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Abstract

The main purpose of this master’s thesis is to continue and extend the study of the
stochastic integral seen in the subject of Stochastic Calculus, providing (hopefully) an
introductory text that will allow the average student of the subject (and to anyone
who is already familiar with the stochastic integral with respect to the Brownian
motion) to expand his knowledge.

To do so, in the second chapter we briefly review the construction of the Itô
integral to then see how we exploit these ideas to generalize the construction to other
processes, this is done following the construction provided in the third chapter [7].
Many of the presented results and notions of this part (and the following ones) have
been completed with additional explanations and comparisons with the already seen
objects in order to make the understanding of these clearer.

In the third chapter, we discuss the topic of stochastic integration with respect
to random fields. We first treat the integral with respect to the space-time Gaussian
white noise, following the construction presented in the first two chapters of [6], since
it deals with objects which might be a bit more familiar to the intended audience as
its construction uses the already studied Itô integral with respect to the Brownian
motion. Before doing so, we introduce two crucial Gaussian processes (the isonormal
process and the white noise), which generalize the Brownian motion and are crucial
when it comes to define the stochastic integral with respect to the space-time white
noise.

Next, and following the second chapter of [11], we introduce a wider class of
random fields (which contains the ones already seen) that can be used as integrators
and show how one constructs integrals with respect to such objects. During this
process, we use the already studied Gaussian white noise as a canonical example that
will serve us as a model to compare the new construction.

Finally, and to keep the reader entertained, in the Introduction and in Section
2.1 we pose a problem regarding the validity of the models that use the Brownian
motion and the space-time Gaussian white noise as driving noises which is treated in
Sections 2.3.4 and 3.2.4, providing results regarding the approximation in law of the
stochastic integral with respect to the Brownian motion (Theorem 2.3.11, of which
we could not find a statement nor a proof elsewhere) and the one with respect to the
Brownian sheet (Theorem 3.2.2, which is a simplification of one of the results in [2]),
respectively.

ii



Resum

El principal objectiu d’aquesta tesi és el de continuar i estendre l’estudi de la inte-
gral estocàstica vist a l’assignatura de Càlcul Estocàstic, proporcionant (o almenys
això esperem) un document introductori que permeti a l’estudiant mitjà d’aquesta
assignatura (i a qualsevol altra persona que estigui familiaritzada amb la integral
estocàstica respecte del moviment Brownià) expandir els seus coneixements.

Per tal d’aconseguir-ho, en el segon caṕıtol revisem de manera breu la construcció
de la integral estocàstica respecte del moviment Brownià per, després, veure com
explotem les idees emprades per generalitzar la construcció a altres processos, tot
seguint la construcció presentada al tercer caṕıtol de [7]. Molts dels resultats d’aquesta
part (i de la resta del treball) han sigut complementats amb explicacions addicionals
i comparacions amb objectes ja coneguts amb la intenció de facilitar la comprensió
d’aquests.

En el tercer caṕıtol, tractem la integral estocàstica respecte camps aleatoris. En
primer lloc, considerem la integral respecte el soroll blanc Gaussià en l’espai-temps,
seguint els dos primers caṕıtols de [6], ja que aquesta es construeix a partir d’objectes
que poden ser més familiars com són el moviment Brownià i la integral d’Itô respecte
d’aquest. Abans, però, haurem de presentar dos processos Gaussians que són crucials
en la construcció presentada (el procés isonormal i el soroll blanc), que generalitzen
el moviment Brownià.

A continuació, i seguint el segon caṕıtol de [11], introdüım una classe més àmplia
de camps aleatoris (que conté els ja estudiats) que podran ser usats com a integradors i
veiem com es construeixen les corresponents integrals estocàstiques. Durant el procés,
usem el ja estudiat soroll blanc Gaussià com a exemple canònic que ens servirà com
a model per anar comparant la nova construcció.

Finalment, i per tal de mantenir al lector entretingut, a la Introducció i a la
Secció 2.1 posem en dubte la validesa dels models que usen el moviment Brownià i el
soroll blanc Gaussià com a pertorbacions aleatòries. El problema en qüestió l’acabem
tractant a les Seccions 2.3.4 i 3.2.4, on donem resultats referents a l’aproximació en
llei de les integrals estocàstiques respecte del moviment Brownià (Teorema 2.3.11,
del qual no n’hem pogut trobar cap enunciat ni prova enlloc) i respecte del drap
Brownià (Teorema 3.2.2, el qual és una simplificació d’un dels resultats presentats a
[2]), respectivament.
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Chapter 1

Introduction

In the subject of Stochastic Calculus, one studies the stochastic integral with respect
to the Brownian motion to give a rigorous definition of what is called a Stochastic
Differential Equation (SDE), in this case driven by a Brownian motion. That is, we
construct such objects to be able to make sense of expressions like

Xt = X0 +

∫ t

0

µ(s,Xs)ds+

∫ t

0

σ(s,Xs)dBs, (1.0.1)

which, in differential form, are written as

dXt = µ(t,Xt)dt+ σ(t,Xt)dBt, (1.0.2)

where µ and σ are given functions satisfying some regularity conditions, {Bt : t ≥ 0}
is a Brownian motion and {Xt : t ≥ 0} is a stochastic process determined by the
previous SDE. In Chapter 2, Section 2.1, we will briefly see why are we interested in
working with differential equations with random perturbations, why the differential
“dBt” does not make sense as a classical derivative, why the standard integration
theory (Lebesgue-Stieltjes, for instance) does not work in this cases and why we
really need to develop a new theory of integration.

It turns out that the ideas used to construct the integral with respect to the
Brownian motion can be used to define stochastic integrals with respect to many
other stochastic processes, which is done in Chapter 2, and hence, to define SDEs
driven by more general stochastic processes. Moreover, as we will see in Chapter 3, the
already constructed stochastic integrals can be used to define even more stochastic
integrals, which will prove to be useful when it comes to define rigorously what is
called a Stochastic Partial Differential Equation (SPDE).

On the other hand, and as discussed in Section 2.1, the choice of the Brownian
motion as a driving noise (or the Gaussian white noise when it comes to SPDEs) is,
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usually, an idealization or a simplification of a much more complicated situation. In
other words, the random perturbations seen in SDEs and SPDEs are can be thought
as simplifications, idealizations or limiting behaviours of the superposition of several
factors that might be more complicated to study. Therefore, in order to make sure
that the models are coherent and that simplified models lead to simplified solutions,
an important task is to study under which conditions the solutions of such equations
(SDEs and SPDEs) converge to the solution of the corresponding equation when the
random perturbation is approximated by some family of stochastic processes.
To be a bit more specific, let L be an integro-differential operator, {Ẇn}n∈N be a
sequence of random perturbations converging in some sense to a random perturbation
Ẇ and {Un(t, x)}n∈N and U(t, x) be, respectively, the solutions to the equations

LUn(t, x) = σ(t, x, Un(t, x))Ẇn(t, x), LU(t, x) = σ(t, x, U(t, x))Ẇ (t, x).

Where t and x are, respectively, the time and space variables. Under which conditions
is it true that the solutions Un converge to U? In which sense is this convergence?
Given that in most cases we are interested in the laws of the solutions, rather than, for
instance, the exact form of their sample paths, we will focus our efforts on studying
the convergence of the laws of the solutions of the SDEs and SPDEs or, in other
words, on studying the weak convergence of the solutions.

However, before dealing with the convergence of the solutions of SDEs and SPDEs,
we should first be concerned about the convergence of the noises involved, providing
examples of processes {Ẇn}n and Ẇ . Therefore, in this work, apart from constructing
the stochastic integral with respect to a certain class of noises, we will focus our efforts
in proving some results regarding the weak approximation of such noises and integrals.
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Chapter 2

Martingales as integrators

2.1 Motivation

As said in the introduction, one of the reasons to develop a theory of stochastic
integration with respect to stochastic processes is to define rigorously expressions like
(1.0.2). But why would someone want to work with such objects? Let us see an
illustrative example where these objects turn out to be useful.

Particle in a fluid

Suppose that we have a particle submerged in a fluid (for simplicity, we will work
in one dimension). Given the initial position and velocity of every single particle
conforming the system, the trajectory of our particle as a function of time, Xt, can be
simply found by using, for instance, Newton’s laws, taking into account the several
collisions, etc. However, even though simple, this way is unpractical from a compu-
tational point of view since the number of elements in the system is a little bit too
high.
To simplify the computations, one can think that, at the end of the day, the effect
of the several collisions translates into a friction force opposing the motion of the
particle. In most cases, this friction depends, mainly, on the velocity of the particle,
meaning that, by Newton’s second law,

dẊt = −βẊtdt, β :=
ζ

m
(2.1.1)

where Ẋt = dXt/dt, ζ > 0 is the friction coefficient and m > 0 is the mass of the
particle we are studying. Given initial conditions X0, Ẋ0, the solution to such ODE
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is given by

Ẋt = Ẋ0e
−βt, Xt = X0 +

Ẋ0

β

(
1− e−βt

)
.

The solution obtained, even though it describes several systems in a simple way, it
may overlook particular details of the system (for instance, the frequency and in-
tensity of the collisions of the particles) which cannot be summarized in the friction
coefficient ζ.
One way to take into account some of these features is to introduce random pertur-
bations in Eq.(2.1.1). To do so, we first discretize the time variable and suppose that
our particle suffers a random perturbation on each step:

Ẋt+∆t − Ẋt = −βẊt∆t+ f∆Vt, ∆Vt = Vt+∆t − Vt. (2.1.2)

Where Vt is the random perturbation introduced and f is some function modelling the
intensity of the perturbation. The ∆Vt term accounts for the “random” displacements
caused by the several collisions. If these collisions are not too strong (at the end of the
day, they are caused by particles with low mass), the displacements will be “small”
(of finite variance, for instance), meaning that ∆Vt accounts for the superposition
of several small factors and hence, by the Central Limit Theorem, it is natural to
assume that ∆Vt ∼ N (µ̃, σ̃2) (where µ̃ ∈ R and σ̃ > 0 are some functions that might
depend on the position of the particle, the time, etc.). Moreover, if we assume that
the intensity of the collisions and their orientation is independent of the position of
the particle Xt (this might be the case of an homogeneous medium), we can think
that f = f(t, Ẋt) and similarly for µ̃ and σ̃.

Another assumption we can make, for instance, is that the perturbations ∆Vt and
∆Vt+∆t are independent, which seems to be the case in a large variety of systems.
Hence, Eq.(2.1.2) can be rewritten as

Ẋt+∆t − Ẋt = µ(t, Ẋt)∆t+ σ(t, Ẋt)∆Bt,

for some functions µ and σ and where {Bt : t ≥ 0} is a standard Brownian motion.
Formally speaking, and taking the limit ∆t→ 0, one arrives at equation (1.0.2) with
Ẋt instead of Xt. Thus, we have converted the deterministic equation (2.1.1) into an
equation modelling the sample paths of a stochastic process.

A first approach to study such equations is doing it for each ω ∈ Ω (being Ω our
sample space):

Xt(ω) = µ(t,Xt(ω))dt+ σ(t,Xt(ω))dBt(ω)

transforming the equation into an ODE. Nevertheless, it is a very well-known fact
that the sample paths of the Brownian motion are not of bounded variation and
hence, that they are not differentiable. Meaning that the differential “dBt(ω)” is not
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well defined in the usual sense. In view of this fact, one might try to rewrite equation
(1.0.2) in its integral form like in Eq.(1.0.1) and try to study the new equation for
each ω:

Xt(ω) = X0(ω) +

∫ t

0

µ(s,Xs(ω))ds+

∫ t

0

σ(s,Xs(ω))dBs(ω).

However, the very same fact tells us that the integral
∫ t

0
σ(s,Xs(ω))dBs(ω) does not

make sense as a Riemann-Stieltjes integral or a Lebesgue-Stieltjes one. So we do not
have any classical tools to study equations (1.0.1) and (1.0.2) path by path. But we
still have options!

Instead of defining the integral path by path as a limit of Riemann sums∫ t

0

σ(s,Xs(ω))dBs(ω) = lim
n→∞

n∑
j=1

σ
(
t
(n)
j , X

t
(n)
j
(ω)
)(

B
t
(n)
j
(ω)−B

t
(n)
j−1

(ω)
)
,

we can exploit the ideas regarding the convergence of random variables to define the
limit of these sums in a weaker sense, and this is what we will do.

As a final remark, observe that equation (1.0.2) has been obtained by assuming
that the variance of the displacements is finite, among many other things. If any of
these assumptions is not fulfilled, then it might not make any sense to consider SDEs
driven by a Brownian motion and we would have to work with some other stochastic
process. In this chapter, we will restrict ourselves to the case where the stochastic
process is a continuous square integrable martingale and, at the end, we will mention
some other constructions related to the ones seen here.

From now on, during this chapter we will work on a filtered probability space(
Ω,F , {Ft}t∈[0,T ],P

)
where Ω will be our sample space, F a σ-field on Ω, {Ft}t∈[0,T ]

a filtration (being T > 0 is some fixed time horizon) and P is a probability measure.
We will assume as well that the filtration satisfies the usual conditions: it is right-
continuous and complete or, in other words,

Ft =
⋂
s>t

Fs

for any t ∈ [0, T ] and F0 contains all P-null sets and the ones contained in such sets.
Usually, we will require the filtration to be the one generated by the integrator

(the process with respect to which we will integrate) completed so that the usual
conditions are fulfilled or that the integrator is adapted to the given filtration.
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2.2 Integrals with respect to the Brownian mo-

tion, an overview

Before we start talking about integration with respect to martingales and other pro-
cesses, we first recall the main ideas and results seen in the subject of Stochastic
Calculus regarding the construction of the (L2) integral with respect to the Brownian
motion.

In this section we will assume that the filtration {Ft}t is the one generated by
the Brownian motion completed so that the usual conditions are fulfilled. This in
particular implies that increments of the form Bt − Bs are independent of Fr for
0 ≤ r ≤ s < t <∞.

To talk about integrals of the form
∫ T

0
ftdBt where f = {ft : 0 ≤ t ≤ T} (being

T > 0 some fixed time) is some suitable stochastic process, we first define the class
of functions for which the integral will be defined.

Definition 2.2.1. Let ν = ν[0, T ] be the class of functions f : [0, T ] × Ω → R,
(t, ω) 7→ f(t, ω) such that

(i) (t, ω) 7→ f(t, ω) is B × F-measurable (where B is the Borel σ-field on [0, T ]).

(ii) For each t ∈ [0, T ], ω 7→ f(t, ω) is Ft-measurable (the process f is {Ft}t-
adapted).

(iii) E
[∫ T

0
f 2(t, ω)dt

]
< ∞, where f 2(t, ω) = f(t, ω) · f(t, ω) and E is the expected

value with respect to the probability measure P.

Observe that the space ν can be identified with the space of functions in
L2 ([0, T ]× Ω,B × F , dPdt) (here dt denotes the Lebesgue measure on [0, T ]) which
are adapted to the filtration {Ft}t. In fact, one can show that ν is closed with respect

to the norm ||f ||2 = E
[∫ T

0
f 2(t, ω)dt

]
, f ∈ ν. So ν is a Hilbert space with respect to

the inner product (f, g) = E
[∫ T

0
f(t, ω)g(t, ω)dt

]
(where functions f, g ∈ ν such that

||f − g|| = 0 are identified, of course).
The procedure now is quite straightforward. First we consider the subset of ele-

mentary processes E ⊂ ν of the form

ϕt(ω) = ϕ(t, ω) =
n−1∑
j=0

ej(ω)I[tj ,tj+1)(t),

where 0 = t0 < ... < tn = T constitutes a partition of the interval [0, T ] and the
functions ej are Ftj -measurable and bounded (here I denotes the indicator function).
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For these processes, the definition of stochastic integral is given by(∫ T

0

ϕtdBt

)
(ω) =

n−1∑
j=0

ej(ω)
(
Btj+1

(ω)−Btj(ω)
)
.

One then sees that the stochastic integral (also known as Itô integral) acts linearly
on E and that any function in ν can be approximated by elementary processes with
respect to the norm || · ||. That is, E is dense in ν. Finally, one defines the Itô integral
with respect to the Brownian motion of any function f ∈ ν as the L2(Ω) limit of Itô
integrals of elementary processes that approximate f . To justify the existence of such
limit, one uses the following lemma, which is crucial in such task:

Lemma 2.2.1 (The Itô isometry). Let ϕ ∈ E be an elementary process. Then

E

[(∫ T

0

ϕtdBt

)2
]
= E

[∫ T

0

ϕ2
tdt

]
. (2.2.1)

To understand what will be going on in the following sections, let us see the proof
of this result.

Proof. Let us write ϕt =
∑n−1

j=0 ejI[tj ,tj+1)(t) and ∆Bj := Btj+1
− Btj . Then we have

that

E

[(∫ T

0

ϕtdBt

)2
]
=

n−1∑
j=0

E[e2j(∆Bj)
2] + 2

∑
0≤i<j≤n−1

E[eiej∆Bi∆Bj].

Now, given that ej is Ftj -measurable and that ∆Bj is independent of Ftj , we have
that, by law of total expectation

E[e2j(∆Bj)
2] = E

[
E
[
e2j(∆Bj)

2
∣∣Ftj

]]
= E

[
e2jE

[
(∆Bj)

2
∣∣Ftj

]]
= E

[
e2jE

[
(∆Bj)

2
]]

= E
[
e2j
]
(tj+1 − tj).

Similar reasons lead to

E[eiej∆Bi∆Bj] = E
[
E
[
eiej∆Bi∆Bj

∣∣Ftj

]]
= E

[
eiej∆BiE

[
∆Bj

∣∣Ftj

]]
= E [eiej∆BiE [∆Bj]]

= 0
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for 0 ≤ i < j ≤ n− 1. Hence,

E

[(∫ T

0

ϕtdBt

)2
]
=

n−1∑
j=0

E
[
e2j
]
(tj+1 − tj).

On the other hand,

E
[∫ T

0

ϕ2
tdt

]
= E

∫ T

0

(
n−1∑
j=0

ejI[tj ,tj+1)(t)

)2

dt


= E

[∫ T

0

n−1∑
j=0

e2jI[tj ,tj+1)(t)dt

]

= E

[
n−1∑
j=0

e2j(tj+1 − tj)

]

=
n−1∑
j=0

E
[
e2j
]
(tj+1 − tj). (2.2.2)

Proving the desired result.

One of the key points in this last proof is that the expected values on the double
sum cancel out. In some sense, this means that there is some sort of L2(Ω) orthog-
onality between the increments of the integrator, E [∆Bi∆Bj] = 0. Further, notice
that this orthogonality has been proven using the fact that the conditional expecta-
tion E

[
∆Bj

∣∣Ftj

]
vanishes, which is, in essence, the condition for the integrator to be

a martingale.
Observe as well that both sides of equation (2.2.1) lead to (2.2.2), which depends

linearly on the increment of time. This is no coincidence! As we will see in the near
future, even though the Brownian motion (and, in general, non-constant continuous
martingales) are of unbounded variation, they possess quadratic variation (a concept
to be defined), meaning that, roughly speaking, the squared increments of such pro-
cesses behave like linear increments of time. For the case of the Brownian motion,
the quadratic variation on an interval [tj, tj+1) is exactly tj+1 − tj

We will exploit these observations in the following section, where we will adapt the
ideas seen in this section to construct the integral with respect to continuous square
integrable martingales.
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2.3 Integrals with respect to continuous square in-

tegrable martingales

One might think that the Brownian motion is a special stochastic process in the sense
that there are not many processes with the property that its sample paths are not of
bounded variation, but nothing could be further from reality!

Theorem 2.3.1. If M = {Mt : t ≥ 0} is a continuous martingale of bounded varia-
tion, then

P {ω ∈ Ω: Mt(ω) =M0(ω) for all t ≥ 0} = 1.

One can find a proof of this result in page 240, Theorem. 3.1.1 of [8].
Thus, in general, any non-constant continuous martingale will have unbounded

variation, meaning that, as in the case of the Brownian motion, integrals of the form∫ T

0
ftdMt cannot be defined path-wise. But we can make use of similar arguments to

the ones seen in the previous section to define such objects. Before dealing with such
task, we first talk about a process of utmost importance related to continuous square
integrable martingales.

2.3.1 Quadratic variation

As already mentioned in a couple times, non-constant continuous martingales do not
have bounded variation. Recall that the total variation of a function f : [a, b] ⊂ R →
R on [a, b], V b

a (f), is defined as

V b
a (f) := sup

P∈P

nP−1∑
j=0

|f(xj+1)− f(xj)|.

Where P is the set of partitions of [a, b] of the form P = {a = x0 < ... < xnP
= b}

with nP ∈ N. Recall as well that a function of bounded variation is differentiable
almost everywhere and that any differentiable function is of bounded variation.

To begin with, let us consider the case of a standard Brownian motion B =
{Bt : t ≥ 0}. As mentioned before, its sample paths are not of bounded variation.
Roughly speaking, and to gain some intuition, this can be though as a consequence
of the fact that, since E [(Bt+∆t −Bt)

2] = ∆t, for ∆t small enough (and in quadratic
mean),

Bt+∆t −Bt

∆t
≈

√
∆t

∆t
=

1√
∆t

which diverges as ∆t approaches 0 and hence, it cannot have bounded variation.
However, the fact that E [(Bt+∆t −Bt)

2] = ∆t (and using the independence of the
increments of the Brownian motion) lead to the following result:
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Lemma 2.3.1. Let B = {Bt : t ≥ 0} be a standard Brownian motion and let 0 ≤ a <
b <∞, then

L2(Ω)− lim
|P |→0

n−1∑
j=0

(
Btj+1

−Btj

)2
= b− a (2.3.1)

where P ranges over all partitions of [a, b] of the form {a = t0 < ... < tn = b} and
where |P | = sup0≤j≤n−1 |tj+1 − tj| is the mesh of the partition P .

In particular, this lemma implies that the limit in (2.3.1) holds in probability.
One can easily check that the process B2 = {B2

t : t ≥ 0} is not a martingale,
however, the process {B2

t − t : t ≥ 0} is so. The point in making this observation
is that, in order to transform B2 into a martingale, we have to subtract from it its
quadratic variation (starting at 0).

These ideas can be applied to any stochastic process, however, only a limited class
of stochastic processes (which contains the continuous square integrable martingales)
will turn out to have similar properties to the ones presented by the Brownian motion.

Theorem 2.3.2. Let M = {Mt : t ≥ 0} be a continuous square integrable martingale
with respect to a filtration {Ft}t satisfying the usual conditions. Then there exists a
unique non-decreasing, continuous adapted process ⟨M⟩ = {⟨Mt⟩ : t ≥ 0} such that:

(i) ⟨M⟩0 = 0 a.s.; and

(ii) t 7→M2
t − ⟨M⟩t is a martingale.

Moreover,

⟨M⟩t = lim
|P |→0

n−1∑
j=0

(
Mtj+1

−Mtj

)2
(2.3.2)

where P ranges over all partitions of [0, t] and the convergence holds in probability.

For a proof of this result, see Theorem 3.2.1, page 242, of [8].
The process ⟨M⟩ in the previous theorem is the quadratic variation of M and it

uniquely determines the martingale M among all the continuous square integrable
martingales.

One then can define the covariation of two continuous square integrable martin-
gales M and N by polarization:

⟨M,N⟩ := 1

4
(⟨M +N⟩ − ⟨M −N⟩) .

It can be defined, as well, as the following limit in probability:

⟨M,N⟩t = lim
|P |→0

n−1∑
j=0

(
Mtj+1

−Mtj

) (
Ntj+1

−Ntj

)
. (2.3.3)
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The covariation process is adapted, continuous and starts at zero, but it is not neces-
sarily non-decreasing. It also satisfies that {MtNt − ⟨M,N⟩t : t ≥ 0} is a martingale.
In particular, one has that

E [MtNt − ⟨M,N⟩t] = E [M0N0 − ⟨M,N⟩0] = E [M0N0] (2.3.4)

It is easy to check that the covariation is linear on each of its arguments (⟨·, ·⟩ is
bilinear), symmetric and that ⟨M,M⟩ = ⟨M⟩.

In general, the quadratic variation or the covariation will be stochastic processes.
The fact that the quadratic variation of the Brownian motion is non-random is a
special feature of this process.

We point out that these results can be extended to the case of continuous local
martingales and continuous semimartingales (see Definitions 2.4.1 and 2.4.2) and
to càdlàg local martingales and semimartingales. However, the process {MtNt −
⟨M,N⟩t : t ≥ 0} is no longer a martingale, but a local martingale or a semimartingale.

As a final remark, the notation used here to denote the quadratic variation co-
incides with the one usually used to denote the compensator in the Doob-Meyer
decomposition. In general, both quantities are not equal, but given that the sample
paths of the processes considered here are continuous they do agree almost surely,
justifying the use of such notation.

With this we can start constructing the desired stochastic integral.

2.3.2 Construction of the stochastic integral

The idea now is to replicate the construction seen in Sec.2.2 (for this part, we have
mainly followed Chapter 3 of [7]). To do so, we first start by observing that the third
condition in Definition 2.2.1 can be rewritten as follows:

E
[∫ T

0

X2(t, ω)d⟨B⟩t
]
<∞.

A subtle change has been introduced, we have used that dt = d⟨B⟩t. This change,
even though it might seem simple, allows us to naturally introduce the class of in-
tegrable functions with respect to a given continuous square integrable martingale
M = {Mt : t ≥ 0}. Unless stated otherwise, we shall assume as well that M0 = 0.

Definition 2.3.1. Let νM = νM [0, T ] be the class of functions X : [0, T ] × Ω → R,
(t, ω) 7→ X(t, ω) such that

(i) (t, ω) 7→ X(t, ω) is B × F-measurable (where B is the Borel σ-field on [0, T ]).

(ii) For each t ∈ [0, T ], ω 7→ X(t, ω) is Ft-measurable (the process X is {Ft}t-
adapted).
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(iii) E
[∫ T

0
X2(t, ω)d⟨M⟩t

]
< ∞, where X2(t, ω) = X(t, ω) · X(t, ω) and E is the

expected value with respect to the probability measure P.

One may argue that, again, we need to define the integral
∫ T

0
X2(t, ω)d⟨M⟩t since

the quantity ⟨M⟩t is, in general, random. However, in this case there is no need
to develop a new theory of integration. Indeed, recall that, even though ⟨M⟩t is
random, for almost all ω ∈ Ω, the function t 7→ ⟨M⟩t(ω) is non-decreasing and hence,

of bounded variation, meaning that the integral
∫ T

0
X2(t, ω)d⟨M⟩t can be defined

path-wise as a Lebesgue-Stieltjes integral.
The space νM can be identified with the space of functions in

L2 ([0, T ]× Ω,B × F , dµM) which are adapted to the filtration {Ft}t. Here µM is the
measure defined by

µM(A) := E
[∫ T

0

IA(t, ω)d⟨M⟩t(ω)
]
, A ∈ B × F .

