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Introduction

Del Pezzo surfaces, named after the Italian mathematician Pasquale Del Pezzo, are a central object

of study in algebraic geometry. These surfaces exhibit rich geometric properties and have numerous

applications in various areas of mathematics, including complex geometry and theoretical physics.

In this project, we will explore three different definitions of Del Pezzo surfaces, analyze their equiv-

alences and differences, and delve into some of their geometric properties.

We start this project by introducing concepts that will be needed to work and understand the

different definitons. And so forth the first two chapters are presented as a continuation of the

Algebraic Geometry course in the Advanced Mathematics Master, UB. It is not until the third

chapter that the first properties of Del Pezzo surfaces are presented. The foruth and final chapter

is based on using the results previously found to give a geometrical structure of some Del Pezzo

surfaces.

We will introduce three different definitions of Del Pezzo surface and make an internal separation

to see the equivalences of those.

Surface of degree d in Pd

Definition O: A Del Pezzo surface is a nondegenerate irreducible surface of degree d in Pd that is

not a cone and not isomorphic to a projection of a surface of degree d in Pd+1.

This definition is the original one and it dates from 1887 [5], which emphasizes the geometric

embedding of Del Pezzo surfaces in projective space. It describes the surfaces as those that maintain

their complexity without degenerating into simpler forms, such as cones, and without being mere

projections of higher-dimensional surfaces. It is a natural question of projective geometry.

To understand such a definition we introduce the degree and some properties of a variety on a

projective space, which are explained on chapter 1.

Canonical Sheaf Ample

Definition D: A surface S is called a Del Pezzo surface if its anticanonical sheaf ω−1
S is ample.

The second definition focuses on the intrinsic properties of the surface, specifically the ampleness of

the anticanonical sheaf. This condition ensures that the surface has positive curvature properties,

which ties into its algebraic and geometric structure. Though we name it as the definition of [8], it

is the most used nowadays, as in [14] or [17].

This definition is independent of the dimension of the variety, and from it rises the natural inspiration

of the Fano varieties.

To understand such a definition we introduce cohomology of sheaves, the anticanonical sheaf and

the ampleness. We will use the Riemann-Roch theorem to prove the equivalence between Definition

O and Definition D in the case for smooth surfaces.

Image of a Rational Map

Definition B: Let p1, . . . , pr ∈ P2 be r ≤ 6 points in general position and let ϵ : Pr → P2 be

the blow-up of p1, . . . , pr. Then the linear system of cubics through p1, . . . , pr defines an embedding

j : Pr ↪→ Pd, where d = 9− r. The surface defined as Sd = j(Pr) is a Del Pezzo surface.

The third definition considers Del Pezzo surfaces as images of a rational map from a projective

space. It the definition given on [2] and on [1]. This perspective provides a more constructive
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approach to understanding these surfaces, highlighting their formation through specific mappings

and transformations, and gives the best approach to study the geometry of lines on those (chapter

4).

To work with this definition we need linear systems and morphisms, which are introduced in chapter

2.

Historical Context

The study of Del Pezzo surfaces dates back to the 19th century, with significant contributions from

Pasquale Del Pezzo, who first described these surfaces in the context of cubic and quartic surfaces.

Del Pezzo’s work laid the groundwork for understanding these surfaces in terms of their degree and

embedding in projective space.

In the early 20th century, the development of modern algebraic geometry brought new insights

into the properties of Del Pezzo surfaces. Mathematicians such as Guido Castelnuovo and Federigo

Enriques expanded on Del Pezzo’s ideas, exploring the classification of algebraic surfaces and the

role of the anticanonical divisor.

The ample canonical sheaf definition became prominent with the advent of sheaf theory and co-

homology, providing a powerful tool to study the geometric and topological aspects of Del Pezzo

surfaces. This modern approach allowed for a deeper understanding of their curvature properties

and their place within the broader category of Fano varieties.



CHAPTER 1

Degree, the Picard group and divisors of a variety

The main objective of this first chapter is to get to Definition O of Del Pezzo surface and to give

some background and main ideas about it. It will be firstly done via the degree of a projective

variety. Then we will introduce the very first elements on which in chapter 2 we will work, the

Picard group and divisors.

1. Degree of a variety

The main objective of this section is to announce and give the intuition of Theorem 1.31. To do

so we need to develop some theory about degrees and present Bezout’s Theorem, 1.16, which will

allow us to develop the computation of the degree of certain surfaces and give the tools to proof

certains propositions. We will mainly follow [12] approach of degree.

Recall that a statement is true in general or for the generic element if it occurs for the elements of

a non-trivial Zariski open set.

Definition 1.1 (Chapter 18, [12]). Let X be an irreducible k-dimensional variety and Ω a general

(n− k)-plane. Then the degree of X, denoted deg(X), is the number of points of intersection of Ω

with X.

Note that on the definition of degree of an irreducible variety we assume that this is well defined,

i.e., such degree exists and it is the same for any general Ω. To prove this statement it is necessary

to introduce the next proposition:

Proposition 1.2 (Chapter 7, [12]). Let f : X 99K Y be a dominant rational map. Then, the

general fiber of the map f is finite if and only if the inclusion f∗ expresses the field k(X) as a finite

extension of the field k(Y ). In this case, if the characteristic of k is 0, the number of points in a

general fiber of f is equal to the degree of the extension.

Let’s see that the degree is well defined: let X be an irreducible k-dimensional variety of Pn, consider

the subset I of the product of X with the Grassmanian of n− k-dimensional linear varieties:

I = {(p, L)|p ∈ L} ⊂ X ×G(n− k, n).

Let π1 and π2 be the projections such that π1(I) ⊂ X and π2(I) ⊂ G(n− k, n).

As seen on the lectures of Introduction to Algebraic Geometry, I is a projective variety.

Let p ∈ Pn any point on X and consider H an hyperplane that does not contain p. Consider the

fiber π−1
1 (p) ∼= {L|p ∈ L}. This fiber is isomorphic to G(n− k − 1, n− 1), as for any L0 ⊂ H linear

variety of dimension n − k − 2 there is a linear variety L0 ∨ p. Therefore π−1
1 (I) is irreducible for

each p, as Grassmannian are irreducible (5.15). We need to see that I is irreducible, to do so we

need the map π1 to be surjective which is trivial, so I is irreducible (4.22).

1
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By the lectures of Introduction to Algebraic Geometry, we know that

dimG(n− k, n) = k(n− k + 1)

dimG(n− k − 1, n− 1) = (n− 1− n+ k + 1)(n− k) = k(n− k).

Therefore dim I = k + k(n− k) = G(n− k, n) (4.14).

Our objective now is to apply theorem 4.22 with the map π2 : I → G(n− k, n), as π−1
2 (L) = L∩X,

with L being a n − k linear variety, to see that there exists a nonempty open set U ⊂ G(n − k, n)

such that for any H ∈ U the fiber has pure dimension dim I − dimG(n− k, n) = 0 (4.22). To do so

we first need to see that π2 is a dominant map, which we will see by proving it is surjective.

Let L be any linear variety of codimension k. As dimX + dimL = n applying (4.19) we get that

X ∩ L ̸= ∅ so π2 is surjective so dominant.

Now, we claim that there can not be an infinite number of points on π−1
2 (I), and applying 1.2 we

get that the number of points on π−1
2 (I) is equal to the degree of the field extension, therefore all

the fiber of π2 has the same number of points.

To see that there can not be an infinite number of points, assume that it can be. As the fiber π−1
2 (p)

is a projective variety of pure degree 0, V (F ), it would contain (x0 − a0,i, . . . , xn − an,i) for each

point pi = [a0,i : . . . : an,i], which would divide the homogeneus polynomial F for each pi, getting

to a contradiction as the degree of F is finite.

Example 1.3. As we are considering k to be algebraically closed, any hypersurface X = V (f) with

deg f = d has degree d, as the intersection of the irreducible elements fi dividing f and any general

hyperplane of the corresponding dimension will consist of di points, and their sum will be d.

In fact, the previous example gives us the point the meaning of degree of a variety which is the

degree of the polynomial which it is locus of (in the case of a hypersurface), and it will be from here

that one can find other ways to define such degree. The way that [12] also presents the definition of

deg(X) is by giving the previous definition as long as two others. The first one is a direct implication

of the next lemma:

Lemma 1.4 (Chapter 18, [12]). Let X ⊂ Pn be an irreducible variety. If X is not a hypersurface,

the projection map πp : X → Pn from a general point p ∈ Pn is birational onto its image. If we

choose q ∈ X any point, if p lie outside the cone q,X it will be birational onto its image and it will

be a hypersurface.

Now, considering all the general points and projecting X successively from all of those, which form

Γ, a general (n− k − 2) plane, will give us a hypersurface in Pk+1:

πΓ(X) ⊂ Pk+1,

obtaining a hypersurface which we will compute the degree of it via example 1.3, therefore we can

define the degree of X as the degree of the hypersurface X = πΓ(X) ⊂ Pk+1.

Another way to express this is in terms of the projection π : X → Pn and by defining the degree

of a projection via 1.2. The proof of it can be found on Lecture 7, [12]. The last part of it is how

degree of a map will be defined, via the cardinality of its fiber.

Definition 1.5 (Chapter 7, [12]). A rational map satisfying the conditions of Proposition 1.2 is

called finite or of finite degree. The cardinality of the general fiber is called the degree of the map.
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Let Λ a general linear subspace disjoint with X, Λ ⊂ Pn−k−1 where k = dimX. Consider now the

projection:

πΛ : X → Pn,

this is just the composition of the projection πΛX → Pk+1 with the projection map πp : X → Pk

from a general point p ∈ Pk+1, so that a general fiber of this map consists of the intersection of X

with a general line l. But if X = V (F ) with F an homogeneous polynomial of degree d in Pk+1, a

general line l in Pk+1 will meet V (F ) in d points, 1.3. Therefore, as defined in 1.2 the degree of X

is the degree of the map πΛ.

To sum up, we can express this as the next proposition:

Proposition 1.6 (Chapter 18, [12]). Let X be an irreducible k-dimensional variety. If Γ, Λ and Ω

are a general (n− k− 2)-plane, a (n− k− 1)-plane, and (n− k)-plane, respectively, then the degree

of X is either:

i) the degree of the hypersurface X = πΓ(X) ⊂ Pk+1,

ii) the degree of the finite surjective map πλ : X → Pk, or

iii) the number of points of intersection of Ω with X.

We define the degree of a reducible variety of dimension k to be the sum of the degrees of its k-

dimensional irreducible components. The intuition behind it is that the degrees of the polynomials

are added while the polynomials are multiplied.

Example 1.7. For a general k-dimensional linear variety, the intersection with the general (n− k)-

plane will give a 0-dimension linear subspace, so their intersection will be only one point (as them

are linear) so its degree will be 1.

Example 1.8. Another example, that is a special case of 1.7, is Pn itself, which is a linear variety

so deg(Pn) = 1.

Example 1.9. The rational normal curve C is, with a change of coordinates, the image of the map

ν : P1 → Pd:

[v0, v1] → [vd0 , v
d−1
0 v1, . . . , v0v

d−1
1 , vd1 ].

To compute the degree of it we intersect it with the general hyperplane a0Z0 + . . . + adZd = 0 to

get the equation a0v
d
0 + a1v

d−1
0 v1 + . . .+ ad−1v0v

d−1
1 + adv

d
1 = 0 which are d points, so degC = d.

There are other ways to approach degree theory, as the Hilbert polynomial. But it is not the

objective of this project to develop this theory.

2. Bezout’s Theorem

The main objective of this section is to introduce a powerful tool that allows a lot of computations

of degrees, the Bezout’s Theorem, with its weak version 1.12 and strong version 1.16. To do so we

start with some definitions of different types of intersection.

Definition 1.10 (Chapter 18, [12]). Let X be a smooth algebraic variety of dimension n over a

field k and Y and Z subvarieties of X of codimension i and j, respectively. We say that Y and Z

intersect transversely if Y ∩ Z is a smooth subvariety of codimension i+ j.

Definition 1.11 (Chapter 18, [12]). Suppose that X and Y ⊂ Pn are two subvarieties and that their

intersection has irreducible components Zi. We say that X and Y intersect generically transversely

if, for each i, X and Y intersect transversely at a general point pi ∈ Zi, i.e., are smooth at pi, with

tangent spaces spanning T(Pn).
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In the case that dim(X)+dim(Y ) = n saying that X and Y intersect generically transversely is the

same as saying X and Y intersect transversely.

On 1.14 we will see an example of intersection that is not transversely.

Theorem 1.12 (Chapter 18, [12], Weak version of Bezout’s Theorem). Let X and Y ⊂ Pn be

subvarieties of pure dimensions k and l with k + l ≥ n, and suppose they intersect generically

transversely. Then

deg(X ∩ Y ) = deg(X) · deg(Y ).

In particular, if k + l = n, this says that X ∩ Y will consist of deg(X) · deg(Y ) points.

Our objective now will be strengthen the Bezout property. To do so we weed to introduce the

concepts of two varieties intersecting properly and the intersection multiplicity.

Definition 1.13 (Chapter 18, [12]). Two varieties intersect properly if their intersection has the

expected dimension:

dim(X ∩ Y ) = dim(X) + dim(Y )− n.

Example 1.14. The intersection between the quadrics Q1 : x2 − yw = 0 and Q2 : xy − zw = 0 is

the twisted cubic y2 = xz and the line x = w = 0. In this case the quadrics Q1 and Q2 intersect

properly but don’t do it transversely.

To introduce a stronger version of Bezout theorem we have to talk about intersection theory, a huge

topic that has been developed the past years which we will not cover here as we would like, more

specifically intersection multiplicity. The main idea of it is that given X and Y any pair of varieties

that intersect properly and given Z any irreducible variety of Pn of dimension dim(X)+dim(Y )−n,
then the intersection multiplicity of X and Y along Z is a natural number mZ(X,Y ) with the

following properties:

i) mZ(X,Y ) ≥ 1 if Z ⊂ X ∩ Y (for formal reasons we set mZ(X,Y ) = 0 otherwise),

ii) mZ(X,Y ) = 1 if and only if X and Y intersect transversely at a general point p ∈ Z (i.e.

are smooth at p),

iii) mZ(X,Y ) is additive: mZ(X ∩X ′, Y ) = mZ(X,Y )+mZ(X
′, Y ) for any X and X ′ as long

as all three are defined and X and X ′ have no common components.

Definition 1.15 (Appendix A, [14]). If X and Y intersect properly, and if Z is an irreducible

component of X ∩ Y we define the intersection multiplicity mZ(X,Y ) as:

mZ(X,Y ) =
∑
i=0

(−1)i lengthTorAi (A/a, A/b),

where A is the local ring OZ,x of a generic point of Z, and a and b are the ideals of X and Y in A.

One can check at (Chapter 5, [18]) that this definition holds the expected properties. The fact that

the multiplicity index is non-negative is still an open conjecture of Serre’s (Chapter 20, [10]). We

can define now a stronger version of Bezout theorem:

Theorem 1.16 (Chapter 18, [12], Strong version of Bezout’s Theorem). Let X and Y ⊂ Pn be

subvarieties of pure dimension intersecting properly. Then

deg(X) · deg(Y ) =
∑

mZ(X,Y ) · deg(Z)

where the sum is over all irreducible subvarieties Z of the appropriate dimension (in effect, over all

irreducible components Z of X ∩ Y ).
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Observe that 1.12 neededX and Y to intersect generically transversely, which is the casemZ(X,Y ) =

1 for Z = X ∩ Y , so it is a weak version of 1.16. A proof of it can be found on (Chapter 8, [10]).

From this theorem we have some rellevant corollaries:

Corollary 1.17 (Chapter 18, [12]). Let X and Y be subvarieties of pure dimension in Pn inter-

secting properly. Then

deg(X ∩ Y ) ≤ deg(X) · deg(Y ).

Corollary 1.18 (Chapter 18, [12]). Let X and Y be subvarieties of pure dimension intersecting

properly such that

deg(X ∩ Y ) = deg(X) · deg(Y ).

Then X and Y are smooth at a general point of any component of X ∩ Y .

