this subsection, we provide a numerical analysis of the ethical policies
learned in the tiny environment under the ILPPO algorithm. The objective of
these experiments is to determine how close the learned policies align with those
obtained with the IPPO algorithm, which has been tested and proven to provide
ethically optimal policies [6]. We conducted 1000 simulations for each of the 20
seeds, and evaluated its results under the ILPPO and IPPO algorithms by analyz-
ing the following key metrics:

• Step to survival: The average step at which each agent survives, averaged
over all simulations.
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• Times not survived: The number of simulations in which the agent did not
survived (collected enough apples to reach the survival threshold) across all
20000 simulations.

• Accumulated reward: The accumulated reward obtained by each agent at
the end of each simulation, averaged over all simulations.

• Individual reward and Ethical reward: The accumulated individual and
ethical rewards for each agent at the end of each simulation, averaged over
all simulations.

• DB not filled: The number of times the donation box was not full at the end
of the simulations.

• Step DB full: The average step at which the agents managed to fill the
donation box, averaged over all simulations.

• R’E actions: The average number of missed ethical actions over all simula-
tions. That is, missed opportunities where agents could have donated apples
but did not.

• R’N actions: The average number of unethical actions over all simulations.
Instances where agents took apples from the donation box despite having
enough apples to survive (acting greedily).

• Sub-optimal actions: The average number of instances where agents do-
nated apples to the donation box despite not having enough apples to sur-
vive, across all simulations.

Table 5.2 summarizes the numerical comparison of these metrics.

Table 5.2: Comparison of IPPO and ILPPO Metrics
Metric ILPPO Agent 0 ILPPO Agent 1 IPPO Agent 0 IPPO Agent 1
Step to Survival 107.63± 30.61 209.33± 41.92 110.71± 32.18 206.65± 42.35
Times not Survived 13/20000 15/20000 18/20000 24/20000
Accumulated Reward 24.73± 36.44 −206.76± 42.51 20.81± 38.81 −204.29± 43.12
Individual Reward −77.60± 35.19 −208.25± 42.35 - -
Ethical Reward 102.33± 5.05 1.50± 3.16 - -
DB not Full 18/20000 18/20000 30/20000 30/20000
Step DB Full 271.56± 49.41 271.56± 49.41 268.52± 50.55 268.52± 50.55
R’E Actions 0.05± 0.22 0.00± 0.06 0.03± 0.20 0.39± 4.27
R’N Actions 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00
Sub-optimal Actions 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00

Let’s analyse table 5.2, grouped into several key areas:
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Survival Metrics: Both agents using ILPPO and IPPO have similar mean times
to survival, with ILPPO Agent 0 slightly faster than IPPO Agent 0 and ILPPO
Agent 1 slightly slower than IPPO Agent 1. The standard deviations indicate vari-
ability, with ILPPO Agent 0 showing slightly less variability compared to IPPO
Agent 0. ILPPO agents have fewer non-survival simulations, suggesting that
ILPPO may provide more consistent survival performance. Note that the "Times
not Survived" metric is measured as a sum over the 20,000 simulations.

Reward Metrics: ILPPO Agent 0 achieved a slightly higher mean total reward
compared to IPPO Agent 0. Both agents 1 have negative total rewards, but ILPPO
Agent 1 has a slightly lower mean total reward compared to IPPO Agent 1. The
standard deviations indicate a similar level of variability between the algorithms.
Regarding the ethical and individual cumulative reward, we couldn’t compare this
metrics because the reward function in PPO is scalarized. However, we can ensure
that ILPPO Agent 0 received a significantly higher ethical reward compared to
ILPPO Agent 1, suggesting a focus on ethical behavior for Agent 0.

Donation Box Metrics: ILPPO had fewer instances where the donation box
was not full, indicating better performance in managing the donation box. The
average step in which the donation box is filled is similar for both ILPPO and
IPPO agents.

Action Metrics: Both ILPPO and IPPO agents had zero sub-optimal and un-
ethical actions recorded. ILPPO agents exhibited slightly higher missed ethical
actions for Agent 0, but lower missed ethical action for Agent 1.

