
ADVANCED MATHEMATICS
MASTER’S FINAL PROJECT

Markov chains for non abelian gauge theories

Author: Supervisor:
Juan Carlos Díaz Rodríguez Sofyan Iblisdir

Bruno Julia Díaz
Marina Gonchenko

Facultat de Matemàtiques i Informàtica

June 28, 2024

Abstract

Markov chains for non abelian gauge theories

We present a Metropolis-Hastings Markov chain for correlated systems of continuous
variables ruled by the Boltzmann distribution. An initial introduction to the algo-
rithm with discrete variables is given and then extended to variables in a compact
group. We initially work with the SU(2) Higgs model with frozen matter term on
a 2D lattice. The algorithm is then extended to a 3D lattice. The configuration
updates are done though tensor network renormalization schemes that approximate
the partition function of the system. We evaluate the performance of the chains
based on equilibration and autocorrelation times. The mean value of different ob-
servables are compared to existing literature and additional computations are done
with the groups SU(3), SU(5) and SU(10).

Keywords

Monte Carlo, Metropolis-Hastings, tensor network, Ising model, Wilson action,
Higgs model, 3D lattice.

iii

Contents

1 Introduction 1
1.1 Setting . 2

1.1.1 Ising model . 2
1.1.2 Gauge symmetries . 3
1.1.3 Physical problem . 4
1.1.4 Monte Carlo sampling . 6
1.1.5 Tensor Networks . 6

1.2 Objectives . 7
1.3 Structure of this document . 7

2 Mathematical concepts 8
2.1 Markov chains . 8
2.2 Autocorrelation times . 10
2.3 Tnmh algorithm . 12
2.4 Tensor Networks . 13

3 Previous work 22
3.1 Classical and modern approach . 22
3.2 Continuous tnmh . 23

3.2.1 XY model . 23
3.2.2 Wilson action . 24
3.2.3 Amplitude choice . 26
3.2.4 Previous results . 27

4 Monte Carlo simulation of lattice gauge theories 30
4.1 Action . 30
4.2 2D . 32
4.3 3D . 37

4.3.1 Tensor structure and contraction 37
4.3.2 Results . 41

4.4 Computations . 42

5 Conclusions 44

Bibliography 46

A Suzuki-Trotter transformation 49

iv

List of figures

1.1 Example of a 4× 6 square lattice for the Ising model 3

2.1 MPS in Vtot . 15
2.2 MPS in V ∗tot . 16
2.3 MPO in Vtot ⊗ V ∗tot . 16
2.4 Graphical representation of the tensor network construction 20

3.1 Tensor network for the Wilson action on a 3× 3 lattice 26
3.2 Adaptation of a Wilson action Tensor Network to those used in the

spin model . 26
3.3 Energy of the Wilson model in a 8× 8 lattice with β = 10 and bond

dimension D = 8. 28

4.1 Average plaquette for different system size and κ, keeping the ratio
β/V = 0.01. 33

4.2 Average gauge-matter term for different system size and κ, keeping
the ratio β/V = 0.01. 33

4.3 Susceptibility of Lφ for different system size and κ, keeping the ratio
β/V = 0.01. 33

4.4 Average plaquette for two different groups with β/V = 0.01 and dif-
ferent values of κ . 34

4.5 Gauge-matter term for two different groups with β/V = 0.01 and
different values of κ . 34

4.6 Energy of each part of the action of a 12× 12 lattice and parameters
β = 1.44 and κ = 2.0 . 35

4.7 Normalized autocorrelation function for the gauge-matter term on a
4 × 4 lattice and variables in SU(3). The parameters used where
β = 10 and κ ranging from 0 to 4. 36

4.8 V = 43 cubic lattice. 37
4.9 Placement of the tensors on a face of the lattice. 38
4.10 Contraction of the tensor network on a face of the lattice. 38
4.11 Placement of the tensors on an intermediate plane of the lattice. . . . 38
4.12 Contraction of the tensor network on an intermediate plane of the

lattice. 38
4.13 Placement of the tensors on an inner plane of the lattice. 39
4.14 Contraction of the tensor network on an inner plane of the lattice. . . 39
4.15 Transformation of the bottom layer of the tensor network. 39
4.16 Ising model displaying frustration. 41

v

4.17 Energy of a 43 pure gauge model with β = 9 sampled with both
algorithms. On the Metropolis execution we can observe how the
energy does not manage to reach levels as low as with the sampling
from tnmh . 42

Chapter 1
Introduction

There is a fundamental concept that has paved our understanding of fundamental
physics during the last century: gauge symmetries. Through its study, physicists
have developed theories explaining the four basic forces of nature, among other
results (Lancaster and Blundell, 2014; Tong, 2018). These theories are described
in terms of Lagrangian mechanics, where a system is said to be gauge symmetric
if its Lagrangian is invariant under a set of transformations, the gauge symmetry
group. Many of the interesting systems formulated in this regime, such as Yang-
Mills theories, cannot be treated analytically. To face this problem, scientists have
turned their attention to Markov chain Monte Carlo.

To study these models, a discretization of space-time into an Euclidean lattice
is taken, where the degrees of freedom are placed on the vertices or the edges of the
lattice. These degrees of freedom make up what is known as a configuration, and
one uses Markov chains to sample these configurations according to the Boltzmann
distribution. A numerical approach such as Monte Carlo is needed because the
computational cost of Boltzmann sampling scales exponentially with the lattice size.
Typically, the updates of the stochastic process are done at one degree of freedom at
a time. In this project, we present a Markov chain with collective updates. We do
this with the aid of tensor networks, which help us in sampling approximately the
Boltzmann distribution at each step. Collective updates are desirable because when
the energetic landscape of the system has many local minima, overcoming energy
barriers with local changes can be hard. Global updates are less likely to get stuck
in these local extrema, hence moving more effectively through the configuration set.

Monte Carlo sampling has been a very successful tool in the last six decades
on this field, and more recently tensor networks have been introduced to study
the structure of these theories. The fusion of both strategies in what we know as
Tensor Network Metropolis-Hastings (tnmh) has led to good results in systems
with a finite set of values for the degrees of freedom (Frías Pérez et al., 2023). In
that same work, a suggestion to adapt the chain to theories with compact gauge
groups is given. The present work is the continuation of the research done during
my Bachelor’s final project on the extension of the algorithm to compact groups
(Díaz Rodríguez, 2023).

1

1.1. Setting 2

1.1 Setting

To give the reader some context, this section contains an introduction to the physical
models treated throughout the project and an idea on how they are treated in
Physics. We also give a brief review of the main mathematical tools that will be
used: Monte Carlo algorithms and tensor networks.

1.1.1 Ising model

In Statistical Mechanics, we study a system of many interacting particles through
the possible microstates it could be in. All of those states share some common
properties (Schwartz, 2019). They can be aspects like the number of particles,
energy, temperature or pressure. The set of possible states is known as ensemble,
and depending on which common properties are fixed there are different kinds of
them. For instance, the microcanonical ensemble can be found in an isolated system
with constant number of particles and energy (Reichl, 1998). We will be focusing on
the canonical ensemble, the set of states of a system with fixed number of particles
connected to a heat bath acting as an infinite source or sink of energy that keeps
the system at constant temperature T . In this regime, the probability of the system
being at a particular state i with energy εi is given by the Boltzmann distribution

Pi =
1

Z
e−βεi , (1.1)

where β = 1
kBT

and Z =
∑

i e
−βεi is known as the partition function, where the sum

is taken over all states in the ensemble. Knowing the partition function exactly has
a lot of value, as it allows us to calculate many quantities of the system. However,
we will almost never be able to calculate this function accurately, even less take
derivatives, so we will not go into its analytical uses. The reason why it is in general
hard to have access to an expression of Z, or even a mean to compute it, is that the
number of states increases exponentially with the system size. So even numerical
methods scale very badly for large systems.

The Ising model is a paradigmatic many-body system of Statistical Physics due
to its simplicity yet rich behavior. It is used as the testing ground of sampling
algorithms as well as a source of many interesting physical discoveries. It was initially
introduced by Ernst Ising and Wilhelm Lenz in 1924 to study the ferromagnetic
properties of materials (Ising, 1924). The behavior of a many-body system is given
by its Hamiltonian, for now just an energy function. The configurations are given
by a tuple of values, each one associated with a point in the lattice. In the Ising
model, this lattice is usually of square shape, as can be seen in Figure 1.1. The set
of values for each site can differ from model to model, depending on its physical
considerations. For now, the particles are highly anisotropic spins, i.e. they only
take two values: 1 and −1.

Particles interact with each other in many different ways, but due to the inten-
sity decay with distance, the most common representation of the dynamics in the
Hamiltonian is given by nearest neighbor interactions, represented as the edges in
Figure 1.1. The model is also equipped with the effect of an external magnetic field.

1.1. Setting 3

Figure 1.1: Example of a 4× 6 square lattice for the Ising model

The Hamiltonian of an Ising model is given by

H (ω) = −
∑
〈i,j〉∈E

Jijσiσj −
∑
i∈V

hiσi, (1.2)

where the spins are σi ∈ {−1, 1}, Jij represents the coupling between particles and
hi is the field acting on site i. The set of all possible configurations ω, or state
space, is denoted by Ω, previously referred to as the ensemble. In the case of the
Ising model, Ω = {−1, 1}|V |. Despite all the interesting phenomenology observed in
this model, this is all that is needed to describe its dynamics.

1.1.2 Gauge symmetries

A system is said to be gauge symmetric if the measurable quantities of the sys-
tem do not change under certain transformations of the degrees of freedom. These
transformations have a group structure and they are known as the gauge group.
The transformation of each degree of freedom can be parametrized by its space-time
coordinates, in which case it is known as a local symmetry, or rather acts in the
same way at every site, known as global symmetry. The usual way to work with
these symmetries is to introduce them into the Lagrangian in the form of a new
field. This gauge field is a mathematical tool to study certain systems that have
been observed to be invariant under these transformations. In Physics, it is referred
to as field theory the description of the dynamics of a physical field, such as the
magnetic field for instance. A gauge theory is then a field theory whose Lagrangian
presents gauge symmetries.

Probably, the best way to introduce gauge symmetries is by quoting the intro-
duction of Tong (2018).

Gauge symmetry is, in many ways, an odd foundation on which to build
our best theories of physics. It is not a property of Nature, but rather a
property of how we choose to describe Nature. Gauge symmetry is, at
heart, a redundancy in our description of the world. Yet it is a redun-
dancy that has enormous utility, and brings a subtlety and richness to
those theories that enjoy it.

Gauge symmetries are, in fact, just a property of the Lagrangian describing the
dynamics of whatever physical reality it describes. The importance of this concept

1.1. Setting 4

rests in physicists designing the theory with these invariances as present in their
equations as possible. The best well-known example that presents a gauge symmetry
is the electrostatic potential. A basic study of electromagnetism reveals that adding
any given quantity to the potential at every point in space makes no change in the
system. This would be a global symmetry, but in fact, the quantity added does
not need to be the same at every point. One can add a gradient of an arbitrary
scalar field and still leave the physical observables unchanged. This is an example
of a local symmetry and they are usually the most interesting ones to study. The
potential is just a mathematical tool, not a physical quantity that can be measured.
However, if one bases its derivations on the fact that a local change in the potential
leaves unchanged all physical observables, one can find elegant derivations of the
same theory and even move into the quantum description with more ease.

It turns out, that the Standard Model is written in terms of gauge theories.
Understanding how gauge fields behave, even though they represent no physical
realities on their own, is a crucial step in studying Quantum Field Theories or
Condensed Matter Physics. In this context, the Wilson action captures many of the
properties observed in the Standard Model and is of special interest to understanding
Yang-Mills theories. In fact, the Wilson action is the lattice discretization of pure
gauge Yang-Mills theories. Moreover, to get an action that does represent some
physical reality, like the weak or strong forces, it is only necessary to add some extra
terms to the action (Kogut, 1979).

We will give a description of this action in Chapters 3 and 4, where we first work
with the pure gauge action and later add additional terms to describe what is known
as Higgs model.

One of the simplest models with a local symmetry was proposed by F. Wegner,
where he introduced a local symmetry to the Ising model (Wegner, 1971). The model
is placed again in a 2D square lattice, and the minimal squares of the lattice are called
plaquettes. Each spin now interacts with those that belong to the same plaquette.
We can denote, for a plaquette P , the spins of that plaquette as σP (1), σP (2), σP (3)

and σP (4), the Hamiltonian is given by

H (ω) = −
∑
P

JPσP (1)σP (2)σP (3)σP (4), (1.3)

where the sum is taken over all plaquettes of the lattice. In this project we will not
be using the spin model of Wegner, but a similar one where spins will be placed on
the edges and the interaction are also plaquette-like.

1.1.3 Physical problem

We want to give an intuition on what we are trying to solve and what is the interest
behind it. Our setting starts with a Hamiltonian operator H that generates the
evolution of a quantum system. We are interested in finding a pair (ε0, |ψ0〉) such
that

ε0 =
〈ψ0|H|ψ0〉
〈ψ0|ψ0〉

= min
{|ψ〉}

{
〈ψ|H|ψ〉
〈ψ|ψ〉

}
. (1.4)

1.1. Setting 5

This is, we are looking for the minimum eigenvalue of our Hamiltonian and its
associated eigenstate, usually known as ground state. We say that the ground state
is degenerate if the multiplicity of the minimum eigenvalue is higher than one.