Example 1.19. Let νd,n be the Veronese map with N =
(n+d

d

)
− 1, i.e., the map that sends

[x0, . . . , xn] with all the monomials of degree d with n variables:

νd,n : Pn −→ PN

[x0, . . . , xn] 7−→ [xd0, x
d−1
0 x1, . . . , x

d
n]

with lexicographic order. The image V d
n ∈ PN of the Veronese map νd,n, is called the d-th Veronese

variety of PN , as is any subvariety of PN projectively equivalent to it. We know by the Introduction

to Algebraic Geometry course that the Veronese map νd,n induces an isomorphism onto its image V d
n

and it also induces a bijection between the hyperplane sections of V d
n and the degree d hypersurfaces

in Pn, therefore there is a bijection between H1 ∩ . . .∩Hn and ν−1
d,n(H1)∩ . . .∩ ν−1

d,n(Hn). By Bezout

strong theorem, 1.16,

deg V d
n = Πnd = dn.

Because of theorem 1.31 we are interested on Veronese map ν2(P2) with N =
(4
2

)
− 1 = 5:

ν2 : P2 −→ P5

[a : b : c] 7−→ [a2 : b2 : c2 : ab : ac : bc]

which is the Veronese map up to order. It is well known that the dual of P2 are the lines of P2, and

the conics are (ax+ by + cz)2. So {conics of P2} ⊂ P5 is the variety which is the image of ν2(P2).

The next proposition is the conversely of example 1.7.

Proposition 1.20 (Chapter 18, [12]). Let X ⊂ Pn such that deg(X) = 1. Then X is a linear

subspace.

The next proposition shows importance of the rational normal curve and the two corollaries 1.17

and 1.18.

Proposition 1.21 (Chapter 18, [12]). Let C ⊂ Pd be any irreducible nondegenerate curve. Then

deg(C) ≥ d, and if deg(C) = d then C is the rational normal curve.

Lemma 1.22 (Chapter 1, [12]). Any d+1 points of a rational curve are l.i. and is the unique curve

with this property.
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Proof of proposition 1.21. Assume deg(C) < d and choose any d different points from C:

p1, . . . , pd. Those d points join an hyperplane, H1. Both C and H1 have pure dimension and they

intersect properly as dim(C ∩H1) = 0 = 1 + d − 1 − d. By corollary 1.17 deg(H1 ∩ C) ≤ deg(C)

as seen before deg(H1) = 1. dim(H1 ∩ C) = 1 as C is a curve, so C ⊂ H1, contradicting that C is

nonedegenerate.

If C is irreducible nondegenerate of degree d, then it contains d+ 1 points pi linearly independent.

Let H2 be the hyperplane generated by p1, . . . , pd+1. Again C and H2 have pure dimension, they

intersect properly and they have complementary dimension. As H2 = Pd, deg(H2∩C) = deg(C) = d

and by 1.18 C is smooth.

Let p1, . . . , pd−1 ∈ C and consider H3 the plane they span. For any H ⊂ Pd with H3 ⊂ H, H ∩ C
will consist on p1, . . . , pd−1, which are the ones in H3 and one more, pd, because deg(C) = d. Now,

for any point p ∈ C, we define H(p) as the hyperplane spanned by p and the points p1, . . . , pd−1.

We have constructed an isomorphism between C and the line H∗
3 = {H : H3 ⊂ H} ∼= P1 ⊂ Pd∗.

Now, by 1.22 we have that C is the rational normal curve. □

The next proposition is the first part of the Bertini theorem.

Proposition 1.23. [Chapter 4, [1]] Any irreducible nondegenerate curve C ∈ Pn:

deg(C) ≥ n.

Proof. We consider n linearly independent points that belong to C, {p1, . . . , pn} (they exists

as C is nondegenerate) and the plane H containing them. We have {p1, . . . , pn} ∈ H ∩ C, so

deg(C) ≥ deg(C ∩H) ≥ n (by corollary 1.17). □

Proposition 1.24 is a more general statement than proposition 1.23.

Proposition 1.24 (Chapter 4, [1]). If X ⊂ Pn is a irreducible nondegenerate algebraic set of

dimension k then deg(X) ≥ n− k + 1.

This proposition consists of the first part of theorem 1.31, which is a classification of the minimal

degree subvarieties, that is the ones such that deg(X) = n− k + 1.

The last element we need to introduce theorem 1.31 are rational normal scrolls. To do so we will

start by defining them in a more geometrical way to redefine them as a determinantal varieties. We

have seen on the lectures of Introduction to Algebraic Geometry that if X,Y ⊂ Pn are any two

disjoint projective varieties, then the union of the lines joining X to Y is a projective variety.

Definition 1.25. Let X,Y two disjoint varieties, the variety that is the union of lines joining X

and Y is called the join of X and Y and is denoted by J(X,Y ) ⊂ Pn.

Let k and l be positive integers with k < l and n = k + l + 1, and let Λ and Λ′ be complementary

linear subspaces of dimensions k and l in Pn. Choose rational normal curves C ⊂ Λ and C ′ ⊂ Λ′,

and an isomorphism Φ : C ′ → C.

Definition 1.26 (Chapter 18, [12]). With the previous notation, let Sk,l be the union of lines p,Φ(p)

joining points of C and C ′.Sk,l is called the rational normal scroll.

Proposition 1.27. [Chapter 18, [12]] The scrolls Sk,l and Sk′,l′ ⊂ Pn are projectively equivalent if

and only if k = k′ and l = l′.
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Observe that by proposition 1.27 the surface does not depend on the choice of the isomorphism Φ.

Proposition 1.28 (Chapter 8, [12]). Let S ⊂ Pn be a rational normal scroll and p ∈ S any point

of S. The projection S′ = πp(S) from p is again a normal scroll.

Example 1.29. Consider S1,1 on P3. Up to automorphisms, we can define Λ = [a0 : a1 : 0 : 0]

and Λ′ = [0 : 0 : b2 : b3]. So the rational normal curves are the lines l1 := {z = t = 0} and

l2 := {x = y = 0}. We can take the isomorphism that sends elements from l2 to l1 such that

Φ([0 : 0 : b2 : b3]) = [b2 : b3 : 0 : 0] (we will see on proposition 1.27 that it is not important which

isomorphism we choose), and fixing the points p = [0 : 0 : a : b] and Φ(p) = [a : b : 0 : 0], the

line from p to Φ(p) is of the form [ta : tb : sa : sb]. It is obvious that all those lines belong to

V (x0x3−x1x2). As we have seen, the union of lines joining l1 and l2 is a variety. As V (x0x3−x1x2)
is irreducible and no other homogeneus polynomial of degree 2 vanishes on [ta : tb : sa : sb] we can

state that V (x0x3 − x1x2) = S1,1

The definition given here of a rational normal scroll can be extended as follows: choose k comple-

mentary linear subspaces Λ1, . . . ,Λk in Pn. Let ai = dimLi. We have:

k∑
i=1

ai = n− k + 1.

Consider a rational normal curve Ci on each of Λi and choose isomorphisms Φi : C1 → Ci and let:

S =
⋃

p∈C1

p,Φ2(p), . . . ,Φk(p) ⊂ Pn.

Definition 1.30 (Chapter 8, [8]). S is called a rational normal k-fold scroll (or rational normal

scroll of dimension k), and sometimes denoted Sa1,...,ak .

As in proposition 1.27, S is determined up to projective equivalence by the integers ai.

Now, we need to introduce the main theorem of this part, as it classifies all surfaces of degree d in

Pn. It is presented as a theorem here, but it is a corollary in (Chapter 8, [8]). The proof of it can

be found on (Lecture 19, [12]).

Theorem 1.31 (Chapter 8, [8]). Let X be an irreducible nondegenerate surface of degree d in Pn.

Then d ≥ n− 1 and the equality holds only in one of the following cases:

i) X is a smooth quadric in P3,

ii) X is a quadric cone in P3,

iii) X is a Veronese surface ν2(P2) ⊂ P5,

iv) X is a rational normal scroll Sa,n ⊂ Pn.

And we can finally properly introduce the first definition of a Del Pezzo surface:

Definition O: (Chapter 8, [8]) A Del Pezzo surface is a nondegenerate irreducible surface of degree

d in Pd that is not a cone and not isomorphic to a projection of a surface of degree d in Pd+1.

Because of Definition O, one can demand d ≥ 3, as it is a surface so it can not be in P1 or P2. On

the first case it would only be a set of 1 point, as the degree would be 1, and in the second case it

is just the rational normal curve.
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3. Picard group

Another object of study of algebraic geometry is the called Picard group. It is a huge topic that

will be needed later on.

We will mainly follow [14].

Definition 1.32 (Chapter 2, [14]). A ringed space is a topological space X with a sheaf of rings

OX . It is denoted by (X,OX).

A pair (f, f#) is called a morphism from a ringed space (X,OX) into a ringed space (Y,OY ) if

f : X → Y is a continuous mapping and f# : OY → f∗OX is a homomorphism of sheaves of rings

over Y which transfers units in the stalks to units [14].

Definition 1.33 (Chapter 2, [14]). Let (X,OX) be a ringed space. A sheaf of OX-modules (or

simply a OX-module) is a sheaf F on X s.t. for every open U the group F(U) os an OX(U)-

module, and for each inclusion of open sets V ⊂ U the restriction homomorphism

ρU,V : F(U) → F(U)

is compatible with the module structures via the ring homomorphism OX(U) → OX(V ).

Example 1.34. Consider X = Rn the sheaf of smooth functions on Rn, which is a sheaf, so

(Rn, C∞(Rn)) is a ringed space. Now, given any U open of Rn consider F(U) as the collection of

smooth vector fields defined over U . You can restrict to smaller subset (so it is a presehaf) and you

can glue the if they are compatible (so it is a sheaf). It is also an abelian group with addition and

you can multiply the elements by elements of OX forming a module structure.

A morphism of sheaves of OX -modules is a morphism of sheaves such that for each open set U ⊂ X

the map F(U) → G(U) is a homomorphism of OX(U)-modules.

The concept of a module being free can be translated here for the OX -modules:

Definition 1.35 (Chapter 2, [14]). An OX-module is free if it is isomorphic to a direct sum of

copies of OX . It is locally free if X can be covered by open sets U for which F(U) is a free OX|U -

module. The rank of F on such an open set is the number of copies of the structure sheaf needed

for the direct sum.

On the 1.34 the vector field are isomorphic to the direct sum of n copies of OX , so it is free. The n

is the rank of the vector field as an OX module.

Example 1.36. Consider M a closed and connected n-manifold. For each p ∈M let

Tp = Hn(M,M − p;Z)

be the relative homology group with coefficients on Z. The orientation sheafM is a locally constant

sheaf oM on M such that the stalk of OM at a point p is

oM,p = Hn(M,M − p).

An orientation is an element σ ∈ Hn(X) = Hn(X,X − X) such that the corresponding element

σx ∈ Hn(X,X − {x}) is a generator of that Z-module. M is orientable if an orientation exists.

Translating in the language of sheaves, the orientation sheaf is free sheaf of OX -modules of rank 1,

i.e. the constant sheaf equal to Z [24]. From here we can observe that the orientation is not a local

behaviour but global.
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Now, we will define tensor product of two OX -modules. It plays an important role on the proposition

1.42 that explains the algebra between invertible sheaves.

Definition 1.37 (Chapter 2, [14]). Given a topological space X the tensor product of two sheaves

F ⊗OX
G of two OX-modules to be the sheaf associated to the presheaf

U 7−→ F(U)⊗OX
G(U).

We will write it F ⊗ G.

Proposition 1.38 (Chapter 2, [14]). Let X be a topological space and F and G two OX-modules,

given any open U the the map:

U → HomOX|U (F(U),G(U)),

with the restriction defined this way: for any U, V open with V ⊂ U , a section σ ∈ HomOX|U (F|U , G|U )

goes to ρU,V (σ) = σ|V ∈ HomOX|U (F|V , G|V ), where σ|V is the morphism of sheaves on V defined by

σ|V (W ) = σ(W ) : F(W ) → G(W ) for any open subset W ⊂ V , is a sheaf. We call this sheaf Hom.

Proof. The fact that it is a presheaf is trivial as ρU,U (σ) = σ = id ◦ σ and if σ is a section and

W ⊂ V ⊂ U :

ρV,W ◦ ρU,V (σ) = ρV,W (σ|V ) = σ|W = ρU,W (σ).

To see it is a sheaf, consider an open covering U =
⋃

i Ui of an open set U ⊂ X and two sections

σ1, σ2 ∈ HomOX|U (F(U),G(U)) such that ρU,Ui(σ1) = ρU,Ui(σ2) for all i, so both of them are

morphisms:

σ1(Ui) = σ2(Ui) : F(Ui) → G(Ui).

If we see that σ1 − σ2 = 0 the first axiom will be proven. Let f ∈ F(U) be any section of F(U).

Then (σ1 − σ2)(f)(Ui) = 0 for all i, and as F and G are both sheaves, (σ1 − σ2)(f) = 0 for any

section f ∈ F(U) so σ1 − σ2 = 0. Assume we are given sections fi ∈ F(U) one for each i satisfying

ρUi,Ui∩Uj (fi) = ρUj ,Ui∩Uj (fj)

for each pair of indices i, j. Consider V ⊂ U open and Vi = V ∩ Ui, an open covering of V . Let

h ∈ F(V ) and let hi := h|Vi
. Define ti as the image of hi by fi(Ai):

fi(Ai) : F(Ai) −→ G(Ai)
hi 7−→ ti

Now, as G is a sheaf we can consider t as the global section of ti, and the same with F con-

sidering h as the global section. So we can consider f as the global section of fi, proving that

HomOX|U (F(U),G(U)) is a sheaf. □

Now, we can define what the elements of the Picard group will be up to an isomorphism, which are

elements of the invertible sheaf. The algebraic behaviour will be given via proposition 1.42.

Definition 1.39 (Chapter 2, [14]). An invertible sheaf is a locally free sheaf of rank 1.

Example 1.40. Let p be a point in X, then we can define the sheaf OX(−p) via the presheaf:

OX(−p)(U) = {f ∈ OX(U)|f(p) = 0}.

This sheaf is invertible.
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As another example, consider 1.36. Later on we will give a one-to-one correspondence with vector

bundles.

We will use next lemma to prove proposition 1.42, as the invertible element of F will beHomOX
(F ,OX).

Lemma 1.41 (Chapter 2, [14]). Let R be a ring with unit and let M be an R-module of finite rank

n. Let M∨ = HomR(M,R). Then,

i) (M∨)∨ ∼=M ,

ii) For any free R-module N of finite rank r

HomR(M,N) ∼=M∨ ⊗R N,

iii) If M has rank 1, then HomR(M,M) ∼= R.

Proposition 1.42 (Chapter 2, [14]). Invertible sheaves with the tensor product form a group with

the Hom sheaf.

Proof. Firstly, the tensor product of two free modules of rank 1 is also a free module of rank

1, so the operation is closed. As OX ⊗OX F ∼= F , OX is the neutral element of the group. To see

the invertible element, given an invertible sheaf F ,

F ⊗OX
F∨ ∼= HomOX

(F ,F) ∼= OX

by lemma 1.41. □

And we can finally introduce the Picard group:

Definition 1.43 (Chapter 2, [14]). Given a topological space X the Picard group of X, Pic(X), is

the group of isomoprhism classes of invertible sheaves and the tensor product.

4. Vector bundles

The objective of this section is to introduce the necessary theory to compare the vector bundles and

the Picard group. It follows mainly [22].

Definition 1.44 (Chapter 6, [22]). A family of vector spaces over X is a fibration p : E → X such

that each fibre Ex = p−1(x) for x ∈ X is a vector space, and the structure of algebraic variety of Ex

as a vector space coincides with that of Ex ⊂ E as the inverse image of x under p.

The trivial example of the vector bundle is the direct product E = X × V , where V is a vector

space over a field k and p is the projection X × V → X.

Definition 1.45 (Chapter 6, [22]). If p : E → X is a family of vector spaces and U ⊂ X any open

set. The fibration p−1(U) → U is a family of vector spaces over U . It is called the restriction of E

to U and denoted E|U .

We needed this last definition to introduce the concept of vector bundle, which is strongly related

to Picard group as we can see on theorem 1.50.

Definition 1.46 (Chapter 6, [22]). A family of vector spaces p : E → X is a vector bundle if

every point x ∈ X has a neighbourhood U such that the restriction E|U is trivial, i.e. there is an

isomorphism between E|U and U × kr.
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Remark 1.47. Given a vector bundle E → X of rank k, and a pair of neighborhoods U and V over

which the bundle trivializes via:

φU : U × kk
∼=−→ π−1(U),

φV : V × kk
∼=−→ π−1(V )

the composite function:

φ−1
U ◦ φV : (U ∩ V )× kk → (U ∩ V )× kk

is well-defined on the overlap, and satisfies:

φ−1
U ◦ φV (x, v) = (x, gUV (x)v)

for some GL(k)-valued function:gUV : U ∩ V → GL(k).