Overall, the ethical policies obtained with the ILPPO approach are very similar
to the ethical-optimal policies obtained with IPPO. The ILPPO algorithm shows a
slight edge in terms of survival consistency for both agents and ethical behav-
ior for Agent 1, while maintaining similar performance to IPPO in most other
metrics. Furthermore, ILPPO does not require to compute the weights of the in-
dividual and ethical rewards in the ethical embedding process, making it simpler
to implement and potentially more adaptable to different environments or sce-
narios without the need for extensive parameter tuning. Note that, although the
differences between the metrics are small, the T-test results indicate significant
differences between ILPPO and IPPO across all comparable key metrics (see Table
B.3).
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Evaluation of the learnt ethical policy

The provided figure 5.7(a) illustrates the evolution of apple collection by Agent
1 (efficient, blue line) and Agent 2 (inefficient, orange line) as well as the apples
in the donation box (green line) over an aggregation of 100 simulations of 500
steps. Agent 1, being 0.85 efficient, quickly gathers apples and reaches the survival
threshold (red dashed line) around step 100. Agent 2 gathers apples more slowly.
After reaching the survival threshold, Agent 1 begins donating excess apples to
the donation box, and Agent 2 begins accepting donations to reach the survival
threshold (step 200). Once both agents have ensured their survival, they start
to donate its surplus of apples to the donation box. The green line increases
steadily until the donation box reaches its capacity (black dashed line) around
step 270. With the donation box full, both agents resume gathering apples for
themselves. Agent 1, due to its higher efficiency, accumulates apples faster, as
shown by the steep rise in the blue line. The figure 5.7(a) demonstrates that the

(a) ILPPO (b) IPPO

Figure 5.7: IPPO (a) and IPPO (b) evolution of the number of apples collected by
Agent 1, Agent 2, and the Donation Box over time. The shaded regions represent
the interquartile range for each agent.

agents successfully follow the desired ethical policies. Agent 1 helps Agent 2
survive by donating apples, both agents fill the donation box, and they continue
gathering apples for themselves once the donation box is full.
Moreover, comparing the ethical policy of ILPPO 5.7(a) versus the one obtained
with IPPO 5.7(b) we observe that both policies behave very similar.



Chapter 6

Conclusion and Future Work

This Bachelor’s Degree Final Project explored the integration of ethical values
into RL through the ILPPO algorithm. By implementing a lexicographic ordering
of multiple objectives, ILPPO ensures that higher-priority ethical objectives are met
before addressing other goals. Theoretical foundations include Multi-Objective
Markov Decision Process (MOMDP), Proximal Policy Optimization, lexicographi-
cal policy based learning and stochastic games.
We implemented ILPPO in the Ethical Gathering Game, where agents learn to
behave in alignment with the moral value of beneficence, managing to compen-
sate for inequality by gathering and sharing apples. Our experiments showed that
ILPPO effectively learns ethical optimal policies similar to those generated with
IPPO. Furthermore, ILPPO outperforms IPPO in promoting ethical behaviour in
some key metrics such as agent survival and donation box filling, while maintain-
ing to zero the sub-optimal actions and missed ethical actions.
The results of this research are encouraging, and we already envision several areas
for future work to further test and enhance ILPPO. Future research should scale
ILPPO into large environments, testing how it handles more agents and larger
state spaces. Moreover, extensive experiments to fine-tune the β and η parameters
could be conducted. These parameters play a crucial role in balancing ethical ob-
jectives and individual rewards, and optimizing them can enhance the algorithm’s
performance.
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Hyper-parameters for the
Learning Approach
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Environment Setup
max-steps Max number of steps per episode
n-agents Number of agents
map-size Size of the map
efficiency Efficiency picking an apple
donation-capacity Donation box capacity
survival-threshold Survival threshold

Training hyper-parameters
seed Seed of the experiment
batch-size Steps between policy updates
tot-steps Total time-steps of the experiment