In νM (and in L2 ([0, T ]× Ω,B × F , dµM)), we consider the norm

||X||2M = E
[∫ T

0

X2(t, ω)d⟨M⟩t
]
.

Again, we identify functions X, Y ∈ νM such that ||X − Y ||M = 0. With all this in
mind, one can show that νM is a real Hilbert space with respect to the inner product

(X, Y )M := E
[∫ T

0
X(t, ω)Y (t, ω)d⟨M⟩t

]
.

Theorem 2.3.3. The space νM with the norm || · ||M is closed.

Proof. Suppose we have a sequence of processes {X(n)}n∈N ⊂ νM that converges, in
norm || · ||M to some process X, We have to show that X ∈ νM .

Given that L2 ([0, T ]× Ω,B × F , dµM) is a Hilbert space and that is a subspace
of the latter, we already have that X is B×F -measurable and that ||X||M <∞. The
only thing left to show is that it is adapted to the filtration {Ft}t (or that it has a
representative which is so).

Up to a subsequence, we have that

µM

{
(t, ω) ∈ [0, T ]× Ω: lim

n→∞
X

(n)
t (ω) ̸= Xt(ω)

}
= 0. (2.3.5)

Now consider the process Y defined by

Yt(ω) =

{
limn→∞X

(n)
t (ω), (t, ω) ∈ A

0, (t, ω) /∈ A
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where
A :=

{
(t, ω) ∈ [0, T ]× Ω: lim

n→∞
X

(n)
t (ω) exists in R

}
(recall that X(n) might be denoting a subsequence of our original sequence). Then,
by the µM -a.e. uniqueness of the limit and (2.3.5), Y is a representative of X in
L2 ([0, T ]× Ω,B × F , dµM) (that is, ||X −Y ||M = 0) such that, for each t ∈ [0, T ], Yt
is the limit of Ft-measurable random variables and hence, Ft-measurable itself.

We shall now see that any process f ∈ νM can be approximated in norm || · ||M
by elementary processes (the same definition as before for the subset E works).

Theorem 2.3.4. Let {At : t ≥ 0} be a continuous, non-decreasing process starting
at 0 adapted to the filtration {Ft}t (to which the martingale M is adapted). If X =
{Xt, : t ≥ 0} is a progressively measurable process (with respect to the same filtration)
satisfying

E
[∫ T

0

X2
t dAt

]
<∞,

then there exists a sequence {X(n)
t }n∈N of elementary processes such that

lim
n→∞

E
[∫ T

0

(
Xt −X

(n)
t

)2
dAt

]
= 0.

Proof. We start by assuming that X is bounded. That is, there is some constant
0 < C <∞ such that |Xt(ω)| ≤ C for each t ≥ 0 and ω ∈ Ω.

Now, since t 7→ At(ω) + t is strictly increasing in t ≥ 0, there is a continuous,
strictly increasing inverse function Ts(ω) defined for s ≥ 0 such that

ATs(ω)(ω) + Ts(ω) = s, s ≥ 0.

In particular, this means that Ts ≤ s for any s ≥ 0 and {Ts ≤ t} = {At+ t ≥ s} ∈ Ft.
Thus, for each s ≥ 0, Ts is an {Ft}t bounded (by s) stopping time. Taking s as our
new time variable, we define a new filtration Gs = FTs and introduce the time changed
process Ys(ω) = XTs(ω)(ω), which is adapted to {Gs}s (see, for instance, Proposition
1.2.18, page 9 of [7] for a proof). Now, the approximation result mentioned in Sec.2.2
tells us that, for any ε > 0 and any R > 0, there is an elementary process Y ε =
{Y ε

s : s ≥ 0} such that

E
[∫ R

0

(Ys − Y ε
s )

2 ds

]
<
ε

2
.
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Using that X is bounded, we have that

E
[∫ ∞

0

Y 2
s ds

]
= E

[∫ ∞

0

I{Ts≤T}(s)X
2
Ts
ds

]
= E

[∫ AT+T

0

X2
Ts
ds

]
≤ C2(E[AT ] + T ) <∞.

Hence, by taking R large enough and setting Y ε
s = 0 for s ≥ R we can obtain

E
[∫ ∞

0

(Ys − Y ε
s )

2 ds

]
< ε.

The elementary process Y ε can be then written as

Y ε
s (ω) =

n−1∑
j=0

ej(ω)I[sj ,sj+1)(s)

where ej is Gsj -measurable and bounded (say by some positive constant K) and
0 = s0 < ... < sn = R. From this process we can define a process in the original time
variable as follows:

Xε
t (ω) := Y ε

t+At
=

n−1∑
j=0

ej(ω)I[sj ,sj+1)(t+ At) =
n−1∑
j=0

ej(ω)I[Tsj ,Tsj+1 )
(t).

Where in the last step we have used that

{t+ At ≥ sj} = {Tsj ≤ t},
{t+ At < sj+1} = {t+ At ≥ sj+1}c = {Tsj+1

≤ t}c = {Tsj+1
> t}.

Which implies
{t : sj ≤ At + t < sj+1} = {t : Tsj ≤ t < Tsj+1

}.

The process Xε = {Xε
t : t ≥ 0} is B × F -measurable and {Ft}t-adapted by Lemma

1.2.15, page 8, in [7]. However, it is not clear that Xε is elementary. We will see,
however, that it can be approximated by elementary processes. Before doing so, note
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that

ε > E
[∫ ∞

0

|Ys − Y ε
s |

2 ds

]
= E

[∫ ∞

0

∣∣∣XTs − Y ε
ATs+Ts

∣∣∣2 d(ATs + Ts)

]
= E

[∫ ∞

0

∣∣Xt − Y ε
At+t

∣∣2 d(At + t)

]
= E

[∫ ∞

0

|Xt −Xε
t |

2 d(At + t)

]
≥ E

[∫ T

0

|Xt −Xε
t |

2 dAt

]
.

Where we have implicitly defined Xt to be zero whenever t > T .
To prove that one can approximate Xε by elementary processes, we prove that

each term ηt := ej(ω)I[Tsj ,Tsj+1 )
(t) can be approximated in such a way.

Now recall that Tsj ≤ Tsj+1
≤ sj+1 for each j ∈ {0, 1, ..., n − 1} and consider the

processes

T
(m)
l (ω) :=

2m+1∑
k=0

k + 1

2m
I[k2−m,(k+1)2−m)(Tl(ω)), l ∈ {sj, sj+1} (2.3.6)

and

η
(m)
t (ω) := ej(ω)I[

T
(m)
sj

(ω),T
(m)
sj+1

(ω)
)(t).

Then we have that T
(m)
l ↘ Tl a.s. for l ∈ {sj, sj+1} and, since {Tsj ≤ k2−m <

Tsj+1
} ∈ Fk2−m and ej restricted to {Tsj ≤ k2−m < Tsj+1

} is Fk2−m-measurable (by

Lemma 1.2.15 of [7] again), η(m) is elementary. Furthermore,

E
[∫ T

0

(
ηt − η

(m)
t

)2
dAt

]
≤ E

[∫ ∞

0

(
ηt − η

(m)
t

)2
dAt

]
= E

[∫ ∞

0

e2j

(
I[Tsj ,Tsj+1 )

(t)− I[
T

(m)
sj

,T
(m)
sj+1

)(t))2

dAt

]

≤ K2E
[∫ ∞

0

(
I[Tsj ,Tsj+1 )

(t) + I[
T

(m)
sj

,T
(m)
sj+1

)(t)− 2I[Tsj ,Tsj+1 )
(t)I[

T
(m)
sj

,T
(m)
sj+1

)(t)) dAt

]
= K2E

[
ATsj+1

− ATsj
+ AT

s
(m)
j+1

− A
T

(m)
sj+1

− 2
(
ATsj+1

∧ A
T

(m)
sj+1

− ATsj
∨ A

T
(m)
sj

)]
= K2

(
E
[
A

T
(m)
sj+1

− ATsj+1

]
+ E

[
A

T
(m)
sj

− ATsj

])
m→∞−−−→ 0.
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Where we have used that T
(m)
l ≥ Tl for each m ∈ N and l ∈ {sj, sj+1}, that the

process A is increasing and the monotone convergence theorem.
Finally, if X is not necessarily bounded, we define

X
(n)
t (ω) := Xt(ω)I{|Xt(ω)|≤n}

and thereby obtain a sequence of bounded processes. The dominated convergence
theorem implies

||X(n) −X||2M = E
[∫ T

0

X2
t I{|Xt|>n}d⟨M⟩t

]
n→∞−−−→ 0

because X2
t I{|Xt|>n} ≤ X2

t for each n ∈ N and E
[∫ T

0
X2

t d⟨M⟩t
]
< ∞, which implies

that X2
t is finite for µM -almost all t, ω and hence, that X2

t I{|Xt|>n} → 0 µM -a.e. t, ω
as n approaches infinity.

We shall remark that the progressive measurability condition is not a restriction.
Indeed, if X ∈ νM , then X is B × F measurable and {Ft}t-adapted, so it has a
progressively measurable modification.

By taking At = ⟨M⟩t, we have that the set of elementary processes E is dens in
νM with respect to the norm || · ||M .

Following the same recipe as in Sec. 2.2, we now define the stochastic integral of
an elementary process with respect to M and prove the isometry formula for such
processes, among some other properties.

Definition 2.3.2. The stochastic integral of an elementary process

ϕt(ω) =
n−1∑
j=0

ej(ω)I[tj ,tj+1)(t) ∈ E

with 0 = t0 < ... < tn = T is defined as

IT (ϕ)(ω) =

(∫ T

0

ϕtdMt

)
(ω) :=

n−1∑
j=0

ej(ω)
(
Mtj+1

(ω)−Mtj(ω)
)
.

For 0 ≤ s ≤ t ≤ T , we define

It(ϕ) =

∫ t

0

ϕrdMr :=

∫ T

0

I[0,t)(r)ϕrdMr

and ∫ t

s

ϕrdMr := It(ϕ)− Is(ϕ).
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Theorem 2.3.5. Let X, Y ∈ E be two elementary processes on [0, T ], α, β ∈ R be
any two real numbers and 0 ≤ s < t ≤ T . Then the following properties hold P-a.s.:

(i) I0(X) = 0,

(ii) It(αX + βY ) = αIt(X) + βIt(Y ),

(iii) E
[
It(X)

∣∣Fs

]
= Is(X),

(iv) E
[
(IT (X))2

]
= ||X||2M ,

(v) ⟨I(X)⟩t =
∫ t

0
X2

r d⟨M⟩r.

Proof. The first two parts can be proved as in the case of the Brownian motion, so
we will not treat them here. For the martingale property, part (iii), one only needs
to use the fact that M is a martingale and distinguish cases for the possible values
of s and t (if they lie on the same interval of the partition of [0, T ] considered in the
definition of X, if they do not, etc.) and use the tower property for the conditional
expectation and the fact that M is a martingale.

For the isometry property, first let us write X as

Xt =
n−1∑
j=0

ejI[tj ,tj+1)(t)

for some 0 = t0 < ... < tn = T and ej Ftj -measurable and set ∆Mj := Mtj+1
−Mtj .

Now observe that, since M is a martingale,

E
[
(∆Mj)

2
∣∣Ftj

]
= E

[
M2

tj+1
+M2

tj
− 2Mtj+1

Mtj

∣∣Ftj

]
= E

[
M2

tj+1

∣∣Ftj

]
+ E

[
M2

tj

∣∣Ftj

]
− 2E

[
Mtj+1

Mtj

∣∣Ftj

]
= E

[
M2

tj+1

∣∣Ftj

]
+M2

tj
− 2MtjE

[
Mtj+1

∣∣Ftj

]
= E

[
M2

tj+1

∣∣Ftj

]
+M2

tj
− 2M2

tj

= E
[
M2

tj+1
−M2

tj

∣∣Ftj

]
. (2.3.7)

Thus, for any j ∈ {0, ..., n − 1} and using that {M2
t − ⟨M⟩t : t ≥ 0} is a martingale
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and that ej is Ftj -measurable as well,

E
[
e2j (∆Mj)

2] = E
[
e2jE

[
(∆Mj)

2
∣∣]]

= E
[
e2jE

[
M2

tj+1
−M2

tj

∣∣Ftj

]]
= E

[
e2j

(
E
[
M2

tj+1
− ⟨M⟩tj+1

−
(
M2

tj
− ⟨M⟩tj

) ∣∣Ftj

]
+ E

[
⟨M⟩tj+1

− ⟨M⟩tj
∣∣Ftj

] )]
= E

[
e2jE

[
⟨M⟩tj+1

− ⟨M⟩tj
∣∣Ftj

]]
= E

[
E
[
e2j
(
⟨M⟩tj+1

− ⟨M⟩tj
) ∣∣Ftj

]]
= E

[
e2j
(
⟨M⟩tj+1

− ⟨M⟩tj
)]
.

On the other hand, for each 0 ≤ i < j < n, we have, since ei, ej and ∆Mi are
Ftj -measurable and M is a martingale,

E [eiej∆Mi∆Mj] = E
[
eiej∆MiE

[
∆Mj

∣∣Ftj

]]
= 0.

All in all,

E

[(∫ T

0

XrdMr

)2
]
= E

(n−1∑
j=0

ej∆Mj

)2


=
n−1∑
j=0

E
[
e2j (∆Mj)

2]+ 2
∑

0≤i<j<n

E [eiej∆Mi∆Mj]

=
n−1∑
j=0

E
[
e2j
(
⟨M⟩tj+1

− ⟨M⟩tj
)]

= E

[
n−1∑
j=0

e2j

∫ T

0

I2[tj ,tj+1)
(t)d⟨M⟩t

]

= E

[∫ T

0

n−1∑
j=0

e2jI2[tj ,tj+1)
(t)d⟨M⟩t

]

= E

∫ T

0

(
n−1∑
j=0

ejI[tj ,tj+1)(t)

)2

d⟨M⟩t


= E

[∫ T

0

X2
t d⟨M⟩t

]
.
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This establishes the isometry property for elementary processes.
For the quadratic variation, we start by noticing that the process

I(X) = {It(X) : 0 ≤ t ≤ T} is a martingale (by (iii) and the fact that the process
is adapted, which can be seen from the definition) with P-a.s. continuous sample
paths (because of the continuity of M) and, by the isometry formula, it is square
integrable, so the existence of its quadratic variation ⟨I(X)⟩ = {⟨I(X)⟩t : 0 ≤ t ≤ T}
is guaranteed.

Now let us assume that, for instance, 0 ≤ s < t ≤ T are such that tm−1 ≤ s < tm
and tk−1 ≤ t < tk with 0 ≤ m ≤ k ≤ n and set

∑k−2
j=m ej∆Mj to be 0 whenever

m > k − 2.
Then we have that, using similar arguments to the ones seen when proving the isom-
etry formula and writing ∆⟨M⟩j = ⟨M⟩tj+1

− ⟨M⟩tj ,

E
[
(It(X)− Is(X))2

∣∣Fs

]
= E

(em−1 (Mtm −Ms) +
k−2∑
j=m

ej∆Mj + ek−1

(
Mt −Mtk−1

))2 ∣∣∣∣∣Fs


= E

[
e2m−1 (Mtm −Ms)

2 +
k−2∑
j=m

e2j∆M
2
j + e2k−1

(
Mt −Mtk−1

)2 ∣∣∣∣Fs

]

= E

[
e2m−1 (⟨M⟩tm − ⟨M⟩s) +

k−2∑
j=m

e2j∆⟨M⟩j + e2k−1

(
⟨M⟩t − ⟨M⟩tk−1

)2 ∣∣∣∣Fs

]

= E
[∫ t

s

X2
r d⟨M⟩r

∣∣∣Fs

]
.

Thus, we have shown that

E
[
(It(X)− Is(X))2

∣∣Fs

]
= E

[∫ t

s

X2
r d⟨M⟩r

∣∣∣Fs

]
(2.3.8)

for any 0 ≤ s ≤ t ≤ T . Now, for 0 ≤ s ≤ t ≤ T , since I(X) is a martingale, we
have that, by the same computations to the ones performed in (2.3.7) and using that∫ r

0
X2

ud⟨M⟩u is Fr-measurable for any 0 ≤ r ≤ T (one can see this by just using the
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definition of X),

E
[
I2t (X)

∣∣Fs

]
− I2s (X) = E

[
I2t (X)− I2s (X)

∣∣Fs

]
= E

[
(It(X)− Is(X))2

∣∣Fs

]
= E

[∫ t

s

X2
r d⟨M⟩r

∣∣∣Fs

]
= E

[∫ t

0

X2
r d⟨M⟩r −

∫ s

0

X2
r d⟨M⟩r

∣∣∣Fs

]
= E

[∫ t

0

X2
r d⟨M⟩r

∣∣∣Fs

]
−
∫ s

0

X2
r d⟨M⟩r.

Which can be rearranged to obtain that

E
[
I2t (X)−

∫ t

0

X2
r d⟨M⟩r

∣∣∣Fs

]
= I2s (X)−

∫ s

0

X2
r d⟨M⟩r.

Hence, the process {∫ t

0

X2
r d⟨M⟩r : 0 ≤ t ≤ T

}
is a process starting at 0, non-decreasing, adapted and continuous such that{

I2t (X)−
∫ t

0

X2
r d⟨M⟩r : 0 ≤ t ≤ T

}
is a martingale. By uniqueness of the quadratic variation, (v) holds.

As in the case of the Brownian motion, the isometry property tells us that if
{X(n)}n ⊂ E is convergent sequence with respect to the norm || · ||M , then it is a
Cauchy sequence of elementary processes, which, in turn implies that the sequence{
I
(
X(n)

)}
n
is a Cauchy sequence in L2(Ω). Since the latter is a Hilbert space as

well, we conclude that there is an L2(Ω)-limit for the sequence
{
I
(
X(n)

)}
n
, allowing

us to make the following definition.

Definition 2.3.3. Let X ∈ νM and {X(n)} ⊂ E be a sequence of elementary processes
such that ||X −X(n)||M → 0 as n approaches infinity, then the stochastic integral of
X with respect to M is defined as

IT (X) =

∫ T

0

XtdMt := L2(Ω)- lim
n→∞

∫ T

0

X
(n)
t dMt.
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For 0 ≤ s ≤ t ≤ T , we define

It(X) =

∫ t

0

XrdMr :=

∫ T

0

I[0,t)(r)XrdMr

and ∫ t

s

XrdMr := It(X)− Is(X).

One can easily show that if X is in νM , then so is XI[0,t)(·), so the definition of
It(X) for 0 ≤ t ≤ T makes sense, and that

It(X) =

∫ t

0

XrdMr = L2(Ω)- lim
n→∞

∫ T

0

I[0,t)(r)X(n)
r dMr.

One should observe that the stochastic integral process {It(X) : 0 ≤ t ≤ T}, being an
L2(Ω)-limit of continuous processes, needs not to be continuous as well. However, it
turns out that one can find a version whose sample paths are continuous. From now
on, we shall consider such version.

Finally, and as it is usual, one shows that the definition of the stochastic integral
does not depend on the approximating sequence and that many properties of the
stochastic integral of elementary processes are also satisfied by general elements of
X.

Theorem 2.3.6. Let X ∈ νM and {X(n)}, {Y (n)} ⊂ E be two approximating sequences
for X of elementary processes, that is, such that ||X − X(n)||M → 0 and ||X −
Y (n)||M → 0 as n approaches infinity, then

L2(Ω)-

∫ T

0

X
(n)
t dMt = L2(Ω)-

∫ T

0

Y
(n)
t dMt, a.s.

Proof. We have that∣∣∣∣IT (X(n)
)
− IT

(
Y (n)

)∣∣∣∣
L2(Ω)

=
∣∣∣∣IT (X(n) − Y (n)

)∣∣∣∣
L2(Ω)

=
∣∣∣∣X(n) − Y (n)

∣∣∣∣
M

≤
∣∣∣∣X(n) −X

∣∣∣∣
M

+
∣∣∣∣X − Y (n)

∣∣∣∣
M

n→∞−−−→ 0,

where the isometry formula has been used. By the a.s. uniqueness of the L2(Ω)-
limit, we conclude that the sequences

{
IT
(
X(n)

)}
n
and

{
IT
(
Y (n)

)}
n
have the same

L2(ω)-limit a.s.

Theorem 2.3.7. Properties (i)-(v) from Theorem 2.3.5 hold for any X ∈ νM .
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Proof. For properties (i), (ii), one only needs to use the isometry formula for simple
processes to obtain the desired results. The proofs are the same as in the case of the
Brownian motion, so we will not repeat them here.

For property (iii), since the stochastic integral is defined as an L2(Ω)-limit of
martingales (by Theorem 2.3.5), it is, in particular, an L1(Ω)-limit of martingales
and hence, a martingale itself.

We now prove that Eq.(2.3.8) holds for any X ∈ νM . To do so, let A ∈ Fs, then
we have that

E
[
IA (It(X)− Is(X))2

]
= lim

n→∞
E
[
IA
(
It
(
X(n)

)
− Is

(
X(n)

))2]
= lim

n→∞
E
[
IA
∫ t

s

(
X(n)

r

)2
d⟨M⟩r

]
= E

[
IA
∫ t

s

X2
r d⟨M⟩r

]
.

The first equality follows from the fact that It(X) and Is(X) are the L2(Ω)-limits of
the corresponding sequences, whilst the last one follows from

E
[∫ t

s

∣∣X(n)
r −Xr

∣∣2 d⟨M⟩r
]
≤
∣∣∣∣X(n) −X

∣∣∣∣2
M

n→∞−−−→ 0.

Meaning that I[s,t)(·)X(n)
· converges to I[s,t)(·)X· in norm || · ||M and hence, that their

respective norms converge as desired.
Since this holds for any A ∈ Fs, (2.3.8) is established as well for X ∈ νM .

Setting s = 0 and taking expectations in both sides of (2.3.8) proves that

E
[
I2t (X)

]
=

∫ t

0

X2
r d⟨M⟩r

for any 0 ≤ t ≤ T . In particular, for t = T , we obtain (iv). The exact same
argument for (v) in Theorem 2.3.5 would work to prove this property for X ∈ νM if
it were not for the fact that now there is no guarantee that the integral

∫ s

0
X2

r d⟨M⟩r
is Fs-measurable. However, since X is B × F -measurable and adapted, it has a
progressively measurable modification, which gives a representative X ′ in νM which
is progressively measurable (that is, ||X − X ′||M = 0). For such representative, the
integral

∫ s

0
(X ′

r)
2 d⟨M⟩r is indeed Fs-measurable.

2.3.3 Further results

In this section we present some results concerning the computation of stochastic
integrals and their variations and covariations. In most cases, we will just announce
them without proof, as the main purpose of the remaining section is to highlight the
basic results focusing on the ideas.
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The product rule

Theorem 2.3.8. Let M = {Mt : 0 ≤ t ≤ T} and N = {Nt : 0 ≤ t ≤ T} be two
continuous square integrable martingales, then, for each 0 ≤ t ≤ T , the following
holds P-a.s.

MtNt =M0N0 +

∫ t

0

NsdMs −
∫ t

0

MsdNs + ⟨M,N⟩t

or, in differential form,

d (MtNt) = NtdMt +MtdNt + d⟨M,N⟩t.

Proof. We prove the result forM = N . The general result will follow by polarization;
that is,

MtNt =
1

4

[
(Mt +Nt)

2 − (Mt −Nt)
2
]
.

Now, fix t ∈ [0, T ] and consider a family of partitions of the interval [0, t] of the form
{0 = t0 < ... < tn = t} so that its mesh converges to zero. Then we have that, by
setting ∆Mj =Mtj+1

−Mtj for j ∈ {0, 1, ..., n− 1},

M2
t −M2

0 =
n−1∑
j=0

(
M2

tj+1
−M2

tj

)
= 2

n−1∑
j=0

Mtj∆Mj +
n−1∑
j=0

(∆Mj)
2 .

Now, since M is a continuous square integrable martingale, we have that M ∈ νM .
Moreover, because of the continuity of M (which implies that it is bounded in [0, t])
and the fact that it is adapted, the sequence of processes ϕ(n) defined by

ϕ(n)
s =

n−1∑
j=0

MtjI[tj ,tj+1)(s)

constitutes a sequence of elementary processes that approximate in || · ||M norm the
process I[0,t)(·)M· (using the continuity and boundedness, which allows us to use the
dominated convergence theorem). Moreover, we also have that∫ t

0

ϕ(n)
s dMs =

n−1∑
j=0

Mtj∆Mj

so we can conclude that
n−1∑
j=0

Mtj∆Mj −→
∫ t

0

MsdMs

as the mesh goes to zero and where the convergence is in L2(Ω). On the other hand,
Theorem 2.3.2 tells us that

∑n−1
j=0 (∆Mj)

2 converges, in probability, to the quadratic
variation ⟨M⟩t.
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Observe that the differential form of this result resembles a bit the usual product
rule, however, due to the fact that the sample paths have non-vanishing quadratic
variation, higher order terms must be taken into account. In this case it translates
into taking into account the covariation of the processes. This result can be seen as
a particular case of the much more general result known as the Itô formula, which
can be seen as a generalization of the chain rule to functions of unbounded variation
(and finite quadratic variation).