These are called the transition maps or transition matrices.

In this case we can observe as the isomorphism sends Us1,...,sr to itself times kr. This r takes an

important place in the computation of vector bundles and it is defined as the rank of E.

Definition 1.48 (Chapter 6, [22]). A section of a vector bundle p : E → X is a morphism

s : X → E such that p ◦ s = 1 on X. The set of sections of a vector bundle E is written L(E).

One can check that vector bundle is a generalisation of a vector space and a section would be the

analogous of a point of a vector space.

Proposition 1.49 (Chapter 6, [22]). If we associate any open set U ⊂ X the set L(E,U) of section

of the bundle E restricted to U , then the set L(E) is an OX-module.

Proof. If s1 and s2 are sections of E, then (s1 + s2)(x) = s1(x) + s2(x), as s1(x), s2(x) ∈ Ex

and Ex is a vector space. Let f ∈ OX(X), then:

(fs)(x) = (fs)(x)

for any section s ∈ L(E). As it is obviously a sheaf, it is an OX -module. □

This proposition together with theorem 1.50 gives the first relation between the Picard group and

vector bundles.

Theorem 1.50 (Chapter 6, [22]). The correspondence E 7−→ L(E) up to isomorphism establishes

a one-to-one correspondence between vector bundles and locally free sheaves of finite rank.

So, the relation between vector bundles and the Picard group can be seen as an injection between

a subset of the vector bundles (the rank 1 vector bundles) and the invertible sheaves. This theorem

only states the first part of the bijection we are looking for, which we will find on theorem 1.83.

Our objective now is to relate the Picard group with the Weil divisors and Cartier divisors.
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5. Divisors

Another important invariant that one finds when studying surfaces are the divisors. Here, we will

study Weil divisors and Cartier divisors. We will first introduce the Weil divisors, secondly the

Cartier divisors and finally we will see that if the variety is smooth, they are equivalent.

Definition 1.51 (Chapter 3, [21]). Let X be an irreducible variety. A set of irreducible subvarieties

of codimension 1 C1, . . . Cr in X with assigned integer multiplicities k1, . . . , kr will be called a divisor

on X. It will be written:

D =
∑
i

kiCi.

If all the ki are 0, we will write D = 0.

Definition 1.52 (Chapter 3, [21]). With the notacion of 1.51, a divisor D is called effective if all

ki ≥ 0 and some ki > 0. We will write D > 0.

Definition 1.53 (Chapter 3, [21]). With the notacion of 1.51, an irreducible codimension 1 subva-

riety Ci taken with multiplicity 1 is called a prime divisor. If all the ki ̸= 0 in 1.51 then the variety

C1 ∪ . . . ∪ Cr is called the support of D and denoted by SuppD.

Using that we can set ki = 0 we will give the set D a group operation. Let D1 = k1C1 + . . .+ krCr

and D2 = k′1C1 + . . .+ k′rCr. Then,

D1 +D2 = (k1 + k′1)C1 + . . .+ (kr + k′r)Cr.

This way, the divisors form a Z-module with the irreducible components Ci of codimension 1.

Definition 1.54 (Chapter 3, [21]). The module defined previously is called Weil divisors of X and

it is denoted by WDivX.

Definition 1.55 (Chapter 3, [21]). The degree of a divisor D =
∑
kiCi is

∑
ki degCi, where

degCi is the degree of the variety Ci.

The next proposition will let us define order of f on the irreducible component C, denoted by νC(f).

We will denote by k(U) (resp. k[U ]) the set of regular functions on the open set U (resp. the set of

polynomial functions defined on the open set U).

Proposition 1.56 (Chapter 3, [21]). Let X be a variety and let C ⊂ X be an irreducible codimen-

sion 1 subvariety, and U an affine open set intersecting C consisting of smooth points, and such

that C is defined in U by a local equation. Then for any f ∈ k[U ], there exists an integer k ≥ 0 such

that f ∈ (πk) and f /∈ (πk+1). This k does not depend on the open set U . We define νC(f) = k.

From this proposition follows that if C does not belong to X, then νC(f) = 0.

Proposition 1.57 (Chapter 3, [21]). With the previous notation, the integer νC(f) has the following

properties:

• νC(f1f2) = νC(f1) + νC(f2)

• νC(f1 + f2) ≥ min{νC(f1), νC(f2)} if f1 + f2 ̸= 0.

Proof. k(U) is a unique factorization domain (Chapter 2, [21]) and C is irreducible. □
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If X is an irreducible variety and U an affine open set, then any regular function f ∈ k(U) can be

written in the form f = g/h with g, h ∈ k[U ]. If f ̸= 0 we set νC(f) = νC(g) − νC(h). It follows

from 1.57 that it does not depend on the choice of g and h.

Definition 1.58 (Chapter 3, [21]). If νC(f) > 0 then we say that f has a zero of order νC(f) along

C. If νC(f) < 0 then f has a pole of order −νC(f) along C.

Proposition 1.59 (Chapter 3, [21]). Let X be a variety and f any function f ∈ k(X). Then, there

are only a finite number of irreducible codimension 1 subvarieties C such that νC(f) ̸= 0.

Proof. Consider first the case thatX is an affine variety and f ∈ A[X]. If C is not a component

of the subvariety, then νC(f) = 0. If X is still an affine variety and f ∈ k(X), then f = g/h with

g, h ∈ A[X], and νC(f) = 0 if C is not a component of V (g) or V (h). Now, the general case.

Consider
⋃

i Ui an open affine cover of X. Any subvariety C ⊂ X of codimension 1 will intersect

at least one Ui (as they form an open cover of X), so νC(f) ̸= 0 on the C that is the closure of an

irreducible codimension 1 subvariety C ′ ⊂ Ui for some i, with νC′(f) ̸= 0 = 0 in Ui. Since there

are only finitely many Ui and finitely many C ′ in each Ui, there are only finitely many C with

νC(f) ̸= 0. □

Definition 1.60 (Chapter 3, [21]). A divisor of the form D for some f ∈ k(X) is called a principal

divisor if

D =
∑

νC(f)C,

where this sum only takes places with C s.t. νC(f) ̸= 0. It is denoted by Div f .

By proposition 1.59 it exists for any f ∈ k(X).

Definition 1.61 (Chapter 3, [21]). Let f ∈ k(X) be a regular function s.t. Div f =
∑
kiCi, then

Div0 f =
∑

{i|ki>0} kiCi is called the divisor of zeros and Div∞ f =
∑

{i|ki<0}−kiCi is called the

divisor of poles of f . Observe that Div f = Div0 f −Div∞ f .

Proposition 1.62 (Chapter 3, [21]). Let X be an irreducible variety and let f1, f2 ∈ k(X), then

i) Div(f1f2) = Div(f1) + Div(f2).

ii) If f ∈ k, Div f = 0,

iii) If f ∈ k[X], Div f ≥ 0.

Proof. The first part is direct from 1.57, the second and third part are obvious as a polynomial

function have no poles. □

The next proposition is the reciprocal of the third part of proposition 1.62.

Proposition 1.63 (Chapter 3, [21]). If X is a smooth irreducible variety and f ∈ k(X) such that

Div f ≥ 0, then f is regular on X.

Corollary 1.64. Let X be a smooth projective variety. If Div f ≥ 0 then f = α ∈ k. Also, any

rational function is uniquely determined by its divisor up to a constant.

Proof. f has to be everywhere regular therefore constant, by the lectures of Algebraic Geom-

etry. If Div(f) = Div(g), then Div(f/g) = 0, so f/g = α and f = αg with α ∈ k. □
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Lemma 1.65. Let X be a variety and x ∈ X, then Ox is a UFD and the local equations πj of prime

divisors Ci are prime elements of Ox.

The proof of proposition 1.63 is based on the fact that if f = g/h /∈ Ox and g, h ∈ Ox, by using

that Ox is a UFD, 1.65, we can chose a prime element of Ox, (π), such that h ∈ (π) and g /∈ (π).

Then, in some affine neighbourhood U of x V (π) is irreducible and of codimension 1 with closure

C in X. Then νC(f) < 0. In fact, proposition 1.63 also holds if X is only normal [21].

Example 1.66. Consider X = Pn and let f ∈ k(Pn), with f = F/G, with degF = degG. If

we factor F and G with irreducible homogeneus polynomials F = ΠHmi
i and G = ΠLni

i , with

degF =
∑
mi degHi = degG =

∑
ni degLi, then

Div f =
∑

miV (Hi)−
∑

niV (Li).

In this case, if D is a principal divisor, then degD = degF − degG = 0. The converse is also true:

if
∑
ki deg V (Hi) = 0 then f = ΠHi is homogeneus of degree 0 and Div f =

∑
kiV (Hi).

Example 1.67. Consider X = Pn1 × Pn2 × . . . × Pnk and let f ∈ k(X). In this case for F a

polynomial which is homogeneus separately in each of the k sets of coordinates on of Pni , we

introduce the notation degi F as the degree on the variables given by Pni . In a similar way we can

consider degiD for a divisor D, and as the previous example D is principal if and only if degiD = 0

for all i.

Example 1.68. Consider X = An. In this case, any codimension 1 irreducible subvariety C can

be expressed as V (f), for f ∈ k[X] (4.16). So C = Div f and we get that every prime divisor is a

principal divisor.

We saw that the Z-module of divisors is called the group of Weil divisors. The principal divisors,

P (X) from now on, form a subgroup of WDiv(X). Two Weil divisors D1 and D2 are said to be

linearly equivalent, D1 ∽ D2 if D1 − D2 = Div f for some f ∈ k(X) not equal to zero. One can

check that this is actually an equivalence relation. As a consequence, via P (X), we can define a

group of quotient classes with the principal divisors.

Definition 1.69 (Chapter 3, [21]). The quotient group WDiv(X)/P (X) is called the divisor class

of X, and is denoted by Cl(X).

Example 1.70. Via 1.66, Cl(Pn) ∼= Z, as D1−D2 = Div f implies that deg(D1−D2) = deg(Div f)

and because of 1.66 we have two divisors are related if they have the same degree, so deg gives an

isomorphism Cl(Pn) ∼= Z. In the same way degi gives an isomorphism with the i − th component

to Z, so by 1.67 Cl(Pn1 × . . .× Pnk) ∼= Zk. To compute Cl(An) we use 1.68 so every prime divisors

is a principal divisor, therefore any D ∽ Div f so Cl(An) = 0.

Now we will introduce a different type of divisor, the Cartier divisor. We will see that if X is

smooth, there is a bijection between those two types of divisors, but if X has singularities, then this

will not happen.

Let X be a variety and let O∗
X be the sheaf of all invertible elements of OX .

Definition 1.71 (Chapter 3, [21]). Let {Ui} be a open covering of a variety X and rational functions

fi ∈ A(X)∗ such that on overlaps Ui ∩ Uj fi/fj is a nowhere vanishing regular function, i.e.,

fi/fj ∈ O∗
X(Ui ∩ Uj), i.e., fi = fj ∈ Ui ∩ Uj up to a multiplication by a section of O∗

X . Then, the

Cartier divisor is this collection {fi}.
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Observe that by the definition a collection of {fi} defines the same Cartier divisor if fi/fj ∈
O∗

X(Ui ∩ Uj) for all i, j. Cartier divisors are also called locally principal divisor.

Observe that any Cartier divisor is in fact a Weil divisor, but as we will see on the next example

there are Weil divisors that are not Cartier divisors.

Example 1.72. Consider C : {x2 + y2 = z2} ⊂ A3 and H = {x = z} an hyperplane. Then

H ∩ C : {x = z, y = 0} ⊂ C is a Weil divisor of C but it is not a Cartier divisor.

Every function f ∈ k(X) defines a Cartier divisor Div f if we set fi = f . Cartier divisors of this

form are said to be principals.

The following definition gives a structure of module to the Cartier divisors.

Definition 1.73 (Chapter 3, [21]). The product of the two Cartier divisors defined by functions

{fi} on the open sets Ui and functions {gj} on the open sets Vj is the divisor defined by functions

{figj} and open sets Ui ∩ Vj.

All Cartier divisors form a group, and of those the ones that are principals form a subgroup.

Therefore one can consider its quotient group, which is exactly the Picard group as we will see in

1.83.

Theorem 1.74. (Chapter 2, [14])If the variety is smooth there is a bijection between Cartier divisors

and Weil divisors.

The next proposition explains the algebraic structure of a set of functions, which is the core of the

Riemann-Roch theorem.

Proposition 1.75 (Chapter 3, [21]). For an arbitrary divisor D on a smooth variety X we can

consider the set of nonzero functions f ∈ k(X) such that

Div f +D ≥ 0

with the zero element. This set is a vector space over k.

Proof. If D =
∑
niCi then Div f + D ≥ 0 if and only if νCi(f) + ni ≥ 0 and νC(f) ≥ 0 for

C ̸= Ci. Applying 1.57 we get the desired result. □

Definition 1.76. This vector space is defined as the associated vector space of D or the Riemann-

Roch space of D, and denoted by OX(D) or L(X,D). The dimension of OX(D) is called the

dimension of D and denoted by l(D). In this case l(0) = 1.

Note the similarity between the notation of 1.48 and 1.76. This is on purpose not only to respect

the notation of [22] and [14] but to remark the bijection given on 1.83. The sheaf behaviour is

the same as in 1.40. We will use this notation when the first can be misunderstood, as it does not

indicate the variety that D belongs to.

Let X be a variety, then we can map any class of Cartier divisor (or Weil divisor) by

C 7−→ OX(−C),

and any D =
∑
niCi as ∑

niCi 7−→
⊗

OX(−Ci)
⊗ni .
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Proposition 1.77 (Chapter 2, [14]). If D1 ∽ D2, then OX(D1) ∼= OX(D2)

Corollary 1.78 (Chapter 3, [21]). If D1 ∽ D2 are linearly equivalent divisors, then l(D1) = l(D2).

Proof. IfD1 ∽ D2 thenD1−D2 = Div f for some f ∈ k(X). Let f1 ∈ D1, then Div f1+D1 ≥ 0.

By 1.62,

Div(f1f) +D2 = Div f1 +Div f +D2 = Div f1 +D1 −D2 +D2 = D1 +Div f1 ≥ 0,

so f1f ∈ OX(D2). We have seen that multiplying by f defines an isomorphism between OX(D1)

and OX(D2), so they have the same dimension. □

Proposition 1.79 (Chapter 2, [14]). Let X be a variety and D1 and D2 two divisors, then

OX(D1 −D2) = OX(D1)⊗OX(D2)
−1.

Proof. If D1 is defined on Ui per fi and D2 is defined on Ui per gi, then L is locally generated

by gi/fi, so OX(D1 − D2) = OX(D1) · OX(D2)
−1 as subsheaves of K. This product is in fact

OX(D1)⊗OX(D2)
−1. □

Corollary 1.80. Let X be a variety, then L(0) = OX .

Example 1.81. Let X = V (x0x1 + x22) ∈ P3 and H = x0x1, with D = DivH = Div x0 + Div x1.

Now, considering the open covering Ui = D(xi) ∩ X, we have that xi/xj ∈ O∗
X(Ui ∩ Uj), so

D = 2Div(x0) as they define the same Cartier divisor. Given any homogeneus polynomial of

degree 2, f/x20 ∈ OX(2Div(x0)), as Div(f/x20) + 2Div(x0) = Div(f)−Div(x20) + 2Div(x0) ≥ 0 and

Div f ≥ 0. In fact, they are the same set (Chapter 3, [21]), and it has dimension 2.

Let X be a variety and D a Cartier divisor of it. Then we have seen that there exists a vector space

OX(D) 1.75. So given any open set U ⊂ X we can restrict D with local equations on U . We write

DU for such divisor and the set

OX(D)(U) = L(U,DU )

is the vector space corresponding to the divisor DU on U . Obviously OX(D)(U) ⊂ k(X), and if

U ⊂ V then OX(D)(V ) ⊂ OX(D)(U). We denote ρVU : OX(D)(V ) → OX(D)(U) the inclusion map.

Proposition 1.82 (Chapter 6, [22]). OX(D)(U) with the inclusion map form a sheaf. Multiplying

elements f ∈ OX(D)(U) per g ∈ OX(D)(U) form a OX-modules which is locally free.

If D is defined in an open set Uα by a local equation fα then the elements g ∈ OX(D)(Uα) are

characterised by the condition gfα ∈ OX(Uα). So the map g 7−→ gfα defines an isomorphism

ϕα : OX(D)(Uα)
∼=−→ OX|Uα

.

