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Abstract

The aim of this project is to study classifying spaces for Z/2-equivariant prin-
cipal G-bundles, where G denotes a topological group.

In the first chapter, we will study the category of principal G-bundles with
some important results, including its motivation through the theory of real vector
bundles, and the construction of their classifying spaces; reference for this study
will be taken from [Die08], [MS74] and [Hus94].

In the second chapter, we introduce the notion of Γ-equivariant principal G-
bundles for a topological group Γ, and follow the work done by Lück and Uribe
[LU14] while interested in the specific case Γ = (Z/2), which allows for simplifi-
cations in the proofs of some results which lead to the construction of a model for
the classifying space for Z/2-equivariant principal G-bundles, and the subsequent
study of the properties of such classifying spaces.

2023-2024 Final Master Project



Chapter 1

Introduction

1.1 Bundles

In this first chapter, we will expose some common notions which are widely
known and referenced. These make for an introduction to the category in which
we will be working later, as well as give context and a few useful results.

Definition 1.1 (principal G-bundle). Let G be a group. A principal G-bundle consists
of:

• Topological spaces B (base space) with a trivial G-action, and E (total space) with a
right G-action.

• A continuous map p : E → B (projection map).

Such that the following conditions are satisfied:

• The map p is a G-map. That is, ∀e ∈ E ∀g ∈ G p(eg) = p(e)g = p(e).

• Local triviality: ∀b ∈ B there is an open neighborhood Ub of b, and a G-homeomorphism
ϕ : Ub × G → p−1(Ub) satisfying that p ◦ ϕ = pr where pr denotes the projection
pr : Ub × G → Ub. That is, there exists Ub and ϕ as stated above that make the
diagram below commutative.

E p−1(Ub) Ub × G

B Ub

p p

ϕ

pr

Such a pair (Ub, ϕ) is called a bundle chart, and a set of charts in which the open
sets Ub define a covering of B is called a bundle atlas. If it is possible to choose a
numerable such atlas, we say that the bundle is numerable.

1



2 Introduction

We will be referring to the principal G-bundle as p : E → B.

Remark 1.2. From the local triviality condition it follows immediately that the
right G-action on E is free, i.e. ∀g ∈ G \ {0} ∀e ∈ E we have that e ̸= e · g.

Remark 1.3. The properties of p allow us to write an homeomorphism B ∼= E/G,
where E/G denotes the quotient space of E by its orbits given by the right G-
action. Sometimes, we may write principal G-bundles as p : E → E/G, this will
constitute only a small abuse of notation, that is, we’ll be omitting the fact that
there is a homeomorphism B ∼= E/G and instead we’ll be replacing B by E/G
directly.

Definition 1.4 (Fibre of a principal G-bundle). Let p : E → B be a principal G-bundle.
For any b ∈ B, we say that the preimage p−1(b) is the fibre of the principal G-bundle

over b.

Definition 1.5 (Vector bundle). A real vector bundle consists of:

• Topological spaces B (base space) and E (total space).

• A continuous map π : E → B (projection map).

Such that the following conditions are satisfied:

• ∀b ∈ B π−1(b) has the structure of a finite-dimensional real vector space.

• Local triviality: ∀b ∈ B there is an open neighborhood of b, Ub, an integer n ≥ 0 and
a homeomorphism h : Ub × Rn → π−1(Ub) such that, ∀c ∈ Ub the correspondence
x 7→ h(c, x) defines an isomorphism between Rn and π−1(c). That is, there exists
Ub and h as stated above that make the diagram below commutative.

E π−1(Ub) Ub × Rn

B Ub

π π

h

pr

Such a pair (Ub, h) is called a local coordinate system for the vector bundle around
b. Notice that n is locally constant, and we will call it the dimension of π at b ∈ B.
If the dimension of π is constant and equal to n, we will say that the bundle π is
n-dimensional.

We will be referring to the vector bundle as π : E → B.

Definition 1.6 (Fibre of a vector bundle). Let π : E → B be a vector bundle.
For any b ∈ B, we say that the vector space π−1(b) is the fibre of the vector bundle

over b.
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Definition 1.7 (Transition function between bundle charts). Let (U1, h1) and (U2, h2)

be two bundle charts of a given principal G-bundle or a given real vector bundle.
The transition function between them is defined as

(h2|U1∩U2) ◦ (h1|U1∩U2)
−1 : U1 ∩ U2 → U1 ∩ U2.

In particular, we will mainly be working with principal G-bundles. However,
real vector bundles are closely related to them by a result that will be given later in
this chapter, and real vector bundles are the physical motivation behind the study
of bundles, since they may be used in the study of electromagnetism and other
phenomena.

Up to this point, we have defined the objects of two respective categories:
principal G-bundles and real vector bundles, and next we want to define which
will be the morphisms in those categories.

Definition 1.8 (Bundle map). Let p0 : E0 → B0, p1 : E1 → B1 be two principal G-
bundles (or real vector bundles), we say that the pair (F, f ) of maps F : E0 → E1 and
f : B0 → B1 is a bundle map if F is a G-map (or linear and bijective on the fibres) and the
diagram below is commutative.

E0 E1

B0 B1

F

p0 p1

f

Naturally, after we have defined a broad category with its morphisms, we want
to have some equivalence relation which allows us to identify objects that, in a way,
behave similarly:

Definition 1.9 (Bundle isomorphism. Isomorphic bundles). We say that any bundle
map (F, f ) is a bundle isomorphism if and only if f and F are homeomorphisms. In this
case, we also say that p0 and p1 are isomorphic.

Lemma 1.10. Given a bundle map (F, f ). Then, (F, f ) is a bundle isomorphism if and
only if f is an homeomorphism.

Before we prove Lemma 1.10, we need to introduce the notion of weakly proper
action, since it will appear later in the proof of the Lemma.

Definition 1.11 (Weakly proper action). Let G be a topological group and let E be a
topological space with a free right G-action. We say that the free right G-action on E is
weakly proper if the map

E × E ⊃ C(E) := {(x, x · g) | x ∈ E and g ∈ G} → G

(x, x · g) 7→ g
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is continuous.
This map is called the translation map, which is well-defined since the action is free, and
is often denoted by tE.

Naturally, we will have that the free right G-action on the total spaces of our
principal G-bundles is weakly proper, and this fact comes from the next result.

Lemma 1.12. Let p : E → E/G be locally trivial. Then the translation map tE is
continuous.

Proof. Let (U , ϕ) be a trivialization, that is, p−1(U ) is an open set which is closed
by the action of G and ϕ : U × G → p−1(U ) is an homeomorphism such that
p ◦ ϕ = pr (pr denotes the projection onto the second component of U × G).
Then,

(ϕ × ϕ)−1((p−1(U ))2 ∩ C(E)) = {((u, g), (u, h)) | u ∈ U and g, h ∈ G}.

We have that tE|(C(U )) ◦ (ϕ × ϕ) maps ((u, g), (u, h)) 7→ g−1h, and so is a con-
tinuous map. Then, tE|(C(U )) is continuous, and we deduce that tE is also continu-
ous.

However, this property of free right G-actions alone does not make it easier to
prove Lemma 1.10. It, instead, allows for a couple of results which let us to study
inverse maps as certain sections. We will state these results here, and an interested
reader may find their proofs in [Die08, pp. 329-331].

Proposition 1.13. Let G act freely and properly on E. The sections of q : E×G F → E/G
correspond bijectively to the maps f : E → F with the property f (xg) = g−1 f (x) ∀g ∈
G and ∀x ∈ E; here we assign to f the section s f : x → (x, f (x)).

Remark 1.14. Here E ×G F denotes the cartesian product E × F with the addi-
tional structure given by the G-action on E and F applied diagonally. This will be
presented in more detail in future section 1.24.

Proposition 1.15. Let the free G-action on E be weakly proper. Then the canonical prin-
cipal G-bundle p : E → B = E/G is isomorphic to pr : B × G → B, if and only if p has
a section.

Following the last results, our aim in the proof of Lemma 1.10 will be to verify
that F : E1 → E2 has a continuous inverse by building its corresponding section.



1.1 Bundles 5

Proof of Lemma 1.10. The right implication follows immediately from the defini-
tion. To prove the left implication, we will instead show the following less specific
result: "Let E1, E2 be G-spaces and F : E1 → E2 a G-map. If F/G : E1/G → E2/G is a
homeomorphism and E2 is weakly proper, then F is a homeomorphism".

We will see that this lemma is enough to confirm the implication: given pi :
Ei → Bi a principal G-bundle, there is a homeomorphism hi : Bi → Ei/G making
the following diagram commute:

Ei

Bi Ei/G

pi
πi

hi

where πi denotes the projection map onto the quotient. And so for any (F, f )
bundle map with f homeomorphism, E2 we know is weakly proper, and we may
consider the following diagram:

E1 E2

B1 E1/G E2/G B2

p1
π1

F

p2
π2

h1

f

F/G
h2

where, by the commutativity of diagrams:

F/G ◦ π1 = π2 ◦ F = h2 ◦ p2 ◦ F = h2 ◦ f ◦ p1 = h2 ◦ f ◦ h−1
1 ◦ π1

and since π1 is surjective, we get that F/G = h2 ◦ f ◦ h−1
1 which is a composition

of homeomorphisms. Thus, the result above would imply that F is an homeomor-
phism.

Let us prove the result now. Let E1, E2 be G-spaces and F : E1 → E2 a G-map,
such that F/G : E1/G → E2/G is a homeomorphism and E2 is weakly proper.
Notice that E1 is also weakly proper since the translation map tE1 : C(E1) → G may
be obtained by tE1 = tE2 ◦ (F × F), because F is a G-map, and so it is continuous.

We will find a continuous inverse F−1 : E2 → E1. By Proposition 1.13, it
corresponds to a section of πE2 : (E2 ×G E1)/G → E2/G. What we have is a
section s : x 7→ (x, F(x)) of πE1 : (E1 ×G E2)/G → E1/G well-defined since F is
a G-map. With the interchange map τ : (E1 ×G E2)/G → (E2 ×G E1)/G we may
define σ := τ ◦ s ◦ (F/G)−1 : E2/G → (E2 ×G E1)/G, where (F/G)−1 denotes the
inverse of F/G, which is a section of πE2 .

We have found F−1, which means that F is a homeomorphism.
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Lemma 1.10 shows us, in a way, how rigid are the structures of the objects with
which we will be working or, in other words, how strong is the condition of local
triviality.

With the new notion of equivalence in the category that we have defined, it
is possible to start studying objects in a broader way, and naturally we will be
interested first in the classes of those which are simpler or easier to study. In
particular, we may be interested in studying those bundles that are simpler by
the means of the local triviality condition; that is, the objects that are everywhere
trivial.

Definition 1.16 (Trivial bundles). Given a topological space B, we define:

• The trivial principal G-bundle with base B is the principal G-bundle p : B×G → B,
where p is the projection onto its first component.

• The trivial real vector bundle of dimension n and base B is the bundle π : B×Rn →
B, where π is the projection onto its first component.

We also say that any given bundle p : E → B is trivial if and only if it is isomorphic
to a trivial bundle with base B.

Remark 1.17. Since the notation might be ambiguous at times, given that the word
trivial will have different meanings if used as a noun or as an adjective, we will
always add the article the when using this word as a noun, and never when using
it as an adjective.

Remark 1.18. Notice that trivial bundles are characterized by, in a way, fulfilling
the condition of local triviality not only locally, but also globally. That is, any
trivial principal G-bundle p : E → B satisfies that ∀b ∈ B it is possible to choose
the whole space B as an open neighbourhood of b such that there is an homeo-
morphism ϕ : B × G → p−1(B) = E satisfying that p ◦ ϕ = pr where pr denotes
the projection of B × G onto its first component. And so we have the following
commutative diagram:

E B × G

B

ϕ

p
pr

Indeed, we call to this property global triviality, or triviality, and ϕ is called a
global bundle atlas; any principal G-bundle that satisfies the triviality condition is
a trivial principal G-bundle. Proving this statement is immediate with the defini-
tions, and a similar one can be stated for real vector bundles.
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Next, we will show a notion which is useful for studying bundles and its
properties, which has physical interpretations.

Definition 1.19 (Cross-section). A cross-section of a principal G-bundle p : E → B (or a
real vector bundle) is a continuous function s : B → E such that ∀b ∈ B s(b) ∈ p−1(b).

In the case of real vector bundles, we say that a cross-section is nowhere zero if ∀b ∈
B s(b) ̸= 0 ∈ p−1(b).

Finally, let us show some practical cases. We will begin with an example, and
follow it with a couple of results that show the usefulness of cross-sections.

Example 1.20. [Canonical line bundle of RPn] Denote by RPn the real projective
space of dimension n, which can be viewed as the set of 1-dimensional lineal sub-
spaces in Rn+1. By identifying these sub-spaces as their intersections with Sn, one
may also think of RPn as the set of pairs {x,−x} with x ∈ Sn ⊂ Rn+1, and its
topology is taken as the quotient of Sn by the antipodal relation.

Call E = {({±x}, v) | ({±x}, v) ∈ RPn × Rn+1 and v lies in < x >} (which is
well defined), and endow it with the induced topology from RPn × Rn+1. Finally,
consider π : E → RPn to be the projection onto the first coordinate; we will show
that π is a real vector bundle, and we will call π the canonical line bundle over RPn.

Both RPn and E are topological spaces, and π is a continuous map. Besides,
for any {±x} ∈ RPn the fiber π−1({±x}) is isomorphic to < x >⊂ Rn+1 which
is a one-dimensional real vector space. It only remains to show that π is locally
trivial.
For any {±x} ∈ RPn, let U be the image in RPn by the quotient of an open
neighbourhood U ′ of x in Sn, small enough such that it does not contain any pair
of antipodal points; this way, the set U is an open neighbourhood of {±x}. Then,
define h : U × R → π−1(U ) given by:

∀({±u}, t) ∈ U × R h({±u}, t) = ({±u}, t · u′)

where u′ denotes the element of {±u} in U ′, that is, {u′} := {±u} ∩ U ′ ∈ Sn. This
is so that h is well-defined, and this way (U , h) is a local coordinate system for the
vector bundle around {±x}.