The Itô formula

Theorem 2.3.9 (Itô formula). Let f : [0, T ] × Rp → R, (t, x) 7→ f(t, x), be a C1,2

function (C1 with respect to the first variable and C2 with respect to the second one)

and M = {Mt = (M
(1)
t , ...,M

(p)
t ) : 0 ≤ t ≤ T} be a vector of continuous square

integrable martingales, then the following holds P-a.s.

f(t,Mt) = f(0,M0) +

∫ t

0

∂f

∂t
(s,Ms)ds+

p∑
i=1

∫ t

0

∂f

∂xi
f(s,Ms)dM

(i)
s

+
1

2

∑
1≤i,j≤p

∫ t

0

∂2f

∂xi∂xj
(s,Ms)d⟨M (i),M (j)⟩s (2.3.9)

or, in differential form

df(t,Mt) =
∂f

∂t
(t,Mt)dt+

p∑
i=1

∂f

∂xi
f(t,Mt)dM

(i)
t

+
1

2

∑
1≤i,j≤p

∂2f

∂xi∂xj
(t,Mt)d⟨M (i),M (j)⟩t. (2.3.10)

Sketch of the proof for the case p = 1. As in the case of the Brownian motion, fix
t ∈ [0, T ] and consider a family of partitions of the form Π = {0 = t0 < ... < tn = t}
so that its mesh |Π| tends to zero. We have that, by Taylor’s formula

f(t,Mt)− f(0,M0) =
n−1∑
k=0

f(tk+1,Mtk+1
)− f(tk,Mtk)

=
n−1∑
k=0

∂f

∂t
(ξk,Mtk)∆tk +

n−1∑
k=0

∂f

∂x
(tk,Mtk)∆Mk +

1

2

n−1∑
k=0

∂2f

∂x2
(tk, ηk) (∆Mk)

2 .

where, ∆tk = tk+1 − tk, ∆Mk =Mtk+1
−Mtk and ξk ∈ (tk, tk+1) and

ηk ∈
(
Mtk ∧Mtk+1

,Mtk ∨Mtk+1

)
are the intermediate values given by Taylor’s theo-

rem. Given that ∂tf andM are continuous, the map s 7→ ∂tf(s,Xs) is also continuous,
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meaning that∣∣∣∣∣
n−1∑
k=0

∂f

∂t
(ξk,Mtk)∆tk −

n−1∑
k=0

∂f

∂t
(tk,Mtk)∆tk

∣∣∣∣∣ −→ 0, P-a.s.

as the mesh of the partition goes to zero. Since

n−1∑
k=0

∂f

∂t
∆tk

|Π|→0−−−→
∫ t

0

∂f

∂t
(s,Ms)ds,

we conclude that

n−1∑
k=0

∂f

∂t
(ξk,Mtk)∆tk

|Π|→0−−−→
∫ t

0

∂f

∂t
(s,Ms)ds

as well.
Now, given that ∂xf is continuous, we can use the same arguments seen in the

previous theorem to see that

n−1∑
k=0

∂f

∂x
(tk,Mk)∆Mk −→

∫ t

0

∂f

∂x
(s,Ms)dMs

as the mesh of the partition goes to zero and where the limit is in L2(Ω).
Using the continuity of ∂2xf , we see that∣∣∣∣∣

n−1∑
k=0

∂2f

∂x2
(tk, ηk) (∆Mk)

2 −
n−1∑
k=0

∂2f

∂x2
(tk,Mk) (∆Mk)

2

∣∣∣∣∣ −→ 0, P-a.s.

as the mesh goes to zero. The then goal is to show that∣∣∣∣∣
n−1∑
k=0

∂2f

∂x2
(tk,Mk)∆⟨M⟩k −

n−1∑
k=0

∂2f

∂x2
(tk,Mk) (∆Mk)

2

∣∣∣∣∣ |Π|→0−−−→ 0 (2.3.11)

in some suitable sense. With this and the fact that

n−1∑
k=0

∂2f

∂x2
(tk,Mk)∆⟨M⟩k

|Π|→0−−−→
∫ t

0

∂2f

∂x2
(s,Ms)d⟨M⟩s

one then concludes the proof. The proof of (2.3.11) is based on a couple of technical
lemmas regarding the bounds of the quadratic variation and the variation of order
four over finite partitions that can be found in [7], Lemmas 1.5.9 and 1.5.10, page
33.
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The covariation formula

In the following chapter, in some occasions we will come across situations where we
will have to compute covariations of stochastic with respect to different continuous
square integrable martingales. This last result will prove to be useful in such situa-
tions.

Moreover, as seen in Proposition 3.2.19, page 144, of [7], this results can be used
to characterize the stochastic integral in terms of its quadratic variation, which is a
Lebesgue-Stieltjes integral, a much more familiar object.

Theorem 2.3.10. Let M = {Mt : 0 ≤ t ≤ T} and N = {Nt : 0 ≤ t ≤ T} be
two continuous square integrable martingales, X = {Xt : 0 ≤ t ≤ T} ∈ νM , Y =
{Yt : 0 ≤ t ≤ T} ∈ νN be two integrable processes (with respect to the corresponding
martingales) and

IMt (X) :=

∫ t

0

XsdMs, INt (Y ) :=

∫ t

0

YsdNs

be the corresponding stochastic integrals. Then the following equality holds P-a.s.:

〈
IM(X), IN(Y )

〉
t
=

∫ t

0

XsYsd⟨M,N⟩s.

Computations like the ones done in Theorem 2.3.5 or Theorem 2.3.7 show that
the result does indeed hold for elementary processes X and Y . However, in this case
we need to work a bit more to obtain the results for general processes X and Y .

The proof of this result is a consequence of a couple of previously established
results: Proposition 3.2.14 and Lemmas 3.2.15 and 3.2.16, pages 142-144 in [7].

Lemma 2.3.2. Let M , N and X be as in Theorem 2.3.10, then

〈
IM (X) , N

〉
t
=

∫ t

0

Xsd⟨M,N⟩s, P-a.s.

for each t ∈ [0, T ].

Proof of Theorem 2.3.10. Recall that if X ∈ νM , then IM(X) is a continuous square
integrable martingale and similarly for Y ∈ νN . Hence, we have that, by the previous
lemma, d⟨IM(X), IN(Y )⟩t = Xsd⟨M, IN(Y )⟩t and d⟨M, IN(Y )⟩s = Ysd⟨M,N⟩s, so〈

IM(X), IN(Y )
〉
t
=

∫ t

0

Xsd
〈
M, IN(Y )

〉
t
=

∫ t

0

XsYsd⟨M,N⟩s.

Where the equalities hold P-a.s.
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2.3.4 An approximation result

As discussed in the introduction and in Section 2.1, we are interested in giving con-
ditions under which the considered random noises converge (in law, weakly) to the
desired noise. In this chapter, the noises considered are represented as stochastic
integrals of some processes f = {ft : t ∈ [0, T ]} with respect to some other process,
so the problem can be formulated as follows:

Let W (n) =
{
W

(n)
t : t ∈ [0, T ]

}
, n ∈ N be a sequence of stochastic processes con-

verging in law to a certain stochastic process W = {Wt : t ∈ [0, T ]} as n approaches
infinity and assume that the integrals

I
(n)
t :=

∫ t

0

fsdW
(n)
s , It :=

∫ t

0

fsdWs

are well defined in some sense (maybe as an L2(Ω) limit as studied in this chapter
or ω by ω by using the Lebesgue-Stieltjes integral). Under which conditions for the

process f , the sequence of processes I(n) =
{
I
(n)
t : t ∈ [0, T ]

}
converge in law (or in

some other sense) to the process I = {It : t ∈ [0, T ]}?
Motivated by Donsker’s invariance principle, which states that the Brownian mo-

tion can be weakly approximated by random walks whose jumps are of finite variance,
we will be considering the case where the processes W (n) are given by

W
(n)
t =

1√
n

 [nt]∑
j=1

Xj + (nt− [nt])X[nt]+1

 , W
(n)
0 = 0. (2.3.12)

Where the sum is taken to be zero whenever whenever [nt] = 0 and {Xj}j∈N is a
sequence of i.i.d. centered random variables with unitary variance. We will assume,
as well, that E [X4

1 ] < ∞. These processes, which are the linear interpolation of a
random walk and thus, have continuous sample paths, are known to converge in law to
the standard Brownian motion, which we will be denoting by W = {Wt : t ∈ [0, T ]},
in the space of continuous functions C([0, T ]).

Moreover, the sample paths of the processW (n) are of bounded variation, meaning
that the integrals I

(n)
t can be thought as Lebesgue-Stieltjes integrals for each ω ∈ Ω,

and this is what we will do. Not only that, but the fact that the sample paths of
W (n) are continuous implies, by properties of the Lebesgue-Stieltjes integral, that the
sample paths of I(n) are continuous as well whenever f is good enough (for instance,
if f has continuous sample paths as well).

A positive result can then be given when, for instance, f is a continuous deter-
ministic process, and this is what we will be proving in this section. To do so, we will
use some results regarding the weak convergence of probability measures in metric
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spaces (mainly, Prohorov’s Theorem, Theorems 5.1 and 5.2 in [3], pages 59 and 60,
and Billingsley’s Criterion, Theorem 12.3 in [4], page 95). For a brief introduction to
these results and the techniques that will be used, we refer to [5].

Theorem 2.3.11. Let W (n) be as in (2.3.12), W be a Brownian motion and f be a
continuous deterministic process. Then the integral processes I(n) converge in law to
the integral process I, in the space of continuous functions C([0, T ]), as n approaches
infinity.

Proof. To prove this result, we will follow the exact same strategy as in Section 3 of
[5]. That is, we will be proving the tightness of the sequence {I(n)}n and the converge
of the finite dimensional distributions.

Tightness
To prove the tightness, we consider the alternative expression for (2.3.12) which

is given by the Donsker kernel:

W
(n)
t =

1√
n

∫ ns

0

θ(x)dx, θ(x) =
∞∑
j=1

XjI[j−1,j)(x).

This expression allows us to write I
(n)
t as

I
(n)
t =

√
n

∫ t

0

θ(ns)fs ds,

which is a usual Lebesgue integral.
Clearly, the sequence {I(n)0 }n is tight as a sequence of random variables (in R)

because I
(n)
0 = 0 for all n ∈ N. So, by Billingsley’s Criterion, to prove the tightness

of the sequence {I(n)}n it suffices to show that

E
[∣∣∣I(n)t − I(n)s

∣∣∣γ] ≤ |F (t)− F (s)|1+α

for all s, t ∈ [0, T ], for some constants γ ≥ 0, α > 0 and for some non-decreasing
function F . We will show the latter for γ = 4, α = 1 and F (t) = Ct, t ∈ [0, T ] for
some positive constant C independent of s, t and n. The result trivially holds for
s = t, so from now on we shall assume 0 ≤ s < t ≤ T .
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First observe that, by setting ||f ||∞ = sup{|ft| : t ∈ [0, T ]},

E
[∣∣∣I(n)t − I(n)s

∣∣∣4] = n2E

[(∫ t

s

θ(nu)fu du

)4
]

= 24n2E
[∫

[s,t]4
θ(nu1) · ... · θ(nu4)fu1 · ... · fu4I{u1≤...≤u4}(u) du

]
= 24n2

∫
[s,t]4

E [θ(nu1) · ... · θ(nu4)] fu1 · ... · fu4I{u1≤...≤u4}(u) du

≤ 24n2

∫
[s,t]4

|E [θ(nu1) · ... · θ(nu4)]| |fu1 · ... · fu4| I{u1≤...≤u4}(u) du

≤ 24||f ||4∞n2

∫
[s,t]4

|E [θ(nu1) · ... · θ(nu4)]| I{u1≤...≤u4}(u) du

= 24||f ||4∞n2

∫
[s,t]4

∣∣E [θ(nu1) · ... · θ(nu4)I{u1≤...≤u4}(u)
]∣∣ du. (2.3.13)

Where u = (u1, ..., u4), du = du1du2du3du4 and in the second line we have used that
the product θ(nu1) · ... · θ(nu4)fu1 · ... · fu4 remains invariant under permutations of
the variables u1, u2, u3, u4 within the domain of integration considered, [s, t]4, to fix
an ordering by making use of the indicator function I{u1≤...≤u4}.

Now observe that

E
[
θ(nu1) · ... · θ(nu4)I{u1≤...≤u4}(u)

]
=
∑

j1,...,j4

E [Xj1 · ... ·Xj4 ] I[j1−1,j1)(nu1) · ... · I[j4−1,j4)(nu4)I{u1≤...≤u4}(u)

=
∑
i,j

[(M4 − 1)δij + 1] I[i−1,i)2(nu1, nu2)I[j−1,j)2(nu3, nu4)I{u1≤...≤u4}(u). (2.3.14)

Where M4 = E [X4
1 ]. Indeed, in the first sum, if some of the ji is different from the

others, then the fact that the random variable Xji will be independent of the other
three and that they are centered will imply that

E [Xj1 · ... ·Xj4 ] = 0.

On the other hand, if j1 = j2 ̸= j3 = j4, then

E [Xj1 · ... ·Xj4 ] = E
[
X2

j1

]
E
[
X2

j3

]
= 1.

Finally, if j1 = ... = j4,

E [Xj1 · ... ·Xj4 ] = E
[
X4

j1

]
=M4.
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All other cases are discarded due to the presence of the indicator I{u1≤...≤u4}. Observe

that, by the Cauchy-Schwarz inequality, M4 ≥ (E [X2
1 ])

2
= 1, so the summands in

(2.3.14) are non-negative and thus, (2.3.14) will be non-negative, so we can get rid of
the absolute value in (2.3.13).

From here, one can follow the exact same procedure described in Theorem 3.1 in
[5] to obtain the following bound

E
[∣∣∣I(n)t − I(n)s

∣∣∣4] ≤ 24||f ||4∞M4(t− s)2,

and hence, proving the tightness of {I(n)}n.
Convergence of the finite dimensional distributions
Let 0 ≤ t1 < t2 < ... < tm ≤ T , we will show that the random vectors

I
(n)
f :=

(
I
(n)
t1 , I

(n)
t2 − I

(n)
t1 , ..., I

(n)
tm − I

(n)
tm−1

)
, n ∈ N

converge in law to the random vector

If := (It1 , It2 − It1 , ..., Itm − Itm−1)

as n approaches infinity. From now on, we will assume that t1 > 0 and consider the
point t0 = 0 (if t1 = 0 one can proceed similarly without having to consider the point
t0).

Now fix any i ∈ {1, ...,m} and s ∈ [ti−1, ti]. Observe that, if j ≤ [nti−1], then
j ≤ nti−1 as well (since [nti−1] ≤ nti−1). In particular, since s ≥ ti−1, we will have
that j ≤ ns, so I[j−1,j)(ns) = 0 for such values of j.
Similarly, if j > [nti] + 1, we will have that j − 1 > [nti]. That is, j − 1 is an integer
strictly greater than the entire part of nti and thus, j − 1 > nti. Since s ≤ ti, we will
have j − 1 > ns, meaning that I[j−1,j)(ns) = 0 for such values of j.
All in all, for these values of s we will have that

θ(ns) =

[nti]+1∑
j=[nti−1]+1

XjI[j−1,j)(ns)

and hence,

I
(n)
ti − I

(n)
ti−1

=
√
n

∫ ti

ti−1

θ(ns)fs ds =
√
n

[nti]+1∑
j=[nti−1]+1

XjC
(n)
i,j ,
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where

C
(n)
i,j :=

∫ ti

ti−1

I[j−1,j)(ns)fsds

=

∫ ti∧ j
n

ti−1∨ j−1
n

fsds

= fy

[(
ti ∧

j

n

)
−
(
ti−1 ∨

j − 1

n

)]
(2.3.15)

for some y ∈
[(
ti−1 ∨ j−1

n

)
,
(
ti ∧ j

n

)]
by the integral mean value theorem (we omit

the dependence on i, j and n in y). Observe that∣∣∣C(n)
i,j

∣∣∣ ≤ ||f ||∞
n

(2.3.16)

which is a uniform bound in both i ∈ {1, ...,m} and j ∈ {[nti−1] + 1, ..., [nti] + 1}.
For each i ∈ {1, ...,m}, let us consider the random variable

∆
(n)
i =

√
n

[nti]∑
j=[nti−1]+1

XjC
(n)
i,j

where the sum is understood to be zero when [nti−1] = [nti]. Then we have that, for
any ε > 0, by Chebyshev’s inequality,

P
{∣∣∣I(n)ti − I

(n)
ti−1

−∆
(n)
i

∣∣∣ > ε
}
= P

{∣∣∣C(n)
i,[nti]+1X[nti]+1

√
n
∣∣∣ > ε

}
≤ n

(
C

(n)
i,[nti]+1

)2
ε2

≤ ||f ||2∞
nε2

n→∞−−−→ 0.

So, if we set ∆(n) :=
(
∆

(n)
1 , ...,∆

(n)
m

)
, we have that

P
{∣∣∣∣∣∣I(n)f −∆(n)

∣∣∣∣∣∣ > ε
}
≤

m∑
i=1

P
{∣∣∣I(n)ti − I

(n)
ti−1

−∆
(n)
i

∣∣∣ > ε√
m

}
n→∞−−−→ 0.

Implying that the vectors I
(n)
f and ∆(n) have the same limit in law. However, observe

that, for each n ∈ N, since the random variables {Xj}j are pairwise independent,
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the components of the vector ∆(n) are pairwise independent as well. Therefore, the
characteristic function of ∆(n), φn(u), u = (u1, ..., um) ∈ Rm, will be given by

φn(u) =
m∏
l=1

E
[
exp

{
iul∆

(n)
l

}]
. (2.3.17)

Given that the {Xj}j are pairwise independent, we have that

E
[
exp

{
iu∆

(n)
l

}]
=

[ntl]∏
j=[ntl−1]+1

E
[
exp

{
iuY

(n)
l,j

}]
, (2.3.18)

where Y
(n)
l,j :=

√
nXC

(n)
l,j , u ∈ R, X has the same law as Xj for all j and the product

is understood to be one when [ntl−1] = [ntl]. Now let

η
(n)
l,j (u) := E

[
exp

{
iuY

(n)
l,j

}]
,

sinceX has unitary variance (in particular, it has finite second order moment), η
(n)
l,j (u)

is a twice differentiable function with respect to u. Moreover, we have that

η
(n)
l,j (0) = 1,

dη
(n)
l,j

du
(0) = iE

[
Y

(n)
l,j

]
= 0

and
d2η

(n)
l,j

du2
(u) = −E

[(
Y

(n)
l,j

)2
exp

{
iuY

(n)
l,j

}]
.

In particular,

d2η
(n)
l,j

du2
(0) = −n

(
C

(n)
l,j

)2
. (2.3.19)

Thus, a Taylor expansion yields, for any u ∈ R,

η
(n)
l,j (u) = 1 +

u2

2

d2η
(n)
l,j

du2
(u0) (2.3.20)

for some u0 ∈ [0, u] if u ≥ 0 or some u0 ∈ [u, 0] if u ≤ 0. By the bound found in
(2.3.16), we have that∣∣∣∣∣d2η

(n)
l,j

du2
(u0)

∣∣∣∣∣ ≤ ||f ||2∞
n

E
[
X2
]
=

||f ||2∞
n

n→∞−−−→ 0.
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Thus, for n large enough and for fixed u ∈ R, the natural logarithm of (2.3.20) will
be well defined and continuous in a neighbourhood of (2.3.20) and thus, it will make
sense to consider the logarithm of (2.3.18) which will be given by

L
(n)
l (u) :=

[ntl]∑
j=[ntl−1]+1

log

[
1 +

u2

2

d2η
(n)
l,j

du2
(u0)

]
.

Using the Taylor expansion for the logarithm (considering, if needed, n large enough

so that

∣∣∣∣u2

2

d2η
(n)
l,j

du2 (u0)

∣∣∣∣ < 1), we will have that

∣∣∣∣∣∣L(n)
l (u)− u2

2

[ntl]∑
j=[ntl−1]+1

d2η
(n)
l,j

du2
(u0)

∣∣∣∣∣∣ ≤ 1

2

[ntl]∑
j=[ntl−1]+1

(
ξ
(n)
l,j

)2
(2.3.21)

where ∣∣∣ξ(n)l,j

∣∣∣ ≤ u2

2

∣∣∣∣∣d2η
(n)
l,j

du2
(u0)

∣∣∣∣∣ ≤ u2

2

||f ||2∞
n

.

Thus (2.3.21) can be bounded by

u4

8

||f ||4∞
n2

([ntl]− [ntl−1])
n→∞−−−→ 0.

On the other hand, using that |eia − 1| ≤ 2|a| for any a ∈ R, we have that∣∣∣∣∣d2η
(n)
l,j

du2
(u0)−

d2η
(n)
l,j

du2
(0)

∣∣∣∣∣ ≤ E
[(
Y

(n)
l,j

)2 ∣∣∣exp{iu0Y (n)
l,j

}
− 1
∣∣∣]

≤ 2|u0|E
[∣∣∣Y (n)

l,j

∣∣∣3]
≤ 2|u| ||f ||3∞n−3/2M3,

where M3 := E [|X|3]. With this, we have that∣∣∣∣∣∣
[ntl]∑

j=[ntl−1]+1

(
d2η

(n)
l,j

du2
(u0)−

d2η
(n)
l,j

du2
(0)

)∣∣∣∣∣∣ ≤ 2|u|||f ||2∞M3 n
−3/2 ([ntl]− [ntl−1])

n→∞−−−→ 0.

Thus,

lim
n→∞

L
(n)
l (u) =

u2

2
lim
n→∞

[ntl]∑
j=[ntl−1]+1

n
d2η

(n)
l,j

du2
(0).
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Now observe that, for each j ∈ {[ntl−1] + 1, ..., [ntl]}, we have that j ≤ [ntl] ≤ ntl,
so j

n
∧ tl = j for these values of j. On the other hand, if j = [ntl−1] + 1, we have

that j−1
n

= [ntl−1]

n
≤ tl−1, so

j−1
n

∨ tl−1 = tl−1. Finally, if j − 1 > [ntl−1], we will have

j− 1 > ntl−1, leading to j−1
n

∨ tl−1 = j− 1. All in all, we obtain that (2.3.15) reduces
to

C
(n)
l,j = fy

[ntl−1] + 1− tl−1n

n
, if j = [ntl−1] + 1

or

C
(n)
l,j =

fy
n
, if j > [ntl−1] + 1.

Bearing this in mind and using (2.3.15) and (2.3.19), one sees that

[ntl]∑
j=[ntl−1]+1

n
d2η

(n)
l,j

du2
(0) = −f 2

y

([ntl−1] + 1− ntl−1)
2

n
− 1

n

[ntl]∑
j=[ntl−1]

f 2
y

where, remember, y depended on l, j and n. Observe that, for each n and l, [ntl−1] +
1− ntl−1 ∈ (0, 1], meaning that∣∣∣∣f 2

y

([ntl−1] + 1− ntl−1)
2

n

∣∣∣∣ ≤ ||f ||2∞
n

n→∞−−−→ 0.

On the other hand, 1
n

∑[ntl]
j=[ntl−1]

f 2
y , n ≥ 1, are nothing else but the Riemann sums of

the integral
∫ tl
tl−1

f 2(s)ds. All in all, we obtain that

lim
n→∞

L
(n)
l (u) = −u

2

2

∫ tl

tl−1

f 2
s ds.

So, for each l ∈ {1, ...,m}, (2.3.18) converges to exp
{
−u2

2

∫ tl
tl−1

f 2
s ds
}
and (2.3.17) to

m∏
l=1

exp

{
−u

2
l

2

∫ tl

tl−1

f 2
s ds

}

as n approaches, which is the characteristic function of the vector If and thus, by
Lévy’s continuity theorem, we obtain the desired result.

In the proof of this theorem, we have used that for deterministic and continuous
functions f , the process I is a process with independent increments such that

It − Is ∼ N
(
0,

∫ t

s

f 2
udu

)
.
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In particular, the quadratic variation of I, ⟨I⟩, is given by

⟨I⟩t =
∫ t

0

f 2
s ds,

which is deterministic. Thus, the process I shares many similarities with the Brownian
motion. In fact, one can show that the process I can be obtained by considering a
deterministic change of time. Bearing this in mind, it is no surprise that the same
proof for the convergence towards the Brownian motion (the one seen in [5]) worked
for the convergence of the stochastic integrals since, in essence, what we are proving
is the convergence of a modified random walk given by

I
(n)
t =

√
n

∫ t

0

θ(ns)fs ds =
√
n

[nt]+1∑
j=1

Xj

∫ t

0

I[j−1,j)(ns)fs ds

towards a modified Brownian motion, I.

2.4 Final remarks

2.4.1 Extending the class of integrands

As in the case of the Brownian motion, one can extend the class of integrands by
weakening condition (iii) in Definition 2.3.1 as follows:

P
{∫ T

0

X2
t d⟨M⟩t <∞

}
= 1. (2.4.1)

As seen in the course of Stochastic Calculus, this can be done by a localization
argument, for which one has to prove beforehand that, for any {Ft}t-stopping time τ
taking values in [0, T ] and any X ∈ νM (the one from Definition 2.3.1), the following
identity holds a.s. ∫ τ

0

XtdMt =

∫ T

0

I[0,τ)(t)XtdMt.

Which is usually shown using that any stopping time like τ can be approximated
a.s. by a decreasing sequence of stopping times {τn}n similar to the ones seen in
Eq.(2.3.6) (the point being that such stopping times only take a finite number of
values for each n). We will omit the details and denote by ν ′M the set of processes
that satisfy conditions (i), (ii) and the one in (2.4.1). Nevertheless, we shall remark
that for general X ∈ ν ′M , the process {It(X) : 0 ≤ t ≤ T} might not be a martingale
anymore (in general, it is a local one) and that it is defined as a limit in probability,
rather than an L2(Ω)-limit.
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2.4.2 Extending the class of integrators

One can define, using the stochastic integral seen in this chapter, stochastic integrals
with respect to more general processes like continuous local martingales or contin-
uous semimartingales. Moreover, they can be extended to local martingales and
semimartingales whose sample paths are càdlàg P-a.s.
Definition 2.4.1. A process M = {Mt : t ≥ 0} is a continuous local martingale if
there is a non-decreasing sequence of {Ft}t-stopping times {Sn}n such that Sn ↗ ∞
P-a.s. and such that, for each n ∈ N, the stopped process {Mt∧Sn : t ≥ 0} is a
continuous martingale.

Definition 2.4.2. An adapted continuous process M = {Mt : t ≥ 0} is a semimartin-
gale if it can be decomposed P-a.s. as follows:

Mt =M0 +Nt + At, t ≥ 0, (2.4.2)

where N = {Nt : t ≥ 0} is a continuous local martingale and A = {At : t ≥ 0} is a
continuous process of bounded variation (with both processes N and A starting at 0).

For X ∈ ν ′M , one can construct the stochastic integral of X with respect to
the continuous local martingale by constructing a localizing sequence of stopping
times {Tn}n, Tn ↗ ∞ P-a.s. (these stopping times depend on the stopping times
implicit in the definition of local martingale, {Sn}n), such the stopped processes

M (n) = {M (n)
t :=Mt∧Tn : t ≥ 0}, n ≥ 1, are continuous square integrable martingales

and such that X(n) = {X(n)
t := XtITn≥t} ∈ νM for each n ≥ 1. Then one defines the

desired integral as one would expect

It(X) := IM
(n)

t

(
X(n)

)
, on {0 ≤ t ≤ Tn}.

This construction is coherent in the sense that if 1 ≤ n ≤ m (which means that
Tn ≤ Tm P-a.s.), then It(X) is well defined on [0, Tn(ω)] for P-almost all ω ∈ Ω, that
is,

IM
(n)

t

(
X(n)

)
= IM

(m)

t

(
X(m)

)
, 0 ≤ t ≤ Tn.

Moreover, the definition does not depend on the choice of the localizing sequence of
stopping times {Sn}n.

The stochastic integral of X ∈ ν ′M with respect to a continuous semimartingale
M with decomposition given by (2.4.2) is then defined as∫ t

0

XsdMs = X0M0 +

∫ t

0

XsdNs +

∫ t

0

XsdAs.