So the rank of this OX -module is 1. This is a section of rank 1, called line bundles and is denoted

by E(D). This gives an idea of the next theorem that will not be proven here, but one can find

a proof in (Chapter 6, [22]). It is a bigger statement than 1.50, including Cartier divisors on the

one-to-one correspondence.
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Theorem 1.83 (Chapter 6, [22]). The correspondence D 7−→ OX(D) 7−→ E(D) up to isomorphism

establishes a one-to-one correspondence between line bundles, locally free sheaves of rank 1 and

linear equivalence of divisors.

Note that if D is a Cartier divisor on X represented by {(Ui, fi)}i, then OX(D) is the subsheaf of K
(the total quotient ring) generated by f−1

i on Ui. Because it is a Cartier divisor, this is well-defined,

as fi and fj generate the same sub-OX -module on Ui ∩ Uj , because fi/fj is invertible.

Example 1.84. Pic(P2) ∼= Z, as we saw on 1.70 that Cl(Pn) ∼= Z and P2 is smooth.

6. Twisted sheaves

A very used tool on sheaf theory is the twisted sheaf. The main objective of this section is to

introduce it.

Definition 1.85 (Chapter 2, [14]). Let X be a variety, d ∈ Z, A = k[X] and Ar = k[X]r. For a

non-empty open subset U ⊂ X we define

(OX(d))(U) :=
{ g
f
: f ∈ Ae, g ∈ Ae+d for some e ∈ Z s.t. f(P ) ̸= 0∀P ∈ U

}
.

It is called the twisted sheaf on X.

Remark 1.86. OX(0) ∼= OX , as the morphism Λ : OX(d) → OX defined as f
g 7−→ f

g is well-defined,

injective and surjective.

Setting (OX(d))(∅) := {0}, we obtain that OX(d) is a sheaf. With the multiplication defined as:

(OX(d))(U)× (OX(e))(U) → (OX(d+ e))(U)

such that (ϕ, ψ) 7−→ ϕψ one can easily check that that this map is a bilinear map of OX(U)-modules.

In particular, for e = 0, via 1.86 one can check that OX(d) is actually a sheaf of modules on X.

Remark 1.87. A section s ∈ OX(d) for a given d ̸= 0 are not necessary well-defined functions, as

rescaling the homogeneus coordinates on Pn could change thair value.

Example 1.88. For the open subset U0 = {[x0 : x1] ∈ P1 : x0 ̸= 0} ⊂ P1, we have 1
x0

∈
(OPn(−1))(U0). In this case one can observe that 1

x0
is not well defined, as the image of [1 : 0]

is diferent from the image of [2 : 0].

Remark 1.89. For a section f
g belonging to the global sections of OPn(d) on Pn, f

g ∈ Γ(Pn,OPn(d)),

it is necessary that V (f) = ∅. Actually, by Nullstellensatz f must be a constant so (OPn(d))(Pn) ∼=
k[x0, . . . , xn]d is the vector space of homogeneus polynomials of degree d. In particular, we have

that (OPn(d))(Pn) = {0} for all d < 0. Moreover, let X be a projective variety, then OX(d) has no

global sections for d < 0.

Using the definition of 1.37 we can also define the tensor products of twisting sheaves. In fact, there

are OX(U)-module homomorphisms such that

(OX)(d))(U)⊗OX(U)(OX)(e))(U) → (OX)(d+ e))(U)

(ϕ, ψ) 7−→ ϕψ.

So OX(d)⊗OX
OX(e) ∼= OX(d+ e).

Proposition 1.90. OX(d)∨ ∼= OX(−d).
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Proof. OX(−d)⊗OX
OX(d) ∼= OX(0) ∼= OX . □

Remark 1.91. On Pn, we have the sheaf OPn(1) and global sections x0, . . . , xn ∈ Γ(Pn,OPn(1)). It

is invertible as is locally free and has rank 1, as in the corresponding open set xi = x0 · xi/x0. This
remark is a case of the next proposition.

Proposition 1.92 (Chapter 2, [14]). Let X be a projective variety, then the sheaf OX(l) is an

invertible sheaf on X.

The next proposition establishes a more concrete version of the last (as it needs X = Pn), but gives

a stronger relation between invertible sheaves and OX(l).

Proposition 1.93 (Chapter 2, [14]). Every invertible sheaf on Pn is isomorphic to OPn(l) for some

l.

And last we will give an explicit formula for the global sections of OPn(l):

Proposition 1.94 (Chapter 5, [6]). The global section of OPn(l) is a homogeneous polynomial of

degree k with n variables if k ≥ 0, and it’s zero if k < 0.

Example 1.95. dimH0(Pr,OPr(k)) ∼=
(r+k

r

)
Finally, the last definition of this chapter:

Definition 1.96. Let X be a variety, for any n ∈ Z and for any sheaf of OX-modules L we define

the sheaf L ×OX
OX(n) as the twisted sheaf, and it is denoted by L(n).



CHAPTER 2

Sheaf Cohomology, Riemann-Roch and Linear systems

In this chapter we introduce the sheaf cohomology, the Riemann-Roch theorem and the linear

systems, which are needed to understand the different definitions of Del Pezzo surfaces.

1. Sheaf Cohomology

This section aims to introduce sheaf cohomology by following Harsthorne Chapter 3. Our objective

is to deal with sheaves from a category point of view. We will follow [14].

We will denote by Ab(X) the category of sheaves of abelian groups on a topological space X and

Mod(X) the category of sheaves of OX -modules on a ringed space (X,OX).

Let X be a variety and F a sheaf on X. We will denote by Γ(X,F ) the global sections of F over

X, i.e. F (X).

Remark 2.1. For every variety X, Γ(X,−) defines a functor from Ab(X) to Ab, the category of

abelian groups.

Definition 2.2 (Chapter 3, [14]). An abelian category is a category A such that for each A,B ∈
Ob(A ), Hom(A,B) has the structure of an abelian group and the composition law is linear. More-

over, finite direct sums exist and for every morphism there exist well-behaved kernels and cokernels.

Example 2.3. The category of coherent sheaves introduced on 2.19 is an abelian cateogry.

Definition 2.4 (Chapter 3, [14]). A covariant functor F : A → B from one abelian category to an-

other is additive if for any two objects A,A′ in A the induced map Hom(A,A′) → Hom(F (A), F (A′))

is a homomorphism of abelian groups.

Definition 2.5 (Chapter 3, [14]). A covariant functor F : A → B is left exact if it is additive and

for every short exact sequence 0 → A′ → A→ A′′ → 0,

0 → F (A′) → F (A) → F (A′′)

is exact in B. In a symmetric way we can define right exact, and also left and right exact for

contravariant functors. A functor is exact if it is left and right exact.

Note that it is needed to F to be additive so we can talk about kernels and images of their Hom(·, ·).

Proposition 2.6 (Chapter 3, [14]). The global section functor Γ(X,−) is additive and left exact.

Definition 2.7 (Chapter 3, [14]). An abelian category A has enough injectives if each object of A

is isomorphic to a subobject of an injective object of A .

It is equivalent to say that a category A has enough injectives that every object of it admits an

injective resolution.

19
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Definition 2.8 (Chapter 3, [14]). Let A an abelian categroy with enough injectives and F : A → B

a covariant left exact functor. For each object A ∈ A choose an injective resolution 0 → A → I∗.

Then, we define the right derived functors of F as

RiF := H i(F (I∗)),

where H i(F (I∗)) denotes the ith cohomology object of the complex F (I∗).

Proposition 2.9 (Chapter 3, [14]). Let A be an abelian category with enough injectives, B an

abelian category and F : A → B a covariant left exact functor. Then R0F ∼= F .

Proposition 2.10 (Chapter 3, [14]). Let (X,OX) be a ringed space. Then, the category Mod(X)

of sheaves of OX-modules has enough injectives.

Corollary 2.11 (Chapter 3, [14]). If X is a topological space, the category Ab(X) of sheaves of

abelian groups on X has enough injectives.

Definition 2.12 (Chapter 3, [14]). Let Γ(X, ·) : Ab(X) → Ab be the global sections functor. Let

F be a sheaf of abelian groups on X. We define the i-th derived functor cohomology group of F

as:

H i(X,F ) = RiΓ(X,F ) for each i ≥ 0.

From the definition one obtains that if M is an OX -module, H0(X,M) is the space M(X) of global

sections of M.

Example 2.13. Let D be a divisor on a smooth variety. Then l(D) = dimkH
0(X,OX(D)).

Proposition 2.14 (Chapter 3, [14]). If 0 → F → F ′ → F ′′ → 0 is a short exact sequence, then

it produces a long exact cohomology sequence:

. . . . . . . . .

rr
H i(X,F ) // H i(X,F ′) // H i(X,F ′′)

ss
H i+1(X,F ) // H i+1(X,F ′) // H i+1(X,F ′′)

rr. . . . . . . . .

Proposition 2.15 (Chapter 3, [14]). For any ringed space (X,OX), PicX ∼= H1(X,O∗
X).
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2. Coherent sheaves

The objective of this section is to give the definition of Euler characteristic. To do so, we need to

see two things. The first one is that the not zero elements of the sequence {H i(X,F )}i are finite

and the second one is the fact that the dimension as a module of H i(X,F ) is finite. To do so we

need to introduce coherent and quasi-coherent sheaves. We will follow [23] and [14].

Definition 2.16 (Chapter 17.12, [23]). Let (X,OX) be a ringed space. Let F be a sheaf of OX-

modules. We say that F is of finite type if for every x ∈ X there exists an open neighbourhood U

such that F|U is generated by finitely many sections.

Example 2.17. OPn(1) is generated by x0, . . . , xn ∈ Γ(Pn,OPn(1)), so it is of coherent type.

Definition 2.18 (Chapter 17.10, [23]). Let (X,OX) be a ringed space. Let F be a sheaf of OX-

modules. We say that F is a quasi-coherent sheaf of OX-modules if for every point x ∈ X there

exists an open neighbourhood x ∈ U ⊂ X such that F|U is isomorphic to the cokernel of a map⊕
j∈J

OU →
⊕
i∈I

OU .

Definition 2.19 (Chapter 17.12, [23]). Let (X,OX) be a ringed space. Let F be a sheaf of OX-

modules. We say that F is a coherent OX-module if the following two conditions hold:

• F is of finite type

• For every open U ⊂ X and every finite collection of si ∈ F (U) with i = 0, . . . , n the kernel

of the associated map
⊕

i=1,...,nOU → F|U is of finite type.

The importance of the coherent sheaves is on the definition of Euler characteristic 2.24 and the fact

that their cohomology have finite dimension 2.23.

Example 2.20. Let X a variety, then OX is a coherent sheaf, but O∗
X is not. Mod(X) and Ab(X)

are also coherent sheaves.

Let’s start by seeing that all coherent sheaf are quasi-coherent.

Proposition 2.21 (Chapter 17.12, [23]). Let (X,OX) be a ringed space. Any coherent OX-module

is quasi-coherent.

Proof. Let F be a coherent sheaf on X. Pick a point x ∈ X. As it is of finite type, we can

find an open neighbourhood U and sections si, i = 1, . . . , n of F over U such that

ψ :
⊕

i=0,...,n

OX → F

is surjective. By the second part of the definition, we can choose an open V such that x ∈ V ⊂ U

and sections si with i = 0, . . . , n which generates the kernel of ψ|U . We have over V the exact

sequence ⊕
j=0,...,n

OV →
⊕

i=0,...,n

OV → F|V → 0,

so F|V is isomorphic to the cokernel of the map and F is quasi-coherent. □

The next two theorems play an important role on the definition of Euler charateristic.
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Theorem 2.22 (Chapter 3, [14]). Let X be a noetherian topological space of dimension n. Then

for all i > n and all sheaves of abelian groups F on X we have H i(X;F ) = 0.

Theorem 2.23 (Chapter 3, [14]). Let X be a projective variety and F a coherent sheaf of X. Then

for each i ≥ 0 H i(X,F ) is a finitely generated k-module, and in particular it is a finite-dimensional

k-vector space.

3. Euler characteristic and arithmetic genus

Definition 2.24 (Chapter 1, [14]). Let X be a projective variety over a field k, and let F be a

coherent sheaf on X. We define the Euler characteristic of F by

χ(F ) =
∑

(−1)i dimkH
i(X,F ).

Observe that this definition makes sense because of 2.22 and 2.23.

We will introduce a result that will be needed to proof proposition 2.26.

Lemma 2.25. If {Ei}i is a collection of modules over a ring R such that

0 → E1
δ1−→ E2

δ2−→ . . .
δn−1−−−→ En

δn−→ 0,

then, ∑
i

(−1)i dimEi = 0.

Proof. Setting Fi = Im δi, we have dimEi = dimFi−1 + dimFi. So joining all of those we get

the desired result. □

Proposition 2.26 (Chapter 1, [14]). If 0 → F ′ → F → F ′′ → 0 is a short exact sequence of

coherent sheaves on X, then

χ(F ) = χ(F ′) + χ(F ′′).

The proof of it is immediate from 2.25 and 2.14.

Remark 2.27. Let X be an irreducible variety, then by 2.9 H0(X,OX) ∼= Γ(X,OX) ∼= OX(X) ∼= k.

Definition 2.28 (Chapter 1, [14]). Let X be a projective variety of dimension n. We define the

arithmetic genus pa of X as

pa(X) = (−1)n(χ(OX)− 1).

In particular, if C is a curve for 2.22 and 2.27 the arithmetic genus is

pa(C) = dimkH
1(C,OC).

And if S is a surface, then

pa(S) = dimkH
2(S,OS)− dimkH

1(S,OS).

Proposition 2.29 (Chapter 3, [14]). If X and Y are birational varieties, then

pa(X) = pa(Y ).

In other words, the arithmetic genus is a birational invariant.
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Proposition 2.30 (Chapter 3, [14]). For any r ∈ Z, H i(Pn,OPn(r)) = 0 for 0 < i < n, and

Hn(Pn,OPn(−n− 1)) ∼= k.

Example 2.31. By 2.30 pa(Pn) = 0 for any n. The reciproque of this result for curves can be found

on (Chapter 53, [23]) which proves that if C is an irreducible curve with arithmetic genus 0, then

C ∼= P1. For smooth surfaces one can check Castelnuovo’s rationality theorem, which involves also

the geometric genus [16].

4. Sheaves of ideals

Let X be a variety and Y ⊂ X a closed subvariety. For each open set U ⊂ X let IY (U) be the set

subsheaf of regular functions that vanishes on Y ∩ U . This subsheaf formes a sheaf [14], and it is

called the sheaf of ideals. Sometimes is also denoted as IY |X .

Proposition 2.32 (Chapter 2, [14]). With the hypothesis from above and i being the inclusion:

Y
i
↪−→ X, then

OX/IY ∼= i∗(OY ).

The idea of this proof is that if f ∈ OX/IY , then f is regular on Y .

Example 2.33. On P3, X = V (x2 + y2 + z2) and Y = (x2 + y2 + t2, z2 − t2). It is obvious that

Y ⊂ X. Now, consider f(x, y, z, t) = z2−t2

t2
. It is obvious that f ∈ IY , as f(Y ) = 0.

Definition 2.34 (Chapter 2, [14]). Given any effective Cartier divisor D with representation

{Ui, fi}. The closed variety Y whose ideal is locall generated by fi, Y =
⋃
V (fi) is the associ-

ated closed subvariety.

Proposition 2.35 (Chapter 2, [14]). Let D be an effective Cartier divisor on a variety X, and let

Y be the associated closed subvariety. Then,

IY ∼= L(−D).

Following the notation used on the previous proposition and the notation using L(D) = OX(D), it

is also used OX(−D) to denote the Riemann-Roch space of the divisor associated to Y .

Corollary 2.36. Let D be an effective Cartier divisor on a variety X, and let Y be the associated

closed subvariety. Then we have the exact sequence

0 → L(−D) → OX → i∗(OD) → 0.

Sometimes we will use an abuse of notation and omit the i∗.

Proof. Direct result from proposition 2.32 and 2.35. □

Let S be a surface and C an effective Cartier divisor. By 2.36 any s ∈ Γ(U,OS)
i∗7−→ s|C∩U . In

this case, OS and OC can be mapped one-to-one with vector bundles, but L(−C) can not. So the

correspondence given on theorem 1.50 is not an isomorphism from a category theory, only a set

one-to-one correspondence.

Proposition 2.37. Let X be an irreducible variety and D an effective divisor. Then

Γ(X,OX(−D)) = 0.
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Proof. By 2.36, we have the exact sequence

0 → OX(−D) → OX → OD → 0.

By 2.14 and by 2.6,

0 → Γ(X,OX(−D)) → Γ(X,OX) → Γ(D,OD).