Lemma 1.21. The canonical line bundle over RPn has no nowhere zero cross-sections.

Proof. Let π : E → RPn be the canonical line bundle over RPn, and let s : RPn → E
be a cross-section of π; also let i : Sn → RPn be the projection onto the quotient,
i.e. ∀x ∈ Sn i(x) = {±x}. Then, for any x ∈ Sn, we have that i(x) = i(−x) and

s ◦ i(x) = ({±x}, t(x)x)
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for some continuous map t : Sn → R.
Furthermore, since i(x) = i(−x) for any x ∈ Sn then t(−x) = −t(x), and since
t is a continuous map, by Borsuk-Ulam’s Theorem we know that ∃x0 ∈ Sn such
that t(x0) = t(−x0). This means that t(x0) = t(−x0) = −t(x0) and so t(x0) = 0.
Consequently, s({±x0}) = ({±x0}, 0). Thus, s is not nowhere zero.

Lemma 1.22. A principal G-bundle is trivial if and only if it admits a cross-section.

Proof. Let p : E → B be a principal G-bundle.
If p is trivial then there is a global bundle atlas ϕ of p. Let g ∈ G be an arbitrary

element of G, then the map ig : B → B × G that assigns to any b ∈ B the element
ig(b) := (b, g) is a continuous map. Then ϕ−1 ◦ ig is also continuous, and it is a
cross section since

p ◦ ϕ−1 ◦ ig = (pr ◦ ϕ) ◦ ϕ−1 ◦ ig = pr ◦ ig = idB

where pr : B × G → B denotes the projection onto its first coordinate.
If p admits a cross-section s : B → E, allow g0 to be any arbitrary element of G

and define ϕ : B × G → E in the following way:

ϕ(b, g0) = s(b) ∀b ∈ B

ϕ(b, g0 · g) = s(b) · g ∀b ∈ B and ∀g ∈ G

We have that ϕ is well-defined and since p ◦ s = idB and p is a G-map, and then
p ◦ ϕ = pr by definition of ϕ. The fact that ϕ is a G-homeomorphism comes from
the condition of local triviality.
We have that ϕ defines a global atlas, and so p is a trivial principal G-bundle.

A similar result follows for real vector bundles, though we will not be proving
it here. Any interested reader may find a proof in [MS74, pp. 18-20]

Theorem 1.23. A real vector bundle π : E → B of dimension n is trivial if and only if it
admits n cross-sections s1, ..., sn which are nowhere dependent. That is, if and only if for
any b ∈ B, {s1(b), ..., sn(b)} is a set of generators of π−1(b)

This theorem implies that the canonical line bundle over RPn is not trivial for
any n ∈ Z+, since it cannot admit such cross-sections.

1.2 Useful constructions

In this section, we will introduce certain constructions that will be used later.
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1.2.1 Constructions with topological spaces

Definition 1.24 (G-Cartesian product). Let G be a group, and H ⊆ G be a subgroup.
Let X, Y be two topological spaces such that X has a right G-action and Y has a left
G-action.

We define X ×G Y as the Cartesian product X × Y, with its usual topology, but with
the additional structure of a right G-action induced by the action on each component:
∀(x, y) ∈ X ×G Y, ∀g ∈ G, (x, y)g = (xg, gy).

We define X ×G/H Y as the space X ×G Y with the quotient given by the relation:
∀a, b ∈ X ×G Y, a ∼ b ⇐⇒ ∃h ∈ H | ah = b. Naturally, we grant X ×G/H Y the
quotient topology.
If there is no doubt about which one is the group G, we will write X ×G/H Y = X ×/H Y.

This construction is due to Milnor.

Definition 1.25 (Join). Let (Xj)j∈J be a family of (non-empty) topological spaces. We
define the join X = ⋆j∈JXj as follows:
The elements of X are represented by families

(tjxj | j ∈ J), where tj ∈ [0, 1] xj ∈ Xj ∑
j∈J

tj = 1

in which only a finite number of ti are different from zero. The families (tjxj) and (t′j, x′j)
represent the same element if and only if both of the following conditions are satisfied:

1. tj = t′j, ∀j ∈ J

2. tj ̸= 0 =⇒ xj = x′j, ∀j ∈ J

The notation tjxj is an abbreviation for the pair (tj, xj). Since in the representation,
for any j ∈ J and ∀x, x′ ∈ Xj we may replace 0x by 0x′, it makes sense to also use 0 as
notation for the pair (0, x).

We have well-defined coordinate maps ∀j ∈ J:

πj : X → [0, 1] (tixi)i∈J 7→ tj;

pj : π−1
j ((0, 1]) → Xj (tixi)i∈J 7→ xj

And we attribute to the space X the coarsest topology for which each of the coordinate
maps are continuous, which is characterized by the fact that ∀Y topological space and
∀ f : Y → X, f is continuous if and only if the composition maps πj ◦ f and pj ◦ f
are continuous. If (Xj)j∈J is a family of G-spaces, then we will associate a continuous
G-action to X given by: (tjxj)j∈J · g = (tj(xj · g))j∈J ∀g ∈ G.

Notice that an order in J induces an order in the element’s representations of X. For
an ordered finite or numerable set J, we may use the notation:

X = ⋆j∈JXj = Xj1 ⋆ Xj2 ⋆ Xj3 ⋆ . . .
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1.2.2 Constructions with bundles

Definition 1.26 (Pullback). Let p : E → B be a principal G-bundle (or a real vector
bundle), let X be a topological space with a trivial G-action, and let f : X → B be a map
(or a fibrewise linear and bijective map).

Define EX = {(w, e) ∈ X × E | f (x) = π(e)} (similarly, EX = {(w, e) ∈
X × E | f (x) = p(e)}) with the induced topology from X × E. Let f ∗p : EX → X
(p f : EX → X) be the projection onto the first component, and f ∗ : EX → E be the
projection onto the second component. Then, it is clear that the diagram below is a pullback
in topology.

EX E

X B

f ∗

f ∗p p

f

Note that ∀x ∈ X f ∗p−1(x) = {(x, e) | e ∈ p−1( f (x))} ∼= p−1( f (x)), so the
preimage of a point of the base is a fibre, and f ∗p’s local triviality follows from p’s local
triviality. Thus, f ∗p is also a principal G-bundle (or a real vector bundle).

Since EX is a pullback, that means that for any topological space Y and homeomor-
phisms g1 : Y → E, g2 : Y → X making the diagram below commute, there exists
uniquely a homeomorphism h : Y → EX making the whole diagram commute.

Y

EX E

X B

g1

∃!h

g2

f ∗

f ∗p p

f

That is, f ∗ ◦ h = g2 and f ∗p ◦ h = g1. Furthermore, if any other topological space has
this property, it will be isomorphic to EX.

The bundle f ∗p is called the bundle induced from p by f . A pullback space is also
generally denoted f ∗E.

The following operation will allow to, in a way, attach bundles with the same
base space.

Definition 1.27 (Whitney sum). Let p0 : E0 → B and p1 : E1 → B be two bundles
(principal G-bundles or real vector bundles).

Since Cartesian product is a continuous functorial transformation, p × p1 : E0 ×
E1 → B × B is also a bundle. Then, consider the induced bundle from p × p1 by the
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diagonal map ∆ : B → B × B (∀b ∈ B ∆(b) = (b, b)), ∆∗(p0 × p1) : (E0 × E1)B → B;
this bundle is called the Whitney sum of p0 and p1.

1.3 Equivalence between real vector bundles and principal
GLn(R)-bundles

Let p : E → B be a principal GLn(R)-bundle. Consider the space E ×GLn(R) Rn,
and let π : E ×GLn(R) Rn → B be the projection onto its first component composed
with p; then, π is a real vector bundle of dimension n, in which any bundle
chart (U , ϕ : U × G → p−1(U )) for p induces a bundle chart (U , h : U × Rn →
p−1(U )×GLn(R) Rn) for π, and its vector space structure in each fibre comes from
the vector space structure in Rn. This way, we can associate a real vector bundle
to any principal GLn(R)-bundle.

Similarly, through the following construction we will be able to associate a
principal GLn(R)-bundle to any real vector bundle: let π : X → B be a real vec-
tor bundle, and let n(b) denote its dimension in each point b ∈ B. Let Eb :=
Iso(Rn(b), π−1(b)) be the space of linear isomorphisms; now since GLn(b)(R) =

Iso(Rn(b), Rn(b)), the space Eb has a right GLn(b)(R)-action given by the com-
position of linear maps. This allows us to define the space E := ⊔b∈BEb, and
since ∀e ∈ E ∃!b ∈ B such that e ∈ Eb, we also have a well-defined map
p : E → B, e 7→ p(e) = b which has a right GLn(b)(R)-action on each fibre.

Local triviality will follow from local triviality in π: for any b ∈ B, there is a
bundle chart (Ub, h : Ub × Rn → π−1(Ub)) for π, where h defines an isomorphism
between Rn and each fibre of Ub, say hu : Rn → π−1(u), and we have a well-
defined map:

ϕh : Ub × GLn(b)(R) → p−1(Ub) = ⊔u∈Ub Eu, (u, α) 7→ hu ◦ α ∈ Eu

with which we will define a bundle chart (Ub, ϕh) for p.
The transition function for two charts consists of a change of basis, which

is a continuous map. Therefore, there is a (unique) topology in E such that
{p−1(Ub)}b∈B are open sets and the bundle charts’ maps ϕh are homeomorphisms.
The right GLn(u)(R)-action on E is continuous and the ϕh are GLn(u)(R)-equivariant.

In conclusion, we have shown that, given π of constant dimension n, then p is
a principal GLn(R)-bundle.

Theorem 1.28. The construction that assigns to a principal GLn(R)-bundle p : E → B
the vector bundle E ×GLn(R) Rn → B defines an equivalence between the category of
principal GLn(R)-bundles and the category of n-dimensional real vector bundles.
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Proof. We’ve seen that, for any given real vector bundle of dimension n, we may
find a principal GLn(R)-bundle which leads to it through the construction, that is,
that the functor is surjective on the objects. Moreover, the construction also allows
to associate to every bundle map between vector bundles (F, f ) : π1 → π2 the
bundle map between principal G-bundles (F′, f ), defined fibre by fibre:

F′ : p−1
1 (b) = Iso(Rn, π−1

1 (b)) → Iso(Rn, π−1
2 ( f (b))) = p−1

2 ( f (b)) ∀b ∈ B

which are compatible with the construction.
Therefore, the functor is surjective on morphism sets between objects, and the
injectivity comes from the fact that a G-map p−1

1 (b) → p−1
2 ( f (b)) is determined by

its associate linear map p−1
1 (b)×GLn(R) Rn → p−1

2 ( f (b))×GLn(R) Rn.
The assignment defines a functor which is a bijection between objects and natural
isomorphisms which are bijections between bundle maps, and so it constitutes an
equivalence of categories.

1.4 Universal bundles and classifying spaces

In this section, we will see the strongest and most important result in the the-
ory of principal G-bundles: the Classification Theorem; this theorem will allow us
to view isomorphism classes of bundles as homotopy classes of certain maps.

One half of the construction is intuitive:
Denote by B(B, G) the set of isomorphism classes of numerable principal G-

bundles over B. One can study in which isomorphism class belongs a given nu-
merable principal G-bundles over B by studying its transition functions, and thus
B(B, G) is indeed a set.
A continuous map between two topological spaces B and C, f : B → C, induces
through pullback a well-defined map B( f ) = f ∗ : B(C, G) → B(B, G), and thus
we obtain a functor B(−, G). This functor is homotopy invariant as a consequence
of the Homotopy Theorem:

Theorem 1.29 (Homotopy Theorem). Let p : E → C be a numerable G-principal
bundle and h : B × I → C a homotopy. Then the bundles induced from p along h0 and h1

are isomorphic.

Proof of Theorem 1.29 may be found in [Die08][pp. 342-343].
Let pG : EG → BG be a numerable principal G-bundle and [B, BG] the set of

homotopy classes B → BG. Since homotopic maps induce isomorphic bundles,
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we obtain a well-defined map

ιB : [B, BG] → B(B, G), [ f ] → [ f ∗pG]

which defines a natural transformation.

The other half of the construction should allows us to naturally define a map
B(B, G) → [B, BG]. To make this construction, we will introduce the crucial notion
of universal bundles; this notion will give us our choice of BG which allows for
the map to be well-defined.

Definition 1.30 (Universal spaces. Universal bundles). Let pG : EG → BG be a
principal G-bundle. The total space EG is called universal if each numerable free G-space
E has a unique map E → EG up to G-homotopy.

A principal G-bundle pG : EG → BG whose total space is universal, is said to be
universal.

With this definition, it is not immediately clear if such universal bundles exist.
Further in this section, we will prove that such bundles do in fact exist; however,
we will for now be only assuming that they do in order to complete the idea of
the construction.

Let pG : EG → BG be a universal principal G-bundle, and let ξ : Eξ → B be
a numerable principal G-bundle. Then, there exists up to G-homotopy a unique
G-map Φ : Eξ → EG, which induces another map ϕ : B → BG such that (Φ, ϕ) is
a bundle map, where ϕ is unique up to homotopy due to Φ being unique up to
G-homotopy. This means that we can assign to ξ the class [ϕ] ∈ [B, BG], since ϕ is
well-defined up to homotopy.

Remark 1.31. Notice that, if p1 and p2 are isomorphic numerable principal G-
bundles sharing base space B, then the previous construction assigns to both the
same class in [B, BG].

Proof. First, notice that if p1 : E1 → B and p2 : E2 → B are two numerable
principal G-bundles over the same base space B, and (F, f ) is a bundle map, then
(F, f ) is a bundle isomorphism if and only if p1 and f ∗p2 are isomorphic through
a bundle isomorphism (G, idB). Considering this, we will be comparing bundle
isomorphisms to be of the form (F, idB).