The Schrödinger equation in its simplest form (omitting constants) is given by

iH |φ〉 = ∂t |φ〉 . (1.5)

If the Hamiltonian does not depend on time, this is a simple linear differential
equation of known solution |φ (t)〉 = e−itH |φ0〉. If instead we take a Wick rotation
into imaginary time as t = −iτ ∈ iR the Schrödinger equation becomes

H |φ〉 = ∂τ |φ〉 (1.6)

with a decaying exponential |φ (τ)〉 = e−τH |φ0〉 for solution, whose study is more
convenient.

Let us go back to finding the ground state, which we suppose is non-degenerate.
Evolution operators are hermitian, hence they are diagonalizable and their eigenval-
ues are real. So, we can represent H as

∑
i εi |ψi〉 〈ψi|, with εi ∈ R, 〈ψi|ψj〉 = δij,

which transforms the expression for the time evolution of the state to

e−τH =
∑
i

e−τεi |ψi〉 〈ψi| = e−τε0

(
|ψ0〉 〈ψ0|+

∑
i>0

e−τ(εi−ε0) |ψi〉 〈ψi|

)
. (1.7)

There is a very important concept in this equation, the energy gap. This is the
difference between the lowest eigenvalue ε0 and the second smallest one, let us call
it ε1. Hence, the time evolution operator tends to a projector into the eigenspace
of the ground state, exponentially fast in a factor depending on the energy gap.
As we assumed this eigenspace to have dimension one because the ground state is
non-degenerate, given any initial condition |φ0〉 with overlap with the ground state,
the evolution tends to the ground state as

|ψ0〉 = lim
τ→∞

e−τH |φ0〉
‖e−τH |φ0〉‖

. (1.8)

Another important aspect is the computation of expectation values of observ-
ables. Given an observable X, its expected value when the system is in the ground
state is given by

〈X〉 = lim
τ→∞

〈φ0|e−τHXe−τH |φ0〉
〈φ0|e−2τH |φ0〉 .

(1.9)

This identity is the starting point of correspondence between Quantum Mechanics
in d dimensions and Statistical Mechanics in d + 1 dimensions. To complete such
relation, one can make use of the Suzuki-Trotter identity. An example of such
calculations is given in Appendix A.

1.1. Setting 6

1.1.4 Monte Carlo sampling

We have already seen that knowledge of the partition function, on which Statistical
Mechanics relies, is usually limited. For this reason, numerical methods are em-
ployed. Probably, the most successful of them all across a vast amount of scientific
fields is that of Monte Carlo sampling (Katzgraber, 2011). The main objective of
this type of algorithms is to compute integrals of the form

Eρ [f] =

∫
Ω

f (ω) ρ (ω) dω. (1.10)

In the following, we will be interested in computing expectation values of ob-
servables, focusing for now on the case of finite Ω and π a probability instead of a
density of probability. The expectation value of and observable O takes the form

〈O〉 ..= Eπ [O] . (1.11)

If one is able to drawN independent and identically distributed samples ω(n) ∼ π,
the Law of Large Numbers gives us a good approximation to 〈O〉 as

〈O〉 ≈ O ..=
1

N

N∑
n=1

O
(
ω(n)

)
. (1.12)

In such case, the variance of the estimator is given by

σ2 =
1

N
Varπ [O] , (1.13)

where the variance of an observable θ from a sample space with distribution p is
defined as

Varp [θ] = Ep
[
(θ − Ep [θ])2] . (1.14)

We will use Markov chain Monte Carlo to sample our state space, effectively
sampling the observables (Katzgraber, 2011).

1.1.5 Tensor Networks

Monte Carlo sampling has been around for almost 70 years and has been the main
tool for studying statistical mechanics models. In more recent years, other mathe-
matical objects have been designed to help our understanding of these strong cor-
related systems. It is the representation of the partition function as the ensemble
obtained from wiring mathematical objects that we will later call tensors. These
constructions are known as tensor networks and they have gained a lot of importance
in this field (Perez-Garcia et al., 2006; Kuramashi and Yoshimura, 2019; Bazavov
et al., 2019). The mere representation of the partition function as a tensor net-
work does not take away the exponential cost by itself. To face that, we use what is
known as the renormalization group. There are different strategies like MPS trunca-
tion (Murg et al., 2005) or restructuring the network with fewer operators each time
(Levin and Nave, 2007). In general, all these methods are based on the reduction

1.2. Objectives 7

of the tensors employing singular values truncation, with the consequent loss of in-
formation, hoped to be irrelevant. Depending on the topology of the network, these
decompositions can support different approaches. It is nonetheless a very common
technique for different models (Bazavov et al., 2019; Yu et al., 2014). The main
problem is the introduction of systematical errors coming from the deleted singular
values.

1.2 Objectives

Once we have a better idea of the project setting, we set a collection of objectives
to better judge the reach of the project:

I) Study the techniques used to judge the performance of sampling algorithms
like correlation and convergence times of Markov chains.

II) Evaluate under which setting the algorithm presents an advantage over known
sampling methods.

III) Expand the algorithm to work with a more complex action similar to the Higgs
model.

IV) Move from a 2-dimensional lattice to a 3-dimensional one.

V) Build an expandable code base for future research related with tnmh.

1.3 Structure of this document

In Chapter 2, we will review a description of the mathematical concepts to be
used. Much of the material presented in this chapter intersects with that written
in my bachelor’s final project but with significant revision. In Chapter 3 we look at
the historical approach to the problem of sampling with Boltzmann probability in
lattice gauge theories. Chapter 4 contains the results obtained in this year’s research,
finishing the document in Chapter 5 with an overview of the ideas collected for future
work and the conclusions drawn.

Chapter 2
Mathematical concepts

This chapter covers the main mathematical concepts needed for the rest of the
project. We start studying Markov chains, their definition and important proper-
ties that make them viable tools for our sampling objective. Next, we introduce
autocorrelation times. They are of great importance to estimate the error given
by Markov chain sampling. The following section will summarize the original algo-
rithm on which the project is based, Tensor Network Metropolis-Hastings. Finally,
an introduction to Tensor Networks is given, as their use is one of the distinctive
characteristics of tnmh.

2.1 Markov chains

Definition 2.1.1 (Stochastic process and Markov chain). A stochastic process
X = {X (t) : t ∈ T} is a collection of random variables indexed by t, that generally
represents time.

If T = N, we will call X a discrete time process.
A discrete time process X = {X0, X1, X2, ... } is a Markov chain if the state at

time t only depends on the state at t− 1. In other words

P (Xt = at | Xt−1 = at−1, ... , X0 = a0) = P (Xt = at | Xt−1 = at−1) (2.1)

for every value a0, a1, ... , at and every t ≥ 1.

Definition 2.1.2 (Homogeneity). A Markov chain is homogeneous if the transition
probabilities are independent of time. These probabilities will be denoted by

Pi,j ..= P (Xt = j | Xt−1 = i)

for every t.

Definition 2.1.3 (Finite Markov chain). A Markov chain is finite if the set of
values taken by the random variables is finite.

8

2.1. Markov chains 9

Definition and Remark 2.1.4. Let X be a homogeneous finite Markov chain, the
transition matrix is defined as

P =

P1,1 P1,2 ... P1,n

P2,1 P2,2 ... P2,n
...

...
Pn,1 Pn,2 ... Pn,n

 .

If we define Pm
i,j as the probability to go from state i to state j in m steps, then

Pm
i,j

..= P (Xt+m = j | Xt = i) = (Pm)i,j . (2.2)

Definition 2.1.5 (Irreducibility). We will say that the state j is accessible from
state i if there exists a finite n ≥ 0 such that Pm

i,j > 0. If two states are accessible from
each other we will say they are communicated. Finally, we call a chain irreducible
if all states are communicated with each other.

Definition 2.1.6 (Aperiodic). The period d (k) of a state k in a homogeneous
Markov chain is given by d (k) = gcd{m ≥ 1: Pm

k,k > 0}. If d (k) = 1 we say that k
is aperiodic. An aperiodic Markov chain is one whose states are all aperiodic.

To illustrate the use of these definitions we give the following result.

Proposition 2.1.7. Let X be an irreducible, finite and aperiodic Markov chain with
transition matrix P. Then, there exists M <∞ such that (Pn)i,j > 0 for every state
i, j and every n ≥M .

This is, under these conditions, there is a sufficiently large number of steps after
which a transition between any pair of states has a positive probability of happening.

Definition 2.1.8 (Stationary distribution). Let X be a finite Markov chain with
transition matrix P. A row vector π = (π1, ... , πk) is a stationary distribution if:

• πi ≥ 0 ∀ i = 1, ... , k and
∑k

i=1 πi = 1.

• πP = π.

The unique existence and convergence of the chain to this distribution is ensured
by the following results:

Theorem 2.1.9. Every finite, irreducible and aperiodic Markov chain has a unique
stationary distribution.

Definition 2.1.10. Let ν = (ν1, ... , νk) and ν ′ = (ν ′1, ... , ν
′
k) be probability distribu-

tions over S = {s1, ... , sk}, we define the total variation distance between ν and ν ′
as

dTV (ν, ν ′) =
1

2

k∑
i=1

| νi − ν ′i | .

If ν, ν(1), ν(2), ... are distributions over S, we say that the sequence {ν(n)}n∈N con-
verges to ν in total variation if

lim
n→∞

dTV
(
ν(n), ν

)
= 0.

2.2. Autocorrelation times 10

Theorem 2.1.11. Let X be a finite, irreducible and aperiodic Markov chain with
transition matrix P. If ν(0) is a given initial distribution and ν is the stationary
distribution, then ν(m) = ν(0)Pm converges in total variation to ν.

Let us introduce a final concept that very useful tool for identifying the stationary
distribution.

Definition 2.1.12 (Reversibility). Let X be a finite Markov chain with transition
matrix P. A distribution π is reversible is

πiPi,j = πjPj,i (2.3)

for every state i, j. A Markov chain is reversible if there exists a reversible distri-
bution for such a chain.

Observe that, under these conditions, π is a fixed point of the map defined by
P.

Theorem 2.1.13. Let X be a finite Markov chain. If π is reversible then it is also
a stationary distribution.

An example of a Markov chain is that proposed by Metropolis in his celebrated
algorithm. Suppose we have a function f (x) proportional to a target distribution
P (x). One can build a Markov chain with all the desirable properties exposed above:

(I) Propose a new state y with probability g (y | x). In the original algorithm,
this probability needs to be symmetric, i.e, g (y | x) = g (x | y).

(II) Accept the state change x→ y with probability min{1, f (y) /f (x)}.

2.2 Autocorrelation times

In this section, we follow the lecture notes of Sokal (1997), which make an analysis of
errors in Monte Carlo algorithms and convergence bounds. In the previous chapter
we saw how the variance of the estimator O is given by Varπ [O] /N , hence the error
decreases as as 1/

√
N . As MCMC algorithms do not generate independent samples,

the previous error does not apply.
There are two different solutions to this. We can generate independent samples

by simply restarting the Markov chain. This would mean waiting for equilibration
every time we want a new sample. This approach is not practical at all. The other
option is to study after equilibration how many steps we need to wait for samples to
be uncorrelated. It is important to remark that no two random variables from the
same Markov chain are independent. It is only through the conditioning to another
previous step how we can achieve that, but that is not a valid condition for the
previous error to hold.

We turn our study to correlation functions and how they relate to the error of
the estimator computed with a Markov Chain.

2.2. Autocorrelation times 11

Definition 2.2.1 (Autocorrelation functions). The unnormalized autocorrelation
function of O is given by

CO (t) = 〈OsOs+t〉 − 〈Os〉〈Os+t〉 =
∑
x,y∈Ω

O (x)
[
π (x)

(
P t
)
x,y
− π (x) π (y)

]
O (y) .

(2.4)
The normalized autocorrelation function is then

ρO (t) = CO (t) /CO (0) . (2.5)

It is common practice to assume that the previous function behaves as a decaying
exponential, and in fact, most of the observables do behave that way. However, this
is not true in general.

It has been observed that autocorrelation functions do not behave as a decaying
exponential near phase transition. In fact, this is a characteristic of such points
in the parametric space, where very long autocorrelation times appear, known as
critical slowing down.

Let us assume the behavior of ρO goes as a decaying exponential. This suggests
the definition of the exponential autocorrelation time

τexp,O = lim sup
t→∞

t

− log|ρO (t)|
(2.6)

and
τexp = sup

O
τexp,O. (2.7)

From the definition one can see that knowing τexp will not be possible in general; it
can even be unbounded.

One may define a similar value, the integrated autocorrelation time for a given
observable O, which will be much easier to compute

τint,O =
1

2

∞∑
t=−∞

ρO (t)

=
1

2
+
∞∑
t=1

ρO (t) .

(2.8)

The factor of 1
2
is a convention, so that τexpO ≈ τint,O when ρO (t) ∼ e−|t|/τ . This

new value is interesting as it is related to the error of a Monte Carlo measurement
of 〈O〉. The variance of the estimator O at Eq. 1.12 can be approximated as

Var
[
O
]

=
1

N2

N∑
r,s=1

CO (r − s)

=
1

N

N−1∑
t=1−N

(
1− |t|

N

)
CO (t)

≈ 1

N
(2τint,O)CO (0) , for N � τ.

(2.9)

2.3. Tnmh algorithm 12

As Varπ [O] = CO (0), then the variance of O is a factor of 2τint,O times larger, i.e.
the effective number of independent samples in a chain of length N is approximately
N/2τint,O.