But as Γ(X,OX) ↪−→ Γ(D,OD) is injective, Γ(X,OX(−D)) = 0. □

5. The canonical sheaf and Serre duality

The main objective of this section is to introduce the canonical sheaf, the Serre duality theorem

and finally the canonical divisor, which plays an important role on Definition D.

Definition 2.38 (Chapter 2, [14]). Let A be a commutative k-algebra. We define ΩA to be the

A-module generated by expressions da, a ∈ A, modulo the following equations:

• d(a+ b) = da+ db

• d(λa) = λda

• d(ab) = d(a)b+ d(b)a,

with λ ∈ k and a, b ∈ A.

One can check that ΩA can be characterized by this universal property

Hom(ΩA,M) = Der(A,M)

for any A-module M , where Der(A,M) is the k-module of k-linear derivations from A to M [22].

One can check that if TZar
X,p is the Zariski tangent space introduced on the lectures of algebraic

geometry, then (ΩX)p = TZar
X,p .

Definition 2.39 (Chapter 2, [14]). Let X be a n-dimensional smooth variety. The tangent sheaf

of X is TX = HomOX
(ΩX ,OX). We define the canonical sheaf of X to be ωX = ΛnΩX/k.

Proposition 2.40 (Chapter 2, [14]). Let X be a smooth variety, then the canonical sheaf is an

invertible sheaf on X. The tangent sheaf is a locally free sheaf of rank n.

Proposition 2.41 (Euler sequence, Chapter 2, [14]). Let X be a projective variety of dimension

n, then there is an exact sequence of sheaves on X:

0 → ΩX → OX(−1)
⊕

n+1 → OX → 0.

Definition 2.42 (Chapter 2, [14]). Let X be a smooth projective variety of dimension n. We define

the geometric genus pg of X as

pg(X) = dimk Γ(X,ωX).

Remark 2.43. (Chapter 2, [14]) The geometric genus is a nonnegative integer.

Proposition 2.44 (Chapter 2, [14]). Let X and X ′ two birational equivalent smooth projective

varieties. Then pg(X) = pg(X
′).

Using the next lemma, we will compute the first example of canonical sheaf.
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Lemma 2.45. Let A, B, and C free R-modules such that they form the exact sequence:

0 → A→ B → C → 0,

with dimensions a, b = a+ c and c. Then ΛbB ∼= ΛaA⊗ ΛcC.

Example 2.46. Let X = Pn. If we take the dual of the exact sequence of 2.41 we get

0 → OX →
n+1⊕
i

OX(1)i → TX → 0.

Applying 2.45 we get that Λn+1
⊕n+1

i OX(1)i ∼=
⊗n+1

i Λn+1OX(1)i ∼= OX(n+ 1) ∼= OX ⊗ ΛnTX ∼=
ΛnTX . So by 2.40 ω = ΛnΩX

∼= OX(−n − 1). Now, to compute pg(X), recall that OX(d) has no

global sections for d < 0 1.89, so pg(Pn) = 0 for any n ≥ 0. Now, using 2.44 we obtain that for any

smooth rational variety Y , pg(Y ) = 0.

Now we aim to introduce Serre duality. To do so we will introduce Cohen-Macaulay varieties as

Serre duality applies for them, that are a bigger family than smooth varieties.

Definition 2.47 (Chapter 2, [14]). A variety X is Cohen-Macaulay if all of its local rings are

Cohen-Macaulay, that is, if for every p ∈ X, depth(OX,p) = dim(OX,p).

Proposition 2.48 (Chapter 2, [14]). If X is a smooth variety, then it is Cohen-Macaulay.

The next result is presented as a theorem here, but it is in fact a corollary of a bigger statement

with the same name that can be found on [14].

Theorem 2.49 (Serre dualilty theorem, Chapter 3, [14]). Let X be a projective Cohen-Macaulay

variety of dimension n. Then, for any locallly free sheaf F on X,

H i(X,F) ∼= Hn−i(X,F∨ ⊗ ωX)∗,

where ∗ means the dual as vector spaces.

Corollary 2.50 (Chapter 4, [14]). If C is a smooth curve, then

pa(C) = pg(C).

The genus of a curve C is g = pg(C) = pa(C).

Proof.

pg(C) = dimk Γ(C,ωC) = h0(C,ωC)
(1)
= h1(C,OC) = pa(C),

where the equality on (1) is given by Serre duality. □

Corollary 2.51 (Chapter 4, [14]). If S is a smooth surface, then

pg(S) ≥ pa(S).

The proof of this corollary is using the same reasoning than in the previous one.
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Proposition 2.52 (Chapter 2,[14]). Let X and Y be two smooth varieties, and j : X ↪→ Y

an embedding. Let I be the ideal of X in Y . The sheaf j∗I = I/I2 is then locally free of rank

codim(X,Y ) on X, and we have an exact sequence:

0 → I/I2
d−→ j∗ΩY

j∗−→ ΩX → 0.

Lemma 2.53. Let S ⊂ Pn with n = r+2 be a surface that is the complete intersection of hypersurfaces

H1, . . . ,Hr, of degrees d1, . . . , dr. respectively. Then

OS(KS) = OS(
∑

di − r − 3).

Proof. Let I be the ideal of the equations of S. Then there is a surjection:

OPn(−d1)⊕ . . .⊕OPn(−dr) → I,

and restricting to S he have a surjection:

OS(−d1)⊕ . . .⊕OS(−dr) → I/I2.

By 2.52 rank I/I2 = codim(S,Pn) = r, and the rank of OS(−d1) ⊕ . . . ⊕ OS(−dr) is also r, so we

have an isomorphism. Thus

Λr(I/I2) ∼= OS(−
∑

di).

Therefore by 2.45 we have OS(KS) ∼= OS(−
∑
di)⊗Ωr+2

Pr+2
∼= OS(−

∑
di)⊗O(−r−3) ∼= OS(

∑
di−

r − 3). □

And finally we introduce the canonical divisor:

Definition 2.54 (Chapter 4, [14]). Let X be a variety of dimension n. The divisor on the same

linear class corresponding to ωX = ΛnΩX is called the canonical divisor. It will be denoted by K.

In the case of curves, observe that ΩC = ωC , so the canonical divisor is any divisor in the same

linear equivalence class than ΩC .

6. Riemann-Roch Theorem

The objective of this section is to present and prove the Riemann-Roch Theorem. To do so we

will follow the steps of [14], but different proofs could also be followed, as the one in [2]. We will

first enunciate Riemann-Roch for curves 2.55, then we will introduce the intersection number 2.58

and follow with the adjunction formula 2.66 and 2.65. And finally, we will introduce and prove the

Riemann-Roch theorem for surfaces 2.67.

Theorem 2.55 (Riemann-Roch for curves, Chapter 4, [14]). Let D be a divisor on a smooth curve

X of genus g, then

l(D)− l(K −D) = degD + 1− g.

Corollary 2.56. Let D a divisor on a smooth curve X of genus g, then

χ(OX(D)) = degD + 1− g.

Proof. Applying 2.49 to the corresponing invertible sheaf of K −D, which is ωX ⊗OX(D)∨,

getting that h0(X,ωX ⊗OX(D)∨) = h1(X,OX(D)). □
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Corollary 2.57 (Chapter 4, [14]). On a smooth curve C of genus g, the canonical divisor K has

degree 2g − 2.

Proof. Apply D = K to the Riemann-Roch, so l(K) − l(0) = degK + 1 − g. Using that

l(K) = dimH0(X,K) = H0(X,ωX) = pg = g by 2.13 and l(0) = 1 by 1.80 we obtain the wanted

result. □

Let X be a variety, our objective now is to define the intersection number, C.D, for any two divisors

C and D on X.

Theorem 2.58 (Chapter 5, [14]). There is a unique pairing DivX × DivX → Z such that given

any two divisors C and D,

• if C and D intersect transversally, then C.D = #(C ∩D), the number of points of C ∩D.

• C.D = D.C.

• (C1 + C2).D = C1.D + C2.D.

• if C1 ∽ C2, then C1.D = C2.D.

This pairing is defined as the intersection number.

The first part of this theorem gives a geometric meaning to the intersection number.

A question that arises naturally is the relation between the intersection number defined in this

chapter and the intersection multiplicity defined in 1.15. The next proposition answer partially this

question:

Proposition 2.59. Let C,D ⊂ X be curves without common irreducible components. Then

C.D =
∑

p∈C∩D)

mp(C,D).

Definition 2.60 (Chapter 5, [14]). The self-intersection number of a divisor C is C.C. It is denoted

by C2.

The idea behind self-intersection of a variety X is to move X slightly and intersecting with the

original, and counting how many points it intersects.

Example 2.61. On P2 every line has self-intersection 1, but not on P1 × P1, where they have

self-intersection 0 [14]. In fact, as a generalization any hyperplane in Pn has self-intersection 1.

Example 2.62. If X = P2, by 2.46, ΩP2 = OX(−3), so K2 = 9.

Example 2.63. The self-intersection number of a divisor D of degree d is d2, since it is represented

by dH:

(dH · dH) = d2(H ·H) = d2,

because H ·H = 1.

Lemma 2.64 (Chapter 5, [14]). Let C be a irreducible smooth curve on a smooth surface X and let

D be any curve meeting C transversally, then

#(C ∩D) = deg(OX(D)⊗OC).
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The next lemma will be needed to prove Riemann-Roch theorem for surfaces, but on some other

sources it is given as a consequence of it. We will later do the same, but just to show that the

Riemann-Roch implies the adjunction formula.

Lemma 2.65 (Adjunction Formula, Chapter 5, [14]). If C is a smooth curve of genus g on the

smooth surface X and K is the canonical divisor, then

2g − 2 = C.(C +K).

On a lot of literature, as [8], the adjunction formula is the next proposition, relating the canonical

sheaf of a divisor of X:

Proposition 2.66 (Adjunction Formula, Chapter 2, [14]). If D is a smooth divisor of a smooth

variety X and i : D ↪→ X the inclusion, then:

ωD = i∗(ωX ⊗OX(D)),

and in terms of canonical classes KD = (KX +D)|D.

Proof. If D is a smooth divisor on X, then I = OX(−D), and by 2.52 we have:

0 → OX(−D)|D → ΩX|D → ωD → 0.

Applying 2.45 we get that

ΛnΩX|D ∼= ωD
∼= (OX(K +D))|D.

□

However, when we talk about the adjunction formula we will refer to 2.65. One can check that 2.65

is equivalent to 2.66 by taking the degrees.

Theorem 2.67 (Riemann-Roch for surfaces, Chapter 5, [14]). If D is any divisor of a smooth

surface X, then

χ(OX(D)) =
1

2
D.(D −K) + 1 + pa(X).(6.1)

Observe that OX(K − D) = OX(D)∨ ⊗ OX(K) = OX(D)∨ ⊗ ωX . And by Serre duality, 2.49,

l(K −D) = dimH0(X,OX(D)∨ ⊗ ωX) = dimH2(X,OX(D)). So 6.1 can be rewritten as

l(D)− h1(X,OX(D)) + l(D −K) =
1

2
D.(D −K) + 1 + pa(X).(6.2)

Definition 2.68. The superabundance of a divisor D, s(D), is h1(X,OX(D)).

The superabundance concept was born when Riemann announced the Riemann-Roch for the first

time, which was with today’s concepts

l(D) + l(K −D) ≤ 1

2
D.(D −K) + 1 + pa(X).(6.3)

And it was defined as the difference between both parts of the inequality. Today’s definition was

given when such difference was computed, years later, changing partially the theorem for the modern

version.
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Proof. We write D as the difference of two smooth curves, D = C − E. By 2.36 those are

exact sequences:

0 → OX(−E) → OX → OE → 0

and

0 → OX(−C) → OX → OC → 0,

and tensoring by OX(C) result the exact sequences:

0 → OX(C − E) → OX(C) → OX(C)⊗OE → 0

and by 1.80

0 → OX → OX(C) → OX(C)⊗OC → 0.

Applying 2.26 and comparing χ(OX(C)) we get

χ(OX(C − E)) + χ(OX(C)⊗OE) = χ(OX) + χ(OX(C)⊗OC).

By 2.56,

χ(OX(C)⊗OC) = deg(OX(C)⊗OC) + 1− gc

applying 2.64, we obtain

χ(OX(C)⊗OC) = C2 + 1− gc.

With the same reasoning,

χ(OX(C)⊗OE) = C.E + 1− gc.

Finally, we apply 2.65 and we obtain

gC =
1

2
C.(C +K) + 1

gE =
1

2
E.(E +K) + 1.

Therefore

χ(OX(C − E)) = χ(OX) +
1

2
(C − E)(C − E −K),

changing D = C − E and applying the definition of pa(X),

χ(OX(D)) =
1

2
D.(D −K) + 1 + pa(X).

□

Example 2.69. If we consider the divisor 0 on X = Pn, then OPn(0) = OPn and:

χ(OPn) = 0 + 1 + pa(Pn),

and by 2.31 χ(OPn) = 1.

One can check that 2.65 follows from the Riemann-Roch theorem, though we have used here to

prove it. Other proofs as in [2] don’t use it to prove but it is stated as a corollary of it. The exact

sequence of 2.36

0 → OX(−C) → OS → OC → 0.

By 2.26 we have 1− g = χ(OC) = χ(OS)− χ(OS(−C)). Using 2.67 χ(OS) = 1 + g and therefore

1− g = 1 + g − χ(L(−C)),

−2g = −(
1

2
(−C)(−C −K) + 1 + g),

2g − 2 = C2 + C.K.
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Remark 2.70. In every result of this chapter about curves we have assumed that the curve was

smooth, and via 2.50 we have used the genus of such curve. However, if it is not smooth the results

hold but using arithmetic genus instead of genus.

7. Linear systems

Our objective is to introduce the linear systems, showing how global sections of an invertible sheaf

correspond to effective divisors of a variety. Let L be an invertible sheaf of a smooth projective

variety X and let s ∈ Γ(X,L). Now, for any open set Ui ⊂ X we may identify s|Ui
with fi ∈ OUi , as

L is an invertible sheaf. This determines an effective Cartier divisor D on X, it is called the divisor

of zeros of s and it is denoted D = (s)0.

Proposition 2.71 (Chapter 2, [14]). Let X be a smooth projective irreducible variety and D0 a

divisor on X. Let L ∼= OX(D0). Then,

a) for each nonzero s ∈ Γ(X,L), the divisor of zeros (s)0 is an effective divisor linearly

equivalent to D0,

b) every effective divisor linearly equivalent to D0 is (s)0 for some s ∈ Γ(X,L),
c) two sections s, s′ ∈ Γ(X,L) have the same divisor of zeros iff s = λs′ for some λ ∈ k.

Proof. We will only prove b) and c). To prove b) assume D = D0 + (f) > 0, so (f) ≥ 0. Thus

f gives a global section of OX(D0) whose divisor of zeros is D, by definition. To prove c), assume

(s)0 = (s′)0. Then s and s′ correspond to rational functions f, f ′ such that (f/f ′) = 0. Therefore

f/f ′ ∈ Γ(X,O∗
X). As Γ(X,O∗

X) ⊂ Γ(X,OX) = k, f/f ′ ∈ k∗, since X is irreducible. □

Consider the following mapping:

Γ(X,OX(D)) \ {0} φ−→{Effective divisors linearly equivalent to D}
s 7−→(s)0

s0 7−→D

The effective divisors linearly equivalent to D are seeing as a set, and by a) of 2.71 φ a map well

defined.

Proposition 2.72 (Chapter 2, [14]). The effective divisors linearly equivalent to D are a projective

space.

Proof. By b) of 2.71 φ is surjective and by c) φ(s) = φ(s′) if and only if s = λs′. □

Definition 2.73 (Chapter 2, [14]). A complete linear system on a smooth projective variety X is

defined as |D| = P(Γ(X,OX(D)).

Definition 2.74 (Chapter 2, [14]). A linear system d on a smooth projective variety X is defined as

a subset of |D| which is a linear subspace for the projective space structure of |D|. The dimension

of d is the dimension of the sub-vector space V ⊂ P(Γ(X,OX(D)) minus 1, where V = {s ∈
Γ(X,OX(D)|φ(s) = (s)0 ∈ d} \ {0}.

As we denote dimkH
0(X,OX(D)) by l(D), the dimension of |D|, dim |D|, is equal to l(D)− 1.