IPPO hyper-parameters
actor-lr Actor learning rate
critic-lr Critic learning rate
anneal-lr Toggles annealing learning rates
clip Surrogate clipping coefficient
gamma Discount factor
gae-lambda Gae lambda
ent-coef Entropy coefficient
anneal-entropy Toggles annealing entropy
concavity-entropy Determines the curvature of the function that adjusts

the entropy
v-coef Value function coefficient
n-epochs Number of update epochs
norm-adv Toggles advantages normalization
max-grad-norm Maximum norm for gradient clipping
h-size Layers size

ILPPO hyper-parameters
we-reward0 Weight given to the individual reward
we-reward1 Weight given to the ethical reward (beneficence)
beta-values Weights assigned to each advantage to compute its

weighted sum. Corresponding to the βi
t in the 2.53 for-

mula.
eta-value Weight assigned to past loss actor values. Correspond-

ing to the ηt in the 2.53 formula.
prioritize-performance-over-safety train the agent to first optimize the individual reward

(True) or the ethical reward (False). By default is set to
False.

Table A.1: Hyper-parameters for the Learning Approach



Appendix B

Simulation results separated by
seed

B.1 Simulation results for IPPO algorithm

Seed Mean Time to Survival Times not Survived Mean Total Reward Mean Time to Full Times not Full

Agent 0 Agent 1 Agent 0 Agent 1 Agent 0 Agent 1 Time Count

1 112.51 ± 33.55 209.33 ± 43.51 0 0 19.30 ± 37.13 -206.18 ± 43.66 270.92 ± 50.00 0
2 112.91 ± 33.37 209.36 ± 45.36 3 3 16.89 ± 45.86 -207.47 ± 47.05 270.89 ± 53.20 4
3 102.01 ± 29.39 193.36 ± 38.64 0 0 36.72 ± 32.38 -192.02 ± 38.66 243.38 ± 42.72 0
4 110.38 ± 31.14 205.07 ± 39.61 0 0 20.93 ± 34.53 -201.62 ± 39.65 270.11 ± 47.89 0
5 110.83 ± 30.80 206.00 ± 40.70 1 1 23.52 ± 37.43 -204.90 ± 41.33 262.87 ± 47.27 1
6 107.61 ± 30.00 203.61 ± 40.36 1 2 22.83 ± 36.80 -200.99 ± 41.80 266.59 ± 48.60 2
7 109.38 ± 31.04 203.70 ± 40.06 1 2 22.20 ± 37.89 -201.44 ± 41.45 267.24 ± 48.94 2
8 113.55 ± 32.22 209.50 ± 41.12 0 0 15.36 ± 35.86 -205.86 ± 41.42 276.65 ± 50.75 1
9 108.61 ± 32.43 206.08 ± 42.44 0 0 23.04 ± 35.98 -203.08 ± 42.55 269.20 ± 48.76 0
10 115.60 ± 32.83 213.09 ± 42.21 0 0 13.91 ± 36.05 -209.52 ± 42.65 276.36 ± 48.83 0
11 114.62 ± 33.18 213.31 ± 42.99 1 1 15.15 ± 39.84 -210.42 ± 43.59 277.83 ± 51.28 2
12 121.20 ± 35.91 224.88 ± 47.67 1 2 8.56 ± 42.12 -223.66 ± 48.29 288.60 ± 56.19 3
13 111.93 ± 32.96 206.48 ± 41.25 0 0 17.83 ± 36.24 -201.94 ± 41.65 273.91 ± 49.87 0
14 109.24 ± 33.03 201.90 ± 41.70 0 0 24.46 ± 36.13 -199.42 ± 41.76 262.91 ± 49.23 0
15 110.92 ± 32.13 205.74 ± 40.78 0 0 24.39 ± 35.47 -204.16 ± 40.86 262.26 ± 46.22 0
16 109.22 ± 32.37 205.80 ± 47.72 10 13 14.05 ± 61.18 -208.78 ± 53.37 270.76 ± 58.22 13
17 108.19 ± 30.49 205.97 ± 40.61 0 0 22.03 ± 33.99 -202.31 ± 40.84 270.74 ± 51.87 2
18 106.10 ± 30.23 197.46 ± 39.95 0 0 31.93 ± 33.43 -196.13 ± 40.01 248.70 ± 44.80 0
19 109.85 ± 31.18 204.37 ± 39.36 0 0 21.93 ± 34.34 -201.12 ± 39.47 267.94 ± 46.77 0
20 109.58 ± 30.16 208.00 ± 40.48 0 0 21.20 ± 33.72 -204.68 ± 40.82 272.58 ± 48.95 0