Observe how the definition of the autocorrelation functions in Eq. 2.4 is done
with π as the distribution sampling each step. Hence, this computation should only
be done for a time greater than the equilibration time of the chain. To judge this
equilibration time, in practice, one would plot the observables under study and note
when the initial transient appears to end.

Although we will not discuss much the following, it should be noted that this
empirical method has its dangers. It may happen that a system seems to be reaching
equilibrium when it has actually only settled down on a long-lived region of the
configuration space that can be far from equilibrium. This phenomenon is known
as metastability. It is desirable to identify this metastable regions and design some
techniques to either detect them or give reasonable arguments to their unlikeliness,
such as bounding the convergence time. This last solution, again, is hardly ever
feasible.

2.3 Tnmh algorithm

In this section, we will have an introduction to the original algorithm of tnmh.
It was first proposed by Frías Pérez et al. (2023) and it combines the Metropolis-
Hastings algorithm (Hastings, 1970) with an approximate first sampling done with
tensor networks. The states in this section will be those corresponding to an Ising
model, so ω = (σ1, σ2, ... , σN) ∈ {−1, 1}N , where N is the size of the system.

The Metropolis-Hastings algorithm works as follows:

(I) Given an initial state ω, propose a new one ω′ with probability g(β) (ω′ | ω).

(II) The change ω → ω′ is accepted with probability

Pacc (ω → ω′) = min{1, g
(β) (ω | ω′)
g(β) (ω′ | ω)

× π(β) (ω′)

π(β) (ω)
}. (2.10)

When the prior distribution g(β) is symmetric, this algorithm reduces to the orig-
inal one of Metropolis. However, the absence of symmetry on the prior distribution
can lead to a better exploration of the state space.

The probabilities of the transition matrix will then be given by

T (ω → ω′) = g(β) (ω′ | ω)× Pacc (ω → ω′) . (2.11)

Observe how, if g(β) (ω′ | ω) = π(β) (ω′), then the probability of accepting the
change is 1. This makes sense, as our prior distribution would already be the target
one. In the following, we will look for a prior distribution g(β) (ω′ | ω) ≈ π(β) (ω′).

Suppose we index the vertices of the Ising model from 1 to N . By Bayes, we can
express the Boltzmann distribution as

π (ω) = π1 (σ1) π2 (σ2 | σ1) πN (σN | σ1, ... , σN−1) , (2.12)

2.4. Tensor Networks 13

where πi (σi | σ1, ... , σi−1) =
∑

σi+1,...,σn

π (σi, σi+1, ... , σn | σ1, ... , σi−1).

These marginal distributions can be expressed as

π1 (σ1) = Z (β | σ1) /Z (β)

πi (σi | σ1, ... , σi−1) = Z (β | σ1, ... , σi−1, σi) /Z (β | σ1, ... , σi−1) , i = 2, ... , n.
(2.13)

The conditioned partition functions Z (β | σ1, ... , σi) can be computed from the orig-
inal hamiltonian by fixing the indicated σ-values.

This reduces the problem of sampling N spin values according to the Boltzmann
distribution, to sampling one spin at a time according to a Bernoulli distribution of
p = πi (σ1, ... , σi−1). Each new sampled spin will condition the following partition
functions computed. When the process is finished we will have obtained ω ∼ π(β) (ω).
If we design a method to compute an approximation of these partition functions, we
will be able to obtain our desired g(β) (ω′ | ω) = π̃(β) (ω′) ≈ π(β) (ω′).

Let us close this section by checking that π(β) is the stationary distribution of
this Markov chain. From Eq. 2.10 and 2.11, we can see that π(β) is reversible.
Moreover, if our approximations of Z (β | σ1, ... , σi) are good enough such that they
are all positive, then π̃(β) (ω′) > 0 ∀ω′ ∈ Ω, hence T (ω → ω′) > 0 ∀ω, ω′ ∈ Ω. This
implies that the Markov chain is irreducible and aperiodic and by Theorems 2.1.9
and 2.1.13 π(β) is the unique stationary distribution.

2.4 Tensor Networks

Definition 2.4.1 (Tensor Product). Let V1, ... , Vn be K vector spaces and L the K
vector spaces whose base is V1×· · ·×Vn, i.e L is the set of linear combinations over
K whose elements are of the form (v1, ... , vn) , vi ∈ Vi.

Let R be the linear subspace of L generated by the following relation R

(v1, ... , αvi, ... , vn) ∼ α (v1, ... , vi, ... , vn) ∀ i = 1, ... , n and

(v1, ... , vi + ui, ... , vn) ∼ (v1, ... , vi, ... , vn) + (v1, ... , ui, ... , vn) ∀ i = 1, ... , n and

The tensor product V1 ⊗ · · · ⊗ Vn is defined as the quotient L/R and the image of
(v1, ... , vn) is denoted by |v1〉 ⊗ · · · ⊗ |vn〉 or by |v1 ... vn〉.

A discussion on the mathematical interest of this definition is given by Gowers,
where the focus is placed on studying multilinear forms as linear forms. This is best
seen in the following result.

Theorem 2.4.2 (Universal Property). Given two finite dimension vector spaces V
and W , and for every bilinear map h : V ×W → X there exists a unique linear map
h̃ : V ⊗W → X such that the following diagram conmutes.

V ×W V ⊗W

X

ϕ

h
h̃

The bilinear map ϕ is constructed in a natural way as ϕ (v1, v2) = |v1〉 ⊗ |v2〉.

2.4. Tensor Networks 14

Let Bi = {|v(i)
si 〉 : si = 1, ... , dimVi} be a basis of Vi. Let us construct from them

a basis for Vtot ..= V1 ⊗ · · · ⊗ Vn. Define

Btot = {|v(1)
s1
〉 ⊗ · · · ⊗ |v(n)

sn 〉 : si = 1, ... , dimVi, j = 1, ... , n}. (2.14)

For a shorter notation, |v(1)
s1 〉⊗· · ·⊗|v

(n)
sn 〉 ≡ |s1 ... sn〉. Constructed this way, Btot

is a basis of Vtot. The elements |ψ〉 ∈ Vtot can be expressed as

|ψ〉 =
∑

s1,...,sn

ψs1,...,sn |s1 ... sn〉 . (2.15)

Making use of Riesz Fundamental Representation Theorem, we can write

ψs1,...,sn = 〈s1 ... sn|ψ〉 . (2.16)

The dimension of these vector spaces is the product of the original spaces’ dimen-
sions. This implies that the necessary number of coefficients required to represent
a general tensor grows exponentially with the number of starting spaces. Further
down, we will look for special families of tensors that do not require as many coef-
ficients, while trying to keep as much information as possible.

In the same way as vectors can be considered maps from a finite set of indices to
a field, tensors can be thought of as maps from a cartesian product of indices sets.
This gives us an equivalent but more practical definition to feed into a computer of
a tensor.

Definition and Examples 2.4.3 (Tensor). A tensor is a map

T : Q1 ×Q2 × · · · ×Qn → K,

where Qi are finite indices sets and K is a field. The sum and scalar product oper-
ations are defined pointwise.

The simplest tensor is that with a single set of indices, i.e., a regular vector. A
vector in Rn can be seen as

v : {1, ... , n} → R
i 7→ vi

In the same way, a matrix is a tensor with two indices. A complex m× n matrix is
a map

M : {1, ... ,m} × {1, ... ,m} → C
(i, j) 7→Mij

The following is the main operation with tensors we will be using.

Definition 2.4.4 (Contraction). Given two tensors
T1 : Q

(1)
1 × · · · ×Q

(1)
j1−1 × Q̃×Q

(1)
j1+1 × · · · ×Q

(1)
l1
→ K

T2 : Q
(2)
1 × · · · ×Q

(2)
j2−1 × Q̃×Q

(2)
j2+1 × · · · ×Q

(2)
l2
→ K

We define the contraction of the index j1 from T1 with the index j2 of T2 as the
tensor

T̃m1,...,mj1−1,mj1+1,...,ml1 ,n1,...,nj2−1,nj2+1,...,nl2
=

|Q̃|∑
α=1

(T1)m1,...,mj1−1,α,mj1+1,...,ml1
· (T2)n1,...,nj2−1,α,nj2+1,...,nl2

2.4. Tensor Networks 15

This definition not only shows a very useful operation, but also how tiring the
notation is. That is why the following visual notation is often used.

Notation and examples 2.4.5. Diagrammatic notation follows these two rules:

i) A tensor of l indices, or l-tensor, is represented as a geometrical shape and l
outgoing legs. Ex: A vector is represented as and a matrix as .

ii) A contraction is represented as the union of the indices’ legs that are being con-
tracted. Ex: The application of a matrix on a vector is pictured as .

Tensor contraction allows us to build structures that will be of our interest.
Moreover, the use of diagrammatic notation is the origin of the term tensor network.

Let Vtot = V1 ⊗ · · · ⊗ VN and consider its dual space V ∗tot and the set of linear
transformations from Vtot to V ∗tot, denoted by L (Vtot, V

∗
tot)
∼= Vtot ⊗ V ∗tot. We are

interested in a special family of tensors called Matrix Product States (MPS).
Given D ∈ N, suppose we have n 3-tensor Ai, which we will treat as maps from

the set of indices Qi = {1, ... , dimVi} to the space of matricesMD×D (K), but for
As1 ∈ M1×D (K) and AsN ∈ MD×1 (K). An MPS is a tensor that can be expressed
as

ψs1,...,sn = Tr [As11 A
s2
2 ... AsNN] . (2.17)

Figure 2.1: MPS in Vtot

Example 2.4.6. The Greenberger-Horne-Zeilinger state (GHZ) of N qubits can be
represented as the tensor

|GHZ〉 =
1√
2

(
|0〉⊗N + |1〉⊗N

)
, (2.18)

which can be expressed as an MPS by contracting

GHZs1s2...sN = Tr

[
1√
2
As11 A

s2
2 ... AsNN

]
, (2.19)

where (
A0
N

)T
= A0

1 =
(
1 0

)
,
(
A1
N

)T
= A1

1 =
(
0 1

)
,

A0
i =

(
1 0
0 0

)
, A0

i =

(
0 0
0 1

)
, 1 < i < N.

(2.20)

Observe how this product coincides with the expected coefficients in Eq. 2.18

Tr [As11 A
s2
2 ... AsNn] =

{
1 if s1 = s2 = ... = sN

0 otherwise
(2.21)

2.4. Tensor Networks 16

In the same way, let Bi = {l(i)ti : ti = 1, ... , dimV ∗i } be a basis of the space V ∗i
and B∗tot = {l(1)

t1 ⊗ · · · ⊗ l
(n)
tn : ti = 1, ... , dimVi, j = 1, ... , n} a basis of V ∗tot. By Riesz

Fundamental Representation Theorem, the elements φ ∈ V ∗tot can be expressed, for
some y(j)

ti ∈ Vtot as

φ =
∑
t1,...,tn

φt1,...,tnl
(1)
t1 ⊗ · · · ⊗ l

(n)
tn

=
∑
t1,...,tn

φt1,...,tn 〈y
(1)
t1 , · 〉 ⊗ · · · ⊗ 〈y

(n)
tn , · 〉 ≡

∑
t1,...,tn

φt1,...,sn 〈t1 ... tn| .
(2.22)

Again, given D the MPS in V ∗tot are of the form

φt1,...,tn = Tr
[
At11 A

t2
2 ... A

tn
n

]
. (2.23)

Figure 2.2: MPS in V ∗tot

Lastly, from the basis Bi = {|si〉 : j = 1, ... , dimVi and B∗i = {〈ti| : j =
1, ... , dimV ∗i } one can construct a basis for L (Vtot, V

∗
tot)
∼= Vtot ⊗ V ∗tot, taking into

account that the tensor product is commutative and associative,

B = {[|s1〉 ⊗ 〈t1|]⊗ ...⊗ [|sn〉 ⊗ 〈tn|] : ti, si = 1, ... , dimVi, j = 1, ... , n}. (2.24)

With this, elements Φ ∈ L (Vtot, V
∗
tot) are given by

Φ =
∑

s1,...,sn
t1,...,tn

Φt1...tn
s1...sn

[|s1〉 ⊗ 〈t1|]⊗ ...⊗ [|sn〉 ⊗ 〈tn|] (2.25)

Considering n 4-tensors, analogous to the previous 3-tensors, we can define a Matrix
Product Operator (MPO) as

Φt1...tn
s1...sn

= Tr
[
As1,t11 As2,t22 ... Asn,tnn

]
. (2.26)

Figure 2.3: MPO in Vtot ⊗ V ∗tot

An example of these structures can be seen in the explanation for the contraction
of a tensor network associated with the Ising model further down the section.

Having defined these elements, we can see how an MPO naturally acts on an
MPS. We denote it by MPO |MPS 〉 or 〈MPS |MPO depending on whether the MPS

2.4. Tensor Networks 17

is considered in the dual space or not and we define it as the contraction of the
indices si with ti following the origin of the MPS.

We are interested in studying how much information is required to represent a
tensor. This is given by the number of coefficients of the linear combination that
defines it. We know that, in general, it grows exponentially with the number of
vector spaces in the tensor product. If we have some extra information on the
structure of a particular tensor, we can avoid storing every coefficient, as many
of them will be zero. For example, the simplest tensors are those expressed as
|ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉, where |ψi〉 =

∑
si
ψsii |si〉 ∈ Vi. If we have a tensor

product of n d-dimensional vector spaces Vi, we only need to store n · d coefficients.
This kind of tensor has big limitations, as they cannot encode correlations when
measuring in quantum systems, also known as entanglement.