Which is well defined because the decomposition in (2.4.2) is P-a.s. unique.
One can show as well that the Itô and covariation formulas, among many other

results seen here, also hold for such integrals.
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Chapter 3

Stochastic integrals with respect to
random fields

So far, we have seen that we can construct stochastic integrals with respect to stochas-
tic processes that evolved according to a single variable, the time. Such integrals were
introduced to define rigorously the concept of stochastic differential equation driven
by a random process.

Introducing the notion of stochastic partial differential equations is a bit more
delicate task. Indeed, recall that the point of considering partial differential equations
is to determine functions that depend on more than one variable and, in most cases,
these variables are not symmetric: for instance, the time variable usually takes non-
negative values, while the space variable can take any real value (depending on the
problem, of course). So we first need to introduce the concept of space-time random
perturbation and then see how we integrate with respect to such objects.

We will start by considering the case of the white noise and the isonormal process,
which can be thought of the analogous to the Brownian motion in several (possibly
infinite) dimensions in some cases, and, at the end of this Chapter (see Section 3.3),
we introduce a wider class of random noises (and hence, of integrators), with the
drawback that the class of integrable functions will be a bit more limited. This
way, we start by considering objects which might be a bit more familiar to the ones
already seen (the Brownian motion and the Itô integral with respect to such process),
providing a canonical example that will serve us as a model to construct the integral
with respect to much more general processes (as done in Section 3.3).

For the construction of the stochastic integral with respect to the space-time
white noise, we will follow the first two chapters of [6], while, for the construction
with respect to worthy martingale measures, we will follow the second chapter of [11].
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3.1 White noise and the isonormal process

3.1.1 White noise

Definition 3.1.1. A σ-finite measure ν on
(
Rk,Rk

)
(being Rk the Borel σ-field of

Rk) is a measure for which there is a sequence of compact sets {En}n∈N such that
ν(En) < ∞ for all n ∈ N and such that En ↗ Rk (that is, the sequence {En}n is
increasing and Rk =

⋃
nEn).

Definition 3.1.2. A (Gaussian) white noise on Rk based on a σ-finite measure ν on(
Rk,Rk

)
is a Gaussian random field

W = {W (A) : A ∈ Rk
f}, Rk

f := {A ∈ Rk : ν(A) <∞}

defined on some probability space (Ω,F ,P) with mean function µ(A) = 0 for any
A ∈ Rk

f and covariance function C(A,B) := ν(A ∩B).

The existence of this process (and all the other Gaussian processes that we will
see during this section) can be seen as a consequence of the following result, which
is, in turn, a consequence of Kolmogorov’s Extension Theorem:

Lemma 3.1.1. Let T be an arbitrary set. Given functions m : T → R and C : T2 : R
such that C(t, s) = C(s, t) for all (s, t) ∈ T2, and C is non-negative definite, there ex-
ists a Gaussian random field G = {G(t) : t ∈ T} with mean function m and covariance
function C.

For a proof, see Lemma 1.2.2 in page 4 of [6].
Observe that, from the definition, W (A) is a normal random variable with zero

mean and variance ν(A) (if ν(A) = 0, then W (A) is the constant random variable
zero).

It turns out that W , as a set function from Rk
f to L2(Ω,F ,P), can be thought as

a vector-valued measure. To see this, we will need the following proposition.

Proposition 3.1.1. The following assertions hold true:

(i) If A,B ∈ Rk
f are disjoint, then W (A) and W (B) are independent and W (A ∪

B) = W (A) +W (B) P-a.s.

(ii) Let {An}n ⊂ Rk be a decreasing sequence with ν(A1) <∞ and let A =
⋂

n≥1An,
then

L2(Ω)− lim
n→∞

W (An) = W (A).
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(iii) Let {An}n ⊂ Rk be an increasing sequence and let A =
⋃

n≥1An be such that
ν(A) <∞, then

L2(Ω)− lim
n→∞

W (An) = W (A).

Proof. For the first part, since A ∩B = ∅ and the mean function µ is null, we have

0 = ν(A ∩B) = C(A,B) = E[W (A)W (B)].

So W (A) and W (B) are uncorrelated Gaussian random variables and thus, indepen-
dent. To check the finite additivity property, note that

E
[(
W (A ∪B)−W (A)−W (B)

)2]
= E

[
W 2(A ∪B)

]
+ E

[
W 2(A)

]
+ E

[
W 2(B)

]
− 2E[W (A ∪B)W (A)]− 2E[W (A ∪B)W (B)]

+ 2E[W (A)W (B)]

= ν(A ∪B) + ν(A) + ν(B)− 2ν (A)− 2ν (B) + 2ν(A ∩B)

= 0.

Where in the last step we have used that ν is a measure and hence, it is additive.
For (ii), first note that the condition ν(A1) < ∞ implies An ∈ Rk

f for all n ≥ 1.

On the other hand, for any B,C ∈ Rk
f such that B ⊂ C we have, by (i),

W (C) = W ((C ∩B) ∪ (C ∩Bc))

= W (C ∩B) +W (C ∩Bc)

= W (B) +W (C\B), P-a.s.

So W (C\B) = W (C) − W (B) P-a.s. By sequential continuity of ν, we have that
∩1≤j≤n(Aj\A) = An\A decreases to the empty set as n approaches infinity and hence

E
[
(W (An)−W (A))2

]
= E

[
W 2(An\A)

]
= ν(An\A)

n→∞−−−→ 0.

Similarly, for (iii), the fact that ν(A) < ∞ ensures that An ∈ Rk
f for all n ≥ 1

and we have that
⋂

1≤j≤n(A\Aj) = A\An decreases to the empty set as n approaches
infinity, so, by sequential continuity,

E
[
(W (A)−W (An))

2] = E
[
W 2(A\An)

]
= ν(A\An)

n→∞−−−→ 0.

As was to be shown.

Hence, the map W : Rk
f → L2(Ω,F ,P), A 7→ W (A) is a σ-additive vector-valued

measure. Indeed, if {Bn}n ⊂ Rk
f is a sequence of pairwise disjoint sets such that
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A =
⋃

n≥1Bn ∈ Rk
f , then we have that, since An :=

⋃
1≤j≤nBj verifies

⋃
n≥1An = A

and An ⊂ Am whenever n ≤ m,

n∑
j=1

W (Bj) = W

(
n⋃

j=1

Bj

)
= W (An)

n→∞−−−→ W (A)

in L2(Ω). However, this does not mean that for fixed ω ∈ Ω (or for almost any ω ∈ Ω),
the map A 7→ W (A)(ω) is a a real-valued signed measure.

3.1.2 Isonormal process

From now on, H will denote a real, separable Hilbert space with inner product ⟨·, ·⟩H
and norm || · ||H .

Definition 3.1.3. An isonormal Gaussian process on H is a Gaussian process W =
{W (h) : h ∈ H} defined on some complete probability space (Ω,F ,P) with vanishing
mean function and covariance function C(h, g) := ⟨h, g⟩H .

Thus, for each h ∈ H, W (h) is normally distributed with zero mean and variance
||h||2H . This means that the map h 7→ W (h) is an isometry from H to L2(Ω,F ,P).
Moreover, it is P-a.s. linear. Indeed, for any a, b ∈ R and any h, g ∈ H,

E
[
(W (ah+ bg)− aW (h)− bW (g))2

]
=

= ||ah+ bg||2H + a2||h||2H + b2||g||2H − 2a⟨ah+ bg, h⟩H − 2b⟨ah+ bg, g⟩H + 2ab⟨h, g⟩H
= 0.

Where we have used that ||ah + bg||2H = a2||h||2H + b||g||2H + 2ab⟨h, g⟩H and the
bilinearity and symmetry of ⟨·, ·⟩H .

All in all, we have that W : H → L2(Ω,F ,P) is a linear isometry (in particular,
it is continuous).

We observe as well that, if h, g ∈ H are orthogonal, ⟨h, g⟩H = 0, then the random
variables W (h) and W (g) are independent since they are uncorrelated Gaussian ran-
dom variables. In particular, if ||h||H = ||g||H = 1, W (h) and W (g) are independent
standard normal random variables. This fact can be used to give a deeper insight on
the structure of isonormal processes.

Proposition 3.1.2. Let {en : n ≥ 1} be a complete orthonormal system (CONS) in
H and {ξn : ≥ 1} be a sequence of i.i.d. standard Gaussian random variables defined
on (Ω,F ,P). Then, for any h ∈ H, the series

∞∑
n=1

⟨h, en⟩Hξn
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converges in L2(Ω) to a random variable, which we will denote by W (h), and the
family {W (h) : h ∈ H} constitutes an isonormal Gaussian process on H.

On the other hand, given an isonormal Gaussian process {W (h) : h ∈ H} and
a CONS {en : n ≥ 1} on H, the sequence {W (en) : n ≥ 1} consists of independent
standard Gaussian random variables and

W (h) = L2(Ω)− lim
N→∞

N∑
n=1

⟨h, en⟩HW (en)

for each h ∈ H.

Proof. By Parseval’s identity, we have that

∞∑
n=1

⟨h, en⟩2H = ||h||2H , h ∈ H,

in particular, the sum is convergent. Thus, for n > m ≥ 0 and h ∈ H,

E

( n∑
j=m+1

⟨h, ej⟩Hξj

)2
 =

n∑
j=m+1

⟨h, ej⟩2HE
[
ξ2j
]
+
∑
i ̸=j

⟨h, ei⟩H⟨h, ej⟩hE[ξiξj]

=
n∑

j=m+1

⟨h, ej⟩2H
n,m→∞−−−−→ 0.

Where we have used that the random variables {ξn}n are pairwise independent and
that they have unitary mean. Therefore, the sequence{

n∑
j=1

⟨h, ej⟩Hξj : n ≥ 1

}

is Cauchy in L2(Ω) and, by completeness, convergent. Let W (h) denote the limit
of this sequence, then it is the L2(Ω)-limit of Gaussian random variables and hence,
Gaussian itself. Given that the ξj are i.i.d. standard normal random variables, we
have that

∑n
j=1⟨h, ej⟩Hξj is normally distributed with mean 0 and variance

∑n
j=1⟨h, ej⟩2H .

Hence, the limit is normally distributed with zero mean and variance ||h||2H (for in-
stance, by Lévy’s continuity theorem).
Moreover, by Parseval’s identity and the independence of the ξj again, for any
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h, g ∈ H,

E [W (h)W (g)] = E

[∑
i,j

⟨h, ei⟩H⟨g, ej⟩Hξiξj

]

= E

[
∞∑
j=1

⟨h, ej⟩H⟨g, ej⟩Hξ2j

]
+ E

[∑
i ̸=j

⟨h, ei⟩H⟨g, ej⟩Hξiξj

]

=
∞∑
j=1

⟨h, ej⟩H⟨g, ej⟩HE
[
ξ2j
]
+
∑
i ̸=j

⟨h, ei⟩H⟨g, ej⟩HE[ξiξj]

=
∞∑
j=1

⟨h, ej⟩H⟨g, ej⟩H

= ⟨h, g⟩H .
Where the interchange of the expectation operator and the sums is justified due to the
fact that the sums converge in L2(Ω). Hence, the family {W (h) : h ∈ H} constitutes a
process onH with vanishing mean function and covariance function C(h, g) = ⟨h, g⟩H .

As for the second part, the observation made before the statement of this propo-
sition tells us that {W (en) : n ≥ 1} is a sequence of i.i.d. standard normal random
variables. Since {en : n ≥ 1} is a CONS, for any h ∈ H we have

h = H − lim
N→∞

N∑
n=1

⟨h, en⟩Hen

and hence, by linearity and continuity of h 7→ W (h),

W (h) = W

(
H − lim

N→∞

N∑
n=1

⟨h, en⟩Hen

)

= L2(Ω)− lim
N→∞

W

(
N∑

n=1

⟨h, en⟩Hen

)

= L2(Ω)− lim
N→∞

N∑
n=1

⟨h, en⟩HW (en).

Which is what we wanted to show.

3.1.3 Relation between the white noise and the isonormal
process

In the frame of Lebesgue’s integration theory, one starts by defining integrals of indi-
cator functions of ν-measurable sets of the form IA (being ν the considered measure),
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which are defined to attain the value ν(A). This relates measures of measurable sets
with simple functions and, from this, one can extend the notion of integral to a higher
class of measurable functions. This integral characterizes the measure as well.

A similar procedure can be followed to establish a relation between the white
noise and the isonormal process, where the “measure of a set A ∈ Rk

f with respect
to the white noise” is related to the “integral of a simple function IA with respect to
the isonormal process” (for this, a particular Hilbert space H must be considered) to
then define integrals of more general functions h ∈ H with respect to the isonormal
process and this integral will characterize the corresponding white noise measure as
well.

In this section, ν will denote a σ-finite measure on (Rk,Rk
f ) and H = L2(Rk, ν)

with the inner product ⟨h, g⟩H =
∫
Rk hgν(dx).

Given an isonormal process on H, one can easily define a Gaussian white noise
W̄ = {W̄ (A) : A ∈ Rk

f} by setting W̄ (A) := W (IA). In such case, one has that

E[W̄ (A)] = 0 for any A ∈ Rk
f and

E
[
W̄ (A)W̄ (B)

]
= E [W (IA)W (IB)]
= ⟨IA, IB⟩H

=

∫
Rk

IAIBν(dx)

= ν(A ∩B)

for any A,B ∈ Rk
f . Thus, W̄ is a white noise based on ν.

Now let W̄ denote a white noise based on ν. For each A ∈ Rk
f define W (IA) :=

W̄ (A) and extend the definition to functions h =
∑r

j=1 cjIAj
with r ∈ N, cj ∈ R and

Aj ∈ Rk
f pairwise disjoint linearly:

W (h) :=
r∑

j=1

cjW̄ (Aj).
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Then one has, for such h,

E
[
W 2(h)

]
=

r∑
j=1

c2jE
[
W̄ 2(Aj)

]
+
∑
i ̸=j

cicjE
[
W̄ (Ai)W̄ (Aj)

]
=

r∑
j=1

c2jν(Aj)

=
r∑

j=1

∫
Rk

c2jI2Aj
ν(dx)

=

∫
Rk

(
r∑

j=1

cjIAj

)2

ν(dx)

= ||h||2H .

Where we have used that W̄ (Ai) is independent of W̄ (Aj) for i ̸= j (because Ai∩Aj =
∅ in this case). Moreover, the value W (h) does not depend on the representation of
h. That is, if

h =
r∑

j=1

cjIAj
, g =

m∑
i=1

diIBi

with cj, di ∈ R, Ai ∩ Aj = ∅ and Bn ∩ Bm = ∅ if i ̸= j and n ̸= m and h = g, then
W (h) = W (g) P-a.s. Indeed,

E
[
(W (h)−W (g))2

]
= ||h||2H + ||g||2H − 2

∑
i,j

cjdiν(Aj ∩Bi)

=

∫
Rk

(
r∑

j=1

c2jI2Aj
+

m∑
i=1

diIBi
− 2

∑
i,j

cjdiIAj∩Bi

)
ν(dx)

=

∫
Rk

(
r∑

j=1

cjIAj
−

m∑
i=1

diIBi

)2

ν(dx)

= 0.

As in the case of the usual Lebesgue integration, one checks that the map h 7→ W (h)
is linear and hence, by what we have already shown, it defines a linear isometry (as
in the case of the Itô integral) on the set of elementary functions that extends to a
linear isometry from H = L2(Rk, ν) to L2(Ω,F ,P) as an L2(Ω)-limit by using the
fact that simple functions are dense in L2(Rk, ν) with respect to the norm || · ||H and
a similar procedure to the one seen in the previous chapter.
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The only thing left to check is that the resulting process {W (h) : h ∈ H} is indeed
an isonormal process. For h ∈ H, W (h) is the L2(Ω)-limit of centered Gaussian
random variables, so it is a centered Gaussian random variable itself. Moreover, for
h, g ∈ H, using that

W (h)W (g) =
1

4
(W (h) +W (g))2 − 1

4
(W (h)−W (g))2

=
1

4
(W (h+ g))2 − 1

4
(W (h− g))2

(because h 7→ W (h) is linear) and the isometry property, one obtains

E [W (h)W (g)] =
1

4
||h+ g||2H − 1

4
||h− g||2H = ⟨h, g⟩H

by the polarization identity of the inner product.
For h ∈ H, the random variable W (h) is called the Wiener integral of h with

respect to the white noise W̄ and it is usually written as∫
Rk

h(x)W̄ (dx) := W (h).

For the sake of simplicity, we shall write

W (h) =

∫
Rk

h(x)W (dx) (3.1.1)

and W instead of W̄ for the white noise (we will distinguish the latter from the
corresponding isonormal process by the context).

As one may expect, the constructed integral can be related to the Itô integral with
respect to the Brownian motion:

Lemma 3.1.2. Let {W (h) : h ∈ L2(R, ν)} be the isonormal Gaussian process as-
sociated to the white noise on R based on ν(ds) = I[0,T ](s)ds, T > 0, and let
B = {Bt : t ≥ 0} be the continuous version of the standard Brownian motion de-
fined by

Bt = W (I[0,t)) = W ([0, t)), 0 ≤ t ≤ T. (3.1.2)

Then, for all h ∈ L2(R, ν),

W (h) =

∫ T

0

h(t)dBt, P-a.s.

The point being that the integral on the right-hand side is the usual Itô integral with
respect to the Brownian motion.
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Proof. We first check that (3.1.2) defines a Brownian motion. Indeed, for 0 ≤ s1 <
t1 ≤ s2 < t2 ≤ T , we have that [s1, t1) ∩ [s2, t2) = ∅ and hence, the random variables
W ([s1, t1)) and W ([s2, t2)) are independent. Moreover, we have, since [0, si) ⊂ [0, ti)
for i ∈ {1, 2}

Bti −Bsi = W ([si, ti)),

meaning that B has independent increments. Finally, given the definition of ν, we
have that Bti −Bsi is normally distributed with zero mean and variance ti − si and,
since [0, 0) = ∅, B0 = 0.

Now, if h = I[t1,t2) with 0 ≤ s < t ≤ T , then∫ T

0

h(r)dBr = Bt −Bs = W ([s, t)) = W (I[s,t)) = W (h), P-a.s.

By linearity, this extends to step functions of the form h =
∑r−1

j=0 ajI[tj ,tj+1) with
aj ∈ R constants and 0 = t0 < ... < tr = T and, by density and the isometry
properties for both the Itô integral and the map h 7→ W (h), to any h ∈ L2(R, ν).

Observe that this construction of the stochastic integral (for deterministic func-
tions) allows as to easily define the stochastic integral with respect to the Brownian
motion over [0,∞) just by considering the measure ν(ds) = I[0,∞)(s)ds. Moreover,
this procedure provides us a method to construct integrals with respect to other
random fields like, for instance, the Brownian sheet.

Definition 3.1.4. A Brownian sheet on Rk
+ := {(x1, ..., xk) ∈ Rk : xj ≥ 0, 1 ≤ j ≤ k}

is a Gaussian process with vanishing mean and covariance function

C(s, t) =
k∏

j=1

(sj ∧ tj),

for all s = (s1, ..., sk), t = (t1, ..., tk) ∈ Rk
+.

Lemma 3.1.3. Let H = L2(R2, ν), ν(dx) = IR2
+
(x)dx with the usual inner product,

{W (A) : A ∈ R2
f} be a white noise based on ν and {W (h) : h ∈ H} be the corre-

sponding isonormal process, then the process W = {Wt1,t2 : (t1, t2) ∈ R2
+} defined

by
Wt1,t2 := W ([0, t1)× [0, t2))

is a Brownian sheet.
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Proof. It is clear that it is a Gaussian process with vanishing mean. On the other
hand, if (t1, t2), (s1, s2) ∈ R2

+,

E [Wt1,t2Ws1,s2 ] = E [W ([0, t1)× [0, t2))W ([0, s1)× [0, s2))]

= ν (([0, t1)× [0, t2)) ∩ ([0, t1)× [0, t2)))

= ν ([0, t1 ∧ s1)× [0, t2 ∧ s2))
= (t1 ∧ s1) · (t2 ∧ s2).

One can show, by Kolmogorov’s continuity criterion, that there is a version of
the Brownian sheet with continuous sample paths. Considering such version, one can
define the stochastic integral with respect to the Brownian sheet of a deterministic
function h ∈ H by ∫

R2
+

h(t1, t2)dWt1,t2 := W (h). (3.1.3)

3.1.4 Space-time white noise

Now we are ready to define a concept of space-time white noise, which, at the end of
the day, it is simply a particular case of the white noise already seen.

Definition 3.1.5. Let D ⊂ Rk be a non-empty open set, then a space-time white
noise based on ν(dt, dx) = IR+(t)ID(x)dt dx is a centered Gaussian random field

{W (A), A ∈ Bf
R+×D}, where Bf

R+×D are the Borel sets A ∈ Bf
R+×D such that ν(A) <

∞, with covariance function

E [W (A)W (B)] = ν(A ∩B), A,B ∈ Bf
R+×D.

Of course, the results seen so far regarding the properties of the white noise and
construction of an isonormal process from it also hold for the space-time white noise.

From now on, we shall assume that D ⊂ Rk is also connected (note that it can
be bounded or unbounded). As in the previous chapter, we will fix a time horizon
T > 0 (thus, the considered measure will be ν(dt, dx) = I[0,T ](t)ID(x)dt dx) and set
H = L2([0, T ]×D) and V = L2(D) with the inner products

⟨h, g⟩H =

∫ T

0

∫
D

h(t, x)g(t, x)dtdx ⟨φ, ψ⟩V =

∫
D

φ(x)ψ(x)dx,

for h, g ∈ H and φ, ψ ∈ V . Observe that

⟨h, g⟩H =

∫ T

0

⟨h(t, ∗), g(t, ∗)⟩V dt
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where “∗” denotes spatial dependence. From the isonormal process on H associ-
ated to W (the space-time white noise), we can define a Gaussian stochastic process
{Ws(ϕ) : s ∈ [0, T ], φ ∈ V } by

Ws(ϕ) := W
(
I[0,s](·)φ(∗)

)
where “·” denotes time dependence. Observe that functions of the type I[0,s](·)φ(∗)
with φ ∈ V are functions of H.

The goal now is to establish a couple of results so that we can guarantee that the
stochastic integral with respect to the space-time white noise is well defined.

Lemma 3.1.4. The process {Ws(ϕ) : s ∈ [0, T ], φ ∈ V } has the following properties:

(i) For any φ ∈ V , {Ws(φ) : s ∈ [0, T ]} defines a Brownian motion with variance
s||φ||2V .

(ii) For all s, t ∈ [0, T ] and φ, ψ ∈ V ,

E [Ws(φ)Wt(ψ)] = (s ∧ t)⟨φ, ψ⟩V .

Proof. Since {W (h) : h ∈ L2([0, T ] ×D, ν)} is an isonormal process, we have, for all
φ, ψ ∈ V , s, t ∈ [0, T ],

E [Ws(φ)] = E
[
W
(
I[0,s](·)φ(∗)

)]
= 0,

and,

E [Ws(φ)Wt(ψ)] = ⟨I[0,s](·)φ(∗), I[0,t](·)ψ(∗)⟩H

=

∫ T

0

I[0,s](r)I[0,t](r)dr
∫
D

φ(x)ψ(x)dx

= (s ∧ t)⟨φ, ψ⟩V .

The desired result is then concluded from the fact that, as noticed before this lemma,
the process {Ws(ϕ) : s ∈ [0, T ], φ ∈ V } is Gaussian and hence, so is {Ws(ϕ) : s ∈
[0, T ]} for fixed φ ∈ V .

From now on, we will consider the continuous version of the Brownian motions
{Ws(ϕ) : s ∈ [0, T ]}, φ ∈ V .

We will consider, as well, an underlying right-continuous and complete filtration
{Fs : s ∈ [0, T ]} consisting of sub-σ-fields of F such that:

(i) For fixed s ∈ [0, T ] and for any φ ∈ V , the random variable Ws(φ) is Fs-
measurable.
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(ii) For any s ∈ [0, T ], the family {Wt(φ)−Ws(φ) : t ∈ [s, T ], φ ∈ V } is independent
of Fs.

For instance, the sub-σ-fields

Fs := σ{Wt(φ) : 0 ≤ t ≤ s, φ ∈ V }, s ∈ [0, T ]

completed so that they contain all P-null sets and the sets contained in such sets
verifies the hypotheses (recall that, for fixed φ ∈ V , we consider the continuous
version of the Brownian motion {Ws(φ) : s ∈ [0, T ]}, so the right-continuity condition
of the filtration is fulfilled as well).

Lemma 3.1.5. Let {ej : j ≥ 1} be a complete orthonormal basis of V , then

(i) The sequence {Ws(ej) : s ∈ [0, T ], j ≥ 1} consists of independent standard Brow-
nian motions adapted to the filtration {Fs}s and, for s ∈ [0, T ], {Wt+s(es) −
Ws(ej) : t ∈ [0, T − s], j ≥ 1} is independent of Fs. Moreover, for all φ ∈ V and
s ∈ [0, T ],

Ws(φ) =
∞∑
j=1

⟨φ, ej⟩VWs(ej) (3.1.4)

where the series converges P-a.s. and in L2(Ω).

(ii) Given a sequence {Bj
s : s ∈ [0, T ], j ≥ 1} of independent standard Brownian

motions, for each φ ∈ V and s ∈ [0, T ], the series

W̃s(φ) :=
∞∑
j=1

⟨φ, ej⟩VBj
s

converges P-a.s. and in L2(Ω). The process {W̃s(φ) : s ∈ [0, T ], φ ∈ V } verifies
the conclusions of the previous lemma. Further, for h ∈ H, define

W̃ (h) :=
∞∑
j=1

∫ T

0

⟨h(s, ∗), ej⟩V dBj
s (3.1.5)

where the integrals on the right-hand side are usual Itô integrals and the series
converges P-a.s. and in L2(Ω). Then the process W̃ = {W̃ (IA) : A ∈ Bf

[0,T ]×D}
is a space-time white noise on [0, T ]×D and {W̃ (h) : h ∈ H} is the associated
isonormal process.

(iii) Let W be a space-time white noise on [0, T ]×D based on ν(dt, dx) =
I[0,T ](t)ID(x)dt dx. If in the previous item we take Bj

s = Ws(ej), then the result-

ing space-time white noise in the previous item, W̃ , coincides with W .
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Proof.

Proof of (i):
By the previous lemma, and since {ej : j ≥ 1} is an orthonormal basis, we have

E[Ws(ej)Wt(ei)] = (s ∧ t)δij for all s, t ∈ [0, T ], i, j ∈ N. Thus, if i ̸= j, the pro-
cesses {Ws(ei) : s ∈ [0, T ]} and {Ws(ej) : s ∈ [0, T ]} are independent (because they
are Gaussian uncorrelated processes). The adaptedness and independence properties
follow from the conditions that the filtration {Fs}s must satisfy.