Observe that by 2.23 the dimension of d is finite.
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Example 2.75. Consider X = P2. In this case Γ(P2,OP2(1)) are the homogeneus forms of degree

1, which are the lines on the plane. Γ(P2,OP2(2)) are the homogeneus forms of degree 2, which are

generated by x20, x
2
1, x

2
2, x0x1, x0x2 and x1x2, by 1.95. So |OP2(2)| = (P5)∨ are the conics on P2

as in 1.19. We will construct a linear system in the following way: let p1, p2, p3, p4 four points not

three on the same line, then

P2 \ {p1, p2, p3, p4} −→ P1

p 7−→ Conic that contains p, p1, p2, p3, p4.

It is a linear system of dimension 1.

Definition 2.76 (Chapter 2, [14]). A point p ∈ X of a linear system d is a base point if p ∈ SuppD

for all D ∈ d. The base points of a linear system form a closed set.

Proposition 2.77 (Chapter 2, [14]). Let X be a smooth projective variety and p a point of X. The

set {s ∈ Γ(X,OX(D))|s(p) = 0} ⊂ P(Γ(X,OX(D)) is an hyperplane if p in general, in particular if

p is not a base point.

Proof. Consider the exact sequence

0 → Ip|X → OX → Op → 0

whith the same idea as 2.36 but not using divisors but points, which is also exact. Tensoring it by

OX(D) we get:

0 → Ip|X(D) → OX(D) → Op(D) = Op → 0.

Applying 2.14 we have the long exact sequence

0 → Γ(X, Ip|X(D)) → Γ(X,OX(D)) → Γ(p,Op) → H1(X, Ip|X(D)) → . . . .

If s(p) = 0 for all s ∈ Γ(X,OX(D)), then p is a base point, and vice versa. If there exists

s ∈ Γ(X,OX(D)) such that s(p) ̸= 0, then Γ(X, Ip|X(D)) is not empty and dimΓ(X, Ip|X(D)) =

l(D)− 1, as Γ(p,Op) = k. □

From this proposition, we can now construct a morphism:

X \ {base points of X} → P(Γ(X,OX(D)))∨,

that for any p ∈ X \ {base points of X} its image is the hyperplane {s ∈ Γ(X,OX(D))|s(p) = 0} ⊂
P(Γ(X,OX(D)).

Proposition 2.78. Let D a divisor on a curve C. Then the complete linear system |D| has no base

points if and only if for every point p ∈ C

h0OC(D − p) = h0OC(D)− 1.

Proof. Consider the exact sequence:

0 → OC(D − p) → OC(D) → ⟨P ⟩ → 0,

by 2.14

0 → Γ(C,OC(D − P )) → Γ(C,OC(D)) → k → . . . ,

so h0OC(D− p) = h0OC(D)− 1 or h0OC(D− p) = h0OC(D). Now consider the following mapping

Φ : |D − P | ↪→|D|
E 7−→E + P

Φ is injective, and it is surjective only if P is a base point of |D|. □



8. Morphisms to Pn 32

The next lemma expresses a relation between the degree of a divisor and the dimension of the

complete linear system that defines.

Lemma 2.79. Let D be a divisor of a curve C. If l(D) ̸= 0 then degD ≥ 0.

Proof. If l(D) ̸= 0 then |D| ̸= ∅, so D is linearly equivalent to some effective divisor L, as

degD = degL for 1.78 and the degree of an effective divisor is always nonnegative. □

8. Morphisms to Pn

We follow the results given on linear varieties with this section about morphisms from a variety X

to Pn. To do so we will follow [14]. On this section we assume that all the varieties are projective

and irreducible.

Definition 2.80 (Chapter 2, [14]). Let X be a variety and F a sheaf of OX-modules. F is generated

by global sections if there is a family of global sections {si} such that for each x ∈ X, the images of

si in the stalk Fx generate that stalk as an OX-module.

Example 2.81. On Pn we have the sheaf OPn(1), which is an invertible sheaf 1.92, and the homo-

geneus coordinates x0, . . . , xn which are also global sections. Those global sections generate OPn(1),

as they generate the stalk Op(1) of the sheaf OPn(1) as a module over Op for all p ∈ Pn.

Proposition 2.82 (Chapter 2, [14]). Let X be a variety and ϕ : X → Pn a morphism, then

Φ∗(OPn(1)) is an invertible sheaf on X generated by the global sections of si = ϕ∗(xi), i = 0, . . . , n.

And we also have the converse statement:

Proposition 2.83 (Chapter 2, [14]). Let X be a variety and L an invertible sheaf generated by

global sections s1, . . . , sn ∈ Γ(X,L). Then there exists a unique morphism ϕ : X → Pn such that

L ∼= ϕ∗(OPn(1)) and ϕ∗(xi) = si.

So any morphism from a variety X to a projective variety is determined by an invertible sheaf L
on X and a set of its global sections.

Example 2.84. Consider X = Pn and an invertible sheaf of X L = OPn−1(1) generated by

x0, . . . , xn−1 as in 2.81. Then xi are sections that generate everywhere except at the point [0 :

. . . : 0 : 1]. In this case the corresponding morphism ϕ : U = Pn \ [0 : . . . : 0 : 1] → Pn−1 is non other

than the projection from [0 : . . . : 0 : 1] to Pn+1.

Proposition 2.85 (Chapter 2, [14]). Let d be a linear system of a variety X corresponding to the

subspace V ⊂ Γ(X,L), then d is base-point-free if and only if L is generated by the global sections

in V .

Observation 2.86. Combining 2.83 and 2.85, we get that giving a morphism from X to Pn is

equivalent to give a linear system d without any base points on X and a set of elements s0, . . . , sn ∈
V . We can understand it as if s0, . . . , sn where a basis of V , and changing it would differ the

morphism only by an automorphism.
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9. Ample sheaves

Ampleness of sheaves is a very studied topic on algebraic geometry. In our case, Definition D

needs it. The objective of this section is to introduce ample sheaves and very ample sheaves, relate

them to morphisms to Pn and give a few results using the Riemann-Roch theorem. We will follow

[14].

Definition 2.87 (Chapter 2, [14]). A morphism between varieties i : X → Y is an immersion if

there exists a closed set Z ⊂ Y such that i∗(X) ∼= Z.

Definition 2.88 (Chapter 2, [14]). Let X be a variety and L an invertible sheaf of X. L is very

ample if there exists an immersion i : X → Pn for some n such that i∗(OPn(1)) ∼= L.

Proposition 2.89 (Chapter 2, [14]). Let ϕ : X → Pn be a morphism corresponding to a linear

system without base points d. Then, ϕ is a closed immersion if and only if:

• d separates points, i.e. for any two different points P,Q ∈ X there is a divisor D ∈ d such

that P ∈ SuppD and Q /∈ SuppD.

• d separates tangent vectors, i.e., given a point P ∈ X and a tangent vector t ∈ TP (X)

there is D ∈ d such that t /∈ TP (D).

Note that this definition is equivalent to say that L admits a set of global sections that generate L
such that the corresponding morphism of 2.83 ϕ : X → Pn is an immersion.

Example 2.90. The sheaf OPn(l) has no nonzero global sections if l < 0 1.89, so in this case

is not very ample. If l = 0 then all the sections are constants, thus the morphism ϕ of 2.83 is

not an immersion so it is not very ample. The sheaf OPn(1) has as a generators of the global

sections x0, . . . , xn, and the immersion is just the identity so it is very ample. If l ≥ 2 then one can

construct an isomorphism between the global sections, homogeneus polynomials of degree l, and a

set of generators x0, . . . , xn for an integer N =
(l+n

n

)
− 1. This morphism is the Veronese morphism

to PN , defined on 1.19.

Corollary 2.91 (Chapter 4, [14]). Let D be a divisor of a variety X, if D is very ample then |D|
is base-point-free.

Proof. If D is very ample then is generated by global sections and applying 2.85. □

Definition 2.92 (Chapter 2, [14]). An invertible sheaf L of a variety X is ample if and only if

L⊗m is very ample for some m > 0.

This definition is given as a characterization on [14], but actually it is more seen as a definition. On

[14] the actual definition is that an invertible sheaf L on a variety X is ample if for every coherent

sheaf F on X there is an integer n0 such that for any integer n ≥ n0 F ⊗ L⊗n is generated by its

global sections.

Definition 2.93 (Chapter 4, [14]). Let D is a divisor of a variety X, then we say that D is (very)

ample if OX(D) is (very) ample.

Example 2.94. As OX(l)⊗n ∼= OX(nl), by 2.90 OPn(l) is ample if and only if OPn(l) is very ample

if and only if l > 0.
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Proposition 2.95. A divisor D on a smooth variety X is very ample if the map X → P(Γ(O(D)))∨

is an embedding. Equivalently, D is very ample if the line bundle O(D) is isomorphic to the

restriction of the line bundle O(1) from Pn to X for some embedding X ⊂ Pn.

We will now introduce the Nakai-Moishezon Criterion:

Theorem 2.96 (Nakai-Moishezon Criterion, Chapter 10, [14]). A divisor D on a surface X is ample

if and only if D2 > 0 and D.C > 0 for all irreducible curves C in X.

A proof of it can be found on [14].

Example 2.97. Let S = Blp(P2), the blow-up of P2 and E its exceptional curve, defined on 2.108.

Then Pic(S) = Z ⊕ Z, generated by A and E [14]. Now on the projection π : S → P2, the set of

lines l ⊂ P2 are in a bijection with OP2(1). Let A = π∗(l). Then Pic(S) is generated by A and E.

Then A is not ample. In fact, via the Nakai-Moishezon criterion 2.96 one can see that 2A − E is

ample.

Now we will state some results regarding ample divisors and very ample divisors of curves.

Proposition 2.98 (Chapter 4, [14]). Let D be a divisor on a smooth curve C, then D is very ample

if and only if for every two points p1, p2 ∈ C

dim |D − p1 − p2| = dim |D| − 2.

Proposition 2.99 (Chapter 4, [14]). Let D be a divisor on a smooth curve C, then

a) if degD ≥ 2g, then |D| has no base points,

b) if degD ≥ 2g + 1, then D is very ample.

Proof. To prove (a), recall that degK = 2g−2, 2.57, so if degD > 2g−2, then degK−D < 0,

applying 2.79 l(K−D) = 0. The same with D−P for any point P , getting that l(K−D+P ) = 0.

So by Riemann-Roch for curves 2.55,

l(D − P ) = deg(D − P ) + 1− g = degD − g,

l(D)− 1 = l(D − P )

and finally applying 2.78 |D| has no base points.

To prove (b), we will see that l(K −D + P +Q) = 0 for any points P,Q ∈ C, and with the same

reasoning l(D)− 2 = l(D − P −Q), applying 2.98 we get the desired result. □

Proposition 2.100 (Chapter 4, [14]). A divisor D on a smooth curve C is ample if and only if

degD > 0

Proof. If degD > 0, then for an n big enough deg nD ≥ 2g(C) + 1, so by 2.99 nD is very

ample so D is ample. If D is ample, then nD ∼ H where H is an hyperplane section of C for a

projective embedding, so degH > 0 and deg nD > 0. □

The diference between project immersion and embedding is very subtle, but in the case of smooth-

ness they are equivalent [14]. As we will use them in chapter 3 section 5, which works assuming

smoothness, both definitions will be used arbitrarily.
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10. Kodaira dimension

The objective of this section is to introduce the Kodaira dimension, a birational invariant used to

classify projective varieties.

Definition 2.101. Let X be a variety, the plurigenera of X are the integers:

Pn(X) = dimk Γ(X,ω
⊗n
X ).

Firstly, observe that P1(X) = pg(X) (moreover, if C is a curve then P1(C) = g(C)), so it is a

generalization of the geometric genus. As the geometric genus is, 2.43, it is a non-negative invariant

[14].

Example 2.102. As ωPn ∼= OPn(−n − 1) 2.46, Pm(Pn) = dimk Γ(Pn,OPn(m(−n − 1))) = 0 for all

m as there are no global sections of OPn(d) if d < 0 1.89.

Note that if K is the canonical divisor, we can restate the definition of plurigenera of X as

Pn(X) = dimk Γ(X,OX(nK)).

Definition 2.103 (Chapter 5, [14]). The Kodaira dimension of a variety X, κ(X), is the transcen-

dence degree over k of the graded ring

R =
⊕
n≥0

Γ(X,OX(nK))

minus 1.

Proposition 2.104 (Chapter 5, [14]). The Kodaira dimension and the plurigenera of a variety are

birational invariants.

Another way to present the Kodaira dimension is the following: consider the rational map ϕ deter-

mined by the linear system |nK| for some n ≥ 1 as in 2.86, then κ(X) is the largest dimension of

ϕ(X) ⊂ PN for some N , and κ(X) = −∞ if |nK| = ∅.

Example 2.105. If X = Pm, |nK| = ∅ for all n and m ≥ 1, then κ(Pm) = −∞.

11. Birational maps and blow-ups

On section 8 we studied the morphisms from a variety to Pn, the main objective of this section is to

study the morphisms on varieties of low dimension. We will also reintroduce the concept of blow-up

(as it has already been studied in the course), because it will play an important role on the next

chapter. We will follow [2] and [14].

Proposition 2.106 (Chapter 3, [2]). Let S ⊂ Pn be a surface, then there is a bijection between:

{rational maps ϕ : S 99K Pn such that ϕ(S) is contained in no hyperplane}

and the set

{linear systems on S without fixed part and of dimension n}.
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Let S be a surface and p ∈ S a point of it. If we take a neighbourhood U of p (with the analytic

topology) such that there exists coordinates x, y where the curves x = 0 and y = 0 intersect

transversaly at p. In fact, we can assume that p is the only point where x = 0 and y = 0 intersect

transversaly.

Now, we define the subvariety Û of U × P1 by the equation xY − yX = 0, where X,Y are the

coordinates of P1.

The inclusion i : Û ↪→ U × P1 and the restriction π : U × P1 → U are well defined morphisms, so is

its composition ϵ = π ◦ i : Û → U . Moreover such composition is an isomorphism on the points of

U where at most one coordinate x or y vanishes. Furthermore, ϵ−1(p) = {p} × P1. This proves the

next proposition:

Proposition 2.107 (Chapter 3, [2]). Let S be a surface and p ∈ S. Then there exists a surface Ŝ

and a morphism ϵ : Ŝ → S which are unique up to isomorphism, such that:

i) the restriction of ϵ to ϵ−1(S − {p}) is an isomorphism onto S − {p} and

ii) ϵ−1(p) = E is isomorphic to P1.

Definition 2.108. ϵ is the blow-up and E is the exceptional curve of the blow-up.

Observe that we took the neighbourhood U via the analytic topology, not the Zariski topology as

we have been doing until this chapter. Because of [20] there is no problem on doing that, but if the

reader wants to avoid this they can check the definition on Chapter 2, [14].

Remark 2.109. (Chapter 5, [14]) If S is a smooth surface, then its blow up from a point is also a

smooth surface. If E is the exceptional curve, then E2 = −1, and the converse is also true 2.116.

Proposition 2.110 (Chapter 5, [14]). Let S be a smooth surface and ϵ : Ŝ → S the blow up from

a point P ∈ S. Then ϵ∗OŜ = OS and Riϵ∗OŜ = 0 for i > 0. Therefore H i(S,OS) = H i(Ŝ,OŜ).

Blowing up a single point p in a surface is also known as a monoidal transformation of a surface.

Now, we will give three important results on birational maps and blow-ups.

Proposition 2.111 (Elimination of indeterminacy, [2]). Let ϕ : S 99K X be a rational map from a

surface to a projective variety. Then there exisits a surface S′, a morphism ν : S′ → S such that

ν = ϵ1◦ϵ2◦ . . .◦ϵr where ϵi is a blow-up for all i, and a morphism f : S′ → X such that the diagram:

S′

S X

ν

f

Φ

is commutative.

On [2] the proof is based on giving the surface S′, and proving that D2 is an upper bound on r, the

number of blow-ups required.

Proposition 2.112 (Universal property of blowing-up, [2]). Let f : X 99K S be a birational mor-

phism of surfaces, and suppose that the rational map f−1 is undefined at a point p ∈ S. Then, f

factorises as

f : X
g−→ Ŝ

ϵ−→ S



11. Birational maps and blow-ups 37

where g is a birational morphism and ϵ is the blow-up at p.

Proposition 2.113. Let f : S 99K S′ be a birational morphism of surfaces. Then there is a sequence

of blow-ups ϵi : Si → Si−1 (i = 1, . . . , n) and an isomorphism u : S
∼=−→ Sn such that f = ϵ1◦. . .◦ϵn◦u.