We can encode entanglement however with MPS. Their representation requires
n · d ·D2 coefficients, which may seem to avoid the exponential growth on n at first,
as a tensor in general is given by dn coefficients. However, this growth is hidden
inside D, which we call the bond dimension. The next result illustrates how this
behavior manifests.

Proposition 2.4.7. Let |bot〉 be an MPS with bond dimension
D1 andM and MPO with bond dimension D2. Then, the result from

M |bot〉 can be expressed as an MPO with bond dimension D1 ·D2.

Proof. We denote the kth 4-tensor as Bhkhk+1sktk
k and the kth 3-tensor as

A
ηkηk+1sk
k . We can express the components of the MPS and the MPO respectively

as:

〈s1 ... sn|bot〉 =

D1∑
η2=1

D1∑
η3=1

· · ·
D1∑
ηn=1

Aη2s11 Aη2η3s22 ... A
ηn−1ηnsn−1

n−1 Aηnsnn =

D1∑
{η}

Aη2s11 ... Aηnsnn

M t1...tn
s1...sn

= ... =

D2∑
{h}

Bh2s1t1
1 ... Bhnsntn

n

Developing the contraction M |bot〉 we obtain

〈s1 ... sn|M |bot〉 =
∑
t1

∑
t2

...
∑
tn

 D2∑
{h}

Bh2s1t1
1 ... Bhnsntn

n

 ·
 D1∑
{η}

Aη2t11 ... Aηntnn

=

D2∑
{h}

D1∑
{η}

∑
{t}

Bh2s1t1
1 ... Bhnsntn

n Aη2t11 ... Aηntnn

=

D2∑
h2=1

D1∑
η2=1

D2∑
h3=1

D1∑
η3=1

...

D2∑
hn=1

D1∑
ηn=1

∑
{t}

Bh2s1t1
1 ... Aηntnn

=

D2D1∑
ν2=1

D2D1∑
ν3=1

...

D2D1∑
νn=1

Cν2s1
1 Cν2ν3s2

2 ... Cνnsn
n ,

2.4. Tensor Networks 18

where Chkηkhk+1ηk+1tk
k =

∑
tk

B
hkhk+1sktk
k A

ηkηk+1tk
k and the subindices ν are just a rein-

dexing of any indices pair (h, η).

The last expression shows that M |bot〉 is an MPS with bond dimension D2D1.
Then, the state Mn ...M2 |bot〉 is an MPS with bond dimension Dn ... D2D1, that is
exponentially growing. The renormalization schemes we will be employing are based
on keeping this bond dimension below a certain bound. Of course, this leads to a
loss of information, and this is the source of our approximation. However, keeping
the bond dimension bounded allows the size of the resulting MPS to scale linearly
with the number of starting vector spaces.

MPS are very useful to describe systems whose particles are placed in a line and
whose interactions are to close neighbors. It is only natural to extend to higher
dimensions. We can focus on a 2-dimensional square grid, which takes us to the
concept of Projected entangled-pair states (PEPS). This name comes from the way
in which they are defined (Verstraete and Cirac, 2004). The original description
takes a more general approach, but we will state it in a simpler way that resembles
the previous constructions. To construct a PEPS we take 5-tensors,

Ai ≡ (2.27)

The dimension of the indices at the non-diagonal legs does not need to be the same,
but it simplifies the discussion, as now we can refer to D as the bond dimension of
the PEPS. The diagonal leg at Eq. 2.27 is called the physical index, while the rest
are virtual indices. To build the PEPS we have to contract the virtual indices with
the corresponding one of each neighbor tensor. The diagramatic representation of a
PEPS would be

|Ψ〉 = (2.28)

Observe that for the tensors at the edge of the structure, we can simply delete the
index that would have dimension 1. In the same way as we talked about MPS and
MPO, we can talk about PEPS and PEPO, which stands for Projected entangle-pair
operator. They can be defined as PEPS, but this time taking the elemental tensors
with 6 indices, 2 physical and 4 virtual. The proof would be most tedious, but it
is clear that one can extend Proposition 2.4.7 to the contraction of a PEPS with a
PEPO. If the bond dimensions are D1 and D2 respectively, the resulting PEPS will
have bond dimension D1D2.

2.4. Tensor Networks 19

We will not be using these constructions until later, but this has been a very
successful tool in representing ground states of 2D lattices or even higher dimensions.
Those are constructed by considering the natural graph given by the vertices and
edges of the lattice at play.

At the end of Section 2.3 we wanted to obtain approximations of Z (β | σ1, ... , σi).
The following is the explanation given in Appendix A of Frías Pérez et al. (2023),
that we repeat here for convenience. Let us focus first on the partition function
without conditioning the value of any spin. It is given by

Z (β) =
∑
ω∈Ω

e−βH(ω) =
∑
ω∈Ω

e
−β

∑
〈i,j〉∈E

φij(σi,σj)

=
∑
ω∈Ω

∏
〈i,j〉∈E

Wij (σi, σj) . (2.29)

This last expression very much resembles that of a contraction if we consider Wij as
a matrix of coefficients Wij (σi, σj). For example, if the external field is null, these
matrices are of the form

Wij =

(
eβJij e−βJij

e−βJij eβJij

)
. (2.30)

In this way, the edges of our Ising model can be associated a tensor. To be able
to fix the spin value and reuse the tensor network, we would like the tensors to be
associated with the vertices of the original lattice instead. To that end, we use the
Singular Value Decomposition Theorem. This is of paramount importance, as it
allows us to manipulate the structure of the network, and by truncating singular
values, we can control de size of the tensors as well. Let i be a vertex, and e (i) its
right-side neighbor. Given a tensor Wie(i) we take its SVD decomposition Wie(i) =

Uie(i)Σie(i)V
†
ie(i). As the singular values matrix is diagonal and positive, we can

denote by
√

Σie(i) the pointwise square root and define Li ..= Uie(i)
√

Σie(i) and Ri
..=√

Σie(i)V
†
ie(i). We have constructed a decomposition

Wie(i) (σ, σ′) =
2∑

ν=1

Li (σ, ν)Re(i) (ν, σ′) , (2.31)

which in diagrammatic notation can be seen as

We can do the same for Ww(i)i,Win(i),Ws(i)i, obtaining

2.4. Tensor Networks 20

Ww(i)i (σ, σ
′) =

2∑
ν=1

Lw(i) (σ, ν)Ri (ν, σ
′)

Win(i) (σ, σ′) =
2∑

ν=1

Bi (σ, ν)Tn(i) (ν, σ′)

Ws(i)i (σ, σ
′) =

2∑
ν=1

Bs(i) (σ, ν)Ti (ν, σ
′) .

Observe how each tensor is associated with a single vertex. We only need
to contract the 4 vertices associated with the same vertex (2 if the vertex is at a
corner of the lattice or 3 if it is on the edge) into a single one denoted by Ai, whose
elements are given by

Aiµνρτ =
2∑

σ=1

Li (σ, µ)Ri (ν, σ)Bi (σ, ρ)Ti (τ, σ) , (2.32)

and its graphical representation is

.

Tensors at corners or edges are constructed in the analogous way taking into
account what neighbors they have. The advantage of this representation is that the
partition function is still given by the contraction of the network, but if we want
to fix the value of a spin σi we only need to replace the tensor Ai constructed from
a sum in Eq. 2.32 by the corresponding summand associated with σi. The whole
construction of the new tensor network can be seen in Figure 2.4.

Figure 2.4: Graphical representation of the tensor network construction

To approximate the contraction of an L × L network, a simple renormalization
scheme is used based on the truncation of singular values. If we recall the concept
of MPS and MPO, we can see how the row contraction of our networks gives rise
to these structures. Let us call 〈top| the top row contraction, which is an MPS; Mk

2.4. Tensor Networks 21

the contraction of the kth row, 1 < k < L, which is an MPO; and 〈bot| the bottom
row contraction, again another MPS. Our partition function is now given by

Z (β) = 〈top | ML−1 ...M2 | bot〉 (2.33)

The bond dimension of these operators is 2, however, Proposition 2.4.7 indicates
that it will scale as 2L. As the computational cost scales linearly with the bond
dimension, it is not practical to contract all the MPS and MPO without reducing
the bond dimension in between steps. When the bond dimension goes over our
chosen bound, we need to reduce it by truncating the singular values of the tensors
conforming the resulting MPS. A more detailed explanation can be found in Section
3.4 of (Ran et al., 2020).

This network will have to be contracted every time a partition function needs to
be computed having fixed an additional spin value. This has to be done N times.
However, only a single tensor will change each time. If we store every intermediate
MPS and some additional tensors resulting from the row contractions, we can save
a big computational effort in exchange for some memory.

The most important aspect of this section is that we can approximate the con-
traction of a network with the topology seen in Figure 2.4, where the tensors are
associated with a single spin. We will reuse this scheme in the algorithm designed
in this project.

One final remark. We have made no comments on how much entanglement
information we are losing in each renormalization process. This depends on the
bound for the bond dimension we choose, but determining the effects of this value
on the contraction error is far from an easy task. It is, however, of great interest
to study if we were to analytically treat important aspects of our Markov chain like
mixing or correlation times.

Chapter 3
Previous work

In this chapter, we give a brief overview of some numerical methods used in Quantum
Field Theories and then explain the work carried out in the project preceding this
one.

3.1 Classical and modern approach

The birth of Quantum Field Theories is usually dated in 1927, with the work from
Dirac “The quantum theory of the emission and absorption of radiation”. Since then,
it gained importance during the past century, and various methods for its study have
been proposed. One of the most fruitful approaches to Quantum Field Theories is
the path integral, developed by Feynman during his PhD thesis (Feynman, 1948).

In most cases, the systems are too complex to study analytically, so numerical
methods are the only way to treat these theories. A very common one in Quantum
Mechanics is perturbation theory, where in the time-independent approach a Hamil-
tonian is separated into two terms H = H0 + λV . If we can get an exact solution
to H0, we can study the properties of H as expansions in terms of λ. This method
can fail in many scenarios, the simplest of them due to the perturbation being too
large. That is why there is a need for non-perturbative methods.

The use of Monte Carlo use took off once computers had enough power to han-
dle large numerical computations. These methods were typically employed in the
classical transformation that we saw in Section 1.1.3. There is an ample number of
reviews covering the different approaches to Monte Carlo in Lattice Gauge Theories
in the past century (Morningstar, 2007; Creutz et al., 1983).

In more recent years other techniques have appeared. Tensor networks have been
used to study the properties of the ground state. This is born from the hypothesis
that the ground state of some models can be represented with a PEPS (Verstraete
et al., 2008). From there, all the renormalization schemes to contract PEPS can
be used to either compute the partition function or map the observables we are
interested in into these PEPS. Tensor networks have also been combined with Monte
Carlo, although not in the same way tnmh does. The idea is to first design a PEPS
that represents our system and then map the observable of interest into an integral

22

3.2. Continuous tnmh 23

in terms of the elements of the tensor network that we can compute with Monte
Carlo methods (Zohar and Cirac, 2018).

3.2 Continuous tnmh

As mentioned in the introduction, this project is the continuation of the research
carried out last year. To give the reader an idea of the starting point of this year’s
work, we give an overview of the algorithm developed until July 2023.

Remember we are able to sample with tnmh the Ising model. An extension
to a model with any finite number of possible values for the degrees of freedom is
nearly immediate. It is also possible to adapt the tensor network to sample spin
systems whose interactions do not have the same structure as the Ising model but
are of plaquette kind. We would like to take this concept to degrees of freedom in a
compact and infinite group. We restrict to compact groups because the properties
of Section 2.1 extend without any problem to random variables taking values in
compact sets, but it is more delicate when it comes to sets like Rn.

The main idea will be to propose a set of changes on each site and create an
associated spin model whose binary values determine whether the change at each
site is applied. It can be summarized as follows:

(I) Choose a value m in {0, ... ,mmax} with a suitable criteria.

(II) Draw N i.i.d. elements of the gauge group according to some distribution λm,
where m is controlling the variance and λm is centered on the identity. Call
these elements the differences Ψ = {Ψi ∼ λm : i = 1, ... , N}.

(III) Construct a plaquette spin system with N spins, such that σi = 1 has the
same effect in the new Hamiltonian as the variable xi in the original system
and σi = −1 is equivalent to xi ·Ψi.

(IV) Sample a spin system configuration using tnmh.

(V) Apply the changes xi ← xi ·Ψi suggested by the variables σi.

3.2.1 XY model

In our previous work, we implemented these ideas in two different models: the XY
model, whose symmetry group is U(1); and the Wilson action, with symmetry group
SU(2). We will focus our attention on the latter one, as that is similar to the action
we will work with. However, it is worth mentioning the differences in the structure
of the hamiltonian of these two systems, as what was learned with XY model will
prove useful for future work.

The XY model is studied in a squared lattice, like Ising’s. Its hamiltonian is
given by

H (ω) =
∑
〈i,j〉∈E

Jij cos (θi − θj − Aij) . (3.1)

3.2. Continuous tnmh 24

As in the Ising model, the degrees of freedom sit on the vertices of the lattice.
Once given the differences Ψ, the translation of this kind of model to its Ising
equivalent is computationally cheap and simple. It is based on the following lemma
(Frías Pérez et al., 2023).