Average 110.71 ± 32.18 206.65 ± 42.35 18 24 20.81 ± 38.81 -204.29 ± 43.12 268.52 ± 50.55 30

Table B.1: IPPO Performance Metrics (Part 1)

B.2 Simulation results for ILPPO algorithm

B.3 T-Test Results Between IPPO and ILPPO Metrics
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Seed Mean R’_E Actions Mean R’_N Actions Mean Suboptimal Actions

Agent 0 Agent 1 Agent 0 Agent 1 Agent 0 Agent 1

1 0.04 ± 0.20 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
2 0.03 ± 0.16 0.00 ± 0.06 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
3 0.02 ± 0.14 1.05 ± 6.59 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
4 0.01 ± 0.11 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
5 0.04 ± 0.20 3.00 ± 11.66 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
6 0.03 ± 0.16 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
7 0.03 ± 0.18 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
8 0.04 ± 0.19 0.00 ± 0.03 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
9 0.02 ± 0.13 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
10 0.05 ± 0.25 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
11 0.05 ± 0.23 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
12 0.04 ± 0.23 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
13 0.03 ± 0.17 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
14 0.07 ± 0.26 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
15 0.06 ± 0.27 2.89 ± 11.39 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
16 0.03 ± 0.17 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
17 0.04 ± 0.21 0.00 ± 0.03 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
18 0.03 ± 0.18 0.95 ± 6.29 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
19 0.03 ± 0.16 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
20 0.03 ± 0.20 0.00 ± 0.06 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Average 0.03 ± 0.20 0.39 ± 4.27 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Table B.2: IPPO Performance Metrics (Part 2)

Seed Mean Time to Survival Times not Survived Mean Total Reward Mean Time to Full Times not Full