Now, since φ ∈ V and {ej : j ≥ 1} is a complete orthonormal basis of V , we have

φ(x) =
∞∑
j=1

⟨φ, ej⟩V ej(x)

where the convergence is in V (in norm || · ||V ). By linearity and continuity of the
isonormal process, we have

Ws(φ) = W
(
I[0,s](·)φ(∗)

)
=

∞∑
j=1

⟨φ, ej⟩VW
(
I[0,s](·)ej(∗)

)
=

∞∑
j=1

⟨φ, ej⟩VWs(ej)

where the convergence is in L2(Ω). By the Khintchine-Kolmogorov convergence the-
orem, we also have convergence P-a.s. because

∞∑
j=1

E
[
⟨φ, ej⟩2VW 2

s (ej)
]
=

∞∑
j=1

⟨φ, ej⟩2VE
[
W 2

s (ej)
]
=

∞∑
j=1

⟨φ, ej⟩2V s = s||φ||2V <∞

by Parseval’s identity and the random variables Ws(ei) and Ws(ej) are independent
if i ̸= j.

Proof of (ii):
For fixed s ∈ [0, T ] and φ ∈ V , {Bj

s⟨φ, ej⟩V : j ≥ 1} is a sequence of centered
independent random variables of finite variance such that, by Parseval’s identity

∞∑
j=1

E
[(
Bj

s

)2 ⟨φ, ej⟩2V ] = s||φ||2V <∞.

Again, by the Khintchine-Kolmogorov convergence theorem, the series W̃s(φ) :=∑∞
j=1B

j
s⟨φ, ej⟩V converges P-a.s. and in L2(Ω) for fixed s ∈ [0, T ] and φ ∈ V .

Moreover, the same theorem tells us that E[W̃s(φ)] = 0, E
[
W̃ 2

s (φ)
]
= s||φ||2V and,
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for any s, t ∈ [0, T ], φ, ψ ∈ V ,

E
[
W̃s(φ)W̃t(ψ)

]
= E

[(
∞∑
j=1

Bj
s⟨φ, ej⟩V

)(
∞∑
i=1

Bi
t⟨ψ, ei⟩V

)]
=
∑
i,j

⟨φ, ej⟩V ⟨ψ, ei⟩VE
[
Bj

sB
i
t

]
=
∑
i,j

⟨φ, ej⟩V ⟨ψ, ei⟩V (s ∧ t)δij

= (s ∧ t)
∞∑
j=1

⟨φ, ej⟩V ⟨ψ, ej⟩V

= (s ∧ t)⟨φ, ψ⟩V .

As for the second part, fix h ∈ H and let Xj =
∫ T

0
⟨h(s, ∗), ej⟩V dBj

s . The fact
that these Itô integrals are well defined (the integrand is a function satisfying the
conditions to be Itô integrable) is a consequence of the fact that h and ⟨h(s, ∗), ej⟩V
are deterministic (so there is no need to worry about the measurability conditions)
and, for the same reason,

E
[∫ T

0

⟨h(s, ∗), ej⟩2V ds
]
≤
∫ T

0

∞∑
j=1

⟨h(s, ∗), ej⟩2V ds

=

∫ T

0

||h(s, ∗)||2V ds

=

∫ T

0

∫
D

h2(s, x)dsdx

= ||h||2H <∞.

Moreover, the fact that the integrand is deterministic implies that, for each j ∈
N, the random variable Xj is a centered normal random variable with variance∫ T

0
⟨h(s, ∗), ej⟩2V ds.
Now, if i ̸= j, by the observation made in (2.3.4) and the covariation formula

(Theorem 2.3.10),

E [XiXj] = E
[∫ T

0

⟨h(s, ∗), ei⟩V ⟨h(s, ∗), ej⟩V d⟨Bi, Bj⟩s
]
= 0.

Where, again, we have used (2.3.4) and the independence of the Brownian motions
Bi and Bj to conclude that ⟨Bi, Bj⟩s = 0 for all s ∈ [0, T ].

51



On the other hand, by the isometry formula for the Itô integral and Parseval’s
identity,

∞∑
j=1

E
[
X2

j

]
=

∞∑
j=1

∫ T

0

⟨h(s, ∗), ej⟩2V ds =
∫ T

0

||h(s, ∗)||2V ds = ||h||2H <∞.

Hence, by the Khintchine-Kolmogorov convergence theorem, the series in (3.1.5) con-
verges P-a.s. and in L2(Ω). Given that the L2(Ω)-limit of Gaussian random variables
is Gaussian, we obtain that W̃ (h) is Gaussian.

Now, for h, g ∈ H,

E
[
W̃ (h)W̃ (g)

]
= E

[(
∞∑
j=1

∫ T

0

⟨h(s, ∗), ej⟩V dBj
s

)(
∞∑
i=1

∫ T

0

⟨g(s, ∗), ei⟩V dBi
s

)]

=
∑
i,j

E
[∫ T

0

⟨h(s, ∗), ej⟩V ⟨g(s, ∗), ei⟩V d⟨Bj, Bi⟩s
]

=

∫ T

0

∞∑
j=1

⟨h(s, ∗), ej⟩V ⟨g(s, ∗), ej⟩V ds

=

∫ T

0

ds⟨h(s, ∗), g(s, ∗)⟩V

= ⟨h, g⟩H . (3.1.6)

where the covariation formula (along with the independence of the Brownian motions
Bi and Bj for i ̸= j) and Parseval’s identity have been used.

So {W̃ (h) : h ∈ H} is a centered Gaussian process with covariance function
C(h, g) = ⟨h, g⟩H or, in other words, an isonormal Gaussian process.

It immediately follows from (3.1.6) that W̃ := {W̃ (IA) : A ∈ Bf
[0,T ]×D} is a space-

time white noise. Lastly, we check that {W̃ (h) : h ∈ H} is the isonormal process
associated to the white noise W̃ we have just defined. Given that h 7→ W̃ (h) is linear
and, by definition,

W̃ (IA) =
∞∑
j=0

∫ T

0

⟨IA(s, ∗), ej⟩V dBj
s , A ∈ Bf

[0,T ]×D

we can extend this last definition to finite linear combinations of indicators of disjoint
sets in Bf

[0,T ]×D, using the isometry property seen in (3.1.6) for these linear combina-

tions and the fact that they are dense in H, we conclude that {W̃ (h) : h ∈ H} is the
isonormal process associated to W̃ as desired.
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Proof of (iii):
Recall that now Bj

s = Ws(ej) = W (I[0,s](·)ej(∗)). Let A = [0, t] × F ∈ Bf
[0,T ]×D

with t ∈ [0, T ] and F a Borel subset of D, we have, by definition of W̃ and linearity
and continuity of W ,

W̃ (A) = W̃ (IA)

=
∞∑
j=1

∫ T

0

I[0,t](s)⟨IF , ej⟩V dWs(ej)

=
∞∑
j=1

⟨IF , ej⟩V
∫ t

0

dWs(ej)

=
∞∑
j=1

⟨IF , ej⟩VWt(ej)

=
∞∑
j=1

⟨IF , ej⟩VW (I[0,t](·)ej(∗))

= W

(
I[0,t](·)

[
∞∑
j=1

⟨IF , ej⟩V ej(∗)

])
= W (I[0,t](·)IF (∗))
= W (A).

Hence, W̃ (A) = W (A) for A in the generating class of Bf
[0,T ]×D, implying that W̃ and

W coincide in all Bf
[0,T ]×D.

With this, we are ready to give a rigorous definition of the stochastic integral with
respect to space-times white noise.

3.2 Stochastic integral with respect to space-time

white noise

3.2.1 The stochastic integral

The results seen in Lemma 3.1.5 might seem a bit futile or unrelated to the topic
of constructing a stochastic integral at first sight since they only give a couple of
properties regarding the white-noise and the isonormal process.

Recall, however, that the isonormal at some function h ∈ H can be thought as
a Wiener integral (see Eq.(3.1.1), for instance). With this interpretation, equation
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(3.1.5) can be interpreted as a representation of the stochastic integral of h with
respect to a space-time white noise. This representation, that might seem a bit
arbitrary, is nothing but an analogous of the classical Parseval’s identity in V = L2(D)
in the context of stochastic analysis. Indeed, for f, g ∈ H, we can write∫ T

0

∫
D

f(s, y)g(s, y)dsdy =
∞∑
j=1

∫ T

0

⟨f(s, ∗), ej⟩V ⟨g(s, ∗), ej⟩V ds.

Now, if we take g(s, y)dsdy = W (ds, dy), then we can think that

⟨g(s, ∗), ej⟩V ds =
∫
D

g(s, y)ej(y)dsdy

= d

(∫ s

0

∫
D

ej(y)g(r, y)drdy

)
= d

(∫ s

0

∫
D

ej(y)W (dr, dy)

)
= d

(∫ T

0

∫
D

I[0,s](r)ej(y)W (dr, dy)

)
= dW (I[0,s](·)ej(∗))
= dWs(ej).

So ∫ T

0

∫
D

f(s, y)W (ds, dy) =
∞∑
j=1

∫ T

0

⟨f(s, ∗), ej⟩V dWs(ej).

In fact, this last equation (or Eq.(3.1.5)) will motivate the definition of the stochastic
integral, where we will extend the validity of such equations to random functions f
satisfying some measurability and integrability conditions, as in the case of the usual
Itô integral.

In this case, the class of integrable stochastic processesG = {G(s, y) : s ∈ [0, T ], y ∈
D} will be such that (in the following, BA denotes the Borel σ-field on A)

(i) The map (s, y, ω) 7→ G(s, y, ω) from [0, T ] ×D × Ω into R is B[0,T ] × BD × F -
measurable (it is jointly measurable).

(ii) For each s ∈ [0, T ], the map (y, ω) 7→ G(s, y, ω) from D ×Ω into R is BD ×Fs-
measurable (it is adapted to the filtration {Fs}s satisfying the conditions stated
before Lemma 3.1.5).

(iii) E
[∫ T

0

∫
D
G2(s, y)dyds

]
<∞ (the process is square integrable).
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From condition (iii), we have that the map G(s, ∗, ω) belongs to the Hilbert space
V = L2(D) for dsdP-a.a. (dsdP-almost all) (s, ω) ∈ [0, T ]× Ω, so

G(s, ∗, ω) =
∞∑
j=1

⟨G(s, ∗, ω), ej⟩V ej(∗), dsdP-a.a.

Where {ej : j ≥ 1} is a complete orthonormal basis of V and the series converges in
V .

Definition 3.2.1. Let G = {G(s, y) : s ∈ [0, T ] × y ∈ D} be a stochastic process
verifying conditions (i)-(iii), then the stochastic integral with respect to the space-
time white noise W is the random variable

(G ·W )T :=

∫ T

0

∫
D

G(s, y)W (ds, dy) :=
∞∑
j=1

∫ T

0

⟨G(s, ∗), ej⟩V dWs(ej) (3.2.1)

where the series converges in L2(Ω).

Before we give a couple of properties regarding the integral, we have to make sure
that it is indeed well defined.

First we start by checking that the Itô integrals
∫ T

0
⟨G(s, ∗), ej⟩V dWs(ej), j ≥ 1

are well defined for such G. According to assumption (i) that G must satisfy, we have

(s, ω) 7→ ⟨G(s, ∗), ej⟩V =

∫
D

G(s, y, ω)ej(y)dy

is B[0,T ] × F -measurable (this is part of the content of Fubini’s theorem). Moreover,
by assumption (ii) satisfied by G, for fixed s ∈ [0, T ], the map ω 7→ ⟨G(s, ∗, ω), ej⟩V
is Fs-measurable. Finally, by the third assumption and Bessel’s inequality,

E
[∫ T

0

⟨G(s, ∗), ej⟩2V ds
]
≤ E

∫ T

0

||G(s, ∗)||2V ds = E
[
||G||2H

]
<∞.

So the requirements for ⟨G(s, ∗), ej⟩V to be Itô integrable are fulfilled.
We now see that the series does converge in L2(Ω). Indeed, given N > M ≥ 1, by

the independence of the Brownian motions {Ws(ej) : s ∈ [0, T ], j ≥ 1} and Tonelli’s
theorem,

E

( N∑
j=M+1

∫ T

0

⟨G(s, ∗), ej⟩V dWs(ej)

)2
 =

N∑
j=M+1

E
[∫ T

0

⟨G(s, ∗), ej⟩2V ds
]

= E

[∫ T

0

(
N∑

j=M+1

⟨G(s, ∗), ej⟩2V

)
ds

]
.
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Now observe that, for each N,M ,
∑N

j=M+1⟨G(s, ∗), ej⟩2V ≤ ||G(s, ∗)||2V by Parseval’s
identity. By the third condition that G must satisfy, we can apply the dominated
convergence theorem and the fact that

∑N
j=M+1⟨G(s, ∗), ej⟩2V is the tail of a convergent

series to conclude that{
n∑

j=1

∫ T

0

⟨G(s, ∗), ej⟩V dWs(ej) : n ≥ 1

}

is a Cauchy sequence in L2(Ω) and hence, that it converges in L2(Ω).
Observe that from this we cannot conclude, as in Lemma 3.1.5, that the se-

ries converges P-a.s. as well, since there is no guarantee that the random variables∫ T

0
⟨G(s, ∗), ej⟩V dWs(ej), j ≥ 1, are mutually independent nor that they are centered

(hence, the Khintchine-Kolmogorov convergence theorem need not hold in this set-
ting). However, the same computations seen in Lemma 3.1.5 show that the terms in
the series are pairwise orthogonal in L2(Ω) due to the independence of the Brownian
motions {Ws(ej) : s ∈ [0, T ], j ≥ 1}.

This last observation, with the fact that L2(Ω) convergence implies the conver-
gence of the corresponding norms, leads to the following result:

Proposition 3.2.1. The stochastic integral satisfies the following isometry property:

E

[(∫ T

0

∫
D

G(s, y)W (ds, dy)

)2
]
= E

[∫ T

0

||G(s, ∗)||2V ds
]
= E

[
||G||2H

]
.

Observe that if G ∈ H is deterministic, then Lemma 3.1.5 gives that (G ·W )T =
W (G), where {W (h) : h ∈ H} is the isonormal Gaussian process on H. Thus, the
given definition of stochastic integral is compatible with the construction of the isonor-
mal process and extends it to non-deterministic functions.

Lastly, we check that the definition does not depend on the choice of the orthonor-
mal basis {ej : j ≥ 1} in V .

Lemma 3.2.1. The definition of the stochastic integral does not depend on the par-
ticular orthonormal basis in V .

Proof. Consider another orthonormal basis {vi : i ≥ 1} in V and write G(s, ∗) =

56



∑∞
i=1⟨G(s, ∗), vi⟩V vi(∗). Assuming that the series and integrals can be permuted,

∞∑
j=1

∫ T

0

⟨G(s, ∗), ej⟩V dWs(ej) =
∞∑
j=1

∫ T

0

〈
∞∑
i=1

⟨G(s, ∗), vi⟩V vi, ej

〉
V

dWs(ej)

=
∑
i,j

∫ T

0

⟨G(s, ∗), vi⟩V ⟨vi, ej⟩V dWs(ej)

=
∞∑
i=1

∫ T

0

⟨G(s, ∗), vi⟩V

(
∞∑
j=1

⟨vi, ej⟩V dWs(ej)

)
.

The goal now is to show that, formally speaking,

∞∑
j=1

⟨vi, ej⟩V dWs(ej) = dWs(vi).

Since the map φ 7→ Ws(φ) is linear and continuous, we have that vi =
∑∞

j=1⟨vi, ej⟩V ej
(where the convergence is in V ) implies

Ws(vi) =
∞∑
j=1

⟨vi, ej⟩VWs(ej)

where this last series converges in L2(Ω) and P-a.s. Let g = {gs : s ∈ [0, T ]} ∈
L2([0, T ]× Ω) be a jointly measurable, adapted and real-valued process (at the end,
gs = ⟨G(s, ∗), vi⟩V ), we want to show that, for each i ≥ 1,∫ T

0

gsdWs(vi) =
∞∑
j=1

gs⟨vi, ej⟩V dWs(ej) (3.2.2)

where the series converges in L2(Ω). If gs = XI[s0,t0)(s) with X a bounded Fs0-
measurable random variable and 0 ≤ s0 < t0 ≤ T , then∫ T

0

gsdWs(vi) = X (Wt0(vi)−Ws0(vi))

= X
∞∑
j=1

⟨vi, ej⟩V (Wt0(ej)−Ws0(ej))

=
∞∑
j=1

∫ T

0

gs⟨vi, ej⟩V dWs(ej).
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For such genera g, we know that there is a sequence of elementary processes {gns : s ∈
[0, T ], n ≥ 1} such that

E
[∫ T

0

(gs − gns )
2ds

]
n→∞−−−→ 0.

For these gn, the claim holds by linearity and, by the isometry property, we have

E

[(∫ T

0

(gs − gns )dWs(vi)

)2
]
= E

[∫ T

0

(gs − gns )
2ds

]
n→∞−−−→ 0.

Now, using the independence of the processes {Ws(ej) : s ∈ [0, T ], j ≥ 1}, Tonelli’s
theorem and Parseval’s identity,

E

( ∞∑
j=1

∫ T

0

(gs − gns )⟨vi, ek⟩V dWs(ej)

)2
 = E

[
∞∑
j=1

∫ T

0

(gs − gns )
2⟨vi, ej⟩2V ds

]

=
∞∑
j=1

⟨vi, ej⟩2VE
[∫ T

0

(gs − gns )
2ds

]

= E
[∫ T

0

(gs − gns )
2ds

]
n→∞−−−→ 0.

Hence ∫ T

0

gns dWs(vi) =
∞∑
j=1

∫ T

0

gns ⟨vi, ej⟩V dWs(ej)

converges, in L2(Ω), to∫ T

0

gsdWs(vi) and to
∞∑
j=1

∫ T

0

gs⟨vi, ej⟩V dWs(ej)

as n approaches infinity. Thus, by the P-a.s. uniqueness of the L2(Ω), (3.2.2) holds.
The only thing left to do is to justify the changes in the order of summation and

integration. To do so, fix M,N ≥ 1, then

M∑
j=1

∫ T

0

〈
N∑
i=1

⟨G(s, ∗), vi⟩V vi, ej

〉
V

dWs(ej) =
N∑
i=1

M∑
j=1

∫ T

0

⟨G(s, ∗), vi⟩V ⟨vi, ej⟩V dWs(ej).

(3.2.3)
FixingN and lettingM → ∞ we obtain that the right-hand side of this last expression
tends, in L2(Ω), to

N∑
i=1

∫ T

0

⟨G(s, ∗), vi⟩V dWs(vi) (3.2.4)
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by what we have just shown. On the other hand, the left-hand side of (3.2.3) con-
verges, as M → ∞, to∫ T

0

∫
D

(
N∑
i=1

⟨G(s, ∗), vi⟩V vi(y)

)
W (ds, dy) (3.2.5)

in L2(Ω) and by definition of the stochastic integral. On the other hand, given that

G(s, ∗) = V − lim
N→∞

N∑
i=1

⟨G(s, ∗), vi⟩V vi(∗)

for dsdP-a.a. (s, ω) ∈ [0, T ]× Ω, we have

lim
N→∞

E

∫ T

0

∣∣∣∣∣
∣∣∣∣∣G(s, ∗)−

N∑
i=1

⟨G(s, ∗), vi⟩V vi

∣∣∣∣∣
∣∣∣∣∣
2

V

ds

 = 0.

Hence, by the isometry formula (Proposition 3.2.1), taking limits as N approaches
infinity in (3.2.5) and (3.2.4) leads to∫ T

0

∫
D

G(s, y)W (ds, dy) =
∞∑
i=1

∫ T

0

⟨G(s, ∗), vi⟩V dWs(vi),

as was to be shown.

If 0 ≤ r ≤ t ≤ T and A ⊂ [0, T ]×D is a Borel set, then we will write∫ t

r

∫
D

G(s, y)W (ds, dy) :=

∫ T

0

I[r,t](s)G(s, y)W (ds, dy)

and ∫
A

G(s, y)W (ds, dy) :=

∫ T

0

∫
D

IA(s, y)G(s, y)W (ds, dy),

which are well defined whenever G satisfies the hypothesis previously mentioned.

3.2.2 The indefinite integral

As in the case of the Itô integral, one can consider an integral process {(G ·W )t : t ∈
[0, T ]} that will result in a continuous square integrable martingale. To see this, we
will use the fact that the space of continuous square integrable {Ft}t-martingales
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in [0, T ] vanishing at 0, where indistinguishable processes are identified, is a Hilbert
space with respect to the inner product

⟨M,N⟩ := E [MTNT ] = E [⟨M,N⟩T ] .

For each n ≥ 1, consider the continuous square integrable martingale

Zn =

{
Zn

t =
n∑

j=1

∫ t

0

⟨G(s, ∗), ej⟩V dWs(ej) : t ∈ [0, T ]

}
.

Which is continuous because we are considering the continuous version of the Itô
integrals involved and we are taking finite linear combinations of them. By the
independence of the processes {Ws(ej) : s ∈ [0, T ], j ≥ 1}, the quadratic variation of
these martingales will be given by

⟨Zn⟩ =

{
⟨Zn

t ⟩ =
n∑

j=1

∫ t

0

⟨G(s, ∗), ej⟩2V ds : t ∈ [0, T ]

}
.

Since {Zn
T}n converges in L2(Ω) to (G·W )T , we deduce that the sequence of continuous

square integrable martingales {Zn}n converges in the corresponding space to a certain
limit denoted by G ·W = {(G ·W )t : t ∈ [0, T ]} which will be a continuous square
integrable martingale vanishing at t = 0. This last process will be called the indefinite
integral process of G with respect to W . Since Zn and G ·W are both martingales,
this in particular implies that, by Doob’s maximal inequality,

E
[
((G ·W )t − Zn

t )
2] ≤ E

[
sup

0≤s≤T
((G ·W )s − Zn

s )
2

]
≤ E

[
((G ·W )T − Zn

T )
2] n→∞−−−→ 0

for each t ∈ [0, T ]. Hence, we have that Zn
t converges to (G · W )t uniformly in

t ∈ [0, T ].

Lemma 3.2.2. For each t ∈ [0, T ],

(G ·W )t =

∫ T

0

∫
D

G(s, y)I[0,t](s)W (ds, dy), P-a.s.

The main point being that the random variable in left-hand side of the equality corre-
sponds to the limit in the space of continuous square integrable martingales vanishing
at zero, while the right-hand side is the corresponds to the stochastic integral in Def-
inition 3.2.1.
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Proof. Using Definition 3.2.1, we have∫ T

0

∫
D

G(s, y)I[0,t](s)W (ds, dy) = L2(Ω)− lim
n→∞

n∑
j=1

∫ T

0

⟨I[0,t](s)⟨G(s, ∗), ej⟩V dWs(ej)

= L2(Ω)− lim
n→∞

n∑
j=1

∫ t

0

⟨G(s, ∗), ej⟩V dWs(ej)

= L2(Ω)− lim
n→∞

Zn
t

= (G ·W )t.

The result follows from the fact that the L2(Ω) limit of a sequence of random variables
is P-a.s. unique.

Proposition 3.2.2. The quadratic variation process of G ·W is{∫ t

0

||G(s, ∗)||2V ds : t ∈ [0, T ]

}
.

Proof. Let us set Zt = (G ·W )t. Observe that, by Cauchy-Schwarz’s and the triangle
inequalities,

E
[∣∣(Zn

t )
2 − Z2

t

∣∣] = E [|Zn
t − Zt| · |Zn

t + Zt|]
≤ ||Zn

t − Zt||L2(Ω) ||Z
n
t + Zt||L2(Ω)

≤ ||Zn
t − Zt||L2(Ω)

(
||Zn

t ||L2(Ω) + ||Zt||L2(Ω)

)
.

Now, on one hand, by (2.3.4),

E
[
(Zn

t )
2] = E

[
n∑

j=1

∫ t

0

⟨G(s, ∗), ej⟩2V ds

]
≤ E

[∫ t

0

||G(s, ∗)||2V ds
]
.

On the other hand, by the previous lemma and the isometry formula (Proposition
3.2.1),

E
[
Z2

t

]
= E

[∫ t

0

||G(s, ∗)||2V ds
]
.

So, all in all,

E
[∣∣(Zn

t )
2 − Z2

t

∣∣] ≤ 2

(
E
[∫ t

0

||G(s, ∗)||2V ds
])1/2

||Zn
t − Zt||L2(Ω)

n→∞−−−→ 0.

So we have that, for each t ∈ [0, T ], (Zn
t )

2 converges to Z2
t in L1(Ω).
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Now observe that the process

X =

{
Xt :=

∞∑
j=1

∫ t

0

⟨G(s, ∗), ej⟩2V ds =
∫ t

0

||G(s, ∗)||2V ds : t ∈ [0, T ]

}

is adapted, continuous, non-decreasing and vanishing at t = 0. Moreover, it satisfies

E [|⟨Zn⟩t −Xt|] = E

[
∞∑

j=n+1

∫ t

0

⟨G(s, ∗), ej⟩2V ds

]
n→∞−−−→ 0.

Where the limit follows from the fact that
∑∞

j=n+1

∫ t

0
⟨G(s, ∗), ej⟩2V ds is the tail of a

convergent series (by Parseval’s identity) and that it can be bounded by
∫ t

0
||G(s, ∗)||2V ds,

which has finite expected value (so we can apply the dominated convergence theorem).
Thus, ⟨Zn⟩t converges to Xt in L

1(Ω).
With this in mind, we conclude that

E
[∣∣(Zn

t )
2 − ⟨Zn⟩t − Z2

t +Xt

∣∣] ≤ E
[∣∣(Zn

t )
2 − Z2

t

∣∣]+ E [|⟨Zn⟩t −Xt|]
n→∞−−−→ 0.

Thus, the process {Z2
t −Xt : t ∈ [0, T ]} is the L1(Ω)-limit of continuous martingales

and hence, a continuous martingale itself (with respect to the same filtration). By
uniqueness of the quadratic variation, we conclude that X is the quadratic variation
process of G ·W .

3.2.3 Some other properties

Given that the stochastic integral is defined via Itô integrals, many of the properties
satisfied by the latter are passed onto the former. We shall mention a couple of them
in this section without giving the proofs.

Lemma 3.2.3. Let G(1) and G(2) be two stochastic processes satisfying conditions (i)-
(iii) so that their stochastic integrals are well defined and such that, on some F ∈ F ,
for dP-a.a. ω ∈ F , G(1)(s, y, ω) = G(2)(s, y, ω) for dsdy-a.a. (s, y) ∈ [0, T ] ×D (the
sample paths are the same P-a.s. in F ), then, for all t ∈ [0, T ],

IF
∫ t

0

∫
D

G(1)(s, y)W (ds, dy) = IF
∫ t

0

∫
D

G(2)(s, y)W (ds, dy), P-a.s.