Let (F, idB) be a bundle isomorphism between p1 : E1 → B and p2 : E2 → B,
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then the construction leads to the following diagram:

E1 E2

EG

B B

BG

F

Φ1

p1

Φ2

p2

pG
idB

ϕ1 ϕ2

Since EG is universal, then there exists a unique map E1 → EG up to G-homotopy,
which means that Φ1 and Φ2 ◦ F are G-homotopic. Due to diagram commutativity:

ϕ2 ◦ idB ◦ p1 = ϕ2 ◦ p2 ◦ F = pG ◦ Φ2 ◦ F

and
ϕ1 ◦ p1 = pG ◦ Φ1.

Both expressions are homotopy equivalent since Φ1 and Φ2 ◦ F are homotopy
equivalent. And since p1 is surjective, we get that ϕ1 and ϕ2 ◦ idB = ϕ2 are ho-
motopy equivalent.

This means that, through the assignation, we obtain a well-defined map κB :
B,G → [B, BG], and κB defines a natural transformation.

Remark 1.32. The compositions κB ◦ ιB and ιB ◦ κB yield the identity of their re-
spective sets.

A priori, it might seem that this construction relies on the choice of a universal
principal G-bundle. However, we will see that this is not the case.
If p′G : E′G → B′G is another universal principal G-bundle, then there exist bundle
maps ∆ : EG → E′G and Γ : E′G → EG which are unique up to G-homotopy, and
the compositions Γ ◦ ∆ and ∆ ◦ Γ are G-homotopic to the identity. They induce
bundle maps (∆, δ) and (Γ, γ):

EG E′G

BG B′G

∆

pG
Γ

p′G
δ

γ
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Due to diagram commutativity, we have that:

γ ◦ δ ◦ pG = γ ◦ p′G ◦ ∆ = pG ◦ Γ ◦ ∆ ∼= pG ◦ idEG = pG

And since pG is surjective, we have that γ ◦ δ ∼= idBG; and the same argument can
be done symmetrically to get that δ ◦ γ is homotopic to the identity. Thus, BG and
B′G are homotopy equivalent.

Finally, let us give a couple new useful definitions, and state the result of the
construction in the shape of a theorem, the Classification Theorem.

Definition 1.33 (Classifying space). Let pG : EG → BG be a universal principal G-
bundle. Then, we will say that BG is a classifying space of the group G.

Remark 1.34. Given a topological group G, its classifying space is unique up to
homotopy equivalence.

Definition 1.35 (Classifying map). A map k : B → BG which induces from the univer-
sal principal G-bundle pG : EG → BG a given bundle p : E → B, i.e. a map k such that
p = k∗pG, is called a classifying map of the bundle p.

Remark 1.36. Given a principal G-bundle p, there is a classifying map of p, and it
is unique up to homotopy.

Theorem 1.37 (Classification theorem). We assign to each isomorphism class of numer-
able principal G-bundles the homotopy class of a classifying map and obtain a well-defined
bijection B(B, G) ∼= [B, BG]. The inverse assigns to k : B → BG the bundle induced by k
from the universal bundle.

Proof. The construction prior in this chapter is proof of this theorem, and it only
remains to see that there exist universal principal G-bundles.

We will now show that there exist universal principal G-bundles.

Theorem 1.38 (Existence of universal principal G-bundles). There exist universal
principal G-bundles

Proof. The scheme of the proof will be the following:

• Construction of EG (Definition 1.39).

• Proof that any pair of G-maps E → EG is G-homotopic (Proposition 1.42).
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• Proof that any numerable G-space E admits a G-map E → EG (Proposition
1.43).

Definition 1.39 (Milnor space). Given a topological group G, the Milnor space EG in
G is a join (as introduced in Definition 1.25) of a countably infinite many copies of G.

EG = G ⋆ G ⋆ G ⋆ . . .

Remember that G acts over EG component-wise. That is, for any (tjgj)j∈N and any
g ∈ G, we have that (tjgj)j∈N · g = (tj(gj · g))j∈N.

Remark 1.40. It is an easy task to define a principal G-bundle with total space EG.
It is enough to take BG := EG/G as the base space, and the projection map (or
orbit map) pG : EG → EG/G = BG defines a principal G-bundle.

Remark 1.41. Notice that pG is numerable.
The coordinate functions tj are G-invariant, and so they induce functions τj

in BG. These τj functions are a point-finite partition of unit subordinate to the
open covering {Vj/G}j∈N, where Vj := t−1

j ((0, 1]). By construction we have maps
pj : Vj → G, and so the bundle is trivial over Vj/G, which delivers a numerable
bundle atlas.

Proposition 1.42. Let E be a G-space. Any two G-maps f , g : E → EG are G-homotopic.

Proof. Let the coordinate forms of f (x) and g(x) be, respectively:

(t1(x) f1(x), t2(x) f2(x), . . . ) and (u1(x)g1(x), u2(x)g2(x), . . . ).

We will show that they are G-homotopic to maps with coordinate form, respec-
tively:

(t1(x) f1(x), 0, t2 f2(x), 0, . . . ) and (0, u1(x)g1(x), 0, u2(x)g2(x), . . . )

It is clear that those two forms are connected by the G-homotopy defined by:

((1 − l)t1 f1, lu1g1, (1 − l)t2 f2, lu2g2, . . . )

in the parameter l ∈ I, which means that showing the statement above will be
enough for the proof.

We will build a G-homotopy from the G-map with form (t1(x) f1(x), 0, t2 f2(x), 0, . . . )
to f . However, the same construction will be appliable also for the G-homotopy
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linking G-map with form (0, u1(x)g1(x), 0, u2(x)g2(x), . . . ) and g.
We will do so by an iterative process, building our G-homotopy as a numerable
composition of G-homotopies. The first will be, in the parameter l, defined by:

(t1 f1, lt2 f2, (1 − l)t2 f2, lt3 f3, ...)

essentially this G-homotopy behaves as the identity on the components before the
fist zero, and then shifts every component once to the left, removing that zero in
the process. This way, the second iterative step would be, in the parameter l:

(t1 f1, t2 f2, lt3 f3, (1 − l)t3 f3, ...)

and so on.
The attachment of all these G-homotopies may be performed through the intervals
[1, 1

2 ], [
1
2 , 1

4 ], [
1
4 , 1

8 ], . . . , and it is indeed continuous, and a G-homotopy, since it is
in each coordinate, where only a finite amount of transformations are not the
identity. This makes the two maps above G-homotopic.

Proposition 1.43. Let E be a G-space. Let {Un}n∈N be an open covering by G-trivial sets.
Suppose there exists a point-finite partition of unity {un}n∈N by G-invariant functions
subordinate to the covering {Un}n∈N.
Then, there exists a G-map ϕ : E → EG.

A numerable free G-space admits E admits a G-map E → EG.

Proof. By definition of G-trivial space, there exist G-maps ϕn : Un → G. Then, we
may define ϕ(z) := (u1(z)ϕ1(z), u2(z)ϕ2(z), . . . ). It is continuous by the definition
of the topology in the join space.

Since E is numerable, there is a countable point-finite partition of unit in E
by G-invariant functions subordinate to {Un}n∈N. Then, the second result follows
from applying the construction above to said partition of unit.

Finally, we will see a characterization for universal principal G-bundles, and
then give an example which involves the computation of a certain kind of classi-
fying space.

Proposition 1.44. The space EG is contractible.

Proof. The maps
0EG : {∗} → EG, ∗ 7→ (0, 0, . . . )

0{∗} : EG → {∗}, (t1x1, t2x2, . . . ) 7→ ∗
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are continuous. Hence, the maps 0EG ◦ 0{∗} and 0{∗} ◦ 0EG are continuous.
We have that 0EG ◦ 0{∗} = id{∗} : {∗} → {∗}, and 0{∗} ◦ 0EG : EG → EG. By
Proposition 1.42 we know that 0{∗} ◦ 0EG is G-homotopic to idEG : EG → EG, so
EG is contractible.

Theorem 1.45. A numerable principal G-bundle p : E → B is universal if and only if E
is contractible (as a space without group action).

A proof of the theorem may be found in [Die08][pp. 347, 348].

Example 1.46. Consider a discrete abelian group G, and the universal bundle pG :
EG → BG where EG denotes the Milnor space, BG = EG/G and pG denotes the
canonical projection map. Then, we have an associated long-exact sequence of
homotopy groups

· · · πn+1BG

πnG πnEG πnBG

πn−1G · · · π2BG

π1G π1EG π1BG

π0G π0EG π0BG

0

Where 0 = {∗} denotes the trivial space.
Since EG is contractible, we know that πiEG ∼= 0 for any i ≥ 0, and since G

is discrete, we know that πiG ∼= 0 for any i ≥ 1 and π0G ∼= G. We deduce by
exactness of the chain that πiBG ∼= πi−1G ∼= 0 for any i ≥ 2, that π0BG ∼= 0, and
also that π1BG ∼= π0G ∼= G. Hence, BG is an Eilenberg-MacLane space of type
K(G, 1).

Let B be any CW-complex, then by Brown’s representability theorem we know
that the first cohomology group H1(B, G) may be written as [B, BG] ∼= H1(B, G).
Then, we have

B(B, G) ∼= [B, BG] ∼= H1(B, G)
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and so it is enough to study principal G-bundles with base B to understand the
first cohomology group of B with coefficients in G.
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Chapter 2

Equivariant principal G-bundles

In this chapter, we will add an additional structure to principal G-bundles,
defining the category of Γ-invariant principal G-bundles, which is the category of
objects over which Lück and Uribe write the reference article, and we will show
some basic properties. Also, we will be considering only bundles over Γ-CW-
complexes from this point onwards.
We will also start to focus now on our case of interest, that is, Z/2Z-invariant
principal G-bundles, and we will see how this choice of topological group simpli-
fies some of the definitions given.

2.1 The category of equivariant principal G-bundles

In this section, we will introduce the category of Γ-equivariant principal G-
bundles for a given topological group Γ. We will also introduce some basic notions
which will be either necessary for the definitions or important later.

Definitions in this section will be taken from [LU14][pp. 1928-1932] and from
[Lüc].

Definition 2.1 (Pushout). Let A, B, C be topological spaces, and let bA : A → B, cA :
A → C be two continuous maps.

A pushout is defined as a space X and a pair of maps xB : B → X, xC : C → X such
that xB ◦ bA = xC ◦ cA, and for any space D and for any pair of maps dB : B → D and
dC : C → D, then there exists a unique map dX : X → D up to homeomorphism, such
that dB = dX ◦ xB and dC = dX ◦ xC. That is, there exists dX making the whole diagram
commute.

21
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A B

C X

D

bA

cA xB dB
xC

dC

∃!dX

The pushout in the Top category is unique up to homeomorphism, and it has a model:

X = B ⊔A C := B ⊔ C/ ∼A

where B ⊔ C denotes the disjoint union of B and C, and ∼A denotes the finest equivalence
relation such that bA(a) ∼A cA(a) for all a ∈ A. In this model xB and xC are the usual
inclusions.

The pushout in the category of Γ-topological spaces (for Γ an arbitrary topological
group) is called Γ-pushout, and is defined in the same way by taking topological spaces
with a left Γ-action to be the objects and Γ-continuous maps to be the morphisms, and it is
also unique up to Γ-homeomorphism.

Lemma 2.2. Consider a commutative square of Γ-spaces and Γ-maps:

A B

C X

bA

cA xB

xC

then X is a Γ-pushout if and only if it is a pushout after forgetting the group action.

Proof. Assume that the diagram is a Γ-pushout, then consider the pushout Y :=
B ⊔A C with inclusion maps yB : B → Y and yC : C → Y. Notice that B ⊔ C has
a well-defined Γ-action induced by the actions on B and C, and ∼A is compatible
with this action since bA and cA are Γ-maps, hence Y has a well defined Γ-action
and the inclusions yB and yC are Γ-maps. Then since the diagram is a Γ-pushout
and Y is a pushout, there is a Γ-map yX : X → Y and a map xY : Y → X making
the whole following diagram commute

A B

C X

Y

bA

cA xB yB
xC

yC

∃!yX

∃!xY
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and so in particular xY ◦ yX = idX and yX ◦ xY = idY, hence xY is a homeo-
morphism, and since the pushout is unique up to homeomorphism, then X is a
pushout after forgetting the group action.

Assume that the diagram is a pushout after forgetting the group action. Con-
sider any Γ-space D and any pair of Γ-maps dB : B → D and dC : C → D. Then
there exists a unique map up to heomeomorphism dX : X → B which makes the
whole following diagram commute:

A B

C X

D

bA

cA xB dB
xC

dC

∃!dX

Since the pushout is unique up to homeomorphism, then X ∼= B ⊔A C, and in
particular it is possible to split X as a union X = {x ∈ X | ∃b ∈ B such that x =

xB(b)} ∪ {x ∈ X | ∃c ∈ C such that x = xC(c)}. Choose any x ∈ X, and without
loss of generality we will assume that there is b ∈ B such that x = xB(b), then for
any γ ∈ Γ

γdX(x) = γ · dX ◦ xB(b) = γdB(b) = dB(γb) = dX ◦ xB(γb) = dX(γxB(b)) = dX(γx)

meaning that dX is a Γ-map making the diagram commute, and since dX is unique
up to homeomorphism in particular it is unique up to Γ-homeomorphism. Hence,
X is a Γ-pushout.

Definition 2.3 (Γ-CW-Complex). A Γ-CW-Complex B is a Γ-space together with a Γ-
invariant filtration

∅ = B−1 ⊆ B0 ⊆ B1 ⊆ · · · ⊆ Bn ⊆ · · · ⊆
⋃

n≥0

Bn = B

such that B carries the colimit topology with respect to this filtration (i.e. a set of C ⊆ B is
closed if and only if C ∩ Bn is closed in Bn for all n ≥ 0) and Bn is obtained from Bn−1 for
each n ≥ 0 by attaching Γ-equivariant n-dimensional cells, i.e. there exists a G-pushout

⨿i∈In
G/Hi × Sn−1 Bn−1

⨿i∈In
G/Hi × Dn Bn

⨿i∈In qn
i

⨿i∈In Qn
i
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The space Bn is called the n-skeleton of B. A Γ-equivariant open n-dimensional cell is
a Γ-component of Bn \ Bn−1, and the closure of a Γ-equivariant open n-dimensional cell is
called a Γ-equivariant closed n-dimensional cell.