Agent 0 Agent 1 Agent 0 Agent 1 Agent 0 Agent 1 Time Count

1 108.32 ± 30.76 210.85 ± 42.47 0 0 24.23 ± 34.22 -207.85 ± 42.87 271.69 ± 49.81 1
2 106.70 ± 30.41 208.19 ± 41.49 0 0 25.88 ± 33.65 -205.71 ± 41.63 271.72 ± 48.71 0
3 106.62 ± 30.46 207.78 ± 40.38 0 0 25.30 ± 33.66 -204.07 ± 40.41 269.15 ± 48.37 0
4 107.01 ± 29.51 209.54 ± 42.54 3 3 23.99 ± 43.18 -207.71 ± 44.19 269.33 ± 49.39 3
5 106.31 ± 30.35 205.82 ± 40.49 0 0 26.70 ± 34.03 -202.50 ± 40.67 269.01 ± 47.21 0
6 109.45 ± 30.78 209.71 ± 40.87 0 0 24.24 ± 34.20 -207.07 ± 40.99 271.57 ± 47.04 0
7 103.54 ± 29.83 201.37 ± 41.80 7 7 25.85 ± 54.43 -201.47 ± 45.94 263.35 ± 51.37 7
8 108.91 ± 30.43 210.99 ± 39.80 0 0 23.29 ± 33.77 -208.25 ± 39.82 274.80 ± 47.95 0
9 108.72 ± 30.45 210.72 ± 43.06 0 0 24.47 ± 33.74 -208.07 ± 43.27 273.39 ± 49.86 1
10 104.24 ± 30.19 201.24 ± 39.74 0 0 29.15 ± 33.18 -197.96 ± 40.14 261.63 ± 47.20 0
11 108.80 ± 30.76 212.68 ± 42.52 1 2 22.68 ± 37.35 -210.86 ± 43.72 273.74 ± 48.73 2
12 109.33 ± 30.94 214.55 ± 43.20 0 0 23.32 ± 34.68 -211.97 ± 43.27 279.04 ± 51.86 1
13 105.32 ± 30.45 208.79 ± 41.42 0 0 28.29 ± 33.95 -206.26 ± 41.53 270.49 ± 48.67 0
14 108.28 ± 31.55 212.49 ± 43.02 0 0 24.78 ± 35.26 -210.06 ± 43.25 277.28 ± 51.44 0
15 107.24 ± 29.41 210.77 ± 39.86 1 1 25.00 ± 36.48 -208.36 ± 40.52 274.98 ± 48.77 1
16 105.83 ± 30.23 205.00 ± 40.70 0 0 27.12 ± 33.67 -201.59 ± 40.77 264.91 ± 46.43 0
17 107.17 ± 29.77 207.26 ± 42.56 1 2 24.30 ± 36.90 -205.18 ± 43.85 269.60 ± 50.65 2
18 107.07 ± 29.38 207.09 ± 39.41 0 0 25.19 ± 32.66 -203.72 ± 39.45 267.51 ± 45.98 0
19 116.03 ± 33.90 223.30 ± 46.43 0 0 15.22 ± 37.49 -221.34 ± 46.48 287.70 ± 53.46 0
20 107.70 ± 30.33 208.53 ± 40.95 0 0 25.58 ± 33.78 -205.18 ± 41.25 270.39 ± 48.07 0

Aggregate 107.63 ± 30.61 209.33 ± 41.92 13 15 24.73 ± 36.44 -206.76 ± 42.51 271.56 ± 49.41 18

Table B.3: ILPPO Performance Metrics (Part 1)
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Seed Mean Individual Reward Mean Ethical Reward Mean R’_E Actions

Agent 0 Agent 1 Agent 0 Agent 1 Agent 0 Agent 1

1 -78.12 ± 33.86 -209.37 ± 42.51 102.35 ± 4.30 1.53 ± 3.26 0.01 ± 0.09 0.00 ± 0.00
2 -77.14 ± 33.34 -206.85 ± 41.55 103.02 ± 3.71 1.14 ± 2.77 0.05 ± 0.24 0.00 ± 0.00
3 -76.40 ± 33.42 -206.25 ± 40.44 101.70 ± 4.51 2.18 ± 3.69 0.04 ± 0.20 0.00 ± 0.00
4 -77.77 ± 39.40 -209.63 ± 43.94 101.76 ± 7.11 1.93 ± 3.48 0.05 ± 0.23 0.00 ± 0.00
5 -75.19 ± 33.28 -204.30 ± 40.54 101.89 ± 4.77 1.81 ± 3.54 0.05 ± 0.22 0.00 ± 0.00
6 -78.64 ± 33.73 -208.32 ± 40.94 102.88 ± 3.87 1.25 ± 2.84 0.03 ± 0.17 0.00 ± 0.00
7 -75.50 ± 47.62 -203.45 ± 45.60 101.35 ± 9.55 1.97 ± 3.50 0.04 ± 0.23 0.00 ± 0.00
8 -79.28 ± 33.20 -209.50 ± 39.88 102.57 ± 4.25 1.25 ± 2.94 0.04 ± 0.22 0.01 ± 0.19
9 -78.20 ± 33.50 -209.31 ± 43.13 102.68 ± 3.95 1.23 ± 2.89 0.05 ± 0.24 0.00 ± 0.00
10 -73.06 ± 33.00 -199.69 ± 39.84 102.21 ± 4.24 1.74 ± 3.33 0.04 ± 0.20 0.00 ± 0.00
11 -79.75 ± 35.86 -212.23 ± 43.46 102.44 ± 5.68 1.36 ± 3.03 0.06 ± 0.25 0.00 ± 0.07
12 -79.42 ± 34.00 -213.12 ± 43.27 102.74 ± 4.09 1.14 ± 2.82 0.04 ± 0.21 0.00 ± 0.00
13 -74.54 ± 33.50 -207.39 ± 41.49 102.84 ± 3.87 1.13 ± 2.74 0.04 ± 0.19 0.00 ± 0.09
14 -78.05 ± 34.88 -211.06 ± 43.09 102.83 ± 3.81 1.00 ± 2.55 0.07 ± 0.28 0.01 ± 0.16
15 -77.49 ± 34.71 -209.86 ± 40.40 102.49 ± 5.21 1.50 ± 3.22 0.03 ± 0.18 0.00 ± 0.00
16 -75.19 ± 33.28 -204.30 ± 40.54 101.89 ± 4.77 1.81 ± 3.54 0.05 ± 0.22 0.00 ± 0.00
17 -77.66 ± 35.12 -206.77 ± 43.63 101.96 ± 6.36 1.59 ± 3.28 0.05 ± 0.21 0.00 ± 0.00
18 -76.57 ± 32.17 -205.46 ± 39.46 101.77 ± 4.65 1.74 ± 3.35 0.04 ± 0.18 0.00 ± 0.03
19 -88.20 ± 37.13 -221.98 ± 46.48 103.42 ± 3.41 0.64 ± 2.12 0.06 ± 0.25 0.00 ± 0.00
20 -76.10 ± 33.33 -207.01 ± 41.03 101.68 ± 4.80 1.83 ± 3.49 0.08 ± 0.28 0.00 ± 0.03