Lemma 3.2.4. Let D1 ⊂ D be a domain (non-empty connected open set) and {vi : i ≥
1} an orthonormal basis of V1 = L2(D1). Let G = {G(s, y) : (s, y) ∈ [0, T ] ×D1} be
a stochastic process satisfying assumptions (i)-(iii) in D1 instead of D so that the
stochastic integral is well defined. We extend G to [0, T ] ×D by setting G(s, y) = 0
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for all s ∈ [0, T ], y ∈ D\D1. Then assumptions (i)-(iii) are fulfilled by the extension
of G in D and

∞∑
i=1

∫ T

0

⟨G(s, ∗), vi⟩V1dWs(vi) =
∞∑
j=1

∫ T

0

⟨G(s, ∗), ej⟩V dWs(ej)

where both series converge in L2(Ω).

Lemma 3.2.5. Let τ be an {Ft}t-stopping time (where the filtration satisfies the
conditions (i) and (ii) seen before Lemma 3.1.5) with values in [0, T ] and let G be a
stochastic process satisfying conditions (i)-(iii) so that its stochastic integral is well
defined. Then

(G ·W )τ =

∫ T

0

∫
D

I[0,τ ](s)G(s, y)W (ds, dy), P-a.s.

3.2.4 An approximation result

As in the case of the stochastic integral with respect to the Brownian motion, in
this section we will prove an analogous result to the one seen in Section 2.3.4 for the
Gaussian white noise. That is, we will be considering a sequence of random noise
{Wn}n that will approximate in some sense a Gaussian space-time white noise W
and see that, for some suitable family of processes f = {f(t, x) : (t, x) ∈ [0, T ]×D},
D ⊂ Rk, the laws of the integrals of f with respect to the noises Wn converge, as n
approaches infinity, to the law of the integral of f with respect to the Gaussian white
noise.

For this part, we will follow the ideas in [2], but we will assume some extra
regularity on the process f in order to simplify the proofs. Thus, from now on, we
will assume that k = 1 and that D = [0, L] for some L > 0 and that the process f
is deterministic and continuous. This in particular implies that the function f is in
L2([0, T ]× [0, L]) and that, by the observation made right after Proposition 3.2.1 and
(3.1.3), the stochastic integral of f with respect to the space-time white noise can be
thought as an integral with respect to the Brownian sheet. Hence, we need to provide
an example of sequence of stochastic processes that approximates the Brownian sheet.
For this last purpose, we recall that the main result of Section 2.3.4, Theorem 2.3.11,
was motivated by the fact that the standard Brownian motion could be approximated
by the random walk. A similar result also holds in the plane, more particularly,

Theorem 3.2.1. Let {Zk}k∈N2 be a sequence of i.i.d. centered random variables with
unitary variance. For any n ∈ N we define

θn(t, x) = n
∑

k=(k1,k2)∈N2

ZkI[k1−1,k1)×[k2−1,k2)(tn, xn), (t, x) ∈ [0, T ]× [0, L]
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and

ζn(t, x) =

∫ t

0

∫ x

0

θn(s, y)dyds, (t, x) ∈ [0, T ]× [0, L].

Then ζn = {zn(t, x) : (t, x) ∈ [0, T ]×[0, L]} converges in law, in the space of continuous
functions C([0, T ]× [0, L]), to a Brownian sheet as n approaches infinity.

For a proof of this result we refer to [12], Corollary 1 in page 683. Observe that
this, in particular, implies that the finite dimensional distributions of ζn converge in
law to the ones of the Brownian sheet as n approaches infinity.

As in the proof of Theorem 2.3.11, we will require the extra condition that
E [Zm

k ] <∞ for some even integer m ∈ N large enough.
With all this, we are now ready to state the main result of this section.

Theorem 3.2.2. Let f = {f(t, x) : (t, x) ∈ [0, T ]× [0, L]} be a deterministic, stochas-
tic process and, for each n ∈ N, let

In(t, x) =

∫ t

0

∫ x

0

f(s, y)θn(s, y)dyds.

Then, the processes In = {In(t, x) : (t, x) ∈ [0, T ] × [0, L]} converge in law to the
process I = {I(t, x) : (t, x) ∈ [0, T ]× [0, L]} defined by

I(t, x) =

∫ t

0

∫ x

0

f(s, y)W (ds, dy),

in the space of continuous functions C([0, T ]× [0, L]), as n approaches infinity.

To prove this result, we will again prove that the sequence {In}n is tight and
that the corresponding finite dimensional distributions converge to the ones of I. In
the meantime, we will be proving as well that, for each n ∈ N, the process In has a
continuous modification, so that we can think of such processes as random functions
in C([0, T ]× [0, L]).

To prove the tightness of the sequence, we will be using the following result, which
generalizes the already used Billingsley’s Criterion (see [13], Proposition 2.3 in page
95).

Theorem 3.2.3. Let {Xn}n∈N be a family of random functions in C([0, T ] × [0, L]).
The family is tight if there exist q, p > 0, δ > 2 and a positive constant C such that

sup
n≥1

E [|Xn(0, 0)|q] <∞,

and, for every t, s ∈ [0, T ] and x, y ∈ [0, L],

sup
n≥1

E [|Xn(t, x)−Xn(s, y)|p] ≤ C (|x− y|+ |t− s|)δ . (3.2.6)
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In our setting, the first condition is clearly satisfied, so we will only have to worry
about the second one.

Now recall that in the proof of Theorem 2.3.11, it sufficed to prove that, for any
0 ≤ t1 < ... < tm ≤ T , the sequence of random vectors

I
(n)
f :=

(
I
(n)
t1 , I

(n)
t2 − I

(n)
t1 , ..., I

(n)
tm − I

(n)
tm−1

)
converged in law to the random vector

If :=
(
It1 , It2 − It1 , ..., Itm − Itm−1

)
as n approaches infinity. This was done so that we could consider a slight modification
of the vectors I

(n)
f , the vectors ∆(n), which had the property that its components were

mutually independent. To do this, the fact that we were working in a one dimensional
space, [0, T ], was strongly used. Unfortunately, there is no natural way to extend these
arguments in the context of several dimensions, so we will have to resort to other types
of arguments to prove the convergence of the finite dimensional distributions. This
is the purpose of the lemma that we state below.

Lemma 3.2.6. Let (F, || · ||) be a normed vector space and {Jn}n∈N and J linear
maps from F to L1(Ω) such that

sup
n≥1

E [|Jn(f)|] ≤ C||f ||

and
E [|J(f)|] ≤ C||f ||

for any f ∈ F and for some positive constant C. Moreover, assume that there is a
dense subset D of F with respect to the norm || · || such that Jn(f) converges in law to
J(f) as n approaches infinity for any f ∈ D. Then, for any f ∈ F , Jn(f) converges
in law to J(f) as n approaches infinity.

Proof. Recall that a sequence of random variables {Xn}n∈N converges in law to a
random variable X if, and only if, for any Lipschitz function g : R → R,

E [g(Xn)]
n→∞−−−→ E [g(X)] .

Thus, we shall see that, for any ε > 0, there is n ∈ N large enough such that

|E [g (Jn(f))]− E [g (J(f))]| < ε, (3.2.7)
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where g is any Lipschitz function as before. Consider any h ∈ D such that ||f −h|| <
ε

3LgC
, where Lg > 0 is the Lipschitz constant of g, and apply the triangle inequality

to obtain

|E [g (Jn(f))]− E [g (J(f))]| ≤ |E [g (Jn(f))]− E [g (Jn(h))]|
+ |E [g (Jn(h))]− E [g (J(h))]|
+ |E [g (J(h))]− E [g (J(f))]| .

Now observe that

|E [g (Jn(f))]− E [g (Jn(h))]| ≤ E [|g (Jn(f))− g (Jn(h))|]
≤ LgE [|Jn(f − h)|]

≤ LgC||f − h|| < ε

3

Similarly,

|E [g (J(f))]− E [g (J(h))]| ≤ LgC||f − h|| < ε

3
.

Finally, given that Jn(h) converges in law to J(h) for h ∈ D, we have that, for n
large enough,

|E [g (Jn(h))]− E [g (J(h))]| < ε

3
.

Thus, for n large enough, we obtain (3.2.7) as desired.

The following, and last, preliminary result we introduce allows us to bound the
moments involved in (3.2.6) and to apply the previous lemma in the case where
(F, ||·||) = (L2([0, T ]× [0, L]), ||·||2) where ||·||2 is the usual norm in L2([0, T ]× [0, L]).

Lemma 3.2.7. There is a positive constant Cm such that, for any function f ∈
L2([0, T ]× [0, L]), we have

E
[(∫ T

0

∫ L

0

f(t, x)θn(t, x)dxdt

)m]
≤ Cm

(∫ T

0

∫ L

0

f 2(t, x)dxdt

)m
2

for any n ∈ N.

Proof. We have that

E
[(∫ T

0

∫ L

0

f(t, x)θn(t, x)dxdt

)m]
(3.2.8)

=

∫
[0,T ]m×[0,L]m

f(t1, x1) · ... · f(tm, xm)E

[
m∏
j=1

θn(tj, xj)

]
dt1...dtmdx1...dxm,
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with

E

[
m∏
j=1

θn(tj, xj)

]
= nm

∑
k1,...,km∈N2

E [Zk1 · ... · Zkm ]
m∏
j=1

I[k1j−1,k1j )
(tjn)I[k2j−1,k2j )

(xjn).

Now observe that E [Zk1 · ... · Zkm ] = 0 when there is some j ∈ {1, ...,m} such that
kj ̸= ki for all i ∈ {1, ...,m}\{j}. Thus, we have that

E

[
m∏
j=1

θn(tj, xj)

]
= nm

∑
(k1,...,km)∈Am

E [Zk1 · ... · Zkm ]
m∏
j=1

I[k1j−1,k1j )
(tjn)I[k2j−1,k2j )

(xjn)

where Am is the set of (k1, ..., km) ∈ (N2)
m

such that for all l ∈ {1, ...,m}, there is
some j ∈ {1, ...,m}\{l} such that kj = kl. In this set Am, we have that

|E [Zk1 · ... · Zkm ]| ≤ E [|Zk1 · ... · Zkm |] = E [|Z|α1 ] · ...E [|Z|αr ]

where αi ∈ {0, 1, ...,m} for each i ∈ {1, ..., r}, α1 + ... + αr = m and Z is a random
variable with the same law as Zk for each k ∈ N2. Given that E [Zm] < ∞, we have
that |E [Zk1 · ... · Zkm ]| ≤ Cm for some positive constant Cm which does not depend
on α1, ..., αr and for all (k1, ..., km) ∈ Am. Thus, we have∣∣∣∣∣E

[
m∏
j=1

θn(tj, xj)

]∣∣∣∣∣ ≤ nmCm

∑
(k1,...,km)∈Am

m∏
j=1

I[k1j−1,k1j )
(tjn)I[k2j−1,k2j )

(xjn).

Now observe that∑
(k1,...,km)∈Am

m∏
j=1

I[k1j−1,k1j )
(tjn)I[k2j−1,k2j )

(xjn) ≤ IDm(t1, ..., tm;x1, ..., xm)

where Dm denotes the set of points (t1, ..., tm;x1, ..., xm) ∈ [0, T ]m× [0, L]m such that,
for all l ∈ {1, ...,m}, there is some j ∈ {1, ...,m}\{l} such that |tj − tl| < n−1 and
|xj − xl| < n−1 and that, if there is some r ̸= j, l such that |tl − tr| < n−1 and
|xl − xr| < n−1, then |tj − tr| < 2n−1 and |xj − xr| < 2n−1. Indeed, suppose there is
some (k1, ..., km) ∈ Am such that

m∏
j=1

I[k1j−1,k1j )
(tjn)I[k2j−1,k2j )

(xjn) ̸= 0.

This in particular means that I[k1j−1,k1j )
(tjn)I[k2j−1,k2j )

(xjn) ̸= 0 for all j ∈ {1, ...,m}
and thus, that

(tj, xj) ∈
[
k1j − 1

n
,
k1j
n

)
×
[
k2j − 1

n
,
k2j
n

)
.
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Now recall that, in Am, for each j ∈ {1, ...,m}, there is some l ∈ {1, ...,m}\{j} such
that kl = kj. For such pair (j, l), we will have that, letting kl = kj = k = (k1, k2),

(tj, xj), (tl, xl) ∈
[
k1 − 1

n
,
k1

n

)
×
[
k2 − 1

n
,
k2

n

)
.

Hence, |tj − tl| < n−1 and |xj − xl| < n−1. As for the second part, suppose there is
some r ̸= j, l verifying the previously mentioned property. Then, the claim follows
directly from the triangle inequality.

Next, we have that IDm(t1, ..., tm;x1, ..., xm) can be bounded by a finite sum (whose
number of summands depends only on m) of products of indicators of the form

I[0,n−1)2(|tj − tl|, |xj − xl|), I[0,2n−1)2(|tj − tr|, |xj − xr|),

or

I[0,n−1)2(|tj − tl|, |xj − xl|)I[0,n−1)2(|tl − tr|, |xl − xr|)I[0,2n−1)2(|tj − tr|, |xj − xr|)

Moreover, in each product, all of the variables (t1, ..., tm;x1, ..., xm) appear and they
do it in only one of the previously specified indicators.
Indeed, in Dm, it can happen that, for l = 1, the corresponding j is 2 and that
there is no r ̸= j, l such that |tl − tr| < n−1 and |xl − xr| < n−1, that for l = 3,
the corresponding j is 5 and that for r = 4 and r = 6, we have |tl − tr| < n−1 and
|xl−xr| < n−1, that for l = 7, the corresponding j is 8 and that r = 9 is the only one
that satisfies |tl − tr| < n−1 and |xl − xr| < n−1, etc. In this case, the corresponding
product of indicators is

I[0,n−1)2(|t2 − t1|, |x2 − x1|) · I[0,n−1)2(|t5 − t6|, |x5 − x6|) · I[0,2n−1)2(|t3 − t4|, |x3 − x4|)
× I[0,n−1)2(|t8 − t7|, |x8 − x7|)I[0,n−1)2(|t7 − t9|, |x7 − x9|)I[0,2n−1)2(|t8 − t9|, |x8 − x9|)...

The point of doing this being that we can group the pairs (tj, xj) in groups of two or
three. Taking into account all the possibilities (which are finite and depend only on
the number m) leads to the bound for IDm(t1, ..., tm;x1, ..., xm).

Thus, (3.2.8), or its absolute value, can be bounded by a finite sum of products
of terms of the form (up to some positive multiplicative factor Cm)

n2

∫
[0,T ]2×[0,L]2

|f(tj, xj)||f(tl, xl)|I[0,n−1)(|tj− tl|)I[0,n−1)(|xj−xl|)dtjdtldxjdxl, (3.2.9)

n2

∫
[0,T ]2×[0,L]2

|f(tj, xj)||f(tr, xr)|I[0,2n−1)(|tj − tr|)I[0,2n−1)(|xj − xr|)dtjdtrdxjdxr,

(3.2.10)
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or

n3

∫
[0,T ]3×[0,L]3

|f(tj, xj)||f(tl, xl)||f(tr, xr)|

× I[0,n−1)(|tj − tl|)I[0,n−1)(|tl − tr|)I[0,2n−1)(|tj − tr|)
× I[0,n−1)(|xj − xl|)I[0,n−1)(|xl − xr|)I[0,2n−1)(|xj − xr|)dtjdtldtrdxjdxldxr. (3.2.11)

Observe that, in each summand, the total number of terms that constitutes the
product is such that the factors nα, α ∈ {1, 2}, in the previous expressions, when
multiplied, give nm (that is, nα1 · ...nαs = nm, where s is the number of elements
that constitutes each product). Thus, it suffices to show that the first two types of
terms, (3.2.9) and (3.2.10), can be bounded, up to some factor independent of n, by
||f ||22, while the terms of the form (3.2.11) can be bounded, again, up to some factor
independent of n, by ||f ||32.

Using that, for any a, b ≥ 0, ab ≤ 2ab ≤ a2 + b2, we obtain that the integrals in
terms like (3.2.9) can be bounded as follows∫

[0,T ]2×[0,L]2
|f(tj, xj)||f(tl, xl)|I[0,n−1)(|tj − tl|)I[0,n−1)(|xj − xl|)dtjdtldxjdxl

≤
∫
[0,T ]2×[0,L]2

f 2(tj, xj)I[0,n−1)(|tj − tl|)I[0,n−1)(|xj − xl|)dtjdtldxjdxl

+

∫
[0,T ]2×[0,L]2

f 2(tl, xl)I[0,n−1)(|tj − tl|)I[0,n−1)(|xj − xl|)dtjdtldxjdxl

= 2

∫
[0,T ]2×[0,L]2

f 2(tl, xl)I[0,n−1)(|tj − tl|)I[0,n−1)(|xj − xl|)dtjdtldxjdxl

= 2

∫ T

0

∫ L

0

f 2(tl, xl)

(∫ T

0

I[0,n−1)(|tj − tl|)dtj
)(∫ L

0

I[0,n−1)(|xj − xl|)dxj
)
dxldtl

≤ 2

n2

∫ T

0

∫ L

0

f 2(tl, xl)dxldtl.

The second type of terms, (3.2.10), can be treated in a similar way (an extra factor 2
might appear, but this is no problem). Finally, for the integrals in (3.2.11), we have,
using that abc ≤ ab2 + ac2 for any a, b, c ≥ 0,∫

[0,T ]3×[0,L]3
|f(tj, xj)||f(tl, xl)||f(tr, xr)|

× I[0,n−1)(|tj − tl|)I[0,n−1)(|tl − tr|)I[0,2n−1)(|tj − tr|)
× I[0,n−1)(|xj − xl|)I[0,n−1)(|xl − xr|)I[0,2n−1)(|xj − xr|)dtjdtldtrdxjdxldxr
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≤ 2

∫
[0,T ]3×[0,L]3

|f(tl, xl)|f 2(tj, xj)I[0,n−1)(|tj − tl|)I[0,n−1)(|tl − tr|)I[0,2n−1)(|tj − tr|)

× I[0,n−1)(|xj − xl|)I[0,n−1)(|xl − xr|)I[0,2n−1)(|xj − xr|)dtjdtldtrdxjdxldxr

≤ 2

∫
[0,T ]3×[0,L]3

|f(tl, xl)|f 2(tj, xj)I[0,n−1)(|tj − tl|)I[0,n−1)(|tl − tr|)

× I[0,n−1)(|xj − xl|)I[0,n−1)(|xl − xr|)dtjdtldtrdxjdxldxr

= 2

∫
[0,T ]2×[0,L]2

|f(tl, xl)|f 2(tj, xj)I[0,n−1)(|tj − tl|)I[0,n−1)(|xj − xl|)

×
(∫ T

0

I[0,n−1)(|tl − tr|)dtr
)(∫ L

0

I[0,n−1)(|xl − xr|)dxr
)
dtjdtldxjdxl

≤ 2

n2

∫
[0,T ]2×[0,L]2

|f(tl, xl)|f 2(tj, xj)I[0,n−1)(|tj − tl|)I[0,n−1)(|xj − xl|)dtjdtldxjdxl

=
2

n2

∫ T

0

∫ L

0

|f(tl, xl)|

×
(∫ T

0

∫ L

0

f 2(tj, xj)I[0,n−1)(|tj − tl|)I[0,n−1)(|xj − xl|)dxjdtj
)
dxldtl.

By the Cauchy-Schwartz inequality, this last expression can be bounded by

2||f ||2
n2

[∫ T

0

∫ L

0

(∫ T

0

∫ L

0

f 2(tj, xj)I[0,n−1)(|tj − tl|)I[0,n−1)(|xj − xl|)dxjdtj
)2

dxldtl

] 1
2

But∫ T

0

∫ L

0

(∫ T

0

∫ L

0

f 2(tj, xj)I[0,n−1)(|tj − tl|)I[0,n−1)(|xj − xl|)dxjdtj
)2

dxldtl

=

∫
[0,T ]3×[0,L]3

f 2(tj, xj)f
2(tp, xp)I[0,n−1)(|tj − tl|)I[0,n−1)(|xj − xl|)

× I[0,n−1)(|tp − tl|)I[0,n−1)(|xp − xl|)dtjdtpdtldxjdxpdxl

≤
∫
[0,T ]3×[0,L]3

f 2(tj, xj)f
2(tp, xp)I[0,n−1)(|tj − tl|)I[0,n−1)(|xj − xl|)dtjdtpdtldxjdxpdxl

=

∫
[0,T ]2×[0,L]2

f 2(tj, xj)f
2(tp, xp)

×
(∫ T

0

I[0,n−1)(|tj − tl|)dtl
)(∫ L

0

I[0,n−1)(|xj − xl|)dxl
)
dtjdtpdxjdxp

≤ 1

n2

∫
[0,T ]2×[0,L]2

f 2(tj, xj)f
2(tp, xp)dtjdtpdxjdxp =

||f ||42
n2

.
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Proving that terms like (3.2.11) can be bounded, up to some factor, by ||f ||32 and
thus, finishing the proof of this lemma.

With all this, we are now ready to prove Theorem 3.2.2.

Proof of Theorem 3.2.2.

Tightness and existence of a continuous version
For fixed (t, x) ∈ [0, T ]×[0, L], consider the functionHt,x(s, y) = I[0,t](s)I[0,x](y)f(s, y),

(s, y) ∈ [0, T ]× [0, L]. Then, for any (t, x), (t′, x′) ∈ [0, T ]× [0, L], we have that

In(t
′, x′)− In(t, x) =

∫ T

0

∫ L

0

(Ht′,x′(s, y)−Ht,x(s, y)) θn(s, y)dyds.

Since f is continuous, we have that Ht,x ∈ L2([0, T ]× [0, L]) and similarly for Ht′,x′ ,
so their difference will be in L2([0, T ]× [0, L]). Then, by Lemma 3.2.7, we have that

E
[
|In(t′, x′)− In(t, x)|m

]
≤ Cm

(∫ T

0

∫ L

0

(Ht′,x′(s, y)−Ht,x(s, y))
2 dyds

)m
2

(3.2.12)
for some positive constant Cm. Now observe that(
I[0,t′](s)I[0,x′](y)− I[0,t](s)I[0,x](y)

)2 ≤ I[0,t∧t′](s)I[x∧x′,x∨x′](y) + I[t∧t′,t∨t′](s)I[0,x∧x′](y).

One can draw a picture to convince himself about this last inequality. With this in
mind, we have that

(Ht′,x′(s, y)−Ht,x(s, y))
2 ≤ ||f ||2∞

(
I[0,t∧t′](s)I[x∧x′,x∨x′](y) + I[t∧t′,t∨t′](s)I[0,x∧x′](y)

)
,

which implies that (3.2.12) can be bounded by

Cm||f ||m∞
(∫ T

0

∫ L

0

(
I[0,t∧t′](s)I[x∧x′,x∨x′](y) + I[t∧t′,t∨t′](s)I[0,x∧x′](y)

)
dyds

)m
2

≤ Cm||f ||m∞ ((t ∧ t′)|x− x′|+ (x ∧ x′)|t− t′|)
m
2

≤ (T ∨ L)
m
2 Cm||f ||m∞ (|x− x′|+ |t− t′|)

m
2 .

Thus, for m ∈ N even and large enough, we have that the sequence is tight and, by
Kolmogorov’s Continuity Criterion, that there is a continuous version of the processes
In for each n ∈ N.
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Convergence of the finite dimensional distributions
First observe that, by Hölder’s inequality and Lemma 3.2.7,

E

[(∫ T

0

∫ L

0

g(t, x)θn(t, x)dxdt

)2
]
≤
(
E
[(∫ T

0

∫ L

0

g(t, x)θn(t, x)dxdt

)m]) 2
m

≤ Cm

∫ T

0

∫ L

0

g2(t, x)dxdt = Cm||g||22

for some positive constant Cm and for any g ∈ L2([0, T ] × [0, L]). Now consider the
normed space (F, || · ||) = (L2([0, T ]× [0, L]), || · ||2) and the linear operators

Jn(g) =

∫ T

0

∫ L

0

g(s, y)θn(s, y)dyds, J(g) =

∫ T

0

∫ L

0

g(s, y)W (ds, dy).

Which are well defined for any g ∈ F . By the observation we have just made and
Hölder’s (or Cauchy-Schwarz’s) inequality, one has that

sup
n≥1

E [|Jn(g)|] ≤ C||g||2

for some positive constant C and for all g ∈ F . Moreover, Hölder’s inequality again
and the isometry formula, Proposition 3.2.1, imply that

E [|J(g)|] ≤ C||g||2

as well. Now recall that simple functions of the form

g(t, x) =
k−1∑
i=0

giI(ti,ti+1](t)I(xi,xi+1](x) (3.2.13)

with k ≥ 1, g0, ..., gk−1 ∈ R, 0 = t0 < ... < tk = T and 0 = x0 < ... < xk = L are
dense in F with respect to the norm || · ||2.

Now recall that the finite dimensional distributions of a sequence of random func-
tions {Xn}n in C([0, T ] × [0, L]) converge in law to the ones of another random
function X in the same space if, and only if, for any m ≥ 1, a1, ..., am ∈ R and
(s1, y1), ..., (sm, ym) ∈ [0, T ]× [0, L], the random variables

m∑
j=1

ajXn(sj, yj)

converge, in law, to the random variable

m∑
j=1

ajX(sj, yj).
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In our case, Xn = In, so

m∑
j=1

ajXn(sj, yj) =
m∑
j=1

aj

∫ sj

0

∫ yj

0

f(t, x)θn(t, x)dxdt

=

∫ T

0

∫ L

0

(
m∑
j=1

ajI[0,sj ](t)I[0,yj ](x)f(t, x)

)
θn(t, x)dxdt

= Jn(K),

where

K(t, x) = f(t, x)
m∑
j=1

ajI[0,sj ](t)I[0,yj ](x),

which is an element of L2([0, T ] × [0, L]) because f is so. Similarly, we have that,
since X = I,

m∑
j=1

ajX(sj, yj) = J(K)

for the same function K.
So, by Lemma 3.2.6, it suffices to show that the finite dimensional distributions

of Jn(g) converge to the ones of J(g) for g of the form (3.2.13). For such functions
g, one has

Jn(g) =

∫ T

0

∫ L

0

(
k−1∑
i=0

giI(ti,ti+1](t)I(xi,xi+1](x)

)
θn(t, x)dxdt

=
k−1∑
i=0

gi

∫ ti+1

ti

∫ xi+1

xi

θn(t, x)dxdt. (3.2.14)

But notice that

k−1∑
i=0

gi

∫ ti+1

ti

∫ xi+1

xi

θn(t, x)dxdt =
k−1∑
i=0

gih(Y
n
1 (i), Y

n
2 (i), Y

n
3 (i), Y

n
4 (i)) (3.2.15)

where h : R4 → R is the continuous function defined by h(x, y, z, w) = x− y − z + w
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and

Y n
1 (i) =

∫ ti+1

0

∫ xi+1

0

θn(t, x)dxdt,

Y n
2 (i) =

∫ ti

0

∫ xi+1

0

θn(t, x)dxdt,

Y n
3 (i) =

∫ ti+1

0

∫ xi

0

θn(t, x)dxdt,

Y n
4 (i) =

∫ ti

0

∫ xi

0

θn(t, x)dxdt.