Definition 2.4 (Γ-equivariant principal G-bundle). A Γ-equivariant principal G-bundle
p : E → B consists of a principal G-bundle over a Γ-CW-complex B, together with left
Γ-actions on E and B (commuting with the right G-actions) such that p : E → B is
Γ-equivariant. That is, γ · p(e) = p(γ · e) ∀γ ∈ Γ, ∀e ∈ E.

Definition 2.5 (Morphism). Let p0 : E0 → B0, p1 : E1 → B1 be two Γ-invariant prin-
cipal G-bundles, we say that the pair (F, f ) of maps F : E0 → E1 and f : B0 → B1 is a
morphism of Γ-equivariant principal G-bundles if F is also a G-map (or linear and bijec-
tive on the fibres), F ans f are compatible with the left Γ-action, and the diagram below is
commutative.

E0 E1

B0 B1

F

p0 p1

f

Definition 2.6 (Isomorphism). Let (F, f ) be a morphism of Γ-equivariant principal G-
bundles. We say that (F, f ) is an isomorphism if both F and f are homeomorphisms.

Remark 2.7. If we have an isomorphism (F, f ) of Γ-equivariant principal G-bundles,
we may consider their base space to be the same, and f = id.

Lemma 2.8. Let p1 : E1 → B and p2 : E2 → B be Γ-equivariant principal G-bundles
over the same Γ-CW-complex B. Let F : E1 → E2 be a map which is compatible with both
the left Γ-action and the right G-action, and satisfies that p1 ◦ F = p0.

Then, (F, idB) is an isomorphism of Γ-equivariant principal G-bundles.

Proof. By hypothesis (F, idB) is a morphism of Γ-equivariant principal G-bundles.
In particular, we may view (F, idB) is a bundle map, and since idB is an homeomor-
phism then (F, idB) is a bundle isomorphism. Hence why F is an homeomorphism
by Lemma 1.10, which means that (F, idB) is an isomorphism of Γ-equivariant
principal G-bundles.

2.2 Local representations

One reason why we might want to study Γ-equivariant principal G-bundles is
that requiring the action of a group G over our base space E to be free might be
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too restrictive in some cases. Allowing ourselves to work with groups Γ× G acting
over E, which we can also think as two distinct actions one of Γ acting left and
one of G acting right, and then only requiring the action of G to act freely over E,
might allow us to use the concepts coming from the theory of principal G-bundles
in the study of objects that wouln’t fit our exesting models. However, the action
of Γ × G over E is not only determined by the way in which G acts over E, and
hence the necessity to build the category of Γ-equivariant principal G-bundles to
make sure that the action of Γ is always preserved.

We develop the notion of local representations to help ourselves understand
the way in which Γ acts over E, by studying how the Γ-isotropy group of the
image in B of a point e ∈ E behaves in the total space E.

Definition 2.9 (Local representation). Let p : E → B be a Γ-equivariant principal G-
bundle, and e ∈ E an element of the total space. Then, we obtain a group homomorphism

ρe : Γp(e) → G

uniquely determined by γ · e = e · ρe(γ) for γ ∈ Γp(e), where Γp(e) := {γ ∈ Γ | γp(e) =
p(e)} is called the isotropy group of p(e) ∈ B.

Remark 2.10. Indeed, ρe is a well-defined continuous group homomorphism.

Proof. The map is well-defined since γp(e) = p(e) means that γ · e belongs to the
same orbit as e, and so there is a unique g ∈ G such that γ · e = e · g.

Being a homomorphism follows from a simple calculation:

e · ρe(γ1 · γ2) = (γ1 · γ2) · e = γ1 · (γ2 · e)

= γ1 · (e · ρe(γ2)) = (γ1 · e) · ρe(γ2)

= (e · ρe(γ1)) · ρe(γ2) = e · (ρe(γ1) · ρe(γ2)).

Being continuous follows from the facts that the map G → p−1(e), g 7→ e · g is a
homeomorphism due to p’s local triviality, and the map Γp(e) → p−1(e), γ 7→ γ · e
is continuous.

Remark 2.11. If we replace e by e · g for some g ∈ G, then ρeg = cg−1 ◦ ρe for
cg : G → G the conjugation homomorphism defined by g′ 7→ gg′g−1.

If we replace e by γ · e for some γ ∈ Γ, then Γp(e) = γ−1Γp(γe)γ and ργe =

ρe ◦ cγ−1 .
If (F, f ) is a morphism of Γ-equivariant principal G-bundles between p1 : E1 →

B1 and p2 : E2 → B2, then
ρ

p1
e = ρ

p2
F(e) ◦ ie

is satisfied for all e1 ∈ E1, where ie : Γp1(e) → Γp2◦F(e) is the inclusion.
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Furthermore, if (F, f ) is an isomorphism of Γ-equivariant principal G-bundles
between p1 : E1 → B1 and p2 : E2 → B2, then ρ

p1
e = ρ

p2
F(e) for any e ∈ E1.

Definition 2.12 (Family of local representations). A family R of local representations
for (Γ, G) is a set of pairs (H, α), where H is a subgroup of Γ and α : H → G is a
continuous group homomorphism such that the following conditions are satisfied.

• Finite intersections. Suppose that (H1, α1) and (H2, α2) belong tho R. Define
H := {h ∈ H1 ∩ H2 | α1(h) = α2(h)} and α : H → G by α = α1|H = α2|H.
Then, (H, α) ∈ R.

• Conjugation in G. If (H, α) ∈ R snd g ∈ G, then (H, cg−1 ◦ α) belongs to R.

• Conjugation in Γ. If (H, α) ∈ R snd γ ∈ Γ, then (γHγ−1, α ◦ cγ−1) belongs to R.

We’ll want to apply the concept of families local representations to the category
we are studying, and for this we will define the prefamily of local representations
associated to a Γ-equivariant principal G-bundle.

Definition 2.13 (Prefamily of local representations associated to a Γ-equivariant
principal G-bundle). Let p : E → B be a Γ-equivariant principal G-bundle. We define
the prefamily of local representations of p as:

R′(p) := {(Γp(e), ρ(e)) | e ∈ E}

Definition 2.14 (Family of local representations associated to a Γ-equivariant prin-
cipal G-bundle). Let p : E → B be a Γ-equivariant principal G-bundle. We define the
family of local representations of p as the smallest family of local representations containing
R′, and we name it R(p).

Remark 2.15. Notice that R′ is closed under conjugarion in G and in Γ due to
Remark 2.11. However, it is not necessarily closed under family intersections and
this is why R′ is not necessarily a family of local representations.

The following two are important results about families of local representations.
The first one relates them to certain families of subgroups, whilst the second one
shows that they are compatible with pullbacks.

Definition 2.16 (Family of subgroups). Let G be a topological group. A family of
subgroups of G is a set of subgroups of G which is closed under conjugation and taking
finite intersections.
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Lemma 2.17 (Family of subgroups attached to a family of local representations).
Let R be a family of local representations for Γ and G. For (H, α) ∈ R, let K(H, α) be
the subgroup of Γ × G given by

K(H, α) := {(γ, α(γ)) | γ ∈ H}.

Define
F (R) := {K(H, α) | (H, α) ∈ R}

then, F (R) is a family of subgroups of Γ × G

Proof. Checking that F (R) satisfies being closed under conjugation is a simple
computation which follows from R being closed under conjugations.

Checking that F (R) satisfies being closed under finite intersection follows
from R being closed under finite intersections.

An interested reader might check [LU14][p. 1931] for the exact computation
and details of this proof.

Remark 2.18. [Local representations and pullbacks] Let p : E → B be a Γ-equivariant
principal G-bundle and let f : A → B be a Γ-map. Let R be a family of local rep-
resentations. Suppose that we have R(p) ⊆ R. Provided for any (H, α) ∈ R
and any subgroup K ⊆ H which occurs as a isotropy group in A, we have that
(K, α|K) ∈ R, then we get R( f ∗p) ⊆ R for the pullback f ∗p. This follows from
Remark 2.11.

If we make the assumption that R is closed under subgroups, then f ∗p auto-
matically satisfies R( f ∗p) ⊆ R if R(p) ⊆ R is satisfied.

Remark 2.19. [Local representations and isomorphisms] If (F, f ) is an isomor-
phism of Γ-equivariant principal G-bundles between p1 : E1 → B1 and p2 : E2 →
B2, then R(p1) = R(p2). This is a consequence of previous Remark 2.11.

Before concluding this section, we will study how the previously defined ob-
jects behave in the the case Γ = Z/2, which well be the main focus of this project.

Remark 2.20. [Conjugations in Z/2] Being closed under conjugation in Z/2 is an
innocuous condition, since Z/2 is an abelian group.

Remark 2.21. [Z/2-left action] Given a topological space S with a Z/2-left action,
we have continuous product maps prod0 : S → S and prod1 : S → S defined for
any s ∈ S by s 7→ 0 · s and s 7→ 1 · s respectively, which define the the behaviour of
the action. In this case:

• prod0 = idS since 0 is the identity element.
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• prod1 satisfies that prod1 ◦ prod1 = prod0 = idS. In particular, prod1 is a
continuous bijective map where prod−1

1 = prod1 is continuous, hence prod1

is a group homeomorphism.

Remark 2.22. [Family of local representations associated to a Z/2-equivariant
principal G-bundle] Notice that the only subgroups of Z/2 are Z/2 and {0}.
Also, notice that for any local representation of ρe of a Z/2-equivariant principal
G-bundle p we have that 0 ∈ Z/2p(e) and ρe(0) = g0 where g0 ∈ G denotes its
identity element.

Now, given R′(p) the prefamily of local representations associated to a Z/2-
equivariant principal G-bundle p, we have that:
Suppose that (H1, α1) and (H2, α2) belong to R′(p). Define H := {h ∈ H1 ∩
H2 | α1(h) = α2(h)} and α : H → G by α = α1|H = α2|H. Then, since 0 ∈ H1 and
0 ∈ H2 we have that either H = {0}, in which case α is defined by 0 7→ g0, or
H = H1 = H2 = (Z/2).
Let α0 : {0} → G be the map 0 7→ g0. Then, ({0}, α0) is closed under conjugation
in G and in Z/2.

As a consequence, the family of local representations associated to a Z/2-
equivariant principal G-bundle p may be written as:

R(p) = R′(p) ∪ {({0}, α0)}

2.3 Discussion of condition (S) and condition (H)

Lück and Uribe define condition (S) and condition (H) in his article, which
they use as hypothesis to prove some technical results. Since we will be making
use of some of those results, in this section we will define those two conditions.

Definition 2.23 (Condition (S)). Given a topological group Γ and a closed subgroup
H ⊆ Γ, we say that the pair (Γ, H) satisfies Condition (S) if the projection pr : Γ → Γ/H
has a local cross-section, i.e. there is an open neighborhood U of 1H ∈ Γ/H together with
a map σ : U → Γ such that pr ◦ σ = idU .

A topological group Γ satisfies Condition (S) if for any subgroup H ⊆ Γ the pair
(Γ, H) satisfies Condition (S).

Lemma 2.24. The group Z/2 satisfies Condition (S). That is, given a subgroup H ⊆
Z/2, the projection map pr : Z/2 → (Z/2)/H has a cross-section.

Proof. Since Z/2 only has two distinct subgroups, we will study each case indi-
vidually.
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• If H = {0} then (Z/2)/H = (Z/2) and pr = idZ/2. Then, we may take
σ = idZ/2.

• If H = (Z/2) then (Z/2)/H = {0}, and any map σ that we choose has
pr ◦ σ = id{0}. For instance, we might choose σ : (Z/2)/H → Z/2 with
0H 7→ 0.

Definition 2.25 (Centralizer of α in G). Given two topological groups H and G, and a
homomorphish α ∈ hom(H, G), we define the centralizer of α in G as the subgroup of G
given by

CG(α) := {g ∈ G | gα(h)g−1 = α(h) ∀h ∈ H}

Definition 2.26 (Condition (H)). A family R of local representations in the sense of
Definition 2.12 for (Γ, G) satisfies Condition (H) if the following are satisfied for every
(H, α) ∈ R:

• The path component of α in hom(H, G) is contained in {cg ◦ α | g ∈ G}.

• The pair (G, CG(α)) satisfies Condition (S).

• The pair (Γ, H) satisfies condition (S).

• The canonical map

ια : G/CG(α) → hom(H, G), gCG(α) 7→ cg ◦ α

is a homeomorphism onto its image.

The following theorem gives us a set of conditions over G which ensure that
Condition (H) is satisfied for a given family of local representations for (Z/2, G).
Its relevance is to ensure that condition (H) is satisfied for some given groups G,
independently of the choice of R, and also that the theory founded over results
which rely on Condition (H) to be true will be coherent.

Theorem 2.27. Let R be a family of local representations for (Z/2, G). Then it satisfies
Condition (H) if the following conditions are satisfied.

1. The group G is locally compact, second countable and has finite covering dimension.

2. The group G is almost connected.

Proof of this theorem may be found in [LU14][p. 1938]
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2.4 Equivariant principal bundles over equivariant cells

In this section, we will analyze Z/2-equivariant principal G-bundles over
spaces of the type (Z/2)/H × Z, for some subgroup H ⊂ Z/2 and a topolog-
ical space Z with trivial H-action.

Lemma 2.28. Let f : E → (Z/2)/H be a Z/2-map for some subgroup H ⊆ Z/2.
Then, the Z/2-map

u : Z/2 ×/H f−1(0) → E, (γ, e) 7→ γ · e

is a homeomorphism.