Lemma 3.2.1. Any function of two binary variables, B, can be expressed as an
energy Ising model plus a constant

B (σ, σ′) = Jσσ′ + hσ + h′σ′ +K. (3.2)

Proof. It is enough to solve the following linear system
1 1 1 1
−1 1 −1 1
−1 −1 1 1
1 −1 −1 1

J
h
h′

K

 =

B (+1,+1)
B (+1,−1)
B (−1,+1)
B (−1,−1)

 (3.3)

To construct the new Ising model one only needs to solve this system for each
edge of the lattice and sum the resulting fields. The constant can be ignored, as it
plays no role in the Boltzmann probability. Hence, whenever we have a model with
degrees of freedom sitting on the vertices and interaction to nearest neighbors, we are
able to reuse tnmh. This proved to be possible in last year’s results (Díaz Rodríguez,
2023).

3.2.2 Wilson action

We now turn our attention to the Wilson model. Before jumping to what the action
looks like, we will make a comment on the notation we will be employing. Our model
sits on a D-dimensional euclidean lattice. Each point in the lattice also referred to as
a vertex, will be indexed by a natural number x. Directions vectors in the lattice will
be represented by letters µ and ν and they correspond to the canonical directions
in RD. The correspondence between D-dimensional coordinates and the indexing of
the vertices is not important, but the vertex x+ µ̂ should be understood as the one
corresponding to moving one position in the µ direction from vertex x. Our model
variables may sit on a vertex, then labeled by x, or on the edge between two vertices
x and x+ µ̂, labeled by x, µ.

Let us now move on to the Wilson action. For now, we will restrict to dimension
2 and only consider degrees of freedom sitting on the edges of the lattice. The
variables belong to the gauge group SU(2). The Wilson action reads

S = −β
2

N∑
x=1

Re Tr
[
Ux,µ Ux+µ̂,ν U

†
x+ν̂,µ U

†
x,ν

]
, (3.4)

where µ and ν are the two directions on the lattice plane.
The study was done under open boundary conditions, so in reality, the sum is

not taken in all vertices, and only in those that sit at the bottom left of a plaquette.
We ignore this in the action given to simplify the notation.

3.2. Continuous tnmh 25

Let us be more specific with steps II to V from the algorithm given before.
Comments on step I will be made in the next section.

To draw configuration differences we need to obtain random independent matri-
ces in SU(2). The following is a scheme to produce random matrices in SU(N).

1. Draw a unitary matrix W ∈ U(N) distributed according to the Haar measure
(Mezzadri, 2007).

2. Draw N − 1 phases λi uniformly in [−α/2, α/2]. The parameter α ∈ (0, 1]
allows us to control how far from the identity we are expected to draw the
next matrices. We choose α = 2−m, where m is the value given by step (I).

3. The last phase λN is taken as λN =
⌊∑N−1

j=1 λj

⌋
−
∑N−1

j=1 λj.

4. Last, obtain the matrix

U = W

e
2πλ1i

. . .
e2πλN i

W †. (3.5)

We now construct the associated spin model. Let Ψ be the set of matrices Ψx,µ

drawn as described. Start by considering a set of spins Σ in each edge of the lattice
and define Wx,µ (σx,µ) ..= 1+σx,µ

2
Ux,µ+ 1−σx,µ

2
Ux,µΨx,µ. Then, we can define the action

HS (Σ) = −β
2

N∑
x=1

Re Tr
[
Wx,µ (σx,µ)Wx+µ̂,ν (σx+µ̂,ν)Wx+ν̂,µ (σx+ν̂,µ)†Wx,ν (σx,ν)

†
]
.

(3.6)
In Section 2.3 we studied how to contract tensor networks where spins lie on the

vertices. To reuse those structures we define the following tensors:

= exp

{
β

2
Re Tr

[
Wx,µ (σx,µ)Wx+µ̂,ν (σx+µ̂,ν)Wx+ν̂,µ (σx+ν̂,µ)†Wx,ν (σx,ν)

†
]}

,

to which we refer as plaquette tensors.

= 1 ∀α =

{
1 if σ = α

0 if σ 6= α
=

{
1 if σ = µ = ν

0 otherwise

which are simply auxiliary tensors. With these definitions, we can build the tensor
network seen in Figure 3.1. Observe how blue tensors allow us to fix the value of
the spin that is common in the red tensors associated with each plaquette. The
blue diagonal legs correspond to the spins that we need to sum over to compute the
partition function.

3.2. Continuous tnmh 26

Figure 3.1: Tensor network for the
Wilson action on a 3× 3 lattice

Figure 3.2: Adaptation of a Wilson
action Tensor Network to those used
in the spin model

We employ the green tensors to give the tensor network a structure similar to
the one we worked with in the Ising model. In Figure 3.2 we add these transparent
tensors, where glueing tensors together corresponds to a new tensor created by
multiplying the coefficients. This is, glueing Tα with Sβ is a new tensor of 2 indices
Rα,β = Tα · Sβ. If a diagonal leg points out of a green tensor, it only has one
possible value. Moreover, their inclusion does not change the value computed by
the contraction. Hence, these fictional spins do not play any role, other than allowing
to reuse the renormalization schemes employed in the Ising model.

Once we have the new spin configuration, we can compute the equivalent Wilson
configuration by applying the change Ui ← UiΨi when σi = −1. Let 1 be a spin
configuration with every spin σi = 1 and Σ the discrete configuration proposed by
the tensor network with probability π(β,κ)

TN (Σ | ω,Ψ). We accept said change with
probability

Pacc (ω → ω′ | Ψ) = min{1, π
(β,κ)
TN (Σ | ω,Ψ)

π
(β,κ)
TN (1 | ω,Ψ)

× π(β,κ) (ω′)

π(β,κ) (ω)
}. (3.7)

3.2.3 Amplitude choice

The approach described presents a problem not seen in the finite case: choosing the
amplitude of the changes proposed at each step.

If we are sitting in a low energy state, random changes are likely to cause an
increase in energy. If the energy is to increase, the larger the energy difference
between proposed configurations the lower the Metropolis probability of acceptance.
This suggests that small amplitudes in the proposed changes will be beneficial toward
acceptance rates. As we are using Metropolis-Hastings acceptance probability, the
accuracy of the approximation π̃ (ω) also determines the acceptance rates. However,

3.2. Continuous tnmh 27

we cannot always rely on high accuracy of such computations, as we have seen how
its cost scales badly with the system size.

We are interested in sampling as much of the state space as possible, and small
changes in the configurations suppose a very slow sweeping of the overall configura-
tions set. This is in conflict with the previous reasoning, so we have to decide on a
criterion to determine what an optimal amplitude is and how to choose it at each
step. We do this dynamically using the statistics of the running sampling process.
More about this in the next section.

3.2.4 Previous results

We now present the main results that are of importance for the current project.
First of all, the described chain is irreducible and aperiodic, and π(β,κ) (ω) is

reversible. Irreducibility and aperiodicity are now seen in terms of ρpick (ω → ω′) >
0, where ρpick is the density of probability of the change ω → ω′ being proposed.
Proving this implies that π(β,κ) (ω) is the unique stationary distribution.

Let us denote by F (Σ, ω,Ψ) the transformation of the configuration ω when
applying the changes Ψ according to some spin configuration Σ. Given some set of
differences Ψ drawn with probability density λ (Ψ), the probability of proposing the
change ω → ω′ is

Ppick (ω → ω′ | Ψ) =
∑

ω : F (Σ,ω,Ψ)=ω′

π
(β,κ)
TN (Σ | ω,Ψ) . (3.8)

We can calculate the probability density without conditioning on Ψ as

ρpick (ω → ω′) =
∑

Σ∈{1,−1}|V |

∫
DΨ

π
(β,κ)
TN (Σ | ω,Ψ)λ (Ψ) δ (ω′ − F (Σ, ω,Ψ)) dΨ, (3.9)

where the domain DΨ is SU (N)|V |. We are taking δ (ω′ − F (Σ, ω,Ψ)) as the mea-
sure in SU (N)|V | centered at 0 defined as

δx (A) =

{
1 if x ∈ A
0 otherwise

(3.10)

The value at Eq. 3.9 is positive because: (i) we take a distribution λ with positive
value for every Ψ, (ii) the set {Ψ ∈ SU (N)|V | : ∃ Σ ∈ {1,−1}|V | : ω′ = F (Σ, ω,Ψ)} is
non-empty, (iii) we assume our approximation π(β,κ)

TN is precise enough to be positive
for all Σ. As every configuration ω′ is susceptible to being proposed from any
configuration ω we conclude that the chain is aperiodic and irreducible.

To prove that π(β,κ) is reversible we check the detailed balance condition. Given
an initial configuration ω and a set of differences Ψ, this defines an associated spin
model. If π(β,κ)

ω,Ψ , π(β,κ) are the Boltzmann distributions and ZS, ZW the partition
functions for the spin model and the Wilson action respectively, it follows that

π
(β,κ)
ω,Ψ (Σ) = π(β,κ) (F (Σ, ω,Ψ))× ZW/ZS. (3.11)

3.2. Continuous tnmh 28

Let Tω,Ψ (Σ1 → Σ2) be the transition probability from one spin configuration Σ1

to another Σ2 of the Markov chain step defined by fixing Ψ and ω. The reversibility
of a chain of this kind for the spin model is already proven in Frías Pérez et al.
(2023), hence we can start with

π
(β,κ)
ω,Ψ (Σ1)Tω,Ψ (Σ1 → Σ2) = π

(β,κ)
ω,Ψ (Σ2)Tω,Ψ (Σ2 → Σ1) . (3.12)

From the definition of the accepting probability,

Tω,Ψ (Σi → Σj) = T (ωi → ωj | Ψ) , (3.13)

where ωk = F (Σk, ω,Ψ). Putting these last three equations together

π(β,κ) (ω)T (ω → ω′ | Ψ) = π(β,κ) (ω′)T (ω′ → ω | Ψ) (3.14)

The detailed balance condition is obtained by integrating both sides with the suitable
δ measure and multiplying both sides by the distribution of Ψ.

As mentioned before, different strategies have to be tested to choose the best
amplitude at each step. The strategy used at the end of last year’s project can be
described as follows:

1. Choose an interval [0, ... ,mmax] in which m will take integer values.

2. At each step compute the difference between configurations after accepting or
rejecting the proposed change. This is done by summing the distance between
each matrix’s sites in Frobenius norm.

3. The m value for the next step is chosen with a probability proportional to the
mean distance resulting from using each m value in previous steps.

This strategy presented a few drawbacks, like having to spend the first few steps
using a random m to gather some data before mean values could be computed. Al-
though it promoted state space exploration, it was very susceptible to the outcomes
of the first steps and made convergence times even harder to determine from execu-
tion to execution. In the next chapter, we will comment on two new methods used
that seem to perform better and with higher stability.

(a) Metropolis (b) tnmh

Figure 3.3: Energy of the Wilson model in a 8 × 8 lattice with β = 10 and bond
dimension D = 8.

3.2. Continuous tnmh 29

The parameter used to determine the performance was the convergence time,
sometimes referred to as burning time. This was done by simply plotting observables
and eyeballing the time of transitioning from an unstable phase to a stable one. As
we said before, metastability can invalidate this simple procedure, but it was enough
for the objectives proposed.

On July 2023 we had an algorithm with a convergence time similar to Metropolis,
as we can see in the two graphs in Figure 3.3.

Chapter 4
Monte Carlo simulation of lattice gauge
theories

In this chapter we present the bulk of our work. We have extended our previous
algorithm to work with a more general action. First, we have made a deeper study
of two-dimensional LGT. Next, we have moved up to three dimensions. We will
review here the tensor network construction and the performance for both settings.
In the last section, some brief comments on the computational effort, hardware used
and implementation are given.

4.1 Action

In the previous chapter, we have studied the Wilson action, which models the be-
havior of a gauge field. Now we are going to extend it to what is known as the Higgs
model, by adding a scalar kinetic term in representation of matter elements. By
adding matter to the system and with SU (2) as the gauge group, this new action
is related to the weak nuclear force (Montvay and Münster, 1994). This addition
includes a new parameter κ sometimes referred to as the hopping distance, which
plays a similar role as the known inverse of the temperature β. Let ω englobe all
degrees of freedom, i.e. ω is a configuration. The action includes three terms. The
first is the standard Wilson action, which only depends on the gauge field

βSg (ω) = −β
2

N∑
x=1

D∑
µ<ν=1

Re Tr
[
Ux,µ Ux+µ̂,ν U

†
x+ν̂,µ U

†
x,ν

]
. (4.1)

The second, the gauge-matter term, corresponds to the scalar term in the Yang-
Mills theory

κSφ (ω) = −κ
2

N∑
x=1

D∑
µ=1

ρx ρx+µ̂Re Tr
[
α†x Ux,µ αx+µ̂

]
. (4.2)

30

4.1. Action 31

The third is to the scalar potential, and only depends on the matter field

W (ω) =
N∑
x=1

ρ2
x + λ

(
ρ2
x − 1

)2
. (4.3)

The variables αx ∈ SU (2) and ρx ∈ R≥0, known as the Goldstone mode and
the Higgs mode respectively; come from a 2× 2 hermitian matrix φx which can be
expressed as φx = ρxαx. This matrix at the same time is a reexpression of the actual
complex scalar field. We will not dive into the physics at play here, but a detailed
explanation can be found in Section 6.1 of Montvay and Münster (1994).

The partition function, which will act as the normalization factor of the distri-
bution is given by

Z (β, κ) =

∫
D [U]D [ρ]D [α] e−βSg(ω)−κSφ(ω)−W (ω), (4.4)

where the integration over U and α is done with the Haar measure in SU (2) and
the integration over ρ is given by the measure ρ3

xdρx over [0,∞) and dρx the usual
Lebesgue measure.