And finally we will give a corollary:

Corollary 2.114. Let ϕ : S 99K S′ be a birational map of surfaces, then there is a surface Ŝ and

a commutative diagram:

Ŝ

S S′
f

g

Φ

where f, g are composites of blow-ups and isomorphisms.

Proof. As in 2.111, the diagram commutes, and f and g are composites of blow-ups because

of 2.113. □

The next proposition expresses how changes the Picard group when applied a blow-up from a point.

Proposition 2.115 (Chapter 5, [14]). Let ϵ be the blow-up from a point p and ϵ∗ the natural map.

Then, ϵ∗ : PicS → Pic Ŝ gives an isomorphism

Pic Ŝ ∼= PicS ⊕ Z.

And finally the Castelnuovo’s contractibility criterion:

Theorem 2.116 (Castelnuovo’s contractibility criterion, Chapter 5, [14]). Let S be a surface and

E ⊂ C a curve isomorphic to P1 with E2 = −1 . Then there exists a morphism f : S → S′ to

a smooth surface S′ and a point p ∈ S′ such that S is isomorphic via f to the blow up of S′ with

center P and E is the exceptional curve on S.

A proof of this well-known theorem can be found on [14] or [2].





CHAPTER 3

Definitions of Del Pezzo surfaces

Del Pezzo first introduced the surfaces that now have his name in [5], where he gives them the

first definition given here (Definition O). He uses this definition to prove that any non-ruled

nondegenerate surface of degree d in Pd can be projected to a cubic surface S3 from d − 3 general

points on it 3.11.

In this chapter we will introduce the other two definitions and prove the equivalences of those,

1. First examples

We start this chapter by presenting two examples of Del Pezzo surfaces. The first one is the only

smooth Del Pezzo surface of degree 9 and the other is a smooth Del Pezzo surface of degree 8.

Example 3.1. Let ν2,3 be the Veronese map defined on 1.19 and consider the image of P2 into PN

with N =
(5
2

)
− 1 = 9. More explicitely,

ν2,3 : P2 −→ P9

[x0, x1, x2] 7−→ [x30, x
2
0x1, . . . , x1x

2
2, x

3
2].

Observe that in this case we obtain a surface isomorphic to P2 with degree 32 = 9 (1.19) on P9. As

it is smooth, it is not a cone or a projection of a cone. It is not the projection of a smooth quadric

in P3 because of degrees. It is not a projection of the Veronese surface ν2,2(P2) ⊂ P5 and since 1.28

it is not isomorphic to the projection of a rational normal scroll. So it is a Del Pezzo surface of

degree 9.

Example 3.2. Let ν3,2 be the Veronese map defined on 1.19 and consider the image of P1×P1 ⊂ P3

into P9:

i : P1 × P1 ↪→ P3 ν3,2−−→ P9

([x0, x1], [y0, y1]) 7−→ S 7−→ ν3,2(S),

where S = V (x0y1 − x1y0). As seen in the notes, there is an isomorphism of V (x0y1 − x1y0) and

P1×P1, so P1×P1 ∼= ν3,2(S). If we put coordinates [z0, . . . , z3] on P3, we get that S = V (z0z3−z1z2).
Putting coordinates [t0, t1, . . . , t9] on P9 with t0 = z20 , t1 = z0z1, ..., t9 = z23 , we get that ν3,2(S) ⊂
V (t3 − t5) ∼= P8. Its degree is 23 = 8 by 1.16 and 1.19. And by the same arguments of 3.1 it is a

Del Pezzo surface.

On [3] there is a complete list of all Del Pezzo surfaces, ordered by its degree (as it is bounded by 9

3.9). This second case is the only without unicity on such surfaces, assuming smoothness, as there

are two not isomorphic surfaces of degree 8 in P8.

2. First properties

This section is a list of properties of Del Pezzo surfaces (Definition O) that derive from the

definition itself. Most of them are from [8], but other sources have been used.

39



2. First properties 40

Proposition 3.3 (Chapter 8, [8]). An irreducible nondegenerate surface X of degree d in Pd with

hyperplane sections of arithmetic genus equal to 0 is isomorphic to a projection of a surface of degree

d in Pd+1.

The proof of this proposition can be found on [8], which uses bubble cycles.

Corollary 3.4. The hyperplane sections of a Del Pezzo surface do not have arithmetic genus equal

to 0.

Proposition 3.5 (Chapter 8, [8]). Suppose X is a scroll of degree d in Pd, d > 3, that is not a

cone. Then X is a projection of a scroll of degree d in Pd+1.

Proof. Projecting a scroll X ′ ⊂ Pd+1 from a point p ∈ X ′ we get a surface on Pd, Φ(X ′) = X.

If we consider a general hyperplane of Pd, Ω, it will intersect X on d′ points, where d′ = degX.

Constructing Ω′∨p we get a general hyperplane of Pd+1 such that it intersects X ′ on d points. Now,

if k is the degree of the projection Φ, 1.2, we get the equality

d = d′k + 1,

as p ∈ X ′, then #((Ω ∨ p) ∩ X ′) = kd′ + 1. Via proposition 1.24 and using that the image of

the projection of a nondegenerate variety is nondegenerate we know that deg(X ′) = d′ ≥ d − 2,

therefore the only possible solution is that k = 1 and d′ = d− 1. If we keep projecting with points

that belong to itself, we arrive at a cubic surface on P3. Using Chapter 8 and 10 [8] it has to be a

normal rational scroll of degree d− 1 in Pd. □

An immediate corollary of proposition 3.5 is that a Del Pezzo surface is not a scroll.

Proposition 3.6 (Chapter 8, [8]). Let Sd ⊂ Pd be a Del Pezzo surface with d > 3. A general

projection of Sd from a set of d− 3 smooth points, S3, is not a cone.

Proof. As in proposition 3.5 we project Sd from a general subset of d − 3 smooth points to

obtain a cubic surface S3 in P3. If S3 is a cone over a cubic curve in a plane Ω with vertex x0, then

the general section by a plane Λ of S3 will consist of 3 points on Ω and if x0 ∈ Λ three concurrent

lines. Its preimage would be also a cone with vertex x′0 = π−1(x0), and the plane would contain 4

concurrent lines passing through x′0. So x′0 is a singular point of multiplicity 4 and S4 would be a

cone. With the same reasoning we get to that Sd is a cone, getting to a contradiction. □

Proposition 3.7 (Chapter 8, [8]). Let S3 be the projection of a Del Pezzo surface Sd from a general

subset of d− 3 points. S3 is a normal surface.

Proof. Assume S3 is not a normal surface. Now consider a general hyperplane section of S4
passing through the center of the projection π4 : S4 → S3. By dimensions it is clearly a curve, and

as S4 has degree 4 also its hyperplane section 1.16. On chapter 4 of [14], there is a classification of

degree 4 curves on Pn, using 2.70 we get that the intersection is a curve with arithmetic genus 1, so

it is not a line. Its image on S3 is a curve of degree 3 with arithmetic genus 1, as π4 is birational

via 2.29 and 2.70. Therefore the preimage of a line will be a line, so S4 is a scroll. Going back to

Sd we get that Sd is a scroll, getting to a contradiction. □
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Proposition 3.8. Let Sd be a Del Pezzo surface of degree d. Then, Sd is a rational surface and

have −∞ Kodaira dimension.

Proof. On the lecture notes, we have seen that any smooth cubic surface in Pd is a rational

surface. And with the same idea as before, we can do projections from Sd to S3, therefore Sd is a

rational surface. □

Proposition 3.9 (Chapter 8, [8]). The degree d of a Del Pezzo surface Sd is less than or equal to

9.

Proof. Let Sd be a Del Pezzo surface of degree d and p ∈ Sd a point. Then we can build

the projection from p, πp : Sd 99K Sd−1. Via 2.111, πp can be extended to a morphism from

Blp(S) → Sd−1. The image of the exceptional curve is a line on Sd−1. Let p2 ∈ Sd−1 be a general

point. We can assume that πp is an isomorphism over p2 and that p2 does not lie on l1. If we project

πp2 : Sd−1 → Sd−2 with the same reasoning than before we get that there exists a line l2 on Sd−2

such that is disjoint of πp2(l1), which is the image of the exceptional curve of the extension of πp2
via 2.111. Continuing projecting we get to S3 with a set of disjoint lines, which is a normal cubic

surface 3.7, and a normal cubic surface does not have more than six skew lines (Chapter 5, [14]),

so d ≤ 9. □

Proposition 3.10 (Chapter 8, [8]). Let Sd be a Del Pezzo surface of degree d. Then Sd is normal.

Proof. The assertion is true for d = 3 3.7. The map Blp(S4) → S3 is a birational map onto a

normal surface. Via 1.2 and using the same idea as in 3.9, the map is finite and of degree 1. Since

S3 is normal, the map is an isomorphism. The local ring A of a point p1 ∈ Blp(S4) is integral over

the local ring of its image, and both rings have the same fraction field. So the integral closure of A

in Q is contained in the integral closure of A′ equal to A′, so A′ = A. So S4 is a normal surface.

Thus S5, . . . , Sd are normal surfaces. □

Proposition 3.11 (Chapter 6, [7]). Let Sd be a Del Pezzo surface of degree d ≥ 4, then the image

of the projection of S from a general smooth point p ∈ S is also a Del Pezzo surface.

Proof. Let S′ the projection of S. As in 3.5, the projection is a finite map of degree 1 and

degS′ = degS − 1. As p is smooth, the image of such projection is birationally equivalent to S. As

in 3.7, the hyperplane sections are projections from intersections of S with hyperplanes through p

which are curves of arithmetic genus 1, so by 3.3 it is not a projection of a minimal degree and S′

is also a Del Pezzo surface. □

Consider r points in P2. These points are in general position if no 3 of them are collinear and no

six of them lie on a conic.

Proposition 3.12. Let S be the blow-up of P2 on to 3 to 8 smooth points that are in general

position. Then S is a Del Pezzo surface.
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Proof. The blow-up of P2 in 8 general points is a Del Pezzo surface. If it was a cone, its

projection from a general point would be also a cone, so S3 would be a cone, which is not 3.6. If it

is isomorphic to a projection of degree d in Pd+1, then its projection from one of the blow-up points

would get a surface of degree d − 1 in Pd, and keeping projecting we would get a cubic surface on

P4, which is not a Del Pezzo surface. Via projecting and using 3.11, we get the desired result. □

Proposition 3.12 gives an idea of how to get Del Pezzo surfaces, because if Sd is a Del Pezzo surface

then one can think to blow-up one point to create another Del Pezzo surface. We will see later on

that this is not always true, as some extra hypothesis need to be added.

Moreover, not all the Del Pezzo surface can be obtained by this procedure, for example P1 × P1,

which it does not contain any exceptional line 2.61, so it is not the blow up of another surface 2.116.

3. Ampleness of the anticanonical bundle

From now on we will assume that the surfaces S that we take are smooth. We will see that in this

case, Definition O implies Definition D.

We start by giving the second definition:

Definition D: A surface S is called a Del Pezzo surface if its anticanonical sheaf ω−1
S is ample.

It will be denoted by Definition D from [8], and is the smooth case of the original definition from

[8]:

Definition 3.13. [8] A surface S is called a Del Pezzo surface if its canonical sheaf ωS is invertible,

ω−1
S is ample and all singularities are rational double points.

The following theorem, Definition O implies Definition D, is the main result of this section:

Theorem 3.14. Let S be a Del Pezzo surface of degree d in Pd. Then ω−1
S is an ample invertible

sheaf, where ωS is the canonical sheaf of S.

Proof. Via 2.40 we know that the canonical sheaf is an invertible sheaf. Let C be a general

hyperplane section. By 2.36 We have an exact sequence

0 → OS(−C) → OS → OC → 0,

as C is a hyperplane section, it can be define as the zeroes of a degree 1 equation, so tensoring per

OS(1) we get the exact sequence:

0 → OS → OS(1) → OC(1) → 0.

Now we tensor per ωS , getting:

0 → ωS → ωS(1) → OC(1)⊗ ωS → 0.

Via 2.66 and again the fact that C is an hyperplane we get:

0 → ωS → ωS(1) → ωC → 0.

So we have the exact sequence 2.14:

0 → H0(S, ωS) → H0(S, ωS(1)) → H0(C,ωC) → H1(S, ωS) → H1(S, ωS(1)) → H1(C,ωC) → . . .

As in the proof of 3.7, C has genus 1, so by 2.57:

degKC = 2g − 2 = 0,



3. Ampleness of the anticanonical bundle 43

thus ωC
∼= OC(0) = OC .

Applying Serre’s duality 2.49, H1(S, ωS) ∼= H1(S,OS)
∨. Since 3.8 and the fact thatH1(P2,OP2) = 0

2.31, we get that H1(S, ωS) = 0. Thus we obtain the following exact sequence:

0 → H0(S, ωS) → H0(S, ωS(1)) → H0(S,OC) → 0 → . . .

as H0(S,OC) ̸= 0, H0(S, ωS(1)) ̸= 0.

Let D ∈ |ωS(1)|. Then by 2.66 we get that

ωC = ωS(1)|C = D|C = C ∩D = D.C.

So degD.C = degωC , and using that C has genus 1, degωC = 0, so D ∩ C = ∅, so D = 0.

So ωS(1) ∼= OS , hence ωS
∼= OS(−1) and ω−1

S is very ample. □

Theorem 3.14 not only proves that Definition O implies Definition D, but that the canonical

sheaf is very ample, which is the definition given on [14].

Proposition 3.15. Let S be a Del Pezzo surface of degree d (Definition O). Then d = K2
S.

Proof. Recall that if degS = d, then the number of points of the intersection with a general

(d− 2)−hyperplane, H2, is d. So

#(S ∩H2) = d.

As −KS is very ample, via 2.95 we get that O(−KS) ∼= O(1)|S i.e. H|S = −KS . So the self

intersection is:

(−KS)
2 = K2

S = H2
|S = (S ∩H2) = d.

□

Proposition 3.16 (Chapter 4, [17]). Let Sd be a Del Pezzo surface of degree d (Definition O).

Then every irreducible curve with a negative self-intersection number on Sd is exceptional.

Proof. Let C ⊂ Sd be an irreducible curve and C2 < 0. LetK2 = −K be the divisor associated

to ω−1
Sd

. As ω−1
Sd

is ample, Nakai-Moishezon 2.96 implies that C.K2 > 0. By 2.65,

2pa(C)− 2 = C2 − CK2.

For the definition of pa(C) over curves, pa(C) ≥ 0. So there is only one possibility,

C2 = −1 and pa(C) = 0,

by 2.31 C is rational, and so is exceptional. □

It follows from (Chapter 10, [17]) that if S′ is the blow-up of S from a point p ∈ S and E is the

exceptional curve,

K2
S′ = K2

S + E2 = K2
S − 1.

This allows us to prove the next lemma:

Lemma 3.17 (Chapter 10, [17]). For every rational projective surface S, the group Pic(S) is free

with a finite number of generators and

rankPicS +K2
S = 10.
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Proof. It follows from the previous assertion and 2.115 that if π : S → S′ is a projection from

one point, then the lemma is true for S if and only if it is true for S′. So we only need to prove it

for P2. As Pic(P2) ∼= Z via 1.84 and ΩP2
∼= OP2(−3) via 2.62,

rankPicS +K2
S = 1 + 9 = 10.

□

As a corollary we found another proof of 3.9.

4. Blow-up of at least 8 general points

To see that Definition D implies Definition O, we will first have to give a representation of Del

Pezzo surfaces giving the blow-up of points. Recall that the blow-up of P2 on to 3 to 8 points is a

Del Pezzo surface (Definition O). We will prove that if a surface Sd is Definition D, then it can

be represented as the blow-up of points in general position on P2. The proof of it is based on the

results given in [17]. We will again assume smoothness.

Definition 3.18 (Chapter 3, [17]). A surface S is called minimal if every birrational morphism

f : S′ → S is an isomorphism.

Note here that the definitions of minimal surface are not the same. For example on [14] the definition

presented here is for relatively minimal.

Proposition 3.19 (Chapter 5, [14]). Every surface admits a birational morphism to a minimal

surface.

Proposition 3.20 (Chapter 5, [14]). Let S be a surface, then it is minimal if and only if it has no

exceptional curves.

Recall that we are assuming that S is smooth. If S is not smooth then the last characterization

does not work. The only true implication is that if S has no exceptional curves then it is minimal.

Example 3.21. On [15] it is proven that every minimal rational surface is isomorphic to P2, P1×P1

or Vn with n ≥ 2, where Vn is a trivial ruled surface with only one curve with negative intersection

number, which is −n.

This last example is nothing but trivial. It is a result that will allow us to prove theorem 3.24.