Proof. The map u is a well-defined Z/2-map since for any h ∈ H and any (γ, e) ∈
Z/2 × E, it satisfies

u(γ, e) = γ · e = γ · h2 · e = u(γh, h · e) = u(h · (γ, e)).

We will study the two possible cases H = {0} and H = Z/2.

• If H = {0}, then f : E → Z/2 allows us to write E = f−1(0)⨿ f−1(1). Since
f is a Z/2-map, the Z/2-action in E defines a bijections

f−1(0) f−1(1) f−1(0).1· 1·

meaning that the Z/2-map u is a homeomorphism, and its inverse is given
by

u−1 : E → Z/2 × f−1(0), e 7→
{
(0, e) : if e ∈ f−1(0)
(1, 1 · e) : if e ∈ f−1(1).

• If H = Z/2, then f : E → {0} means that f−1(0) = E. We define the
Z/2-map

v : E → Z/2 ×/(Z/2) f−1(0), e 7→ (0, e)

which satisfies u ◦ v = idE and v ◦ u = idZ/2×/(Z/2) f−1(0), meaning that u is a

homeomorphism with u−1 = v.

Let H and G be two topological groups, and equip hom(H, G) with the sub-
space topology with respect to the inclusion hom(H, G) ⊆ map(H, G). In general,
we will be considering H to be a subgroup of Z/2 with the subspace topology
induced by the inclusion.
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Consider a space Z, a subgroup H ⊆ Z/2, and a map σ : Z → hom(H, G). We
have the obvious right H-action on Z/2 and the left H-action on Z × G given by
h · (z, g) := (z, σ(z)(h) · g). Let

pσ : Z/2 ×/H (Z × G) → (Z/2)/H × Z

be the map induced by the projection Z × G → Z. It is compatible with the left
Z/2-action on (Z/2)×/H (Z × G) given by γ0 · (γ, (z, g)) = (γ0γ, (z, g)) and the
left Z/2-action on (Z/2)/H × Z given by γ0 · (γ · H, z) = (γ0γ · H, z). It is also
compatible with the right G-action on (Z/2)×/H (Z×G) given by (γ, (z, g)) · g0 =

(γ, (z, gg0)) and the trivial right G-action on (Z/2)/H × Z. The left Z/2-action
and the right G-action commute.

Lemma 2.29. Let Z be a topological space, and H ⊆ Z/2 a subgroup. Then:

1. The map pσ : Z/2×/H (Z × G) → (Z/2)/H × Z is a Z/2-equivariant principal
G-bundle.

2. A Z/2-equivariant principal G-bundle E → (Z/2)/H × Z is isomorphic as a
Z/2-equivariant principal G-bundle to the map pσ for an appropiate map σ : Z →
hom(H, G), provided that the restriction of p to {0} × Z is (after forgetting the
H-action) a trivial G-bundle.

3. Given two maps σ0 : Z → hom(H, G) and σ1 : Z → hom(H, G), we have that the
Z/2-equivariant principal G-bundles pσ0 and pσ1 are isomorphic if and only if there
is a map ω : Z → G such that

σ1(z)(h) = ω(z)σ0(z)(g)ω(z)−1

for all h ∈ H and z ∈ Z.

4. Given a map σ : Z → hom(H, G), the homomorphism ρ(γ,(z,g)) : Z/2(γH,z) → G
associated to pσ as in the Definition 2.9 for (γ, (z, g)) ∈ (Z/2)×/H (Z × G) is
given by

Z/2(γH,z) = γHγ−1

ρ(γ,(z,g))(γhγ−1) = g−1σ(z)(h) · g

Proof. 1. Notice that the projection p : Z×G → Z is the trivial bundle, which in
particular is a principal G-bundle. We’ve already seen that pσ is compatible
with the actions of Z/2 and G, so it only remains to see that it is locally
trivial.
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• In the case H = (Z/2), we have that (Z/2) ×Z/2 (Z × G) ∼= Z × G
through the homeomorphism Π that sends every point in (Z/2)×Z/2

(Z × G), which has a class representative (0, (z, g)), to (z, g). We also
have that (Z/2)/(Z/2) × Z = {0} × Z ∼= Z through the homeomor-
phism π which is given by (0, z) 7→ z.
Since π ◦ pσ = p ◦ Π, and p is locally trivial, we have that pσ is also
locally trivial. That is, pσ is a Z/2-equivariant principal G-bundle. Fur-
thermore, since Π and π are compatible with the group actions, then
(Π, π) is an isomorphism.

• In the case H = {0}, we have that (Z/2)×/H (Z × G) = (Z/2)× (Z ×
G) and (Z/2)/H × Z = (Z/2) × Z. Consider Π and π to be their
respective projections onto their second components; in particular, they
are surjective maps such that π ◦ pσ = p ◦Π, and it follows that because
p is locally trivial, that pσ also a Z/2-equivariant principal G-bundle.
Furthermore, since Π and π are compatible with the group actions, then
(Π, π) is a morphism of Z/2-equivariant principal G-bundles.

2. We will again consider the cases H = (Z/2) and H = {0}. Let pE : E →
(Z/2)/H × Z be a Z/2-equivariant principal G-bundle such that the restric-
tion of p to {0} × Z is (after forgetting the H-action) a trivial G-bundle.

• If H = (Z/2), we have that pE : E → {0} × Z. Then by hypothesis, p is
trivial and so E ∼= ({0}× Z)× G ∼= Z × G ∼= (Z/2)×/(Z/2) (Z × G), for
some homeomorphisms which are compatible with the group actions.
Their composition F induces a Z/2-equivariant principal G-bundle p′E :
Z/2 ×/H (Z × G) → (Z/2)/H × Z such that p′e ◦ F = pE, and so p′E is
isomorphic to pE. Then, p′E = pσ where σ is given by the left Z/2-action
on Z × G.

• If H = {0}, then we may consider π : Z/2 × Z → Z/2 to be the
projection onto the first component and call f = π ◦ pE which is a Z/2-
map. Then, due to Lemma 2.28 the map

u : Z/2 × f−1(0) → E, (γ, e) 7→ γ · e

is a homeomorphism. Notice that f−1(0) = p−1
E ({0}× Z) and u is com-

patible with both group actions. Now since by hypothesis p|p−1
E ({0}×Z) is

a trivial Z/2-equivariant principal G-bundle, and so there is an home-
omorphism v : p−1

E ({0} × Z) → {0} × Z × G also compatible with both
group actions. Finally, the projection onto the second two components
w : {0} × Z × G → Z × G is also an homeomorphism compatible with
both group actions.
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The composition w ◦ v ◦ u−1 induces a Z/2-equivariant principal G-
bundle (Z/2)× Z × G → (Z/2)× Z isomorphic to pE. That bundle is
pσ where σ is given by the left {0}-action on Z × G, that is, p0 where 0
denotes the map between identity elements.

3. If H = {0} the result follows immediately, so assume that H = Z/2. We
will denote as g0 the identity element in G, and for each z ∈ Z we denote
gz 0 := σ0(z)(1) and gz 1 := σ1(z)(1); they satisfy gz 0 = g−1

z 0 , gz 1 = g−1
z 1 .

We need to show in particular that there is some map ω : Z → G such that

ω(z)σ0(z)(γ)ω(z)−1 = σ1(z)(γ)

for all z ∈ Z and all γ ∈ Z/2 if and only if pσ0 and pσ1 are isomorphic.

If there exists such ω, then the map

(Z/2)×/H (Z × G) → (Z/2)×/H (Z × G), (γ, (z, g)) 7→ (γ, (z, ω(z)g))

is a bundle isomorphism pσ0 → pσ1 .

If there is a Z/2-G-isomorphism f : F ×H G → F ×H G between pσ0 and
pσ1 . Then, we have that for each z ∈ Z, f (0, (z, g0)) = (0, (z, ω(z))) for some
w ∈ map(Z → G).
We need to show in particular that there is some map ω : Z → G such that

ω(z)gz 0ω(z)−1 = gz 1

since the case γ = 0 is automatically satisfied. If we consider (0, (z, gz 1w(z)))
belonging to the total space of pσ1 , we may develop the expression by using
the properties of the quotients by the actions of H and the fact that f is a
Z/2-G-map:

(0, (z, gz 1ω(z))) = (h, (z, σ1(z)(h)gz 1ω(z)))) = (h, (z, g2
z 1ω(z))

= (h, (z, ω(z))) = h · (0, (z, ω(z)))

= h · f (0, (z, g0)) = f (h · (0, (z, g0)))

= f (h, (z, g0)) = f (h2, (z, σ0(z)(h)))

= f (0, (z, gz 0)) = f ((0, (z, g0)) · gz 0)

= f (0, (z, g0)) · gz 0 = (0, (z, ω(z))) · gz 0

= (0, (z, ω(z)gz 0))

And so we obtain that gz 1ω(z) = ω(z)gz 0 for all z ∈ Z, which means that
gz 1 = ω(z)gz 0ω(z)−1 with ω(z)−1 ∈ G, which is what we wanted to see.
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4. • If H = {0}, then γH = {γ} and so 0 · (γH, z) = (γH, z), 1 · (γH, z) =
({1γ}, z) ̸= (γH, z). This means that

Z/2(γH,z) = {0} = γ{0}γ−1 = γHγ−1.

Then:

ρ(γ,(z,g))(γ0γ−1) = ρ(γ,(z,g))(0) = g0 = g−1g0 · g = g−1σ(z)(0) · g

where g0 denotes the identity element in G.

• If H = (Z/2), then (Z/2)/H = {0} and so 0 · (γH, z) = (γH, z),
1 · (γH, z) = (1γH, z) = (H, z) = (γH, z). This means that

Z/2(γH,z) = {0, 1} = γ{0, 1}γ−1 = γHγ−1.

We have that:
ρ(γ,(z,g))(γhγ−1) = ρ(γ,(z,g))(h)

and h · (γ, (z, g)) = (γ, (z, g)) · ρ(γ,(z,g))(h) by definition. Now h · (γ, (z, g)) =
(hγ, (z, g)) = (γ, (z, σ(z)(h) · g)), and (γ, (z, g)) · ρ(γ,(z,g))(h) = (γ, (z, g ·
ρ(γ,(z,g))(h)), which means that (z, σ(z)(h) · g) = (z, g · ρ(γ,(z,g))(h)), and
in particular

σ(z)(h) · g = g · ρ(γ,(z,g))(h)

and so ρ(γ,(z,g))(h) = g−1σ(z)(h) · g as we wanted to see.

The following lemma allows us to express some simple Z/2-equivariant prin-
cipal G-bundles as bundles pρe for some e belonging to the total space through
bundle isomorphisms. This will prove to be useful when studying the behaviour
the restriction bundles over given cells of the original base space.

Lemma 2.30. Let Z be a (nonequivariant) contractible CW-complex and let p : E →
(Z/2)/H × Z be a Z/2-equivariant principal G-bundle with R(p) ⊆ R.

Then p is isomorphic to pr∗E′ for a Z/2-equivariant principal G-bundle p′ : E′ →
(Z/2)/H for the projection pr : (Z/2)/H × Z → (Z/2)/H, or, equivalently, there
exists (H, α) ∈ R such that p is isomorphic to the Z/2-equivariant principal G-bundle

pα : ((Z/2)×/H G)× Z → (Z/2)/H × Z, ((γ, g), z) 7→ (γH, z).

For the proof of the previous lemma, we will be using the following result
about principal G-bundles over CW-complexes, which we will not be proving in
this document. Instead, the reader may find proof in [LU14][p. 1927].
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Lemma 2.31. Let B be a CW-complex and let p : E → B × I be a principal G-bundle.
Let i0 : B × {0} → B × I be the inclusion.

Then i∗0 p × idI : i ∗0 E × I → B × I is a principal G-bundle and there exists an
isomorphism of principal G-bundles induced by

f : i∗0 E × I → E

over B × I whose restriction to B × {0} is the identity.

Proof of Lemma 2.30. Since Z is contractible, by Lemma 2.31, we have that the re-
striction bundle p|{0}×Z : E|0×Z → {0} × Z is a trivial bundle. We can apply
Lemma 2.29[3.] and we obtain that p is isomorphic to pσ for an appropriate map
σ : Z → hom(H, G).

Take α := σ(z) for some z ∈ Z. By Lemma 2.29[4.] we have that α = ρ((0,g0),z)

for ((0, g0), z) ∈ ((Z/2)×/H G)× Z where g0 denotes the identity element in G.
Also, notice that for any two isomorphic Z/2-equivariant principal G-bundles p1

and p2, we have that R(p1) = R(p2), since for any isomorphism (F, f ) between p1

and p2 we have that ρe = ρF(e) for any e belonging to the total space of p1. Hence
(H, α) ∈ R(pα) = R(p) ⊆ R.

It remains to see that pσ is isomorphic to pα. However, this statement is true
by definition of both bundles with our choice of α.

2.5 Equivariant principal bundles versus equivariant CW-
complexes

Definition 2.32 (Er and El). We introduce the following notation:

• Given a Γ × G-space E, we will call Er to the space E but now with the left Γ-action
given by γe = (γ, g0) · e for any γ ∈ Γ, where g0 denotes the identity element of G,
and the right G-action given by eg = (γ0, g−1) · e for any g ∈ G, where γ0 denotes
the identity element of Γ.

• Given a space E with commuting left Γ-action and right G-action, we will call El to
the same space E but now with the left Γ × G-action given by (γ, g) · e = γ · e · g−1

for any (γ, g) ∈ Γ × G.

Theorem 2.33. Let R be a family of local representations for (Z/2, G) satisfying Condi-
tion (H).
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1. Let p : E → B be a Z/2-equivariant principal G-bundle with R(p) ⊆ R over a
Z/2-CW-complex B. Then El is a (Z/2)× G-CW-complex whose isotropy groups
belong to the family F (R) introduced in Lemma 2.17.