The expression of the gauge-matter term at Eq. 4.2 suggests that we can express
the action in terms of gauge invariant variables: the Higgs mode ρx and the gauge
invariant link variables given by the map

Ux,µ 7→ Vx,µ = αx Ux,µ α
†
x+µ̂. (4.5)

If we apply this change to every matrix we can check how the terms in Sg do not
change.

Tr
[
Vx,µ Vx+µ̂,ν V

†
x+ν̂,ν V

†
x,ν

]
=

Tr

[(
αxUx,µα

†
x+µ̂

)(
αx+µ̂Ux+µ̂,να

†
x+µ̂+ν̂

)(
αx+ν̂Ux+ν̂,να

†
x+µ̂+ν̂

)† (
αxUx,να

†
x+ν̂

)†]
=

Tr
[
αxUx,µα

†
x+µ̂αx+µ̂Ux+µ̂,να

†
x+µ̂+ν̂αx+µ̂+ν̂U

†
x+ν̂,να

†
x+ν̂αx+ν̂U

†
x,να

†
x

]
=

Tr
[
Ux,µ Ux+µ̂,ν U

†
x+ν̂,ν U

†
x,ν

]
.

(4.6)
However, in the gauge-matter term, we do get a simplification by removing the
Goldstone modes from the action as

Sφ (ω) = −1

2

N∑
x=1

D∑
µ=1

Re Tr
[
α†x Vx,µ αx+µ̂

]
= −1

2

N∑
x=1

D∑
µ=1

Re TrUx,µ. (4.7)

Hence, our only variables are the matrices on the edges and the non-negative scalars
on the vertices. For this study, however, we are going to freeze the matter terms
by fixing ρx = 1 at every site. Fixing the value of ρ allows us not to worry about
the parameter λ. W will become a constant, hence we can forget about it when
computing the action during the sampling process. From now on, we only work
with the SU(2) link variables and the terms Sg and Sφ of the action.

4.2. 2D 32

4.2 2D

The degrees of freedom are the same as those considered in Chapter 3, hence the
tensor network construction will be very similar. The only modification is in the
plaquette tensors caused by the gauge-matter contribution. For convenience, we
reproduce the definitions from Chapter 3. We denote by Ψ = {Ψx,µ} the set of
differences drawn. Wx,µ (σx,µ) = 1+σx,µ

2
Ux,µ + 1−σx,µ

2
Ux,µΨx,µ are the functions de-

pending on a binary value that either apply or not such change. To simplify the
presentation, we will omit the argument of the function Wx,µ in the following ex-
pressions. Σ is the set of σx,µ values that are related with artificially created spin
system.

The only tensors that change are the plaquette tensors, now defined as

= exp

β
2
Re Tr

[
Wx,µWx+µ̂,νW

†
x+ν̂,µW

†
x,ν

]
+

κ
2
Re Tr [cx,µWx,µ + cx+µ̂,νWx+µ̂,ν + cx+ν̂,µWx+ν̂,µ + cx,νWx,ν]

 ,

where the coefficients cx,µ are either 1 or 1/2 depending on whether the edge (x, µ) is
on the boundary of the lattice or not. This is just a way of not summing a different
amount of times the trace of matrices depending on their position on the lattice.
With this change, we can repeat the setup we constructed in last chapter and begin
sampling with the new action.

We now address the behavior of the algorithm in the 2-dimensional lattice. We
will contrast observable mean values against those obtained by Bazavov et al. (2019)
as well as compare mixing and autocorrelation times with the Metropolis algorithm.

We computed three observables: (i) the average plaquette 〈p〉, (ii) the expecta-
tion value of the gauge-matter term 〈Lφ〉, and (iii) the susceptibility of Lφ, denoted
by χκ. Let V be the number of vertices of the system, these observables are given
by

〈p〉 =
1

V

〈
1

2

N∑
x=1

D∑
µ<ν=1

Re Tr
[
Ux,µ Ux+µ̂,ν U

†
x+ν̂,µ U

†
x,ν

]〉
(4.8)

〈Lφ〉 =
1

V

〈
1

2

N∑
x=1

D∑
µ=1

Re TrUx,µ

〉
(4.9)

χκ = V
〈
(Lφ − 〈Lφ〉)2〉 , (4.10)

where in the last equation we are taking Lφ as

Lφ =
1

2V

N∑
x=1

D∑
µ=1

Re TrUx,µ. (4.11)

The computations have been done taking 5 independent executions with 15000
steps each. The first 2000 steps are discarded, giving enough time for the chain

4.2. 2D 33

to reach equilibrium. Mean values are computed by taking a sample every τ̃ steps,
where τ̃ has been taken as the time t for which ρO (t) = 1/e. This choice is motivated
by the behavior of ρO being similar to a decaying exponential e−t/τexp,O .

The parameters chosen follow those from the comparing literature, where κ is
taken from 0 to 2 and the ratio β/V is kept at a constant c = 0.01. We find agreement
in the values obtained for both the average plaquette and the gauge-matter term,
which can be seen in Figures 4.1 and 4.2.

Figure 4.1: Average plaquette for differ-
ent system size and κ, keeping the ratio
β/V = 0.01.

Figure 4.2: Average gauge-matter term
for different system size and κ, keeping
the ratio β/V = 0.01.

We do find some differences in our susceptibility results in Figure 4.3. We suspect
this is due to the boundary conditions playing a more important role in the suscep-
tibility. The article from Bazavov et al. (2019) uses periodic boundary conditions,
while we have chosen to sample with open boundary conditions. In small system
sizes this can have a higher impact. Still, the tendency of the curves is similar to
that shown in the literature.

We observe that, once the plaquette tensors have been evaluated, the rest of the
computations are independent of the group in which the gauge invariant matrices
live. Physicists are not only interested in this model with SU(2) as gauge group,
but with other special unitary groups SU (N) as well. For instance, the same action
but using SU(3) as link variables is related to the strong nuclear force. Other

Figure 4.3: Susceptibility of Lφ for different system size and κ, keeping the ratio
β/V = 0.01.

4.2. 2D 34

theories require working with larger values of N . With our current design, there is
no additional effort to change N and observe how the new systems behave. We have
done so for values N = 3, 5, 10 and worked with the same parameters as before.

We begin by showing the average plaquette for values N = 3 in Figure 4.4a and
N = 10 in Figure 4.4b. Again, they present an almost constant value when varying
κ as we observed with SU(2). The results for SU(5) are very similar to the ones
shown. We have not run executions with V = 122 because they are quite expensive
and we opted to employ the computer power for different settings.

(a) SU(3) (b) SU(10)

Figure 4.4: Average plaquette for two different groups with β/V = 0.01 and different
values of κ

In Figures 4.5a and 4.5b we can see how the gauge-matter term behaves similarly
for both SU (3) and SU (5) respectively. The values vary, but the behavior is the
same. We find the same pattern even for SU(10).

(a) SU(3) (b) SU(5)

Figure 4.5: Gauge-matter term for two different groups with β/V = 0.01 and dif-
ferent values of κ

The susceptibility results are a bit less clear. We can appreciate a good amount
of noise that does not allow us to draw further conclusions. Moreover, boundary
conditions might play a part in the graphs and increase the gap with the literature
chosen. As we have not found literature employing open boundary conditions, we
will stay with obtaining similar results with the two first observables and similar
behavior with the susceptibility for SU(2) and seeing the pattern propagated to
bigger groups with the average plaquette and gauge-matter term.

4.2. 2D 35

Let us now divert our attention to the chain performance. We already saw that
bounding mixing times is a hard problem for Markov chains. There exist general
exponential bounds, but they depend on a value τmix that is usually unknown.
Hence, we judge convergence times by identifying the burn-in period in observable
graphs. We have not observed any indication of metastability appearing in tnmh
chains. However, all we can say is that we deem them highly unlikely to appear, as
no proof of their nonexistence has been sought.

Our findings are that the convergence of tnmh is similar to that displayed by
the Metropolis algorithm. As an example, in Figure 4.6 we represent Sg and Sφ for
a system of size 122. The time it takes to observe a relatively uniform behavior may
vary between executions, of course, but the general observation is that of similar
performance in both cases.

(a) Metropolis (b) Tnmh

Figure 4.6: Energy of each part of the action of a 12 × 12 lattice and parameters
β = 1.44 and κ = 2.0

Results are not as bright as with convergence if we focus on autocorrelation
times. Again, we estimate those by taking the time t for which the function ρO (t)
reaches 1/e. The finding is that the Metropolis algorithm tends to have slightly
shorter autocorrelation times, as we can see in Figure 4.7. It has been marked with
a horizontal grey line values y = 1/e and y = 0. The value y = 0 is important
because the function is supposed to be positive, and anything going below it is the
result of having noise caused by a lack of samples. The observable used for these
computations is Lφ, as Bock et al. (1990) hold it is the observable where critical
points are easier to find, hence critical slowing down might be most visible.

It is important to note that computing these quantities requires plenty of data,
having used for these graphs 5 independent chains with 15000 steps each and dis-
carding the first 2000 steps. Even with this amount of steps we can observe a high
amount of noise in the tail of the function. As we are interested in the time t for
which the function crosses the top grey line we have considered this amount of noise
tolerable, as the function seems to be dominated by non-noisy values at lower times.

Our initial idea was that tnmh would be a better algorithm to obtain uncorre-
lated samples in fewer steps. Although this method might not be the most accurate
to determine the autocorrelation time, it gives us enough information to discard our
initial hypothesis. We even used high values for β, where local changes are known to
suffer more. Let us discuss the reasons why tnmh is not outperforming Metropolis.

Heuristically, one can identify in tnmh how uncorrelated two configurations are

4.2. 2D 36

(a) Metropolis (b) Tnmh

Figure 4.7: Normalized autocorrelation function for the gauge-matter term on a 4×4
lattice and variables in SU(3). The parameters used where β = 10 and κ ranging
from 0 to 4.

with how many changes Ψx,µ we have applied and how far from the identity those
are. We already discussed that low values for m make Ψx,µ be far from the identity,
and both algorithms do use similar ones. The amount of changes that are applied
is conditioned by the following: (i) the change ω → ω′ needs to be accepted and
(ii) the spin configuration drawn needs to have as many spins σ = −1 as possible.
Condition (i) is related to the Metropolis-Hastings probability

P TN
acc (ω → ω′ | Ψ) = min{1, π

(β,κ)
TN (Σ | ω,Ψ)

π
(β,κ)
TN (1 | ω,Ψ)

× π(β,κ) (ω′)

π(β,κ) (ω)
}, (4.12)

which, we have checked that even for low values of the bond dimension, is close to 1.
This is possible because the system sizes are relatively small and the tensor network
renormalization scheme is still able to give good approximations of the partition
function. With respect to condition (ii), the amount of spin σ = −1 will only be
determined by the probabilities Z (β, κ|σ1, ... , σi) /Z (β, κ|σ1, ... , σi−1).

In the Metropolis algorithm, the analysis of how many changes we accept after
a full sweep of the lattice is a bit different. We consider a single spin change each
time. Moreover, that spin change is always from +1 to -1, i.e. from not applying
the change Ψx,µ in ω to applying it. Let ω′ be a state such that every site is equal to
that in ω but for a variable U ′x,µ = Ux,µΨx,µ. We accept this change with Metropolis
probability

PM
acc (ω → ω′ | Ψ) = min{1, π

(β,κ) (ω′)

π(β,κ) (ω)
}. (4.13)

Note that, in this case, every time ω → ω′ is accepted, we are automatically applying
the change Ψx,µ, while in tnmh accepting a change where the spin value is +1 makes
no difference. We observed that, despite having a higher acceptance probability in
tnmh than the mean Metropolis acceptance probability along a full sweep, the
number of changes applied with the first algorithm is still lower on average.

This is not an argument that shows an advantage of Metropolis over tnmh, but
rather suggests that the asymmetry in how the changes are accepted can benefit one
algorithm or the other depending on the setting we are in. Tnmh is better suited for

4.3. 3D 37

systems with very complex energy landscapes and this 2-dimensional simplified Higgs
model is not the appropriate model where the algorithm can outperform Metropolis.

On a final note, we have constructed an algorithm that although it does not
perform as we expected in the 2-dimensional regime, yields results that are coherent
with the literature.

4.3 3D

State of the art simulations are done in 4-dimensional euclidean lattices, so we are
interested in moving past our 2-dimensional lattice. In this section we explain how
we have scaled the algorithm to three dimensions and evaluate its performance and
limitations.

4.3.1 Tensor structure and contraction

Figure 4.8: V = 43 cubic lattice.

Let us focus on the tensor network construction, as
the dimension of the lattice is transparent for the
Metropolis-Hastings part of the algorithm. The
lattice now has the structure of a cube. In Figure
4.8 we can see an example of a 4× 4× 4 cubic lat-
tice. The plaquettes are now the minimal square
faces all along the cube and they are characterized
by a vertex and two lattice directions.

Plaquette tensors will be now represented by a
red geometrical volume. Blue tensors, which come
in three different types, help us fix the value of the
artificial spins between plaquettes. The structure
of the tensor network on an outer face of the lat-
tice very much resembles that of our previous 2D
tensor network. In Figure 4.9 we can see a bottom slice along with the tensor
corresponding to those plaquettes and edges. 2-tensors T , represented by a blue
tetrahedron, are related to spins on an edge of the lattice. 3-tensors S, drawn as a
blue cube, represent spins whose edge sits on a face of the lattice. In Figure 4.10 we
have hidden the original lattice and replaced it with the legs of the tensors giving
the structure to the network.