Proposition 3.22 (Chapter 5, [17]). Let S be a Del Pezzo surface (Definition D) with no ex-

ceptional curves. Then either d = 9 and S is isomorphic to P2 or d = 8 and S is isomorphic to

P1 × P1.

Proof. If there are no exceptional curves, then S is minimal 3.20, but besides P2 and P1 × P1

there are no minimal surfaces with no exceptional curves 3.21. □

Proposition 3.23 (Chapter 3, [17]). After a monoidal transformation f : S′ → S with center at

the point p ∈ S of multiplicity m on the curve D ⊂ S, we have

f−1(D)2 = D2 −m2.
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The idea behind the last proposition is that the preimage of the curve D is f−1(D) = D + mE,

where E2 = −1 [17]. So

f−1(D)2 = D2 +m2(−1) + 2mE.D,

and E.D = 0.

Theorem 3.24 (Chapter 5, [17]). Let S be a Del Pezzo surface of degree d (Definition D). Then

either S is isomorphic to the blowup of P2 at 9− d points in general position in P2, or d = 8 and S

is isomorphic to P1 × P1.

Proof. The case that S is minimal has already been explored. If S is non-minimal, then there

exists a birrational morphism f : S →W with W being minimal 3.19. We claim that W ∼= P2.

IfW is a trivial ruled surface, then there would exist a curveD such thatD2 ≤ −2, and (f−1(D))2 ≤
−2 (2.113 and 3.23), contradicting 3.16. So by 3.21, W ∼= P2 or W ∼= P1 × P1.

Assume W = P1 × P1. Let p ∈W a point where f−1 is not defined. Then we apply 2.112 and split

up f into morphisms:

S
g−→W ′ →W,

where W ′ →W is a monoidal transformation with center p.

Collapsing the inverse images of the fibers of the projections of W on P1 which pass through p, we

get a birrational morphism h : W ′ → P2 (Chapter XXI, [17]), so we have constracted a birrational

morphism:

S
g−→W ′ h−→ P2.

We denote f the birrational morphism from S to P2. This f can be composed by monoidal trans-

formations 2.113, let n be the number of blow-ups ϵi. Because of 2.115 for any blow up the rank of

the Picard group increases by 1, so by 3.17 the rank of the Picard group is 10− d. So f splits into

9− d = n blow-ups.

Let p1, . . . , ps ∈ P2 all the points in which f−1 is not defined. We claim that s = n. If s < n, then

one of the monoidal transformations of the decomposition of f would have its center on the inverse

image of some point p under the blowing up of this point pi, ϵi. Let D be such a curve, then p

would have multiplicity 1 in this curve. By 3.23, ϵ−1
i (D)2 = −2, and keeping doing blow ups this

number would only decrease more, getting to a contradiction with 3.16.

If three of the points pi are in a line D, then doing the blow up ϵ−1 of one of them we get a new

surface S′ with a new line D1 = ϵ−1(D). By 3.23

D1 = D2 − 1 = 0,

because the multiplicity is 1 and D2 = 1. Blowing up again we get that the new line D2 has

self-intersection:

D2
2 = D2

1 − 1 = −1,

and finally with the third blow-up we get that D2
3 = −2, getting to a contradiction.

If six of the points belong to a quadric C, its intersection number would be 4 3.23, and blowing up

those points we would get a curve with self-intersection number −2, getting to a contradiction. □

From this theorem and 3.12, we get that the in the smooth case the first two definitions are equiv-

alent. We will now introduce the third one.
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5. Del Pezzo as an embedding

Beauville, [2], has a diferent way to approach Del Pezzo surfaces. Let S ⊂ Pn a rational smooth

surface. We can choose a rational map ϕ : S 99K Pn and by 2.106 a linear system on P2 with no

fixed component.

Proposition 3.25 (Chapter 4, [2]). Let d be a linear system as the one described before. Then,

denoting mi the minimum multiplicity of the members of P in P̂ , d their degree, Ei = ϵ−1(pi) and

setting L = ϵ∗l, where l is a line in P2, we get:

P̂ ⊂ |dL−
∑

miEi|.

We will be interested in the cases where f is an embedding, which by 2.89 means that:

• the linear system P̂ separates points, i.e., for all x, y ∈ S there is a curve C ∈ P̂ such that

x ∈ C and y /∈ C.

• the linear system separates tangent vectors, i.e., for any x ∈ S the curves in P̂ do not have

the same tangent directions.

Remark 3.26. If x ∈ Ei, then separating tangent vectors can be interpreted as follows: let Px be

the system of curves in P tangent along x at pi. For every conic Q tangent at pi along x, there is a

curve in Px having contact with Q of order exactly 2 at pi.

If it is an embedding, then we can compute the Picard group of its image, S′ = f(S):

Proposition 3.27 (Chapter 4, [2]). With the conditions described before, its Picard group has a

basis consisting on L = ϵ∗l and Ei. A hyperplane section H of S′ can be written as dL−
∑
miEi.

Corollary 3.28 (Chapter 4, [2]). The degree of S′ equals to H2 = d2 −
∑
m2

i .

Proof. By 1.16, degS′ = H2 = (dL−
∑
miEi)

2 with E2
i = −1, L2 = 1 and EiL = 0. □

Let ϵ : Pr → P2 be the blow-up of p1, . . . , pr ∈ P2. We will now state and proof the main result of

this section:

Proposition 3.29 (Chapter 4, [2]). Let p1, . . . , pr ∈ P2 be r ≤ 6 points in general position, the

linear system of cubics through p1, . . . , pr defines an embedding j : Pr ↪→ Pd, where d = 9− r.

Proof. We will prove the case r = 6, as for the other cases it is the same.

By 2.89 we need to check that the system of cubics through p1, . . . , p6 separates points and tangent

vectors on P6. Let’s see that it separates points, i.e. j is injective.

Let p ̸= q ∈ P2 \ {pi}. We can assume that p1 is not in the line ⟨p, q⟩ (if it were, we could consider

p2, and if it also is then p3 is not). For all i < j ≤ 6 there exists a unique conic that passes through

p and all pk and not passes through pi and pj , Qi,j , k ̸= i, j.

In this case, Q1,i ∩Q1,j = p∪{pl}l, with three different pl such that l ̸= i, j. Therefore q belongs to

at most one conic, because if it belongs to two (or more) then those two Q1,i would be determined

by the same 5 points. So we assume that if q belongs to a conic this conic is Q1,2.

q is at most at one ⟨p1, pi⟩ with i ̸= 2, we assume it is ⟨p1, p3⟩.
So q /∈ Q1,4 ∪ ⟨p1, p4⟩, and p ∈ Q1,4, so we get that j(p) ̸= j(q).
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Let’s see that it separates tangent vectors. For i < j ≤ 6 there is a unique conic Qi through the

points pj for j ̸= i such that Qi∩Qj = ∅. We will do two cases, the first one if x ∈ P2 \{p1, . . . , p6}.
In this case x ∈ Qi ∪ ⟨x, pi⟩. Those cubics do not all have the same tangent at x. If x ∈ E1 the

conics Q2,3 and Q2,4 intersect at x with multiplicity 2. In this case the cubics Q2,3 ∪ ⟨p2, p3⟩ and

Q2,4 ∪ ⟨p2, p4⟩ also intersect at x but have diferent tangents, so j is an embedding. □

Beauville defines a Del Pezzo surface as the image of such an embedding:

Definition B: The surface defined as Sd = j(Pr) is a Del Pezzo surface.

Corollary 3.30. A Del Pezzo surface (Definition B) is a Del Pezzo surface (Definition O)

Proof. By 3.28 it has degree d, so Definition O is obtained. □

This definition is more strict than Definition D, because it does not contemplate the case P1 ×P1

or the blow up of P2 at 7 or 8 points.

By 2.95, one could reason that the linear system of cubics through p1, . . . , pr is in fact the anti-

canonical system | −K|, and the Del Pezzo surfaces are the only ones that are embedded by it, as

we have seen it is a way of characterize them. On other words, being embedded by its anticanonical

system implies that H ≡ −K, so Definition B implies Definition D.

Observe that we have proved that in the case of 3 ≤ d ≤ 9 and smoothness, the three definitions only

differ by P1 × P1, which satisfy Definition O and Definition D, but does not satisfy Definition

B.

Definition B can be generalize into 7 and 8 points being blow-up, to do so we need to redefine

general position: no eight on a cubic with a double point at one of them. In this case Definition

B would work, but it makes no sense to translate it to Definition O, as we would get surfaces on

P1 or P2.

In fact, if we are not assuming smoothness, the first and second are equivalent, but not the third.

6. Singular Del Pezzo surfaces

Though in this work we have almost not work with the case of singularity, huge theory has been

studied of those. However, because of the complexity of this topic we can only do a brief introduction

of this here.

The following is the main proposition which explains the dimension of singularities:

Proposition 3.31 (Chapter 8 [8]). Let S be a Del Pezzo surface O. Then all its singularities are

rational double points.

For more information about this subject we recommend [8]. In the case of bigger dimension, i.e.

with Fano varieties, [4].





CHAPTER 4

Geometry of Del Pezzo surfaces

In this final chapter we will use the three definitions and the equivalences between them to get

results about the geometry of Del Pezzo surfaces. We will also assume smoothness.

1. Geometry of S3 and S4

In this section we will work with S3 and S4, and as we are assuming smoothness and 3 ≤ d ≤ 9,

the three definitions are equivalent. So the following result work for any of the three definitions:

Proposition 4.1 (Chapter 4, [2]). Let S3 and S4 be Del Pezzo surfaces. Then, S3 is a cubic

surface, S4 is the complete intersection of two quadrics. Those are the only complete intersection

surfaces embedded by their anticanonical system.

Proof. By 2.53 it is proved the uniqueness of such surfaces. It is obvious that S3 is a cubic

surface. We only need to prove that S4 is the complete intersection of two quadrics.

We know that h0(P4,OP4(2)) = 15, so we want to see that h0(S4,OS4(2)) ≤ 13, then on 1.1 we

would get that dim IS4 = 2 and S4 lies in two quadrics Q1 and Q2.

Let C ∈ |H| be a smooth hyperplane section of S4, then C has genus 1 (as in the proof of 3.7).

We have the exact sequence:

0 → OS4(H) → OS4(2H) → OC(2H) → 0,

so

h0(OS4(2)) ≤ h0(OS4(1)) + h0(OC(2)).

Moreover we know that H.C = H.H = 4, therefore by Riemann-Roch 2.55:

χ(OC(2H)) = deg(2H) + 1− g = 8 + 1− 1 = 8,

We claim that h1(OC(2)) = 0. Let’s see why. By 2.57 its canonical has degree 0, so by Serre duality

we have that h1(OC(2)) = h0(OC(−2)) which is exactly 0.

So h0(OC(2)) = 8. We also know that h0(OS4(1)) = 5, as it is embedded to P4 which has 5

coordinates, thus h0(S4,OS4(2)) ≤ 13.

Now, by 2.36 we have:

0 → IS4 → OP4 → OS4 → 0,

and

(1.1) 0 → IS4(2) → OP4(2) → OS4(2) → 0.

So dim IS4(2) = 2. Therefore S4 lies in two quadrics Q1 and Q2. Q1 ∩ Q2 is a surface of degree 4

containing S4, so they are equal.

□
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Corollary 4.2 (Chapter 4, [2]). Cubics and intersections of two quadrics are the only complete

intersection surface embedded by their anticanonical system (i.e. are Del Pezzo surface).

Proof. 2.53 and 4.1. □

The reciprocal of 4.1 is also true:

Proposition 4.3 (Chapter 4, [2]). Let S be the complete intersection of two quadrics in P4. Then,

S is a Del Pezzo surface.

Proof. Let S be a surface which is the intersection of two quadrics, then by the adjunction

formula 2.66 applied twice we have:

KS = (KP4 +Q1 +Q2)|S = (−5H + 2H + 2H)|S = (−H)|S .

□

This last proof is not the one used on [2], as he does not define a Del Pezzo surface as Definition

D.

2. Lines on a Del Pezzo surface

The main result of this section is proposition 4.4, which counts the amount of lines on a Del Pezzo

surface. We will use Definition B of them as an embedding of Pr with ϵ : Pr → P2 be the blow-up

of p1, . . . , pr with 6 points in general position.

Proposition 4.4 (Chapter 4, [2]). Let Sd be a Del Pezzo surface of degree d Definition B, then

Sd has a finite number of lines. Those are the images of the following curves in Pr:

i) the exceptional curves

ii) the strict transforms of the lines ⟨pi, pj⟩ (i ̸= j)

iii) the strict transforms of the conics through 5 of the pi.

Proof. Let L be a line on Sd, then

L2 − L.K = 2g − 2.

Because L is a line, any hyperplane section H has L.H = 1 thus L.K = −1, therefore we get that

L2 = −1, so it is an exceptional curve. In particular the j(Ei) are lines on Sd. Let E be a line

which is not Ei, then E.H=1. So

E.H = (mL−
∑

miEi).(−K) = 3m−
∑

mi = 1.

We also know that Ei.E = 0 or 1, so the only solutions are m = 1 with two of the mi are 1 and the

rest are 0 (a line that passes through two of the pi’s) or m = 2 with mi = 1 for 5 different pi, which

is a conic that passes through 5 of the pi’s. □

By this last proposition we obtain that the number of lines of Sd are given by r +
(r
2

)
+

(r
5

)
(with

the last term only if r = 5 or 6). Observe table 1.

Observe that P1 × P1 does not appear on this last table. That is because Beauville [2] does not

consider it to be a Del Pezzo surface.

If we keep adding rows, we would need to use another definition. In this case, using Definition D

[3] we get the row of d = 7 and d = 8, table 2.



3. Smooth surfaces on P3 51

r No. of Ei No. of lines ⟨pi, pj⟩ No. of conics through 5 of pi Total no. of lines in Sd
0 0 0 0 0

1 1 0 0 1

2 2 1 0 3

3 3 3 0 6

4 4 6 0 10

5 5 10 1 16

6 6 15 6 27
Table 1. Number of lines on the Del Pezzo surface Sd

r No. of Ei No. of lines ⟨pi, pj⟩ No. of conics through 5 of pi Total no. of lines in Sd
7 7 21 21 56

8 8 28 56 240
Table 2. Number of lines on the Del Pezzo surface Sd with 7 ≤ d ≤ 8

Observe that in this case proposition 4.4 does not apply, as these surface can not be defined as the

cubics that go through r r ≤ 6 points.

3. Smooth surfaces on P3

As a final result of this project, we will prove that any smooth cubic surface is a Del Pezzo surface.

And again, as in the previous section we can assume any of the three definitions.

On the algebraic geometry course we proved the following lemma:

Lemma 4.5. Let S ⊂ P3 be a smooth cubic surface. Then S contains a line. Moreover, given any

line l ⊂ S, then there are exactly 10 other lines li ̸= l in S meeting l. These fall into 5 disjoint

pairs of concurrent lines. In particular, S contains two disjoint lines.

Theorem 4.6 (Chapter 4, [2]). Let S ⊂ P3 be a smooth cubic surface. Then S is a Del Pezzo

surface.

Lemma 4.7 (Chapter 2, [2]). P1 × P1 blown up in one point is isomorphic to P2 blown up in two

points.

On the class notes there is a proof that any smooth cubic surface is in fact rational. Moreover, to

do so there are defined two mutually inverses birational morphisms, ϕ and ψ, defined as follows:

ϕ : l × l′ 99K S, such that if (p, p′) is a point in l × l′, then the line ⟨p, p′⟩ meets S in a third point,

p′′. We define ϕ(p, p′) = p′′. For s ∈ S \ l \ l′, set p = l ∩ ⟨s, l′⟩ and p′ = l′ ∩ ⟨s, l⟩. We define

ψ(s) = l × (p, p′).

Proof. As ψ is a birational morphism, it is a composite of blow-ups and isomorphisms 2.112.

The curves contracted by ψ are the lines of S that meet l and l′. By 4.5 we know that such lines

fall into 5 disjoint pairs of concurrent lines {di, d′i} such that l, di and d
′
i lie in a plane πi.

πi meets l′ in exactly one point, which lies on di or di’, but not both, because di, d
′
i and l

′ are not

coplanar. Therefore for each i one of di meets l′. So ψ contracts exactly 5 disjoint lines.
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Hence S is isomorphic to P1 × P1 blown up 5 points, so by 4.7 it is isomorphic to P2 blown up 6

points, which is S3. □

And we finally get a famous result as a corollary:

Corollary 4.8. Any smooth cubic surface contains exactly 27 lines.
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