2. Let E be a left (Z/2) × G-CW-complex whose isotropy groups belong to F (R).
Then p : Er → Er/G is a Z/2-equivariant principal G-bundle with R(p) ⊆ R.

Theorem 2.34 (Local structure). Let R be a family of local representations for (Z/2, G)

satisfying Condition (H). Let p : E → B be a Z/2-equivariant principal G-bundle with
R(p) ⊆ R. Consider any point b ∈ B and any Hb-invariant open neighborhood W of
b ∈ B, where H ⊆ (Z/2) denotes a subgroup and Hb := {h ∈ H | h · b = b}.

Then, there exists an open neighborhood U of b with b ∈ U ⊆ W , which is Hb-
invariant and Hb-contractible; and an open Z/2-invariant neighborhood V of b; and a
commutative diagram

(Z/2)×Hb (U × G) p−1(V)

(Z/2)×Hb U V

F
∼=

q p|p−1(V)

f
∼=

with the following properties.

1. The group Hb acts from the right on U × G by

h · (u, g) := (h · u, ρe(h) · g)

where (Z/2e, ρe) is the local representation of p associated to a fixed element e ∈ E
with p(e) = b.

2. The upper horizontal map F is a homeomorphism compatible with the left Z/2-
actions and the right G-actions, which at the source is given by

γ′ · (γ, (u, g)) · g′ = (γ′γ, (u, gg′)).

3. The lower horizontal map f is a homeomorphism compatible with the left Z/2-
actions, and q sends (γ, (u, g)) 7→ (γ, u).

2.6 Homotopy invariance

The aim of this section is to prove the theorem of homotopy invariance, which
is a basic and necessary result for the theory of classifying spaces to be consistent
and well-defined.
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Lemma 2.35. Let p : E → B be a Γ-equivariant principal G-bundle, and let the following
diagram of Γ-CW-complexes be a Γ-pushout

B0 B1

B2 B

i1

i2 j1
j2

Then, the square obtained by the pullback construction

(EB1)B0 = (EB2)B0 EB1

EB2 E

i∗1

i∗2 j∗1
j∗2

is a Γ × G-pushout.

Theorem 2.36 (Homotopy invariance). Let R be a family of local representations for
(Z/2, G) satisfying Condition (H). Let B be a Z/2-equivariant principal G-bundle with
R(p) ⊆ R. Let i0 : B × {0} → B × [0, 1] be the inclusion.

Then i∗0 E × [0, 1] B × [0, 1]
i∗0 p×id[0,1]

is a Z/2-equivariant principal G-bundle
and there exists an isomorphism of Z/2-equivariant principal G-bundles

f : i∗0 E × [0, 1] → E

over B × [0, 1] whose restriction to B × {0} is the identity.

Proof. Let pn : En → Bn be the restriction of i∗0 E to the n-skeleton Bn of B. We
will construct inductively over n an isomorphism of Z/2-equivariant principal
G-bundles

fn : En × [0, 1] E|Bn×[0,1]
∼=

such that the restriction of fn to Bn × {0} is the identity and the restriction of fn to
Bn−1 × [0, 1] is fn−1. Then we can define the desired isomorphism f by requiring
that f |Bn×[0,1] = fn.

The induction beginning at n = −1 is immediate, the induction step from n− 1
to n is done as follows. Choose a Z/2-pushout

⊔
i∈I(Z/2)/Hi × Sn−1 Bn−1

⊔
i∈I(Z/2)/Hi × Dn Bn

⊔i∈I qi

⊔i∈I Qi
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By Lemma 2.35 we obtain a Γ × G-pushout

⊔
i∈I q∗i En−1 En−1

⊔
i∈I Q∗

i En En

⊔i∈I q∗i

⊔i∈I Q∗
i

and thus a Γ × G-pushout

⊔
i∈I q∗i En−1 × [0, 1] En−1 × [0, 1]

⊔
i∈I Q∗

i En × [0, 1] En × [0, 1]

⊔i∈I q∗i ×id[0,1]

⊔i∈I Q∗
i ×id[0,1]

It suffices to extend fn−1 to every cell individually. That is, it is sufficient
to extend for every i ∈ I the map of Z/2-equivariant principal G-bundles over
(Z/2)/Hi × Sn−1 × [0, 1]

xi : q∗i En−1 × [0, 1] En−1 × [0, 1] E|Bn−1×[0,1]
q∗i ×id[0,1] fn−1

covering qi × id[0,1] : (Z/2)/Hi × Sn−1 × [0, 1] → Bn−1 × [0, 1], to a map of Z/2-
equivariant principal G-bundles over (Z/2)/Hi × Dn × [0, 1]

yi : Q∗
i En × [0, 1] → E|Bn×[0,1]

covering Qi × id[0,1] : (Z/2)/Hi × Dn × [0, 1] → Bn × [0, 1] such that the restriction
of yi to (Z/2)/Hi × Dn × {0} is the identity.

We have the following commutative diagram:

q∗i En−1 × [0, 1] En−1 × [0, 1] E|Bn−1×[0,1]

(Qi × id[0,1])
∗(E|Bn×[0,1]) E|Bn×[0,1]

(Z/2)/Hi × Sn−1 × [0, 1] (Z/2)/Hi × Dn × [0, 1] Bn × [0, 1] Bn × [0, 1]

q∗i ×id[0,1]

q∗i (pn×id[0,1])

fn−1

∼=

(Qi×id0,1)
∗

(Qi×id0,1)
∗(p|Bn×[0,1]) p|Bn×[0,1]

Qi×id[0,1] id
∼=

By (Qi × id[0,1])
∗(E|Bn×[0,1]) being a pullback we obtain a map of Z/2-equivariant

principal G-bundles q∗i En−1 × [0, 1] −→ (Qi × id[0,1])
∗(E|Bn×[0,1]), and through the
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restriction we obtain a map of Z/2-equivariant principal G-bundles over (Z/2)/Hi ×
Sn−1 × [0, 1]

x′i : q∗i En−1 × [0, 1] −→ (Qi × id[0,1])
∗(E|Bn×[0,1])|(Z/2)/Hi×Sn−1×[0,1]

covering the identity id : (Z/2)/Hi × Sn−1 × [0, 1] → (Z/2)/Hi × Sn−1 × [0, 1]
such that the restriction of x′i to (Z/2)/Hi × Sn−1 × {0} is the identity. It remains
to extend x′i to a map of Z/2-equivariant principal G-bundles over (Z/2)/Hi ×
Dn × [0, 1]

y′i : Q∗
i En × [0, 1] → (Qi × id[0,1])

∗E

covering the identity id : (Z/2)/Hi × Dn × [0, 1] → (Z/2)/Hi × Dn × [0, 1] such
that the restriction of y′i to (Z/2)/Hi × Dn × {0} is the identity.

By Remark 2.18 we have that R(Q∗
i En) ⊆ R(p). By Lemma 2.30 we know that

the Z/2-equivariant principal G-bundle Q∗
i En is isomorphic to pα : ((Z/2) ×H

G) × Dn → (Z/2)/H × Dn for some (H, α) ∈ R. Hence there exist Γ × G-
homeomorphisms

a : ((Z/2)× G)/H′
i × Dn → (Q∗

i En)l

b : ((Z/2)× G)/H′
i × Sn−1 → (q∗i En−1)l

for an appropriate subgroup H′
i ⊆ (Z/2) × G belonging to F (R). Hence we

get isomorphisms of Z/2-equivariant principal G-bundles over (Z/2)/Hi × Dn ×
[0, 1]

a′ : ((Z/2)× G)/H′
i × Dn × [0, 1] → Q∗

i En × [0, 1]

b′ : ((Z/2)× G)/H′
i × Sn−1 × [0, 1] → q∗i En−1 × [0, 1]

By the same arguments, we have that R((Qi × id[0,1])
∗E|Bn×[0,1]) ⊆ R(p). And

there exist Γ × G-homeomorphisms

c : ((Z/2)× G)/H′
i × Dn × [0, 1] → (Qi × id[0,1])

∗E|Bn×[0,1]

c′ : ((Z/2)× G)/H′
i × Sn−1 × [0, 1] → (Qi × id[0,1])

∗(E|Bn×[0,1])|(Z/2)/Hi×Sn−1×[0,1].

Consider the composition map c′−1 ◦ x′i ◦ b′. This way, we obtain from an iso-
morphism of Z/2-equivariant principal G-bundles over (Z/2)/Hi × Sn−1 × [0, 1]

x′′i : ((Z/2)× G)/H′
i × Sn−1 × [0, 1] ((Z/2)× G)/H′

i × Sn−1 × [0, 1].
∼=
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It remains to extend x′′i to an isomorphism of Z/2-equivariant principal G-
bundles over (Z/2)/Hi × Dn × [0, 1]

y′′i : ((Z/2)× G)/H′
i × Dn × [0, 1] ((Z/2)× G)/H′

i × Dn × [0, 1]
∼=

whose restriction to Dn × {0} is the restriction of c′−1 ◦ b′ to Dn × {0}.

Notice that by the exponential law, the map x′′i is the same as a map

Sn−1 × [0, 1] → map(Z/2)×G(((Z/2)× G)/H′
i , ((Z/2)× G)/H′

i )

and y′′i is the same as a map

Dn × [0, 1] → map(Z/2)×G(((Z/2)× G)/H′
i , ((Z/2)× G)/H′

i ).

Hence it suffices to extend a given map

Sn−1 × [0, 1] ∪ Dn × {0} → map(Z/2)×G(((Z/2)× G)/H′
i , ((Z/2)× G)/H′

i )

to a map

Dn × [0, 1] → map(Z/2)×G(((Z/2)× G)/H′
i , ((Z/2)× G)/H′

i ).

This is possible since there exists a retraction Dn × [0, 1] → Sn−1 × [0, 1]∪Dn ×{0}.

2.7 Universal equivariant Z/(2)-bundles

The theory of classifying spaces in the category of Z/2-equivariant principal
G-bundles is developed similarly to the non-equivariant case. However, it will
be necessary to choose a convenient family of local representations, and for that
we will introduce the notion of compatibility. In this section, we will follow that
study and ultimately prove the existence of classifying spaces for Z/2-equivariant
principal G-bundles (with family of local representations contained in the chosen
family R), which is the most important result of this project.
In this section, we treat our family of local representations R to be fixed, and
assume that every space that we work with is R-numerable as in the following
definition:

Definition 2.37 (Compatibility). Let R be a family of local representations for (Z/2, G)

satisfying Condition (H). We call R compatible with the Z/2-CW-complex BR if for any
b ∈ BR and for any (H, α) ∈ R with Z/2b ⊆ H, the pair (Z/2b, α|Z/2b) belongs to R.
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Remark 2.38. Notice that any family of local representations for (Z/2, G) satisfy-
ing Condition (H) R is automatically compatible with every Z/2-CW-complex if
it is closed under taking subgroups, that is if for every (H, α) and for every K ⊆ H
subgroup, we have that (K, α|K) belongs to R.

The notion of compatibility is defined to ensure that we apply Remark 2.18 in
the following consideration.

Denote by B(Z/2), G, R(B) the set of isomorphism classes of Z/2-equivariant
principal G-bundles pR over the Z/2-CW-complex B with R(pR) ⊆ R (it is a set).

A continuous Z/2-map f : BR → C between two Z/2-CW-complexes BR and
C where BR is compatible with R induces through pullback a well-defined map

B(Z/2), G, R( f ) = f ∗ : B(Z/2), G, R(C) → B(Z/2), G, R(BR)

by Remark 2.18, and thus we obtain a functor B(Z/2), G, R(−). This functor is
Z/2-homotopy invariant as a consequence of Theorem 2.36.

Let pRG : EG → BG be a Z/2-equivariant principal G-bundle with R(pRG ) ⊆ R,
and let [BR, BG]Z/2 be the set of Z/2-homotopy classes BR → BG for a Z/2-CW-
complex BR compatible with R. Since Z/2-homotopic maps induce isomorphic
Z/2-equivariant principal G-bundles, we obtain a well-defined map

ιBR : [BR, BG]Z/2 → B(Z/2), G, R(BR), [ f ] → [ f ∗pRG ]

which defines a natural transformation.

Next, we will introduce the notion of universal Z/2-equivariant principal G-
bundle, or universal equivariant Z/2-bundle for short.

Definition 2.39 (Universal Z/2-G-space. Universal equivariant Z/2-bundles). Let
R be a family of local representations satisfying Condition (H). Let pRG : EG → BG be a
Z/2-equivariant principal G-bundle with R(pRG ) ⊆ R.

The total space EG is called a universal Z/2-G-space with respect to R if each
(Z/2)× G-CW-complex E whose isotropy groups belong to the family F (R) introduced
in Lemma 2.17 has a unique (Z/2)× G-map E → EGl up to (Z/2)× G-homotopy.

The bundle pRG as above is called a universal Z/2-equivariant principal G-bundle with
respect to R, or universal equivariant Z/2-bundle with respect to R for short, if its total
space EG is a universal Z/2-Gspace.

Remark 2.40. By Theorem 2.33, the condition of E being a (Z/2)×G-CW-complex
whose isotropy groups belong to the family F (R) is equivalent to Er being the
total space of a Z/2-equivariant principal G-bundle p with R(p) ⊆ R. Thus,
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EG is a universal Z/2-G-space if and only if for any Z/2-equivariant principal
bundle p : E → B with R(p) ⊆ R, there is a unique Z/2-G-map Φ : E → EG up
to Z/2-G-homotopy.

We will be using the characteristic property of universal Z/2-G-spaces intro-
duced in the previous remark. However, we introduced the notion as a property of
(Z/2)× G-CW-complexes because we wanted to make clear that it is a property
implicit to the spaces, and not to the whole bundles.

Let pRG : EG → BG be a universal equivariant Z/2-bundle with respect to
R, and let ξ : Eξ → BR be a Z/2-equivariant principal G-bundle where BR is
compatible with R. Then, there exists up to Z/2-G-homotopy a unique Z/2-G-
map Φ : Eξ → EG, which induces another Z/2-map ϕ : BR → BG such that (Φ, ϕ)

is a morphism, where ϕ is unique up to Z/2-homotopy due to Φ being unique up
to Z/2-G-homotopy. This means that we can assign to ξ the class [ϕ] ∈ [B, BG]Z/2,
since ϕ is well-defined up to Z/2-homotopy.