By Theorem 3.2.1, the random vector

(Y n
1 (0), Y

n
2 (0), Y

n
3 (0), Y

n
4 (0), ..., Y

n
1 (k − 1), Y n

2 (k − 1), Y n
3 (k − 1), Y n

4 (k − 1))

converges in law to the random vector

(Y1(0), Y2(0), Y3(0), Y4(0), ..., Y1(k − 1), Y2(k − 1), Y3(k − 1), Y4(k − 1)),

with

Y1(i) =

∫ ti+1

0

∫ xi+1

0

W (dt, dx),

Y2(i) =

∫ ti

0

∫ xi+1

0

W (dt, dx),

Y3(i) =

∫ ti+1

0

∫ xi

0

W (dt, dx),

Y4(i) =

∫ ti

0

∫ xi

0

W (dt, dx).

Since convergence in law is preserved under continuous transformations, we conclude
that (3.2.14) converges in law to

k−1∑
i=0

gih(Y1(i), Y2(i), Y3(i), Y4(i)) =
k−1∑
i=0

gi

∫ ti+1

ti

∫ xi+1

xi

W (dt, dx)

=

∫ T

0

∫ L

0

g(t, x)W (dt, dx) = J(g).

Finishing the proof.
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3.3 More classes of integrators and generalizations

As in the case of the stochastic integral with respect to the Brownian motion (or any
other continuous square integrable martingale), the class integrands for which the
integral with respect to the space-time white noise can be extended by considering
processes G = {G(s, y) : s ∈ [0, T ], y ∈ D} satisfying the corresponding measurability
conditions and the condition

P
{∫ T

0

∫
D

G2(s, y)dyds <∞
}

= 1.

However, the resulting process (G ·W ) is no longer a martingale, but a local one and
the resulting integral is defined as a limit in probability, rather than an L2(Ω)-limit.

As mentioned in the previous chapter, this is done by a localisation argument and,
again, we will omit the details.

Nevertheless, the purpose of this section will be to briefly see how we extend the
class of integrators. As mentioned at the beginning of the chapter, for this part we
will follow the construction provided by John B. Walsh in [11].

The main object of this section will be what we will call martingale measures,
which might be though as a generalization of the white noise in R+ × D (being
D ⊂ Rk a non-empty open connected set) seen in previous sections.

3.3.1 Martingale measures and worthy measures

As mentioned after Prop.3.1.1, one of the issues that forces us to develop the already
seen theory of stochastic integration with respect to the white noise is that the latter
cannot be thought (ω by ω) as a real-valued signed measure. However, it could be
thought as a vector-valued measure. More precisely, given that the white noise was
defined with respect to a σ-finite measure, the white noise was a particular case of
what is called a σ-finite L2-valued measure, which we define in a more general setting
below.

From now on, we will work on (E, E) where E is a Polish space and E the Borel
σ-field on E and A ⊂ E will be an algebra of sets (family of sets containing the empty
set, closed by complementation and by finite unions).

Definition 3.3.1. A set function U : A×Ω → R is (finitely) additive if U(A∪B,ω) =
U(A, ω) + U(B,ω) P-a.s. ω ∈ Ω whenever A ∩B = ∅ for A,B ∈ A.

In the previous definition and in the following ones, and as it is customary, we
will omit the dependence on ω ∈ Ω. From now on, we will assume that µ(A) :=
E [U2(A)] <∞ for any A ∈ A, making U an L2-valued set function.
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Observe that in the case where U is a white noise, µ corresponds to the underlying
σ-finite measure under which it is defined. This will be much clearer with the following
two definitions, where we will define the σ-finiteness and σ-additivity of such functions
in terms of µ, which we shall think of as a usual deterministic measure.

Definition 3.3.2. A set function U : A×Ω → R is σ-finite if there exists an increas-
ing sequence {En}n∈N ⊂ E such that

(i)
⋃

nEn = E;

(ii) for all n ∈ N, En ⊂ A, where En := {En ∩ S : S ∈ E} is a sub-σ-field of E;

(iii) for all n ∈ N, sup {µ(A) : A ∈ En} <∞.

Definition 3.3.3. A σ-finite additive set function U is countably additive on En as
an L2-valued set function if for any decreasing sequence {Aj}j ⊂ En with

⋂
j Aj = ∅

we have limj→∞ µ(Aj) = 0.

If U is countably additive on each En and A ∈ E\A, then we define U(A) as the
L2-limit as n approaches infinity of U(A ∩ En) whenever this limit exists. If A ∈ A,
then the value of U(A) obtained via this new definition coincides with the original
value U(A), providing a possible extension of U to sets A ∈ E\A.

From now on, we will assume that all σ-finite countably additive (on each En) set
functions U have been extended in such way.

Definition 3.3.4. A σ-finite L2-valued measure is a σ-finite countably additive (on
each En) set function.

Definition 3.3.5. Let {Ft}t be a right-continuous filtration. A processM = {Mt(A) : t ≥
0, A ∈ A} is a martingale measure if

(i) M0(A) = 0 P-a.s. for each A ∈ A;

(ii) for t > 0, Mt is a σ-finite L
2-valued measure;

(iii) M(A) = {Mt(A) : t ≥ 0} is an {Ft}t-martingale for each A ∈ A.

Observe that, since Mt is a σ-finite L2-valued measure for each t > 0, the mar-
tingales {Mt(A) : t ≥ 0}, A ∈ A, are square integrable when we restrict ourselves to
one of the (En, En), that is, if we only consider A ∈ En ⊂ A. Moreover, by doing
this, the σ-finite L2-valued measures Mt, t > 0, will be finite in the sense that the
corresponding measure µt(A) := E [M2

t (A)] will be finite (because of (iii) in Definition
3.3.2).
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In the case of the space-time white noise, the corresponding martingale measure
would be constructed from the processes

Mt(A) = W ([0, t)× A), t ≥ 0, A ∈ A. (3.3.1)

Indeed, by recalling that the underlying measure was given by ν(ds, dx) =
IR+(s)ID(x)dsdx, we have that the process M defined above is Gaussian with mean
and covariance functions

E [Mt(A)] = 0, E [Ms(A)Mt(B)] = (s ∧ t)|A ∩B|, (3.3.2)

where | · | denotes the Lebesgue measure in D. In particular, for each t > 0, Mt is
a σ-finite L2-valued measure and, for each A ∈ A, the process {Mt(A) : t ≥ 0} is a
Brownian motion with variance t|A|.

From now on, we shall assume that M is finite (Mt is finite for each t > 0) by
restricting ourselves to one of the (En, En) if necessary. We will restrict our study to
a finite time interval [0, T ], T > 0, as well.

Definition 3.3.6. The covariance functional of a martingale measure M is

Qt(A,B) = ⟨M(A),M(B)⟩t, A,B ∈ A

From the definition, it is easy to check that the covariance functional is symmetric
with respect to A,B: Qt(A,B) = Qt(B,A) P-a.s. for each t ≥ 0 (which is a con-
sequence of the corresponding property for the covariation process). One can also
check that it is biadditive: for fixed A and t ≥ 0, Qt(A, ·) and Qt(·, A) are (finitely)
additive set functions, which can be proved by using the additivity of the martingale
measure M and the bilinearity of the covariation process.

We also have the following Cauchy-Schwarz-type inequality

|Qt(A,B)|2 ≤ Qt(A,A)Qt(B,B).

Which is a consequence of the corresponding property for the covariation process. In
the above inequality it is implicitly stated that Qt(A,A) ≥ 0 for any A ∈ A, which is
a consequence of the fact that the quadratic variation process is non-negative.

From the covariance functional one can then define a set function defined on
rectangles of the form Λ = A×B × (s, t] ⊂ E × E × [0, T ] as follows1:

Q(Λ) = Qt(A,B)−Qs(A,B) (3.3.3)

1Recall that all σ-finite L2-valued measures on A can be extended to E .
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and extend this last definition by additivity to finite unions of pairwise disjoint rect-
angles Λj = Aj ×Bj × (sj, tj], j = 1, ..., n:

Q

(
n⋃

j=1

Λj

)
:=

n∑
j=1

Q(Λj).

As it is done in the case where Q is a product measure, one can check that this
extension is well defined. That is, if

Λ =
n⋃

j=1

Rj, Rj = Aj ×Bj × (sj, tj];

Λ′ =
m⋃
i=1

R′
i, R′

i = A′
i ×B′

i × (s′i, t
′
i].

With Ri ∩ Rj = ∅ and R′
i ∩ R′

j = ∅ for i ̸= j and Λ = Λ′, then Q(Λ) = Q(Λ′)
P-a.s. (this can be proved by finding a common refinement for Λ and Λ′ and using
the biadditivity of the covariance functional).

This last set function Q is positive definite in the following sense: if a1, ..., an ∈ R,
A1, ..., An ∈ E are pairwise disjoint and s ≤ t, then∑

i,j

aiajQ(Ai × Aj × (s, t]) =
∑
i,j

aiaj [⟨M(Ai),M(Aj)⟩t − ⟨M(Ai),M(Aj)⟩s]

=

〈∑
i

aiM(Ai),
∑
j

ajM(Aj)

〉
t

−

〈∑
i

aiM(Ai),
∑
j

ajM(Aj)

〉
s

≥ 0 (3.3.4)

where we have used the bilinearity of the covariation process and the fact that the
quadratic variation is a non-decreasing process.

In the case of the Gaussian white noise, we obtain that

Qt(A,B) = t|A ∩B|.

To see this, we first observe that if |A| = 0 (or |B| = 0), then Mt(A) (or M(B)),
as defined in (3.3.1), vanishes for all t ≥ 0 with probability 1, so the covariance
functional (Definition 3.3.6) vanishes as well. On the other hand, since A ∩ B ⊂ A
(or A ∩ B ⊂ B), we have that |A ∩ B| ≤ |A| = 0 (or |A ∩ B| ≤ |B| = 0), obtaining
the desired result when A or B are null sets with respect to the Lebesgue measure.

On the other hand, if |A ∩B| =
√

|A| · |B|, we will have that∫
D

IA(x)IB(x)dx =

√∫
D

IA(x)dx
∫
D

IB(x)dx.
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That is, the equality in the Cauchy-Schwarz inequality is attained, meaning that
IA(x) = λIB(x) for some constant λ ∈ R. But IA(x) only takes the values 1 and 0,
meaning that λ can only be one of those values.
If λ = 1, then we have that IA(x) = IB(x) for all x ∈ D, so A = B and thus,
M(A) and M(B) define the same process, meaning that Qt(A,B) will simply be the
quadratic variation of M(A), which is t|A| = t|A ∩B|.
If λ = 0, then this implies that IA(x) = 0 for all x ∈ D, implying that A is a null set,
which is what we have studied in the previous scenario.

Now let us consider the case where

ρ :=
|A ∩B|√
|A| · |B|

∈ (0, 1)

and define the processes

W
(1)
t =

Mt(A)√
|A|

, W
(2)
t =

Mt(B)√
|B|

,

which are standard Brownian motions with correlation

E
[
W (1)

s W
(2)
t

]
= ρ(s ∧ t).

This can be seen by using Eq.(3.3.2).
Observe that these are well defined because ρ > 0 implies that, by the Cauchy-

Schwarz inequality, 0 < |A∩B| ≤
√

|A| · |B|. The very same inequality and the fact
that ρ < 1 implies that W (1) and W (2) are two different process. Finally, define

Zt :=
W

(2)
t − ρW

(1)
t√

1− ρ2
.

We first see that Z = {Zt : t ∈ [0, T ]} is a Gaussian process, more particularly, it
defines a standard Brownian motion independent of W (1). To do so, consider any
vector (Zt1 , ..., Ztn) with t1, ..., tn ∈ [0, T ] and any real scalars a1, ..., an ∈ R. Then
observe that

a1Zt1 + ...+ anZtn = b1W (A1) + ...+ bmW (Am)

for some real scalars b1, ..., bm, some sets A1, ..., Am ∈ A and where W denotes the
Gaussian white noise. Given that W is Gaussian by definition, the right-hand side of
this last equation is a Gaussian random variable, implying that the left-hand side is
so and thus, proving that Z is a Gaussian process. Its mean and covariance functions
are given by

E [Zt] = 0
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and

E [ZsZt] =
1

1− ρ2
E
[
W (2)

s W
(2)
t − ρW (2)

s W
(1)
t − ρW (1)

s W
(2)
t + ρ2W (1)

s W
(1)
t

]
=
s ∧ t− ρ2(s ∧ t)− ρ2(s ∧ t) + ρ2(s ∧ t)

1− ρ2

= s ∧ t.

To see that it is independent of W (1), it suffices to show that they are uncorrelated.

E
[
W (1)

s Zt

]
=

1√
1− ρ2

E
[
W

(2)
t W (1)

s

]
− ρ√

1− ρ2
E
[
W (1)

s W
(1)
t

]
=

ρ√
1− ρ2

s ∧ t− ρ√
1− ρ2

s ∧ t

= 0.

Finally, using all this, we have that

⟨W (1),W (2)⟩t = ρ⟩W (1)⟩t + ρ
√

1− ρ2⟨W (1), Z⟩t = ρt.

Meaning that
⟨M(A),M(B)⟩t =

√
|A| · |B|ρt = t|A ∩B|,

as was to be shown. Observe that, in the case of the Gaussian white noise, the
covariance functional is deterministic (which can be though of an analogous property
of the Brownian motion, whose quadratic variations is deterministic). Moreover, the
covariance functional coincides with the underlying measure considered for the white
noise which, in particular, is a measure.

What we have shown for the case of the Gaussian white noise is not true in general,
that is, the set function Q cannot always be extended to a signed measure on E×E×B
(being B the Borel σ-field on [0, T ]). For instance, there is no guarantee that the σ-
additivity holds. To solve this problem, we will dominate Q by some measure, which
will allow us to prove, for example, the σ-additivity.

Definition 3.3.7. A signed measure K on E × E × B is positive definite if, for each
bounded measurable function f : E × [0, T ] → R,∫

E×E×[0,T ]

f(x, s)f(y, s)K(dx dy ds) ≥ 0 (3.3.5)

whenever the above integral makes sense.
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When K is symmetric in x and y (K(dx dy ds) = K(dy dx ds)), one has the
following Cauchy-Schwartz’ and Minkowski’s inequalities (the proofs are essentially
the same as the standard ones, so we will omit them)

|(f, g)K |2 ≤ (f, f)K(g, g)K ,

(f + g, f + g)K
1/2 ≤ (f, f)K

1/2 + (g, g)K
1/2.

Where

(f, g)K :=

∫
E×E×[0,T ]

f(x, s)g(y, s)K(dx dy ds).

Definition 3.3.8. A martingale measure M is worthy if there is a random σ-finite
measure K(Λ, ω), Λ ∈ E × E × B, ω ∈ Ω, such that

(i) K is positive definite and symmetric with respect to x and y (K(dx dy ds) =
K(dy dx ds));

(ii) for fixed A,B ∈ E, {K(A × B × [0, t]) : t ≥ 0} is predictable (it is measurable
with respect to the σ-field generated by all {Ft}t-adapted processes with P-a.s.
left-continuous sample paths);

(iii) for all n, E [K(En × En × [0, T ])] <∞;

(iv) for any rectangle Λ, |Q(Λ)| ≤ K(Λ).

We call K the dominating measure of M .

Proposition 3.3.1. If M is a worthy martingale measure as in Definition 3.3.8,
then the corresponding set function Q can be extended to a (random) positive definite
signed measure on E × E × B (as in Definition 3.3.7) whose total variation, |Q|, will
be bounded by the dominating measure K.

Proof. Since E is separable (can be generated by a countable collection of sets, say
{An}n), we shall first restrict ourselves to a countable sub-algebra G of E × E × B
formed by sets of the form A × B × (s, t] with A,B ∈ {An}n and s, t ∈ Q ∩ [0, T ]
satisfying σ(G) = E×E×B and upon which Q(·, ω) is finitely additive (this is ensured
by the fact that the sub-algebra is constituted of rectangles).

In this sub-algebra, we have that λ := Q +K is a non-negative finitely additive
set function dominated by the measure 2K, so it is a countably additive in the sub-
algebra. That is, if {Rn}n is a sequence of pairwise disjoint sets in G whose union

is contained in the same sub-algebra, then λ
(⋃

j Rj

)
=
∑

j λ(Aj). Indeed, one can
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easily check that, by finite additivity, if A ⊂ B with A,B ∈ G, then λ(B\A) =
λ(B)− λ(A). So, by taking B =

⋃
j Rj and A =

⋃N
j=1Rj for fixed N , we have

0 ≤ λ

(⋃
j≥1

Rj

)
−

N∑
j=1

λ(Rj)

= λ

(⋃
j≥1

Rj

)
− λ

(
N⋃
j=1

Rj

)

= λ

(⋃
j≥1

Rj

∖
N⋃
j=1

Rj

)

= λ

(
∞⋃

j=N+1

Rj

)

≤ 2K

(
∞⋃

j=N+1

Rj

)
N→∞−−−→ 0.

However, the previous computation holds P-a.s., where the implicit null set might
depend on the family of rectangles {Rj}j, for the following argument, we must see
that there is a P-null set,M , independent of the choice of {Rj}j for which the previous
computations hold for ω ∈ Ω\M .
For each Ri, Rj, i ̸= j, the additivity property

λ(Ri ∪Rj) = λ(Ri) + λ(Rj)

holds for every ω ∈ Ω\Mi,j with P(Mi,j) = 0. However, we have that Ri = Ani
,

Rj = Anj
for some ni, nj ∈ N. In other words, the null sets involved in the previous

computations depend only on the choice of the sub-algebra G, but not on the choice
of the particular family of disjoint sets {Rj}j. To make this last statement a bit more
clear, let us rephrase it in another way. Given the sub-algebra G = {An}n, we have
that, given any two disjoint sets Ani

and Anj
in G, there is a P-null set Mi,j so that

λ(Ani
∪ Anj

) = λ(Ani
) + λ(Anj

)

holds for all ω ∈ Ω\Mi,j. Now this will imply that, given any sequence of disjoint
rectangles {Rj}j ⊂ G whose union is also in G,

N∑
j=1

λ(Rj) =
N∑
j=1

λ(Anj
) = λ

(
N⋃
j=1

Anj

)
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holds for some pairwise disjoint sets {Anj
: j = 1, ..., N} and for all ω ∈ Ω\M , where

M :=
⋃
i,j

Mi,j.

Which is a countable (because G is countable) union of P-null sets and thus, a P-null
set. Indeed, say, for instance and to convince ourselves, that N = 3. Then we have
that

λ(An1 ∪ An2) = λ(An1) + λ(An2)

outside M1,2. Now, since G is an algebra, we will have that An1 ∪An2 = Anm for some
nm ∈ N and Anm ∩ An3 = ∅ (because An1 ∩ An3 = ∅ and An2 ∩ An3 = ∅), so we will
have

λ(An1 ∪ An2 ∪ An3) = λ(Anm ∪ An3) = λ(Anm) + λ(An3)

outside Mm,3. Finally, since we have λ(Anm) = λ(An1) + λ(An2) outside M1,2, we will
have

λ(An1 ∪ An2 ∪ An3) = λ(An1) + λ(An2) + λ(An3)

outside M1,2 ∪Mm,3 for some m ∈ N, leading to the definition of our set M . Outside
this set M , the previous computations regarding the σ-additivity of λ hold for any ω
independently of {Rj}j.

So we obtain that λ is P-a.s. countably additive in G and thus, it is a pre-measure
on G. Then, P-a.s., the desired result is a direct consequence of Carathéodory’s
extension theorem, which will give us an extension for λ and thus, an extension for
Q as a signed measure on σ(G) = E × E × B.

Moreover, its total variation, |Q|, will be bounded by K (|Q|(Λ) ≤ K(Λ) for
any Λ ∈ E × E × B) by (iv) in Definition 3.3.8 and will be positive definite (in the
sense of Definition 3.3.7). Indeed, (3.3.4) allows us to prove the property for indicator
functions and, by a usual approximating procedure, the result extends to any bounded
measurable function f for which the integral in (3.3.5) (with Q instead of K) is well
defined.

In the following, we shall refer to this extension as Q, without distinguishing it
from the original one. Observe that, for such extension, one has, since Q is positive
definite,

(f, f)Q = |(f, f)Q|

≤
∫
E×E×[0,T ]

|f(x, s)| · |f(y, s)||Q|(dx dy ds)

≤
∫
E×E×[0,T ]

|f(x, s)| · |f(y, s)|K(dx dy ds)

= (|f |, |f |)K . (3.3.6)
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As previously mentioned, for the case of the Gaussian white noise there is no need
to consider any dominating measure K, since Q itself already defines a measure.

With this, we are ready to start talking about integrals with respect to worthy
measures.

3.3.2 Integration with respect to worthy measures

The program for this part will be quite similar to the one already seen for the Itô
integral with respect to continuous square integrable martingales. We will first de-
fine the class of functions for which the integral will be defined and then define the
stochastic integral for a rather simple class of functions that will be dense in the
previous class with respect to some topology. Finally, the stochastic integral for any
integrable function will be defined as the limit of stochastic integrals of the simpler
class.

Let us fix a worthy martingale measure with covariance functional Q and domi-
nating measure K.

Definition 3.3.9. A function f : E× [0, T ]×Ω → R is elementary if it is of the form

f(x, s, ω) = X(ω)I(a,b](s)IA(x) (3.3.7)

for some 0 ≤ a < b ≤ T , A ∈ E and X a bounded Fa-measurable random variable. A
function f is simple if it is a finite linear combination of elementary functions. The
class of simple functions will be denoted by S.

Definition 3.3.10. The predictable σ-field on Ω×E × [0, T ] is the σ-field generated
by S, σ(S). A function will be predictable if it is σ(S)-measurable.

The following theorem, which we state without proof, summarizes the approximat-
ing procedure needed to construct the stochastic integral for the predictable functions
f such that ||f ||M <∞ with

||f ||2M := E [(|f |, |f |)K ] = E
[∫

E×E×[0,T ]

|f(x, s)||f(y, s)|K(dx dy ds)

]
.

Such class of functions will be denoted by PM .

Theorem 3.3.1. The following statements hold true:

(i) || · ||M is a norm (where we identify indistinguishable functions) and (PM , || · ||M)
is a Banach space.

(ii) The set of simple functions S is dense in PM with respect to the norm || · ||M .
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Definition 3.3.11. The stochastic integral of an elementary function f given by
Eq.(3.3.7) with respect to the martingale measure M , which we shall denote by f ·M ,
is the process given by

(f ·M)t(B) := X [Mt∧b(A ∩B)−Mt∧a(A ∩B)] , B ∈ E , t ∈ [0, T ]. (3.3.8)

For f ∈ S, f ·M is defined by linearity.

Observe that, for fixed B ∈ E , the integral process t 7→ (f ·M)t(B) is simply the
integral of a predictable process with respect to a square integrable martingale.

As in the case of the stochastic integral with respect to the white noise and with
respect to continuous square integrable martingales, we have an isometry formula
for the integral of simple processes that will be crucial when proving that that the
stochastic integral of a simple function is well defined (Lemma 3.3.2) and the existence
of a process that will be called the stochastic integral for a function f ∈ PM .

Lemma 3.3.1. Let f, g ∈ S be any two simple functions, then

E [(f ·M)t(B)(g ·M)t(B)] = E
[∫

B×B×[0,t]

f(x, s)g(y, s)Q(dx dy ds)

]
for any t ∈ [0, T ] and B ∈ E. In particular, for f = g,

E
[
(f ·M)2t (B)

]
= E

[∫
B×B×[0,t]

f(x, s)f(y, s)Q(dx dy ds)

]
.

Proof. We will first prove the result for f = g. The general result will follow from
polarization and the fact that Q is symmetric. Let

f(x, s, ω) =
n∑

j=1

fj(x, s, ω), fj(x, s, ω) = Xj(ω)IIj(s)IAj
(x). (3.3.9)

Where Xj is bounded and Faj -measurable, Ij = (aj, bj] with 0 ≤ aj < bj ≤ T and
Aj ∈ E for each j ∈ {1, ..., n}. Then we have that

(f ·M)2t (B) = (fi ·M)t(B)(fj ·M)t(B)

=
∑

1≤i,j≤n

XiXj∆iM(B)∆jM(B) (3.3.10)

for any t ∈ [0, T ], B ∈ E and where ∆jM(B) = Mt∧bj(Aj ∩ B) −Mt∧aj(Aj ∩ B).
Expanding the product ∆iM(B)∆jM(B) we obtain

∆iM(B)∆jM(B) =Mt∧bjMt∧bi −Mt∧bjMt∧ai −Mt∧ajMt∧bi +Mt∧ajMt∧ai
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where Mt∧bj =Mt∧bj(Aj ∩B), Mt∧bi =Mt∧bi(Ai ∩B), etc. On the other hand∫
B×B×[0,t]

f(x, s)f(y, s)Q(dx dy ds)

=
∑

1≤i,j≤n

XiXj

∫
B×B×[0,t]

I(ai,bi]∩(aj ,bj ](s)IAi
(x)IAj

(y)Q(dx dy ds)

=
∑

1≤i,j≤n

XiXjQ (Ai ∩B × Aj ∩B × [0, t] ∩ (ai, bi] ∩ (aj, bj]) . (3.3.11)

We will see that the expectation of the summand (i, j) ∈ {1, ...n}2 in (3.3.10) coincides
with the expectation of the same summand in (3.3.11).

Before doing so, we see that, for instance, from (2.3.3), one can show that, if
0 ≤ a < b ≤ T are deterministic and using the same notation as in (2.3.3),

⟨M,N⟩(a)t = ⟨M (a), N⟩t = ⟨M,N (a)⟩t = ⟨M (a), N (a)⟩t,

where Z(a) := {Z(a)
t := Zt∧a : t ∈ [0, T ]} for any process Z (and analogously with b),

and that
⟨M,N⟩(a)t = ⟨M (b), N (a)⟩t = ⟨M (a), N (b)⟩t.