Besides these tensors S and T , there are 4-tensors I, represented by a blue
icosahedron. They are placed on the edges of the lattice belonging to 4 different
plaquettes. Following the slicing of the tensor network in planes, we can distinguish
two more types. In Figure 4.11 we represent the slices where all plaquettes have
the vertical direction as one of their own (vertical as in the long-axis of this paper
sheet). We can see how they are placed in between lattice levels. In Figure 4.12 one
can find the corresponding legs of the tensors.

Finally, the tensor network slices whose plaquettes are perpendicular to the ver-
tical direction will have a different setup, which can be seen in Figures 4.13 and
4.14.

4.3. 3D 38

Figure 4.9: Placement of the tensors on
a face of the lattice.

Figure 4.10: Contraction of the tensor
network on a face of the lattice.

Figure 4.11: Placement of the tensors
on an intermediate plane of the lattice.

Figure 4.12: Contraction of the tensor
network on an intermediate plane of the
lattice.

The computation of the plaquette tensors does not change much from those
defined in the 2-dimensional lattice. Observe that they are still 4-tensors. The only
thing we need to be careful about is choosing the correct matrices given by the
vertex and the directions defining the plaquette. Moreover, the coefficients cx,µ can
now take values 1/2, 1/3 and 1/4 depending on the edge position in the lattice. Blue
tensors are related to the actual spins of the system. They are defined as

Tµ,ν =
∑

σ∈{−1,+1}

δµ,ν,σ, Sµ,ν,ξ =
∑

σ∈{−1,+1}

δµ,ν,ξ,σ, Iµ,ν,ξ,o =
∑

σ∈{−1,+1}

δµ,ν,ξ,o,σ, (4.14)

where the deltas are Kronecker deltas. Fixing a spin means taking only the corre-
sponding summand of the definition.

To contract this tensor network we will add some transparent tensors as we did
in Chapter 3. We glue two transparent tensors = 1 to every tensor of our
network with legs pointing in the directions where it lacks one. We of course take
into account that tensors at the boundary of the network do not need legs pointing
outwards. Finally, add a transparent 6-tensor, result of glueing 6 tensors τ , on each

4.3. 3D 39

Figure 4.13: Placement of the tensors
on an inner plane of the lattice.

Figure 4.14: Contraction of the tensor
network on an inner plane of the lattice.

hole left by the structure of the tensor network at each slide. As an example, in
Figure 4.15 we illustrate the transformation done to the bottom layer. This will
add additional spins to our network that we will sample for an easier structure
of the program, but they are ignored when it comes to computing the resulting
configuration of the Higgs model.

Figure 4.15: Transformation of the bottom layer of the tensor network.

It is with this transformation that each layer now resembles a PEPS in the
case of the bottom and top layers and a PEPO for the rest of the inner layers.
Renormalization schemes for these structures are similar to those used in the case
of MPS. The idea is to contract every PEPO with the PEPS at the top and bottom
of the tensor network. We do this by contracting each tensor of the PEPS with
the corresponding one in the PEPO along their physical indices pointing to each
other. During this process both bond dimensions of the resulting PEPS will start
to grow and we may need to renormalize the tensors to keep the tensor ranks under
control. After contracting this axis, the resulting structure is the same as the one
used for our 2-dimensional tensor network, i.e. 2 MPS at each side and L− 2 MPO
in between that we already know how to work with.

In the same spirit as when we sampled the 2-dimensional lattice, see Section 2.3,
storing intermediate tensor structures will help us reduce the computational cost.
We start with tensors where no spin has been fixed. Let |bot〉 be now a PEPS andMk

4.3. 3D 40

a PEPO, we store every PEPS Mk ...M2 |bot〉, which takes L2 (L− 1) contractions
if done properly. Our first complete contraction is then given by

Z (β, κ) = 〈top|ML−1 ...M2|bot〉 . (4.15)

We explain now how we can sample an L2 spin layer saving some computational
effort. Suppose we have sampled the top r layers. We are left with r ·L2 tensor with
a fixed spin value. We can now contract those r layers into a single PEPS, that we
denote as 〈topr|. For the base case of 0 layers sampled, simply take as 〈top0| a PEPS
of transparent tensors. Observe that if we stored 〈topr−1| we only need to contract
L2 tensors. Recover from memory the PEPS |botL−r−1〉 ..= ML−r−1 ...M2 |bot〉 and
the PEPO ML−r. This last structure holds the tensors corresponding to the spins of
the (r+1)th layer we want to fix. If we have sampled K spins already, this translates
to

Z (β, κ|σ1, ... σK) = 〈topr|ML−r|botL−r−1〉 . (4.16)

After sampling the value of a spin, compute the tensor with the fixed value and
replace it in ML−r, creating a new PEPO M̃L−r and the new partition function will
be given by

Z (β, κ|σ1, ... σK , σK+1) = 〈topr|M̃L−r|botL−r−1〉 . (4.17)

After finishing with the tensors of ML−r we have a new PEPO M ′
L−r where all

the spin values have been fixed. Then 〈topr+1| = 〈topr|M ′
L−r, and we can continue

the process.
This process requires the use of L2 (L− 1) contractions to store every |botk〉, plus

L2 contractions after sampling each layer, which we need to do L−1 times. In total
2L2 (L− 1) = O (L3).

We can reduce the need for 2L2 operations to compute the partition function
using the same idea but working with MPS and MPO. This would reduce the cost
of computing Z to 2L. The initialization, with a cost of O (L2), is done once per
layer and the storing, with a cost of L, is done L− 1 times. Taking into account we
have L layers, these are an additional O (L3) contractions.

The final sampling iteration is done with a tensor network of a single dimension,
i.e. a line of tensors. In this last stage we have an initializing cost of O (L) and
a storing cost of 1 done L − 1 times per line. Both things are repeated L2 times,
amounting to a total of another O (L3) operations.

After all these optimizations, the cost of computing the partition function each
time is reduced to 6 contraction. Indeed, we first compute the tensor with a fixed
spin. Then we contract it with the 2 tensors storing the line information, the 2
tensors from the 2-dimensional optimization and finally the 2 last tensors from
〈topr| and |botL−r−1〉. Hence, we have managed to reduce the computations of each
partition function to O (1). As this is repeated L3 times, together with the cost
of storing intermediate steps, the number of contractions is of the order of O (L3).
As the contraction size is limited by the bond dimension bound, the number of
multiplications is of the order of O (DL3), taking D as the maximum of both bond
dimensions. If we had not done this extra work, the naive cost would be of the order
of O (L6) contractions to sample a complete spin system.

4.3. 3D 41

We would need to include in this analysis the cost of each renormalization, which
is more complex and out of the scope of the current work.

4.3.2 Results

Computations for the 3D lattice are more costly than in 2D. Although the scaling
from 2 dimensions seems to be only a factor of L, the actual computing cost increases
much more. There are many reasons: the additional difficulty of renormalizing
PEPS instead of MPS, such process being called more often and technical reasons
on the implementation side. As a consequence, we have not been able to extract as
much data as is needed to make meaningful observable calculations. We will instead
center our attention on comparing the equilibration of the chain compared to that
of Metropolis.

Figure 4.16: Ising model dis-
playing frustration.

At high β, we can think of Boltzmann sampling
as minimizing the energy. In some models, minimiz-
ing the global energy of the system is achieved by
minimizing the energy of each group of interacting
degrees of freedom. Take the Ising model without
external field as an example.

H (ω) = −
∑
〈i,j〉∈E

Jijσiσj. (4.18)

We can see how, if Jij > 0 ∀i, j, the easiest way of
minimizing H(ω) is by fixing every spin to the same
value, which corresponds to minimizing each Jijσiσj
term.

Whenever this is not the case and the global minima needs to be found differently,
we say the system is frustrated. A simple instance would be the previous Ising model,
but taking signs for Jij alternated in each row, as in Figure 4.16.

We are interested in finding a setting where tnmh displays an advantage over
classical sampling algorithms. The advantage of global updates is mainly visible in
systems with high frustration, as minimizing locally might not be the best strategy
to reach the lowest energy configuration. Let us go back to the action of the Higgs
model, given by SH = βSg + κSφ + W . Observe how Sφ = −1

2

∑
x

∑
µ Re TrUx,µ

can be easily minimized by taking matrices with higher trace. The interactions of
Sg are more complex, and minimizing the energy of each plaquette on its own is not
necessarily a means to minimizing Sg.

For this reason, the pure gauge action presents a higher degree of frustration, so
we have found the biggest difference in equilibration with parameter κ = 0. In fact,
Metropolis sampling seems to get stuck in local minima, not being able to reach
energy levels as low as tnmh does. In Figure 4.17b we can see how for β = 9 tnmh
reaches energy levels below -90, while Metropolis sampling does not go below -70
in Figure 4.17a. The initialization of the algorithms is always done with random
matrices drawn according to the Haar measure. This behavior has been observed
with other values for β and with smaller sizes than the V = 43 system displayed here.
Hence, it is unlikely to be just a coincidence caused by biased initial conditions.

4.4. Computations 42

(a) Metropolis (b) Tnmh

Figure 4.17: Energy of a 43 pure gauge model with β = 9 sampled with both
algorithms. On the Metropolis execution we can observe how the energy does not
manage to reach levels as low as with the sampling from tnmh

The behavior of the Metropolis algorithm in this regime is probably the first
example of metastability that we have encountered so far.

One now wonders why, if the frustration is also present in the 2D model, tnmh
is has not displayed the same advantage over Metropolis sampling. In 3 dimensions
the plaquettes to which a single matrix belongs is 4, while in 2 dimensions stays at
2. This quantities are given assuming the matrix is not placed at the boundary of
the lattice. The more plaquettes to which a matrix belongs the more the frustration
of the system can make it harder to minimize the energy. Pur main believe is that
going from a valence of 2 to 4 might be the turning point for observing this difficulty
in Metropolis sampling that tnmh is still able to overcome. An experiment that
could back up this idea would be to build a 2-dimensional system with a hexagonal
lattice placing the degrees of freedom on the vertices. With this lattice, each matrix
could belong to 3 different plaquettes and we could try to observe the same behavior
as that displayed in 3 dimensions.

As we have not been able to reach a point with Metropolis where we can assume
it has converged to equilibrium, there is no point in comparing autocorrelation times.

4.4 Computations

We would like to make a few comments about the resources used for these compu-
tations and the implementation itself. The programming has been done in Python.
We consider this a simple testing phase of the algorithm where we are exploring
its capabilities and limitations, so we have not deemed it worth employing a faster
language or making a big optimization effort.

Another reason why talking about CPU time of each execution is not meaningful
is because computations have been run on three different Linux machines. The
most powerful of them being a workstation with 32 threads in 8 CPUs running at
2.1GHz, then a laptop with a processor of 12 threads at 4.1 GHz and lastly a PC
with 4 threads running at 3.4GHz. The RAM specifications are not as important
for this project and the GPU is not even used. To give the reader a rough idea of
the computational cost of this project, the executions to obtain Figure 4.17b took

4.4. Computations 43

about three days. These were done using a low bond dimension, which in the 3D
model can make a big difference in the observed CPU times. However, 104 steps
for a Markov chain is a very small amount for usual standards. If we focus instead
on the executions in 2 dimensions to compute observables and correlations times,
the computers were left running for a week. As 5 independent chains were used,
one could in principle run different processes at the same time if the computer is
powerful enough.

The amount of data to store and process is an important factor to be taken into
account. Models using SU(2) variables can be somewhat lighter, but if one samples
with groups like SU(10), storing 15000 steps of an 8× 8 lattice can take up around
15GB of memory. For reference, only the data used to create the graphs in this
document weights around 100GB.

Chapter 5
Conclusions

We have studied physically motivated lattice gauge theories in two and three di-
mensions, using a new Monte Carlo method that achieves global updates with high
acceptance rates.

We have worked with desirable properties of Markov chains to help us determine
if the stochastic process equilibrates. Additionally, we have placed special interest
in autocorrelation times, used to assess the sampling behavior once equilibrium has
been reached. This has helped us identify the performance not being as expected in
2 dimensions, as we have found autocorrelation times to be similar to Metropolis,
contrary to previous belief. On the other hand, equilibration times place tnmh as a
good candidate to sample systems in higher dimensions. As far as we have observed,
it is able to reach equilibrium in the 3-dimensional setting, where the Metropolis
algorithm stagnates in higher energy levels.

For SU(2) theories, the computation of observables has been compared with
existing literature, obtaining similar results for the values tested. The method to
propose configuration changes lends itself well to changing the group of the degrees
of freedom. Similar results have been observed for SU(3), SU(5) and SU(10),
reinforcing the fidelity of the computations done with the algorithm. Although we
have restricted the system fixing the values ρx = 1, there is a simple way of including
these variables in the sampling with what we already know. We could fix the values
ρx and sample Ux,µ as we have done here. Then, in the next tnmh step, we would
fix Ux,µ and sample ρx. This second step is very similar to the XY model, as our
degrees of freedom are scalars in the vertices of the lattice and we could follow the
suggestions from Frías Pérez et al. (2023).

We have also studied different tensor network structures that help us understand
how a 3-dimensional tensor network can be contracted. These structures play an
important role in the implementation done during this year’s development. The
results in 3D are very promising. As expected, the computation in this regime has
proven to be very demanding, preventing us from getting as many results as we
would have liked with the new lattice. Hence, part of the future work includes
optimizing the new tensor network contraction and hopefully make use of higher
computational power.