Remark 2.41. Notice that, with the notation introduced while defining the previ-
ous assignation, the Z/2-equivariant principal G-bundle ξ is isomorphic to ϕ∗pRG .
Since R(pRG ) ⊆ R and BR is compatible with R, then by Remark 2.18 we get that
R(ϕ∗pRG ) ⊆ R, and so R(ξ) ⊆ R.

In particular, if there exists a universal equivariant Z/2-bundle with respect to
R, then any Z/2-equivariant principal G-bundle p over a Z/2-CW-complex BR
such that BR is compatible with R automatically satisfies that R(p) ⊆ R. That is,
if BR is compatible with R then

B(Z/2), G, R(BR) = B(Z/2), G(BR)

where B(Z/2), G(BR) denotes the set of isomorphism classes of Z/2-equivariant
principal G-bundles over BR.

Remark 2.42. Notice that, if p1 and p2 are isomorphic Z/2-equivariant principal
G-bundles sharing base space BR, then the previous construction assigns to both
the same class in [B, BG]Z/2.

Proof. First, notice that if p1 : E1 → BR and p2 : E2 → BR are two Z/2-equivariant
principal G-bundles over the same base space BR, and (F, f ) is a morphism, then
(F, f ) is a bundle isomorphism if and only if p1 and f ∗p2 are isomorphic through
a bundle isomorphism (G, idBR). Considering this, we will be comparing bundle
isomorphisms to be of the form (F, idBR).
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Let (F, idBR) be a bundle isomorphism between p1 : E1 → BR and p2 : E2 →
BR, then the construction leads to the following diagram:

E1 E2

EG

BR BR

BG

F

Φ1

p1

Φ2

p2

pRGidBR

ϕ1 ϕ2

Since EG is universal, then there exists a unique Z/2-G-map E1 → EG up to
Z/2-G-homotopy, which means that Φ1 and Φ2 ◦ F are Z/2-G-homotopic. Due to
diagram commutativity:

ϕ2 ◦ idBR ◦ p1 = ϕ2 ◦ p2 ◦ F = pG ◦ Φ2 ◦ F

and

ϕ1 ◦ p1 = pG ◦ Φ1.

Both expressions are Z/2-homotopy equivalent since Φ1 and Φ2 ◦ F are Z/2-
homotopy equivalent. And since p1 is surjective, we get that ϕ1 and ϕ2 ◦ idBR = ϕ2

are Z/2-homotopy equivalent.

This means that, through the assignation, we obtain a well-defined map

κBR : B(Z/2), G, R(BR) → [BR, BG]Z/2,

and κB defines a natural transformation.

Remark 2.43. The compositions κBR ◦ ιBR and ιBR ◦ κBR yield the identity of their
respective sets.

A priori, it might seem that this construction relies on the choice of a universal
equivariant Z/2-bundle. However, we will see that this is not the case.
If pRG 2 : E′G → B′G is another universal principal G-bundle, then there exist
bundle maps ∆ : EG → E′G and Γ : E′G → EG which are unique up to Z/2-
G-homotopy, and the compositions Γ ◦ ∆ and ∆ ◦ Γ are Z/2-G-homotopic to the
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identity. They induce bundle maps (∆, δ) and (Γ, γ):

EG E′G

BG B′G

∆

pRG
Γ

pRG 2
δ

γ

Due to diagram commutativity, we have that:

γ ◦ δ ◦ pRG = γ ◦ pRG 2 ◦ ∆ = pRG ◦ Γ ◦ ∆ ∼= pRG ◦ idEG = pRG

And since pRG is surjective, we have that γ ◦ δ ∼= idBG; and the same argument can
be done symmetrically to get that δ ◦ γ is homotopic to the identity. Thus, BG and
B′G are Z/2-homotopy equivalent.

This finally leads to the Classification Theorem for Z/2-equivariant principal G-
bundles with family of local representations contained in R satisfying Condition (H).

Definition 2.44 (Classifying space with respect to R). Let pRG : EG → BG be a
universal equivariant Z/2-bundle with respect to R satisfying Condition (H). Then, we
will say that BG is a classifying space for Z/2-equivariant principal G-bundles with
family of local representations contained in R.

Remark 2.45. Given a topological group G, and a family of local representations
R satisfying Condition (H), a classifying space for Z/2-equivariant principal G-
bundles with family of local representations contained in R is unique up to Z/2-
homotopy equivalence (if such space exists).

Definition 2.46 (Classifying map with respect to R). Let BR be a Z/2-CW-complex
compatible with R.
A map k : BR → BG which induces from the universal equivariant Z/2-bundle pRG :
EG → BG with respect to to R a given bundle p : E → BR, i.e. a map k such that
p = k∗pRG , is called a classifying map of the bundle p with respect to R.

Remark 2.47. Given a Z/2-equivariant principal G-bundle p over BR compatible
with R, there is a classifying map of p with respect to R, and it is unique up to
Z/2-homotopy.
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Theorem 2.48 (Classification Theorem for Z/2-equivariant principal G-bundles
with family of local representations contained in R satisfying Condition (H)). We
assign to each isomorphism class of Z/2-equivariant principal G-bundles over spaces com-
patible with R the Z/2-homotopy class of a classifying map with respect to with R, and
obtain a well-defined bijection B(Z/2), G, R(BR) ∼= [BR, BG]Z/2. The inverse assigns to
k : BR → BG the bundle induced by k from the universal equivariant Z/2-bundle with
respect to R.

The proof of this theorem has been explained in detail, and it only remains to
show the existence of a universal equivariant Z/2-bundle with respect to a given
family of local representations R satisfying Condition (H). For this, we will first
introduce the notion of a classifying (Z/2) × G-CW-complex for a family F of
subgroups of (Z/2)× G.

Definition 2.49 (Classifying CW-complex for a family of subgroups). Let F be
a family of subgroups of (Z/2) × G. A model EF ((Z/2) × G) for the classifying
(Z/2)× G-CW-complex for the family F of subgroups of (Z/2)× G is an (Z/2)× G-
CW-complex which has the following properties:

1. All isotropy groups of EF ((Z/2)× G) belong to F .

2. For any (Z/2)× G-CW-complex Y, whose isotropy groups belong to F , there is up
to (Z/2)× G-homotopy a unique (Z/2)× G-map f : Y → EF ((Z/2)× G).

The model which we will use is not defined as an (Z/2)× G-CW-complex, but
as a (Z/2)× G-space. However, it will possible to find an approximation of it by
a (Z/2)× G-CW-complex preserving its universality properties. Another model
defined implicitly as a (Z/2)× G-CW-complex may be found in [Lüc][p. 275].
The construction which we will use may be found in [tD87][chapter 1, section 6],
and the classifying space has the universal property for F (R)-numerable spaces.

Definition 2.50 (R-numerable space). Let R be a family of local representations for
(Z/2, G). We say that a space X with a left Z/2-action and a right G-action is R-
numerable if there is an open covering U = (Uj)j∈J of X such that the following properties
are satisfied:

• For each j ∈ J, there is a pair (H, α) ∈ F such that there exists a Z/2-G-map

f j : Uj → ((Z/2)× G)/(H × α(H)).

• There exists a locally finite partition of unity (tj)j∈J subordinate to U by Z/2-G-
maps tj : X → [0, 1].
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If X is an R-numerable space, then we say that Xl is F (R)-numerable, where F (R)

denotes the family of subgroups introduced in Lemma 2.17.

Remark 2.51. Notice that Y is R-numerable and there is a Z/2-G-map X → Y,
then X is also R-numerable. In particular, if p : E → B is a Z/2-equivariant
principal G-bundle and B is F -numerable, then E is F -numerable.

Lemma 2.52. Any Z/2-CW-complex compatible with R is R-numerable

This Lemma together with the previous remark ensures that we may use a
model of the classifying space for for the family of subgroups F (R) as a model
of the classifying CW-complex for F (R), given that the model is a Z/2-G-CW-
complex.

Theorem 2.53 (Classifying space for the family F (R)). Let R be a family of local
representations of (Z/2, G), and F (R) the family of subgroups introduced in Lemma
2.17. Call

X =
⊔

H∈F (R)

((Z/2)× G)/H

viewed as a space with a (Z/2)× G-action. Then, the infinite join:

EF (R)((Z/2)× G) = X ⋆ X ⋆ X . . .

satisfies:

1. All isotropy groups of EF (R)((Z/2)× G) belong to F (R).

2. For any F (R)-numerable (Z/2) × G-space Y, whose isotropy groups belong to
F (R), there is up to (Z/2) × G-homotopy a unique (Z/2) × G-map f : Y →
EF (R)((Z/2)× G).

Proof. First, notice that we have well-defined coordinate maps ∀j ∈ N:

πj : EF (R)((Z/2)× G) → [0, 1] (tixi)i∈N 7→ tj;

pj : π−1
j ((0, 1]) → Xj (tixi)i∈N 7→ xj

which are continuous (Z/2) × G-maps. In particular, by definition of the join,
we know that (πj)j∈N is a partition of unity subordinate to the open cover U =

(Uj)j∈N = (π−1
j ((0, 1]))j∈N.

First, we will show that EF (R)((Z/2)×G) is F (R)-numerable. For each j ∈ N

and each H ∈ F (R), by definition of X we have that ((Z/2)× G)/H ⊆ Xj is an
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open subset, and we define Vj, H = p−1
j (((Z/2)× G)/H) which is an open sub-

set by continuity of pj. We may define for each j ∈ N and each H ∈ F (R) the
continuous (Z/2) × G-map uj, H = πj|Vj, H . Then, since (πj)j∈N is a partition of
unity subordinate to the open cover (Uj)j∈N, we have that (uj, H)j∈N, H∈F (R) is a
partition of unity subordinate to the open cover (Vj, H)j∈N, H∈F (R).
Remains to show that for each j ∈ N and for each H ∈ F (R) there is an
(Z/2) × G-map f j, H : Vj, H → ((Z/2) × G)/H′ for an H′ ∈ F (R). Since pj is
surjective, we may write π−1

j ((0, 1]) =
⊔

H∈F (R) Vj, H, and so the restriction maps
pj|Vj, H : Vj, H → ((Z/2)× G)/H are continuous (Z/2)× G-maps, which is what
we needed.

The existence of a F2 ×G-map E → EF (R)((Z/2)×G) for any F (R)-numerable
space E may be proven with a similar scheme as the one used for proving Propo-
sition 1.43, using the partition of unity given by the F (R)-numerability of E.

Finally, we want to show that given a F (R)-numerable space E, any two F2 ×
G-maps f , g : E → EF (R)((Z/2)× G) are F2 × G-homotopic. However, we have
already proven this in Proposition 1.42, since all we’d need to do in this case is to
take EG to be the infinite join of the F2 × G-space X.

Lemma 2.54. The space EF (R)((Z/2)× G) is a (Z/2)× G-CW-complex.

Proof. The join of two topological spaces Y1 and Y2 is the colimit in Top of the
following diagram:

Y1 × Y2 Y1 × Y2

Y1 Y1 × I × Y2 Y2

i0
i1

where i0 is the inclusion (y1, y2) 7→ (y1, 0, y2) and i0 is the inclusion (y1, y2) 7→
(y1, 1, y2) (see [nLa24]).
Then, if each of Y1, Y2, Y1 × Y2 and Y1 × I × Y2 is a (Z/2)× G-CW-complex, then
the join Y1 ⋆ Y2 is also a (Z/2)× G-CW-complex.

If we believe that X is a (Z/2) × G-CW-complex, then the iterated join of
finitely copies of X will also be a (Z/2) × G-CW-complex, since the Cartesian
product of two (Z/2)× G-CW-complexes is also a (Z/2)× G-CW-complex, and
the interval I is always a (Z/2) × G-CW-complex. In that case, we’d have the
that EF (R)((Z/2) × G) is a (Z/2) × G-CW-complex since it is the limit of the
previously mentioned joins of finitely many copies of X.
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We will assume that X is indeed a (Z/2)× G-CW-complex, if R satisfies Con-
dition (H). This statement is always true if G is a compact Lie group, and if it is
then any family of local representations R for (Z/2, G) satisfies Condition (H),
which makes the whole theory is satisfied with no further proof if G is a compact
Lie group.

To conclude, notice that EF (R)((Z/2) × G)r is a universal Z/2-G-space by
definition. This gives us a model for a classifying equivariant Z/(2)-bundle, by
considering the quotient by the action of G, and also finishes the proof of Theorem
2.48.

We will denote the model of the classifying space for equivariant Z/(2)-
bundles with respect to the family of local representations R satisfying Condition
(H) that we’ve defined in this section as:

E(Z/2, G,R) := EF (R)((Z/2)× G)r

B(Z/2, G,R) := EF (R)((Z/2)× G)r/G

pRG

2.8 About functoriality and change of R

In the previous section, we have started by fixing a family of local representa-
tions R and we have developed our theory based on that choice. In this section,
we want to study in which ways different choices of R affect our theory of a uni-
versal equivariant Z/(2)-bundle with respect to R, and ultimately discuss about
the choice itself.

Lemma 2.55. Let R and R′ be two families of local representations of (Z/2, G) satisfying
Condition (H). Assume that R ⊆ R′.

Then, there is a unique Z/2-G-map up to Z/2-G-homotopy E(Z/2, G,R) → E(Z/2, G,R′).

Proof. By the universality property of E(Z/2, G,R′), all that is needed is to prove
that all the isotropy groups of E(Z/2, G,R)l belong to the family of subgroups
F (R′) of (Z/2)× G.