With this in mind, observe that, for fixed (i, j) ∈ {1, ..., n}2, if ai < bi ≤ aj < bj,

⟨M·∧bj ,M·∧bi⟩t = ⟨M·∧aj ,M·∧bi⟩t
⟨M·∧bj ,M·∧ai⟩t = ⟨M·∧aj ,M·∧ai⟩t

and thus,
(fi ·M)t(B)(fj ·M)t(B) = XiXj [M1 −M3 +M2 −M4] ,

where

M1 =Mt∧bjMt∧bi − ⟨M·∧bj ,M·∧bi⟩t,
M2 =Mt∧ajMt∧ai − ⟨M·∧aj ,M·∧ai⟩t,
M3 =Mt∧ajMt∧bi − ⟨M·∧aj ,M·∧bi⟩t,
M4 =Mt∧bjMt∧ai − ⟨M·∧bj ,M·∧ai⟩t.

We also observe that the corresponding summand in (3.3.11) vanishes for any value
of t ∈ [0, T ] since (ai, bi] ∩ (aj, bj] = ∅.
Now, if t ≤ ai, then M1 = M2 = M3 = M4, so the summands (i, j) in (3.3.10) and
(3.3.11) vanish and thus, their expectations coincide. For ai < t ≤ aj, we have that
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M1 =M3 and M2 =M4, so the corresponding summands coincide again.
If t > aj, the martingale property for M1 and the law of total expectation tell us that

E [XiXjM1] = E
[
XiXjE

[
M1

∣∣Faj

]]
= E

[
XiXj

(
Maj∧bjMaj∧bi − ⟨M·∧bj ,M·∧bi⟩aj

)]
.

Where we have used that Xi is Fai-measurable and that Fai ⊂ Faj since ai < aj, so
XiXj is Faj -measurable. Similar computations for M2, M3 and M4 lead to the fact
that

E [XiXjM1] = E [XiXjM3] , E [XiXjM2] = E [XiXjM4] .

So the expected value of the corresponding summand in (3.3.10) vanishes, coinciding
with the expectation of the corresponding summand in (3.3.11).

If ai ≤ aj < bi ≤ bj, we will have that

(fi ·M)t(B)(fj ·M)t(B)

= XiXj [M1 −M3 +M2 −M4] +XiXj

(
⟨M·∧bj ,M·∧bi⟩t − ⟨M·∧aj ,M·∧bi⟩t

)
= XiXj [M1 −M3 +M2 −M4]

+XiXj

(
⟨M(Aj ∩B),M(Ai ∩B)⟩t∧bi − ⟨M(Aj ∩B),M(Ai ∩B)⟩t∧aj

)
= XiXj [M1 −M3 +M2 −M4] +XiXjQ (Ai ∩B × Aj ∩B × [0, t] ∩ (aj, bi]) .

For t ≤ aj, one can follow the same procedure as before to see that both summands
vanish, so the corresponding summands in (3.3.10) and (3.3.11) vanish. For t >
aj, the expected value of XiXj [M1 −M3 +M2 −M4] will vanish (by the martingale
property), while the expected value of the second term in this last equation will be
the same as the expected value of the summand (i, j) in (3.3.11). So they coincide
again.

Finally, if ai ≤ aj < bj ≤ bi, we will have that

(fi ·M)t(B)(fj ·M)t(B)

= XiXj [M1 −M3 +M2 −M4] +XiXj

(
⟨M·∧bj ,M·∧bi⟩t − ⟨M·∧aj ,M·∧bi⟩t

)
= XiXj [M1 −M3 +M2 −M4]

+XiXj

(
⟨M(Aj ∩B),M(Ai ∩B)⟩t∧bj − ⟨M(Aj ∩B),M(Ai ∩B)⟩t∧aj

)
= XiXj [M1 −M3 +M2 −M4] +XiXjQ (Ai ∩B × Aj ∩B × [0, t] ∩ (aj, bj]) .

And the same computations will lead to the desired result.

Lemma 3.3.2. The stochastic integral f ·M does not depend on the particular choice
of the representation of f ∈ S. Moreover, for fixed B ∈ E and t ∈ [0, T ], the map
f 7→ (f ·M)t(B) is linear for f ∈ S.
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Proof. We will only prove the first part, the linearity part follows immediately from
the definition.

Let f, g ∈ S be any two simple functions such that f = g. By the previous lemma
we have that, for any t ∈ [0, T ] and any B ∈ E , setting A = B ×B × [0, t],

E
[
((f ·M)t(B)− (g ·M)t(B))2

]
= E

[∫
A

f(x, s)f(y, s)dQ+

∫
A

g(x, s)g(y, s)dQ− 2

∫
A

f(x, s)g(y, s)dQ

]
= E

[∫
A

(f(x, s)− g(x, s)) (f(y, s)− g(y, s)) dQ

]
= 0.

Where and dQ = Q(dx dy ds) and where we have used that Q is symmetric with
respect to its two first arguments. So (f ·M)t(B) = (g ·M)t(B) P-a.s.
Lemma 3.3.3. For f ∈ S, f ·M is a worthy martingale measure. Its covariance
functional and dominating measure, Qf and Kf respectively, are given by

Qf (dx dy ds) = f(x, s)f(y, s)Q(dx dy ds), (3.3.12)

Kf (dx dy ds) = |f(x, s)f(y, s)|K(dx dy ds). (3.3.13)

Moreover, for any B ∈ E and t ∈ [0, T ],

E
[
(f ·M)2t (B)

]
≤ ||f ||2M . (3.3.14)

Proof. Let f ∈ S be any simple function like in (3.3.9), then we have that (f ·
M)0(B) = 0 P-a.s. for any B ∈ E since the Xj are bounded and the differences
in (3.3.8) vanish for each j ∈ {1, ..., n}. On the other hand, the fact that the Xj

are bounded and independent of B ∈ E tells us that B 7→ Xj Mt∧bj(Aj ∩ B) and
B 7→ Xj Mt∧aj(Aj∩B) are σ-finite L2-valued measures. In particular, their difference
will also be a σ-finite L2-valued measure and so it will be their sum.
Further, given that stopped martingales are martingales and finite linear combinations
of martingales are martingales, we have that Mt∧bj(Aj ∩B)−Mt∧aj(Aj ∩B) is a mar-
tingale and, since Xj is Faj -measurable, the process (fj ·M)(B) := {(fj ·M)t(B) : t ∈
[0, T ]} for fixed B ∈ E is a martingale as well. Indeed, if t ≤ aj, then (fj ·M)t(B) = 0,
so it is adapted and the martingale property E [(fj ·M)t(B)|Fs] = (fj ·M)s(B) is sat-
isfied for 0 ≤ s ≤ t ≤ aj. On the other hand, if t > aj, then the random variable Xj

is Ft measurable (because Faj ⊂ Ft), so (fj ·M)t(B) is Ft-measurable. Moreover, if
0 ≤ s ≤ aj < t, then, by the tower property,

E
[
(fj ·M)t(B)

∣∣Fs

]
= E

[
XjE

[
Mt∧bj(Aj ∩B)−Mt∧aj(Aj ∩B)

∣∣Faj

] ∣∣Fs

]
= 0

= (fj ·M)s(B).
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Similarly, if aj < s ≤ t,

E
[
(fj ·M)t(B)

∣∣Fs

]
= XjE

[
Mt∧bj(Aj ∩B)−Mt∧aj(Aj ∩B)

∣∣Fs

]
= Xj

(
Ms∧bj(Aj ∩B)−Ms∧aj(Aj ∩B)

)
= (fj ·M)s(B).

So (fj ·M)(B) is a martingale and, all in all, f ·M is a martingale measure.
To see that it is worthy, we only need to provide a dominating measure satisfying

the properties in Definition 3.3.8. To do so, we first compute the covariation of f ·M .
For this, we will check that, for any B,C ∈ E , the process

(f ·M)t(B) (f ·M)t(C)−
∫
B×C×[0,t]

f(x, s)f(y, s)Q(dx dy ds) (3.3.15)

is a martingale. Using the same notation as in Lemma 3.3.1 and defining MB
t∧bi =

Mt∧bi(Ai ∩B), MC
t∧bj =Mt∧bj(Aj ∩ C), etc., we have that

(f ·M)t(B) (f ·M)t(C) =
∑

1≤i,j≤n

XiXj∆iM(B)∆jM(C)

=
∑

1≤i,j≤n

(fi ·M)t(B)(fj ·M)t(C)

=
∑

1≤i,j≤n

XiXj

[
MB

t∧biM
C
t∧bj −MB

t∧biM
C
t∧aj −MB

t∧aiM
C
t∧bj +MB

t∧aiM
C
t∧aj

]
.

While ∫
B×C×[0,t]

f(x, s)f(y, s)Q(dx dy ds)

=
∑

1≤i,j≤n

XiXjQ (Ai ∩B × Aj ∩ C × [0, t] ∩ Ii ∩ Ij) .

As in Lemma 3.3.1, we will see that, for each (i, j) ∈ {1, ..., n}2,

(fi ·M)t(B)(fj ·M)t(C)−XiXjQ (Ai ∩B × Aj ∩ C × [0, t] ∩ Ii ∩ Ij) (3.3.16)

is a martingale.
Let us start by assuming that aj < bj ≤ ai < bi. Then

Q (Ai ∩B × Aj ∩ C × [0, t] ∩ Ii ∩ Ij) = 0

while
(fi ·M)t(B)(fj ·M)t(C) = XiXj [M1 −M3 +M2 −M4] , (3.3.17)
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where

M1 =MB
t∧biM

C
t∧bj − ⟨MB

·∧bi ,M
C
·∧bj⟩t,

M2 =MB
t∧aiM

C
t∧aj − ⟨MB

·∧ai ,M
C
·∧aj⟩t,

M3 =MB
t∧aiM

C
t∧bj − ⟨MB

·∧ai ,M
C
·∧bj⟩t,

M4 =MB
t∧biM

C
t∧aj − ⟨MB

·∧bi ,M
C
·∧aj⟩t.

If t ≤ ai, one can easily show that (3.3.17) vanishes, so it is Ft-measurable and the
martingale property is satisfied for 0 ≤ s ≤ t. On the other hand, for t > ai, the
product XiXj is Ft-measurable, so (3.3.17) is adapted. Moreover, and as previously
argued (distinguishing the cases cases 0 ≤ s ≤ ai < t and ai < s ≤ t), one shows that

E
[
(fi ·M)t(B)(fj ·M)t(C)

∣∣Fs

]
= (fi ·M)t(B)(fj ·M)s(C).

If aj ≤ ai < bj ≤ bi, then

Q (Ai ∩B × Aj ∩ C × [0, t] ∩ Ii ∩ Ij) = Q (Ai ∩B × Aj ∩ C × [0, t] ∩ (ai, bj])

and

(fi ·M)t(B)(fj ·M)t(C) = XiXj [M1 −M3 +M2 −M4]

+XiXj

(
⟨M(Ai ∩B),M(Aj ∩ C)⟩t∧bj − ⟨M(Ai ∩B),M(Aj ∩ C)⟩t∧ai

)
= XiXj [M1 −M3 +M2 −M4] +XiXjQ (Ai ∩B × Aj ∩ C × [0, t] ∩ (ai, bj]) .

So (3.3.16) becomes
XiXj [M1 −M3 +M2 −M4] .

Following similar procedures to the ones already seen, one then shows that this is a
martingale. The case aj ≤ ai < bi ≤ bj is done similarly. So we have established
(3.3.12).

Since Q is dominated by K, then it is immediate to see that Qf is dominated by
Kf , which is clearly a symmetric and positive definite measure such that |Qf (Λ)| ≤
Kf (Λ) for any rectangle Λ. Moreover, for each n ∈ N,

E [Kf (En × En × [0, T ])] = E
[∫

En×En×[0,T ]

|f(x, s)f(y, s)|K(dx dy ds)

]
≤

∑
1≤i,j≤n

E

[
|Xi||Xj|

∫
Ai∩En×Aj∩E×Ii∩Ij

K(dx dy ds)

]
=

∑
1≤i,j≤n

E [|Xi||Xj|K(Ai ∩ En × Aj ∩ E × Ii ∩ Ij)]

≤ R2E [K(En × En × [0, T ]])] <∞
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where R > 0 is a positive constant such that |Xi(ω)| ≤ R for almost every ω ∈ Ω and
for any i ∈ {1, ..., n}. Thus, f ·M is a worthy martingale measure with covariance
functional Qf and dominating measure Kf . Moreover, by using (2.3.4) and inequality
(3.3.6), we obtain (3.3.14) for elementary functions f .

Now, for any f ∈ P , by Theorem 3.3.1 there is a sequence of simple functions
{fn}n ⊂ S such that ||f − fn||M → 0 as n approaches infinity. This will mean that,
by (3.3.14), for any t ∈ [0, T ] and any B ∈ E ,

E
[
((fn ·M)t(B)− (fm ·M)t(B))2

]
= E

[
((fn − fm) ·M)2t (B)

]
≤ ||fn − fm||2M

n,m→∞−−−−→ 0.

So the sequence of random variables {(fn ·M)t(B)}n is Cauchy in L2(Ω) and thus,
convergent to a random variables denoted by (f ·M)t(B). In particular, for fixed
B ∈ E , the latter converges for any t ∈ [0, T ]. By completeness of the space of square
integrable martingales, the limiting process {(f ·M)t(B) : t ∈ [0, T ]} will be a square
integrable martingale starting at 0. As usual, one checks that the limit does not
depend on the choice of the approximating sequence. Of course, the obtained integral
acts linearly on PM .

As usual, the stochastic integral (f ·M)t(A) is written as∫ t

0

∫
A

f(x, s)M(dx ds)

as well.
Lastly, we check that the limiting process f ·M := {(f ·M)t(B) : t ∈ [0, T ], B ∈ E}

is a worthy martingale measure whenever f ∈ PM .

Theorem 3.3.2. If f ∈ PM , then f ·M is a worthy martingale measure with covari-
ance functional Qf and dominating measure Kf given by

Qf (dx dy ds) = f(x, s)f(y, s)Q(dx dy ds), (3.3.18)

Kf (dx dy ds) = |f(x, s)f(y, s)|K(dx dy ds). (3.3.19)

Moreover, if f, g ∈ PM and A,B ∈ E, then

⟨(f ·M)(A), (g ·M)(B)⟩t =
∫
A×B×[0,t]

f(x, s)g(y, s)Q(dx dy ds) (3.3.20)

and
E
[
(f ·M)2t (A)

]
≤ ||f ||2M .
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Proof. Let {fn}n ⊂ S be a sequence of simple functions such that ||f − fn||M → 0 as
n approaches infinity. For each n ∈ N, and A,B ∈ E , the process

(fn ·M)t(A)(fn ·M)t(B)−
∫
A×B×[0,t]

fn(x, s)fn(y, s)Q(dx dy ds) (3.3.21)

is a martingale by Lemma 3.3.3. Since both (fn ·M)t(A) and (fn ·M)t(B) converge
in L2(Ω) to, respectively, (f ·M)t(A) and (f ·M)t(B), we have that their product
converges in L1(Ω) to (f ·M)t(A)(f ·M)t(B). On the other hand,

E
[∣∣∣∣∫

A×B×[0,t]

(fn(x, s)fn(y, s)− f(x, s)f(y, s))Q(dx dy ds)

∣∣∣∣]
≤ E

[∫
E×E×[0,T ]

|fn(x, s)||fn(y, s)− f(y, s)|K(dx dy ds)

]
+ E

[∫
E×E×[0,T ]

|f(y, s)||fn(x, s)− f(x, s)|K(dx dy ds)

]
= E [(|fn|, |fn − f |)K ] + E [(|f |, |fn − f |)K ]
≤ ||fn||M ||fn − f ||M + ||f ||M ||fn − f ||M
= ||fn − f ||M (||fn||M + ||f ||M)

n→∞−−−→ 0.

Where we have used the Cauchy-Schwarz inequality for the norm || · ||M . So the
integral in (3.3.21) converges in L1(Ω) to∫

A×B×[0,t]

f(x, s)f(y, s)Q(dx dy ds)

and thus, (3.3.21) converges in L1(Ω) to

(f ·M)t(A)(f ·M)t(B)−
∫
A×B×[0,t]

f(x, s)f(y, s)Q(dx dy ds).

Given that the L1(Ω)-limit of martingales is a martingale, we conclude that the latter
is a martingale, proving that (3.3.18) holds. It immediately follows that (3.3.19) and
(3.3.2) hold as well and (3.3.20) follows from polarization (we have proved the case
f = g by proving (3.3.18)).

Finally, we check that f ·M is a martingale measure. Let {An}n ⊂ E be a decreas-
ing sequence such that ∩nAn = ∅, then, by (3.3.2) and the monotone convergence
theorem,

E
[
(f ·M)2t (An)

]
≤ E

[∫
An×An×[0,t]

|f(x, s)f(y, s)|K(dx dy ds)

]
n→∞−−−→ 0,

as desired.
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3.4 An observation and application to SPDEs

3.4.1 The two definitions coincide

Observe that when the martingale measure corresponds to the one given by the space-
time white noise, in principle, the definition of stochastic integral studied in the
previous section, given in [11], and the one by [6] seen in Section 3.2.1 need not be
the same when the latter is restricted to predictable functions.

Fortunately, this is not the case. Indeed, consider an elementary process f as in
(3.3.7) with A ⊂ D (being D the set where the space-time white noise takes place).
Walsh’s definition tells us that

(f ·W )t(B) = X [W ([0, t ∧ b]× A ∩B)−W ([0, t ∧ a]× A ∩B)] ,

while Definition 3.2.1 leads to∫ t

0

∫
D

f(x, s)W (dx ds) =
∞∑
j=1

∫ t

0

⟨f(s, ∗), ej⟩V dWs(ej)

= X
∞∑
j=1

∫ t∧b

t∧a
⟨IA, ej⟩V dWs(ej)

= X
∞∑
j=1

⟨IA, ej⟩V [Wt∧b(ej)−Wt∧a(ej)]

= X

[
Wt∧b

(
∞∑
j=1

⟨IA, ej⟩V ej

)
−Wt∧a

(
∞∑
j=1

⟨IA, ej⟩V ej

)]
= X [Wt∧b (IA)−Wt∧a (IA)]
= X [W ([0, t ∧ b]× A)−W ([0, t ∧ a]× A)] .

Thus, both definitions coincide for elementary functions and, by linearity, for simple
functions. The result for general f ∈ PM then follows by density.

3.4.2 Stochastic Partial Differential Equations

Recall that one of the purposes of constructing the stochastic integral with respect
to the space-time white noise or, in general, any worthy martingale measure, was to
rigorously define the concept of stochastic partial differential equation driven by such
noises. In this section we shall briefly discuss how this is done in the case where the
partial differential operator is linear.

In the case of ordinary differential equations, to define the stochastic analog, see
Eq.(1.0.2), we made use of its integral representation, Eq.(1.0.1), to then exploit the
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already constructed stochastic integral with respect to a stochastic process (Brownian
motion or, in general, càdlàg semi-martingales) to give a meaning to such expressions.

As one might suspect, this approach cannot be used to define the concept of
SPDE, since, in general, there is no integral representation of a partial differential
equation. However, in some cases (for instance, when the PDE is linear), the solution
of a PDE has an integral representation, which we shall use to define the solution of
a randomly perturbed PDE.

In the following, and to focus on the main ideas, we will omit the details regarding
the conditions for which the assertions that we will make hold true. Moreover, we
will be considering SPDEs defined by linear partial differential operators of the form

L = Lx,

where Lx is a linear partial differential operator in the spatial variable, like in the
case of the Laplace equation,

L =
∂

∂t
+ Lx,

like in the case of the heat equation, or

L =
∂2

∂t2
+ Lx,

like in the case of the wave equation.
It is well-known that, usually, to find a solution to the problem

Lu(t, x) = f(t, x), (t, x) ∈ (0, T ]×D,

where D ⊂ Rk is a bounded or unbounded domain and with some initial condition at
t = 0 and, possibly, some boundary conditions on ∂D, one first finds a fundamental
solution or a Green’s function associated to the operator L and the corresponding
boundary conditions, say Γ = Γ(t, x; s, y) (this function might not depend on t and s,
as in the case of the Laplace operator). Then the solution to the considered problem
is given by

u(t, x) = I0(t, x) +

∫ t

0

∫
D

Γ(t, x; s, y)f(s, y)dyds, (t, x) ∈ (0, T ]×D.

where I0(t, x) is the solution to the homogeneous PDE, Lu(t, x) = 0, with the same
initial and boundary conditions.

Replacing f(t, x) by the Gaussian white noise, Ẇ (t, x), or some other suitable
noise, will lead to what is called a stochastic partial differential equation. In this
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situation, it is natural to make the following reasoning∫ t

0

∫
D

Γ(t, x; s, y)f(s, y)dyds =

∫ t

0

∫
D

Γ(t, x; s, y)Ẇ (s, y)dyds

=

∫ t

0

∫
D

Γ(t, x; s, y)W (ds, dy).

Of course, some regularity condition on Γ must be satisfied so that the integral∫ t

0

∫
D
Γ(t, x; s, y)W (ds, dy) can be defined as in Def.3.2.1 or as seen in Section 3.3.2.

When W is a space-time white noise, a sufficient condition is that, for all (t, x) ∈
[0, T ]×D, the functions

[0, T ]×D ∋ (s, y) 7→ Γ(t, x; s, y)I[0,t)(s),

or
D ∋ y 7→ Γ(x; y),

when f = f(x) and Γ = Γ(x; y) does not depend on the time variables, are Borel
measurable functions and belong to L2([0, T ] × D) and L2(D), respectively. This
formulation will lead to what are called random field solutions:

Definition 3.4.1. Let W be a Gaussian space-times white noise on [0, T ] × D, or,
in general, a worthy martingale measure. The random field solution to the SPDE
Lu = Ẇ on [0, T ] × D, with the specified initial and boundary conditions, is the
random field

u(t, x) = I0(t, x) +

∫ t

0

∫
D

Γ(t, x; s, y)W (ds, dy),

or

u(x) = I0(x) +

∫
D

Γ(x; y)W (dy),

where I0(t, x) and I0(x) are the solutions to the corresponding homogeneous PDEs,
Lu = 0, with the same initial and boundary conditions.

Observe that these definitions have been made for the case where the problem is
linear and the noise considered is additive. Nevertheless, these ideas can be used to
define concept of solution of a SPDE of the form

Lu(t, x) = σ (t, x, u(t, x)) Ẇ (t, x) + b(t, x, u(t, x)), t, x ∈ (0, T ]×D

with some given initial and boundary conditions and where L is a linear partial
differential operator as the ones previously considered. In such cases, a random
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field solution is defined as a jointly measurable, adapted and real valued process
u = {u(t, x) : (t, x) ∈ [0, T ]×D} satisfying

u(t, x) = I0(t, x) +

∫ t

0

∫
D

Γ(t, x; s, y)σ(s, y, u(s, y))W (ds, dy)

+

∫ t

0

∫
D

Γ(t, x; s, y)b(s, y, u(s, y))dyds

where (t, x) ∈ [0, T ]×D. It is implicitly assumed that the functions Γ, σ and b satisfy
some regularity conditions so that the integrals on the right-hand side of this last
equation can be defined as studied in previous sections.

It is worth mentioning that when the partial differential operator L is not linear or
spatial dimensions considered are high enough, the PDEs considered might not have
function-valued solutions, thus, making sense of expressions of the form Lu = σẆ +b
might be a difficult task. For instance, the function Γ = Γ(t, x; s, y) for the heat
equation is not square integrable when the spatial dimension is equal or greater than
two.
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Chapter 4

Good integrators

In this work, we have focused all our efforts on defining stochastic integrals with
respect to martingales and martingale measures as limits of Riemann-Stieltjes sums.
However, why do we restrict ourselves to such processes? Can we go a step further
and reproduce the same procedure to construct new integrals with respect to some
other processes?

To answer these questions, we shall ask ourselves what properties must possess
the constructed integral in order to be a “good integral”. More specifically, consider a
stochastic processM = {Mt : t ∈ [0, T ]} which induces a stochastic integral IM , which
we will think as an operator acting on some space of stochastic processes that returns
a random variable. What properties should the operator IM have? For instance, it
should be a linear operator so that we can say it extends the already known notions
of integral.

Some authors (see, for instance, [10], p.52) assert that, apart from the linearity
property, the integral operator should satisfy some version of the Bounded Con-
vergence Theorem, which is quite reasonable since this is satisfied for the classical
Lebesgue and Lebesgue-Stieltjes integrals. This property is not only chosen for this
purpose: as seen in the previous chapters, the stochastic integrals considered arise as
limits of integrals of much simpler processes. These limits were totally justified by
the Bounded Convergence Theorem, so it is natural to ask for this property to be
fulfilled as well for general processes, not only for the simple ones.
As mentioned a couple times, even though the stochastic integral seen here has been
constructed as an L2(Ω)-limit, when one extends the class of integrable functions with
respect to a given process M , the resulting integral is a limit in probability. Hence, a
version of this theorem to be satisfied is that the uniform convergence of a sequence
of processes X(n) towards a certain process X implies the convergence in probability.
One can think that we ask for uniform convergence of the sequences X(n) because the
considered integral is constructed via Riemann-Stieltjes sums.
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Now let Su denote the space of simple functions of the form

Xt(ω) = X0I{0}(t) +
n∑

j=1

ej(ω)I(tj ,tj+1](t)

for some 0 = t1 < ... < tn+1 = T , ej ∈ L∞ (Ω,Ftj ,P
)
endowed with the topology of

the uniform convergence and let L0(P) be the space of random variables endowed with
the topology of the convergence in probability. For given process M and X ∈ Su, we
define the linear mapping IM : Su → L0(P) as follows

IM(X) = X0M0 +
n∑

j=1

ej(Mtj+1
−Mtj).

A “good integrator” M = {Mt : t ∈ [0, T ]} is then defined as a process such that
its integral operator, IM : S → L0(P), is a continuous linear mapping with the consid-
ered topologies (the continuity condition is equivalent to the Bounded Convergence
Theorem property).

It turns out that if M is a good integrator, then M is a semimartingale with
càdlàg sample paths. More specifically,

Theorem 4.0.1 (Bichteler-Dellacherie). An adapted, càdlàg process M is a good
integrator if, and only if, it is a semimartingale. That is, M is a good integrator if,
and only if, it can be written as M = N + A where N is a local martingale and A is
a process whose sample paths are of bounded variation.

For a proof of this result we refer to [10], Theorem 47, page 146.
With this, we can give an answer to the previously made questions: semimartin-

gales are the most general processes that induce an integral operator satisfying desir-
able properties like linearity and the Bounded Convergence Theorem.

Of course, this does not give an answer to why we limit our study of stochastic
integration with respect to random fields to integrals with respect to martingale
measures, but, at least, gives us an idea of why it is the case. In addition, martingale
measures are good enough objects to model a large part of the scenarios that one can
witness.
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