Obtaining high autocorrelation times despite having almost perfect acceptance

44

45

rates was a very big surprise for us. For this reason, we have started to look into
other ways to propose the new configurations. A fruitful idea with compact group
sampling is using representation theory (Bazavov et al., 2019). By doing so, one
can map the original problem to one of sampling irreducible representations of the
gauge group. This was in fact done with tnmh and the XY model (Frías Pérez et al.,
2023). The group used is U(1) which, as it is abelian, has a nicer representation
than SU(2). It was observed to perform well in the XY model and, if we put in the
work with the representation of SU(2), we believe we can obtain good results too.

Finally, an idea worth exploring is increasing the precision of the computations.
There are a lot of interesting physical phenomena at high values of β. However,
raising the exponent in the exponential function used to compute the tensors can
cause quantities to be rounded to 0 or overflow. This is the reason why we have
not gone beyond values of β = 10. Using multiple or arbitrary precision can make
computations a lot slower, as many technical aspects appear within the low-level
computer realm. Building a high precision version of tnmh will require utilizing
new libraries and optimizing the code, which we plan to explore in future work too.
A favorable gap in performance between tnmh and Metropolis for 2D might open
up at higher system sizes and values of β, where extra precision will be required.

Bibliography

Bazavov, A., Catterall, S., Jha, R.G., Unmuth-Yockey, J., 2019. Tensor renormal-
ization group study of the non-abelian higgs model in two dimensions. Physical
Review D 99, 114507.

Bock, W., Evertz, H.G., Jersák, J., Landau, D.P., Neuhaus, T., Xu, J.L., 1990.
Search for critical points in the su(2) higgs model. Phys. Rev. D 41, 2573–2580.

Creutz, M., Jacobs, L., Rebbi, C., 1983. Monte carlo computations in lattice gauge
theories. Physics Reports 95, 201–282.

Díaz Rodríguez, J.C., 2023. Collective Monte Carlo updates for continuous corre-
lated systems. Bachelor’s final project. Universidad Complutense de Madrid.

Feynman, R.P., 1948. Space-time approach to non-relativistic quantum mechanics.
Rev. Mod. Phys. 20, 367–387.

Frías Pérez, M., Mariën, M., Pérez García, D., Bañuls, M.C., Iblisdir, S., 2023.
Collective monte carlo updates through tensor network renormalization. SciPost
Physics 14.

Gowers, T., . How to lose your fear of tensor products. Available at https://www.
dpmms.cam.ac.uk/~wtg10/tensors3.html (11/05/2024).

Hastings, W.K., 1970. Monte Carlo sampling methods using Markov chains and
their applications. Biometrika 57, 97–109.

Iblisdir, S., 2020. Lecture notes in statistical and mathematical techniques.

Ising, E., 1924. Beitrag zur theorie des ferro-und paramagnetismus. Ph.D. thesis.
Grefe & Tiedemann Hamburg.

Katzgraber, H.G., 2011. Introduction to monte carlo methods. arXiv:0905.1629.

Kogut, J.B., 1979. An introduction to lattice gauge theory and spin systems. Reviews
of Modern Physics 51, 659.

Kuramashi, Y., Yoshimura, Y., 2019. Three-dimensional finite temperature z2 gauge
theory with tensor network scheme. Journal of High Energy Physics 2019, 1–13.

46

https://www.dpmms.cam.ac.uk/~wtg10/tensors3.html
https://www.dpmms.cam.ac.uk/~wtg10/tensors3.html
http://arxiv.org/abs/0905.1629

BIBLIOGRAPHY 47

Lancaster, T., Blundell, S.J., 2014. Quantum field theory for the gifted amateur.
OUP Oxford.

Levin, M., Nave, C.P., 2007. Tensor renormalization group approach to two-
dimensional classical lattice models. Physical review letters 99, 120601.

Mezzadri, F., 2007. How to generate random matrices from the classical compact
groups. arXiv:math-ph/0609050.

Montvay, I., Münster, G., 1994. Quantum fields on a lattice. Cambridge University
Press.

Morningstar, C., 2007. The monte carlo method in quantum field theory. arXiv
preprint hep-lat/0702020 .

Murg, V., Verstraete, F., Cirac, J.I., 2005. Efficient evaluation of partition functions
of inhomogeneous many-body spin systems. Physical review letters 95, 057206.

Perez-Garcia, D., Verstraete, F., Wolf, M.M., Cirac, J.I., 2006. Matrix product state
representations. arXiv preprint quant-ph/0608197 .

Ran, S.J., Tirrito, E., Peng, C., Chen, X., Tagliacozzo, L., Su, G., Lewenstein, M.,
Ran, S.J., Tirrito, E., Peng, C., et al., 2020. Tensor network approaches for higher-
dimensional quantum lattice models. Tensor Network Contractions: Methods and
Applications to Quantum Many-Body Systems , 87–97.

Reichl, L., 1998. A modern course in statistical physics. University of Texas Press,
Austin. chapter 7. pp. 343 – 349.

Schwartz, M., 2019. Lecture notes in statistical mechanics. Online by Harvard
University, (11/06/2024).

Sokal, A., 1997. Monte carlo methods in statistical mechanics: foundations and
new algorithms, in: Functional integration: Basics and applications. Springer,
pp. 131–192.

Tong, D., 2018. Gauge theory. Lecture notes, DAMTP Cambridge 10.

Verstraete, F., Cirac, J.I., 2004. Renormalization algorithms for quantum-many
body systems in two and higher dimensions. arXiv:cond-mat/0407066.

Verstraete, F., Murg, V., Cirac, J., 2008. Matrix product states, projected entan-
gled pair states, and variational renormalization group methods for quantum spin
systems. Advances in Physics 57, 143–224.

Wegner, F.J., 1971. Duality in Generalized Ising Models and Phase Transitions
without Local Order Parameters. Journal of Mathematical Physics 12, 2259–
2272.

Yu, J., Xie, Z., Meurice, Y., Liu, Y., Denbleyker, A., Zou, H., Qin, M., Chen, J.,
Xiang, T., 2014. Tensor renormalization group study of classical xy model on the
square lattice. Physical Review E 89, 013308.

http://arxiv.org/abs/math-ph/0609050
http://arxiv.org/abs/cond-mat/0407066

BIBLIOGRAPHY 48

Zohar, E., Cirac, J.I., 2018. Combining tensor networks with monte carlo methods
for lattice gauge theories. Physical Review D 97, 034510.

Appendix A
Suzuki-Trotter transformation

In this section, we show an example of how one can go from Quantum Mechanics
in d dimensions to Statistical Mechanics with an additional dimension. We follow
the lecture notes from Iblisdir (2020). These transformations are somewhat ad-hok
and have to be designed in each case, although a general guide can be extracted. To
illustrate how this can be done we will develop a very simple case, that of a single
spin Hamiltonian, i.e. d = 0. This is represented by a Hilbert space of dimension 2.
Elements of the base are usually denoted by |+1〉 and |−1〉, or in general |σ〉.

Let our spin-1/2 system be described by the Hamiltonian

H = −σz − λσx, (A.1)

where σx =

(
0 1
1 0

)
and σz =

(
1 0
0 −1

)
are Pauli matrices. Again we are interested

in the properties of the ground state |ψ0〉 and, for example, we want to compute the
expected value for σx:

〈σx〉 =
〈ψ0|σx|ψ0〉
〈ψ0|ψ0〉

(A.2)

Following Eq. 1.8, we are going to work with the matrix e−τH . The Suzuki-
Trotter identity states:

‖eε(X+Y) − eεX/2eεY eεX/2‖∞ = O
(
ε2‖[X, Y]‖∞

)
. (A.3)

Now we split the Hamiltonian as H = HA +HB, choosing

HA = −σz, HB = −λσx. (A.4)

Since −τH/m commutes with itself, we can write e−τH =
∏m

j=1 e
−τH/m. Apply-

ing the Suzuki-Trotter identity

e−τH/m = e−τHA/2me−τHB/me−τHA/2m +O

(
τ 2

m3
‖[HA, HB]‖∞

)
(A.5)

49

50

Let T ..= e−τHA/2me−τHB/me−τHA/2m, for m and τ large enough we can approxi-
mate 〈σx〉 as

〈σx〉 ≈ 〈φ0|T mσxT m|φ0〉
〈φ0|T 2m|φ0〉

, (A.6)

with an error decreasing as 1/m. Using linearity and I2 =
∑

σ |σ〉 〈σ| we can rewrite
the denominator as∑

σ1

· · ·
∑
σ2m

〈φ0|T |σ1〉 〈σ1|T |σ2〉 ... 〈σ2m−1|T |σ2m〉 〈σ2m|φ0〉 (A.7)

Now consider the operator T (β) =
∑

σ,σ′ e
βσσ′ |σ〉 〈σ′|. An equivalent expression

is given by

∑
σ,σ′

eβσσ
′ |σ〉 〈σ′| =

(
eβ e−β

e−β eβ

)
= eβ

(
1 e−2β

e−2β 1

)
= eβ

(
I + e−2βσx

)
. (A.8)

Given the equality

e−τHB/m = eλτσ
x/m = cosh

(
λτ

m

)
·
(
I + tanh

λτ

m
σx
)
, (A.9)

we can identify e−2β = tanh λτ
m

to obtain

e−τHB/m = e−β cosh

(
λτ

m

)
T (β) . (A.10)

Now, we develop the expression T |σ〉 as

e
−τ
2m

HAe
−τ
m
HBe

−τ
2m

HA |σ〉 = e−β cosh

(
λτ

m

)∑
σ′,σ′′

e
−τ
2m

HAeβσ
′σ′′ |σ′〉 〈σ′′| e

−τ
2m

HA |σ〉

= e−β cosh

(
λτ

m

)∑
σ′,σ′′

eβσ
′σ′′e

τ
2m

σz |σ′〉 〈σ′′| e
τ

2m
σz |σ〉

= e−β cosh

(
λτ

m

)∑
σ′,σ′′

eβσ
′σ′′+ τ

2m
σ′+ τ

2m
σ′′ |σ′〉 〈σ′′|σ 〉

= e−β cosh

(
λτ

m

)∑
σ′

eβσ
′σ+ τ

2m
σ′+ τ

2m
σ |σ′〉 ,

(A.11)
where we have used

e
τ

2m
σz |σ〉 = e

τ
2m

(|+〉〈+|−|−〉〈−|) |σ〉 =
(
e
τ

2m |+〉 〈+|+ e
−τ
2m |−〉 〈−|

)
|σ〉 = e

στ
2m |σ〉 .

(A.12)

51

Suppose we choose as starting state |φ0〉 = 1√
2

(|+〉+ |−〉). We spare the calcu-
lations, but using Eq. A.11, linearity and the orthogonality of the basis, we obtain

〈φ0|T 2m|φ0〉 =
1

2

∑
σ0

· · ·
∑
σ2m

2m−1∏
j=0

〈σj|T |σj+1〉

=

(
e−β cosh λτ

m

)2m

2

∑
ω

e−βHcl(ω) ≡
(
e−β cosh λτ

m

)2m

2
Z (β) ,

(A.13)

where the Hamiltonian Hcl corresponds to a 1-dimensional Ising model

−βHcl (ω) = −
2m∑
j=0

(
βσjσj+1 +

ε

2
σj +

ε

2
σj+1

)
. (A.14)

We also need to work on the numerator of Eq. A.6. We can express it as

〈φ0|

 m∏
j=1

T
∑
σj

|σj〉 〈σj|

σx

 m∏
k=1

T
∑
σk+m

|σk+m〉 〈σk+m|

 |φ0〉 . (A.15)

Finally, observe that in the previous expression, we always find products of the
form 〈σj|T |σj+1〉, but for the element in the middle 〈σm|σxT |σm+1〉. We can however
express it as

〈σm|σxT |σm+1〉 = gx (σm, σm+1) 〈σm|T |σm+1〉 . (A.16)

Again, using eqs. A.11 and A.15, linearity and the orthogonality of the basis we
obtain the equality

〈φ0|T mσxT m|φ0〉 =
e−β cosh λτ

m

2

∑
ω

gx (σm, σm+1) e−βHcl(ω). (A.17)

Hence, this approximation has given us a translation from the mean value in the
quantum context of σx, to the mean magnetization of a site in a 1-dimensional Ising
model as

〈ψ0|σx|ψ0〉
〈ψ0|ψ0〉

≈
∑

ω g
x (σm, σm+1) e−βHcl(ω)

Z (β)
. (A.18)

If this work were to focus on these aspects, we would also need to study the
error in this approximation, as well as more complex models than the one shown.
However, this is enough to give an intuition on why we are going to work in the
context of Statistical Mechanics.

	Title page
	Índices
	Tabla de Contenidos
	Índice de figuras

	Introduction
	Setting
	Ising model
	Gauge symmetries
	Physical problem
	Monte Carlo sampling
	Tensor Networks

	Objectives
	Structure of this document

	Mathematical concepts
	Markov chains
	Autocorrelation times
	Tnmh algorithm
	Tensor Networks

	Previous work
	Classical and modern approach
	Continuous tnmh
	XY model
	Wilson action
	Amplitude choice
	Previous results

	Monte Carlo simulation of lattice gauge theories
	Action
	2D
	3D
	Tensor structure and contraction
	Results

	Computations

	Conclusions
	Bibliography
	Suzuki-Trotter transformation