Notice that F (R) ⊆ F (R′) by definition: given any element H ∈ F (R) we
have what there exists (H′, α) ∈ R ⊆ R′ such that H = {(h′, α(h′)) | h′ ∈ H′}, and
(H′, α) ∈ R′ means that H ∈ F (R′). Now we know that all the isotropy groups
of E(Z/2, G,R)l belong to the family F (R), and so they also belong to the family
F (R).
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Remark 2.56. There is a map E(Z/2, G,R) → E(Z/2, G,R′) given by the inclu-
sion, which maps (xjtj)j∈N → (xjtj)j∈N.

Remark 2.57. Moreover, by the same argument we get that, given two families R
and R′ satisfying Condition (H) with R ⊆ R′, then any (Z/2)× G-CW-complex
E whose isotropy groups belong to F (R) will also satisfy that its isotropy groups
belong to F (R)′.

We see that choosing a ’bigger’ family of local representations satisfying Con-
dition (H) might allow us to classify ’more’ Z/2-equivariant principal G-bundles.
However, it will not always be in our interest to choose the ’largest’ possible family.
This is mainly due to two reasons: the first one being that sometimes we might
need to choose ’coarser’ families in order to be able to fulfill Condition (H), and the
second one being that the model of the universal equivariant Z/(2)-bundle turns
more complex with the more element in the family.
This way, we may view the choice of a ’thinner’ family of local representations R
as applying a filter depending on our case of study, where we would want the
choice to include every bundle which we will be interested in studying, but not
necessarily more since it would make the computations more difficult.

The next thing we want to do is to discuss on the functoriality of the construc-
tion of the classifying space. In particular, we want to see that it is functorial with
respect to changes of G, with respect to changes R → R′ with R′ ⊆ R, and finally
with respect to forgetting the group action on Z/2 on the bundles.

To each pair (G,R) where G is a topological group and R denotes a family of
local representations for (Z/2, G) satisfying Condition (H), we assign it the space
E(Z/2, G,R).
We consider the category of such pairs with the morphisms h = (h1, h2) : (G,R) →
(G′,R′) satisfying that h1 : G → G′ is a groups homeomorphism and h2 : R → R′

is given by (H, α) 7→ (H, h1 ◦ α) for any (H, α) ∈ R (of course, we will require
{Rh1 := (H, h1 ◦ α)}(H,α)∈R ⊆ R′ for such morphism to be defined).
By Lemma 2.55 there is a unique Z/2-G′-map, say iE(Z/2,G′,R′), up to Z/2-G′-
homotopy E(Z/2, G′,Rh1) → E(Z/2, G′,R′), and we define the Z/2-G′-map h′ :
E(Z/2, G,R) → E(Z/2, G′,Rh1) point to point by h′ : (tjxj)j∈N 7→ (tjh1(xj))j∈N

which is well-defined and continuous since h1 is.
Then, the assignation h → iE(Z/2,G′,R′) ◦ h′ together with the previous assignation
(G,R) → E(Z/2, G,R) is a functor.

Given a topological group G, we consider the category of families of local rep-
resentations for (Z/2, G) satisfying Condition (H), with only the inclusion mor-
phisms. Then the assignation E(Z/2, G,−), together with the assignation which
attaches to any inclusion R ↪→ R′ the inclusion E(Z/2, G,R) ↪→ E(Z/2, G,R′)

given by Lemma 2.55, is a functor.
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Notice that appreciation of functoriality with respect to the change of family of
local representations is a specific case of the previous case in which we studied
functoriality with respect to the change of G, which appears when we take h to be
the pair formed by the identity in G together with the inclusion R ↪→ R′.

Let G be a topological group and let R be a family of local representations
satisfying Condition (H). By definition of a Z/2-equivariant principal G-bundle,
we get that in particular each one is a principal G-bundle, and any morphism of
Z/2 equivariant principal G-bundles is in particular a bundle map, which means
that we may apply the forgetful functor bridging the category of Z/2 equivariant
principal G-bundles to the category of principal G-bundles.

Remark 2.58. Notice that if we apply the forgetful functor to the bundle pRG we
obtain a universal principal G-bundle.

Proof. Notice that R-numerability implies numerability, and also notice that our
model for E(G, Z/2,R) is contractible by the same argument used in Proposition
1.44. Then by Theorem 1.45 we get that pRG is in particular a universal G-bundle.

Remark 2.59. Since pRG is a universal principal G-bundle after forgetting the ac-
tion of Z/2, by Remark 1.34 we know that there is a homotopy equivalence

B(Z/2, G,R) BG.∼

2.9 On the homotopy type of the classifying space

In this section, we will study the homotopy types of the space of points fixed
by H ⊆ (Z/2) in B(Z/2, G,R), denoted by B(Z/2, G,R)H.

Notice that, for any subgroup H ⊆ Z/2, a Z/2-G-map f : (Z/2)/H →
B(Z/2, G,R) is completely determined by the image of 0 ∈ (Z/2)/H. This image
f (0) must be a point fixed under the action of H in B(Z/2, G,R), yet the choice is
not subject to any more restrictions. That is, for any b ∈ B(Z/2, G,R)H there is a
well-defined Z/2-G-map (Z/2)/H → B(Z/2, G,R) sending 0 7→ b. This allows
us to identify Z/2-G-maps (Z/2)/H → B(Z/2, G,R) bijectively with elements
in B(Z/2, G,R)H.

Over the space (Z/2)/H we may consider for any (H, α) ∈ R, the map

pσ : Z/2 ×/H G → (Z/2)/H, (γ, g) 7→ γH

which appears in Lemma 2.29 and is defined right before it, taking in the definition
the topological group Z = {0} and σ mapping 0 7→ α; we will write in this case
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pσ =: pα, and it is a Z/2-equivariant principal G-bundle by Lemma 2.29[1.].
We would like to study possible choices for the horizontal upper arrow (g) making
the following diagram commute:

(Z/2)×/H G E(Z/2, G,R)

(Z/2)/H E(Z/2, G,R).

r

pα pRG
f

The map r in particular is also fully determined by the image of the identity el-
ement (0, g0) ∈ (Z/2) ×/H G. For r to be well-defined it only requires that its
image is invariant by changing the class representative. That is, (0, g0) must map
into an element e ∈ E(Z/2, G,R) satisfying he = eα(h) for any h ∈ H, which
is the same as saying e ∈ E(Z/2, G,R)K(H,α) for the set K(Z/2, α) introduced in
Lemma 2.17. For the previous diagram to be commutative it is required only that
p ◦ r(0, g0) = f (0).
We could try softening the conditions imposed on r by delaying the choice of
(H, α) ∈ R, then, we would think of r : Z/2 × G → E(Z/2, G,R) satisfy-
ing p ◦ r(0, g0) = f (0) and also that for any h ∈ H there is gh ∈ G such that
hr(0, g0) = r(0, g0)gh. We call E(Z/2, G,R)⟨H⟩ := {e ∈ E(Z/2, G,R) | ∀h ∈
H ∃g ∈ G : he = eg}, and since the G-action in E(Z/2, G,R) is free, we have a
well-defined G-map ρ : E(Z/2, G,R)⟨H⟩ → hom(H, G) defined by sending e to the
element ρe satisfying he = eρe(h) for any h ∈ H, with the G-action in hom(H, G)

given by composition with the conjugation (we will prove this result later).
Then if we consider again our choice of (H, α) ∈ R, we find that the orbit over α of
our chosen element g(0, g0) is homeomorphic to G/CG(α), where CG(α) denotes
the centralizer of α in G, which has been introduced in Definition 2.25.

Following this study, we obtain the following result in form of a theorem:

Theorem 2.60 (Fixed point sets of B(Z/2, G,R)). Let R be a set of local representa-
tions for (Z/2, G) satisfying Condition (H). Consider an element (H, α) ∈ R.

1. There is a bijection

homR(H, G)/G π0(B(Z/2, G,R)H).
∼= (2.1)

where homR(H, G)/G := {β ∈ hom(H, G) | (H, β) ∈ R}, and /G denotes the
quotient by conjugation in G, that is quotient by the action of G in homR(H, G)

given by, for any β ∈ homR(H, G) and any g ∈ G, the expression g · β := cg−1 ◦
β = g−1β(−)g.
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2. Let B(Z/2, G,R)H
α be the path component of B(Z/2, G,R)H that corresponds to

the class of α in homR(H, G)/G by (2.1).
Then there exists a weak homotopy equivalence

BCG(α) B(Z/2, G,R)H
α .∼ (2.2)

where BCG(α) denotes the classifying space of the group CG(α).

Proof. 1. By Theorem 2.48 we obtain bijections

π0(B(Z/2, G,R)H) [(Z/2)/H, B(Z/2, G,R)]Z/2

[(Z/2)/H, B(Z/2, G,R)]Z/2 B(Z/2), G, R((Z/2)/H).

∼=

∼=

Consider
pα : Z/2 ×/H G → (Z/2)/H, (γ, g) 7→ γH

which is a Z/2-equivariant principal G-bundle by Lemma 2.29[1.].
We conclude by Lemma 2.29[2.] that any Z/2-equivariant principal G-
bundle q : E → (Z/2)/H with R(q) ⊆ R is isomorphic to pβ for some
β ∈ homR(H, G), and again by Lemma 2.29[3.] we know that for any
β1, β2 ∈ homR(H, G) the bundles pα and pβ are isomorphic if and only if
α and β belong to the same class in homR(H, G)/G.
Hence, the assignations homR(H, G)/G → B(Z/2), G, R((Z/2)/H) given by
Gβ 7→ pβ and B(Z/2), G, R((Z/2)/H) → homR(H, G)/G given by q 7→ Gβ

for the β obtained by Lemma 2.29[2.] are well-defined set bijections

homR(H, G)/G B(Z/2), G, R((Z/2)/H)
∼=

from which we obtain set bijections

homR(H, G)/G π0(B(Z/2, G,R)H).
∼=

2. If H = {0}, then α : 0 7→ g0 and so CG(α) = {g ∈ G | gg0g−1 = g0} =

G. Besides, B(Z/2, G,R)0 = B(Z/2, G,R), and by (2.1) we know that
B(Z/2, G,R)α = B(Z/2, G,R). Then by Remark 2.58 together with Remark
1.34 and we get a weak homotopy equivalence

BCG(α) = BG B(Z/2, G,R) = B(Z/2, G,R)H
α

∼
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which proves the theorem in the case H = {0}. Assume from now on that
H = Z/2.

We will abbreviate E = E(G, Z/2,R) and B = B(Z/2, G,R). By Remark
1.34, all we need to do is show that BZ/2

α is a classifying CG(α)-space, and by
Theorem 1.45 it is enough to show that there is a principal CG(α)-bundle
EK(Z/2,α) → BZ/2

α , since EK(H,α) is contractible, and EK(Z/2,α) ⊆ E is R-
numerable, and so in particular EK(Z/2,α) is numerable.
We will show that pRG : E → B induces a principal CG(α)-bundle

p(Z/2,α) : EK(Z/2,α) → BZ/2
α .

Consider E⟨(Z/2)⟩ := {e | ∀γ ∈ (Z/2) ∃g ∈ G : γe = eg} = {e | ∃g ∈ G :
1 · e = eg}. Notice that for each e ∈ E⟨(Z/2)⟩ the element ge ∈ G satisfying
1e = ege is unique, since the action of G in E is free. For each e ∈ E⟨(Z/2)⟩

we define ρe ∈ map((Z/2), G) by ρe(0) = g0 and ρe(1) = ge; and since
eg2

e = 1ege = 12e = eg0 is satisfied, then we have that ρe(1)2 = ρe(0) and so
in particular ρe ∈ hom((Z/2), G). We have a well-defined map of sets

ρ : E⟨(Z/2)⟩ → hom((Z/2), G), e 7→ ρe.

Now for every g ∈ G, for every e ∈ E⟨(Z/2)⟩ and for every γ ∈ (Z/2), we
have that egρeg(γ) = γ(eg) = (γe)g = eρe(γ)g. Since the G-action in E⟨(Z/2)⟩

is free then gρeg(γ) = ρe(γ)g, implying that ρeg(γ) = (cg−1 ◦ ρe)(γ). Hence,
ρeg = ρe · g, and thus ρ is a G-map.
The G-map ρ being continuous is a corollary of Theorem 2.34. This result is
proven in [LU14][pp. 1958-1959].

Let E⟨Z/2,α⟩ be the preimage under ρ of the orbit α · G ⊆ hom((Z/2), G).
Thus, the map ρ induces with the restriction a continuous G-map

ρ′α : E⟨Z/2,α⟩ → αG, e 7→ ρe

Since R satisfies Condition (H), the G-map

ια : G/CG(α) → αG, g 7→ cg ◦ α

is a homeomorphism, and we may define the continuous G-map

ρα = ι−1
α ◦ ρ′α : E⟨Z/2,α⟩ → G/CG(α)

and we notice that

ρ−1
α (g0CG(α)) = {e ∈ E⟨Z/2,α⟩ | ρe = α}

= {e ∈ E | ∀γ ∈ Z/2, h · e = e · α(γ)}
= EK(Z/2,α)
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Since (G, CG(α)) satisfies Condition (S), then the canonical G-map

G ×/CG(α) EK(Z/2,α) → E⟨Z/2,α⟩

is a homeomorphism. This result follows from a generalization of Lemma
2.28 ([LU14][p.1932]).
The preimage of BZ/2

α under pRG is precisely E⟨Z/2,α⟩. Hence p induces a
continuous CG(α)-map

p(Z/2,α) : EK(Z/2,α) → BZ/2
α

making the diagram of G-spaces:

G ×/CG(α) EK(Z/2,α) E⟨Z/2,α⟩

BZ/2
α

∼=

G×/GCG(α)
p(Z/2,α)

p|
p−1(BZ/2

α )

commute. Since p|p−1(BZ/2
α ) is a principal G-bundle, we know by a lemma

that p(H,α) is a principal CG(α)-bundle (see [LU14][p. 1954, Lemma 12.2]).
The map G ×/GCG(α)

p(Z/2,α) is the extension of the principal CG(α)-bundle
p(Z/2,α) to a principal G-bundle with the same base space.
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