Aggregate -77.60 ± 35.19 -208.25 ± 42.35 102.33 ± 5.05 1.50 ± 3.16 0.05 ± 0.22 0.00 ± 0.06

Table B.4: ILPPO Performance Metrics (Part 2)
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Seed Mean Suboptimal Actions

Agent 0 Agent 1

1 0.00 ± 0.00 0.00 ± 0.00
2 0.00 ± 0.00 0.00 ± 0.00
3 0.00 ± 0.00 0.00 ± 0.00
4 0.00 ± 0.00 0.00 ± 0.00
5 0.00 ± 0.00 0.00 ± 0.00
6 0.00 ± 0.00 0.00 ± 0.00
7 0.00 ± 0.00 0.00 ± 0.00
8 0.00 ± 0.00 0.00 ± 0.00
9 0.00 ± 0.00 0.00 ± 0.00
10 0.00 ± 0.00 0.00 ± 0.00
11 0.00 ± 0.00 0.00 ± 0.00
12 0.00 ± 0.00 0.00 ± 0.00
13 0.00 ± 0.00 0.00 ± 0.00
14 0.00 ± 0.00 0.00 ± 0.00
15 0.00 ± 0.00 0.00 ± 0.00
16 0.00 ± 0.00 0.00 ± 0.00
17 0.00 ± 0.00 0.00 ± 0.00
18 0.00 ± 0.00 0.00 ± 0.00
19 0.00 ± 0.00 0.00 ± 0.00
20 0.00 ± 0.00 0.00 ± 0.00

Aggregate 0.00 ± 0.00 0.00 ± 0.00

Table B.5: ILPPO Performance Metrics (Part 3)

Metric t-statistic p-value
Survival Times (Agent 0) 9.8151 0.0000
Survival Times (Agent 1) −6.3681 0.0000
Total Rewards (Agent 0) −10.4105 0.0000
Total Rewards (Agent 1) 5.7750 0.0000
Missed Ethical Actions (Agent 0) −5.0107 0.0000
Missed Ethical Actions (Agent 1) 13.0413 0.0000
Non-Ethical Actions (Agent 0) nan nan
Non-Ethical Actions (Agent 1) nan nan
Suboptimal Actions (Agent 0) nan nan
Suboptimal Actions (Agent 1) nan nan
Donation Full Times −6.0861 0.0000

Table B.6: T-test Results Between PPO and LPPO Metrics
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